
SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

(C) 1986 Society for Industrial and Applied Mathematics
001

INTEGRATION IN FINITE TERMS WITH SPECIAL FUNCTIONS:
THE LOGARITHMIC INTEGRAL*

G. W. CHERRYf

Abstract. Since R. Risch published an algorithm for calculating symbolic integrals of elementary
functions in 1969 (Trans. Amer. Math. Soc., 139 (1969), pp. 167-189), there has been an interest in extending
his methods to include nonelementary functions. In this paper, we use the framework of differential algebra
to make precise the notion of integration in terms of elementary functions and logarithmic integrals. Basing
our work on a recent extension of Liouville’s theorem on integration in finite terms,, we then describe a
decision procedure for determining if a given element in a transcendental elementary field has an integral
which can be written in terms of elementary functions and logarithmic integrals. This algorithm first examines
the structure of the integrand in order to limit the logarithmic integrals which could appear in the integral
to a finite number. This allows us to write a general expression for the integral and then use techniques
similar to those employed by Risch to calculate the undetermined parts.

Key words, integration in finite terms, special functions, logarithmic integral

1. Introduction. In 1969 R. Risch gave a decision procedure for determining
whether an expression involving an algebraically independent set of logarithmic and
exponential expressions (Risch’s "monomials"), possesses an elementary integral
Risch69]. Although this result was seen as the culmination of a long history of research
on symbolic integration, there are still a number of open questions in this area. The
work presented here is an extension of the Risch algorithm to include a well-known
yet nonelementary function, the logarithmic integral, into the integral.

Let F be a differential field of characteristic zero with subfield of constants C and
let E be a differential extension of F. An element 0 in E such that 0’ a’/a for some
a in F is called a logarithm ofa and we write 0 log (a). Similarly, an element 0 such
that 0’= Oa’ for some a in F is called an exponential of a and we write 0 exp (a).
We say that a differential field, F, is elementary if F C(x, 01,"’, 0,) where C is a
field of constants, x is a solution to z’-1 0 and each 0i is an algebraic, exponential
or logarithm over C(x, 0,. ., 0_). F is further called transcendental if, for each i, 0
is not algebraic over C(x, 0,..., 0i_).

The Risch algorithm determines if an element of a transcendental elementary field,
F, has an integral in an elementary extension of F. If the integral exists then it will be
calculated and if not, then the algorithm terminates. An important class of functions
which will cause such termination are the logarithmic integrals: li (u) (u’/log (u)) dx.
The algorithm presented here considers the same set of integrands as those considered
by Risch but attempts to write the integrals of these in terms of elementary functions
and logarithmic integrals.

Example 1.1. (x/log (x)2) dx is not elementary yet

x x__
log (x)2 dx 2 li (x2) -log (x)"

Section 2 will formalize these notions and present an extension to Liouville’s
theorem on integration in finite terms. The classical Liouville theorem describes the

* Received by the editors November 22, 1983, and in revised form August 16, 1984. This work was
supported, in part, by the System Development Foundation under grant 301.

t Department of Computer and Information Science, University of Delaware, Newark, Delaware 19711.
Present address, Computer Research Laboratories, Tektronix, Inc., Beaverton, Oregon 97077.

2 G.W. CHERRY

structure an expression must exhibit in order to have an elementary integral and was
the basis for Risch’s work. The extension presented here, which includes the logarithmic
integral, will be used in a similar manner in 5 to prove the main result of the paper
In 3 various types of transcendental elementary field descriptions are discussed.
Section 4 is concerned with E-decompositions. These decompositions will be useful
in5.

2. Li-elementary extensions. We begin by making precise the notions of li-elemen-
tary extensions and li-elementary fields. Let F be a differential field of characteristic
zero with derivation and constants C. We say that a differential.extension E of F is
a li-elementary extension ofF if F FoG F _. . Fn E such that Fi Fi_(O) where
for each i, 1 =< =< n, one of the following holds"

(i) 0i is algebraic over Fi_l;
(ii) 0’= u’O for some u in F_I (i.e. 0i=exp (u))"
(iii) 01= u’/u for some nonzero u in F_ (i.e. 0=log (u));
(iv) 0’= ’/ ’/u v for some nonzero u andvinF_suchthat v’ u u. Inthiscase

we write 0 li (u).
.Cases (i), (ii) and (iii) describe the elementary functions. Case (iv) extends this

notion and allows us to adjoin nonelementary elements of the form (u’/log (u)) dx
onto these fields. By li-elementary field we mean any field which can be described as
an li-elementary extension of C(x) where C is the field of constants and x is a solution
to z’- 0.

Example 2.1. Let R be the set of real numbers and let F R(x) be the set of
rational functions with coefficients in R. Then F is a differential field under the usual
derivative" d! dx. The real-valued function e is an exponential over F and so R(x, ex)
is an elementary extension of F. Next consider g(x)= o (e’/t) dr. This function is a
logarithmic integral over F(x, eX), (g(x)=li (e’)), and hence R(x, e, g(x)) is a li-
elementary field.

The decision procedure given here is based on an extension of Liouville’s theorem
on integration in finite terms published recently by Singer, Saunders and Caviness
[Scs81]. We shall state and prove a refinement of this theorem for logarithmic integrals.
In order to do this we first need the following simple lemma.

LEMMA 2.1. Let K be a field containing the nth roots of unity and let E be an
algebraic extension of K. If v is an element of E such that v is in K, then either v is in
K or the trace of v in E with respect to K is zero.

Proof. First note that v satisfies a pure equation and therefore has a cyclic Galois
or, o" ,..., o" } [Vdw50]. Next, let r(v)= kv where is a primitive nth rootgroup: { 2

of unity and write the conjugates of v as

(v) %,

Now since r--o"+, : is an rth root of unity and so either r 1 or

Tr (v)= (sck+

TI-IZORZM 2.2. Let F be a liouvillian extension of its field of constants C. Assume
C is algebraically closed and has characteristic zero and let y be an element of F which
has an integral in some li-elementary extension of F. Then there exist constants c and d

INTEGRATION WITH SPECIAL FUNCTIONS 3

in C and elements wi, ui and v in F such that

W Ui(2.1) 3/= W’o+2 ci--+2
Wi [)i

where v u’i/ ui.

Proof. A direct application of the main theorem from [SscS1] implies that there
exist elements wi, u and v algebraic over /7 satisfying (2.1). We only need to show
that these elements are in F. Since v’ Ui/U we have by the lemma in [Rosi77, p. 338]
that vi, and hence 1/vi, is in F and that u ’i is in F for positive integers n. Now let E
be a normal extension of F containing the wi and ui and take the trace in E on both
sides of (2.1) over the field F. This yields

(N(wi))’ (Tr (ui))’
m), (Tr Wo))’ + ci + di

N(wi) vi

where m is a positive integer and N(w) is the norm of wi. The proof is completed by
noting that, by Lemma 2.1, Tr (u)= 0 for all u not in F.

There is a technicality implicit in the statement of this theorem, (and, in fact, in
the remainder of this paper), which involves transcendental constants. Consider the
following example.

Example 2.2. Let Q denote the algebraic closure of the rationals and let F=
Q(x, ln (x)) where In (x) is the classical logarithm (i.e. the unique solution to y
1/ x, y(1) O). Then y= 1/(ln(x)+l) has an antiderivative in some li-elementary
extension of F since (2.1) is satisfied with u x, v In (x) + 1, d 1 and w ci 0.
Notice that by introducing transcendental constants we can write I3’ as

lie ((ex)’/ln (ex)) dx= 1/e li (ex) which has the added property that v=ln (Ul).
As this example indicates, equation (2.1) is not a unique representation for y. In

fact we can make the following observation: Let F be as in Theorem 2.2 and let y be
an element of F such that (2.1) holds for some w, u, v in F and constants ci and
Consider an element ti of a differential extension E of F where v’=i ti/ti. It is easy
to show that ti Au for some nonzero Ai in the constant field of E. Furthermore we
have

di ’wi: w+Z c,---+Z---
Wi Ai 1.)

Therefore, an integration algorithm for integrating with li-elementary functions
over some classical field F, can first attempt to satisfy (2.1) with some wi, ui, vi, c and
di in F and then, with the possible inclusion of transcendental constants, adjust u
and vi in order to satisfy the condition vi In (ui). For other examples of this see
Examples 5.3 and 5.4.

3. Towers of elementary fields. An important phase of any symbolic integration
algorithm is the formulation of a suitable field for describing the integrand. In this
section various notions are defined which shall be used later in the construction of
these fields.

Let F C(x, 01," ", On) be a transcendental elementary extension of C(x) where
C is the field of constants and x is a solution to x’= 1. Rearrange the 0’s into a tower
C(x) Foe__ F F F where F F_(Oi, ., Om,) for i= 1,. , r and where
one of the following holds for each 0"

(i) 0b ab/a for some nonzero ai in F_ where ai is not in F_;
(ii) 01 Oa’ for some % in F_ where % is not in Fi_.

4 G.W. CHERRY

We now define the rank of a tower of transcendental elementary fields F=
C(x, 01,"’, 0n), denoted rank(F), to be the tuple (m,.. ",ml, 1). Notice that
rank (F) depends on the particular monomials chosen in the definition of F.

Example 3.1. The fields E1 C(x, exp (x), exp (exp (x)+x), exp (exp (x)+x2))
and E2- C(x, exp (x), exp (x2), exp (exp(x))) are isomorphic fields yet rank (El)
(2, 1, 1) and rank (E2)- (1, 2, 1).

We can also define the rank of a particular element in F. Let Fo,’- ", Fr be as
above. An element a in F has rank k if a is an element of. Fk and a is not an element
of F_.

Given two sequences (m,...,ml, 1) and (ns,’",rl, 1) we say that
(m’",ml, 1)<(ns,’",nl, 1) if r<s or if r-s and (m,...,ml, 1)<
(rs,’" ", rl, 1) in the usual lexicographic ordering. Notice that, with this ordering,
the set of all tuples of nonnegative integers is a well ordered set with (1) being the
first element. We can therefore prove theorems using induction on rank (F). A similar
notion of rank and a further discussion can be found in [Ssc81].

Let F- C(x, 01," ", 0n) be an elementary transcendental extension of C(x). We
shall call Ffactored if for each logarithmic monomial 0i- log (ai), a is an irreducible
polynomial in C[x, 01, , 0-1]. An easy induction shows that given any transcenden-
tal elernentary ,extension~ F C(x, 01,’", On) of C(x), one can construct a factored
field F- C(x, 01," ", 0,,) such that F is differentially isomorphic to a subfield of F.
We may assume therefore that the fields that define our integrands are factored.

Let F be as above and let 0-exp (a) be an exponential monomial of rank k.
Suppose that ai (pj qj)O + V, where p and q are integers, the 0 are logarithmic
monomials of rank k 1 and rank (2,) < k 1. We shall call such monomials normalized
if 0< pj/qj < 1 and say that F is normalized if each exponential monomial with the
above format is normalized.

Example 3.2. Let F- C(x, log (x), exp (log (x)+ x)). Although this is not a nor-
malized field, it is differentially isomorphic to the field F
C(x, log (x), exp (1/2 log (x) + x)) which is normalized. [3

As the above example indicates, one can always replace the monomials 01," ", 0n
with another set of monomials 1,’", 0 so that the field fi= C(x, 1,’" ", 0) is
normalized and differentially isomorphic to F. Also note that in F the isomorphic
image of 0i will have a representation of the form 0, where ,i is in C(x, 1," ",

Moreover, it is not hard to show that rank ()_<-rank (F), (where _-< is the reflexive
closure of <).

We shall make two assumptions concerning the field of constants, C. We first
assume that polynomials with coefficients in C can be factored into irreducible factors
in a finite number of steps. Note that this implies, ([VdwS0]), that polynomials in
C(x 01,.. ",Ok_l)[Ok] can also be factored in a finite number of steps over
C(x, 01,’", Ok-l). Secondly, we will assume that c is algebraically closed. These two
assumptions hold for the algebraic closure of the rationals and the algebraic closure
of any finitely generated extension of this field [Davtr81].

4. -decompositions. Let K be a field of characteristic zero and let E (fl, , f,,)
be a sequence of distinct and irreducible elements of K[x], where no f is in K. Given

in K (x) we say that has a X-decomposition over K if there exist b in K, integers
aj, and a natural number n so that

bi [I fT’.
i=1 j=l

INTEGRATION WITH SPECIAL FUNCTIONS 5

We are interested in this section in the existence, uniqueness, and construction
of E-decompositions. The following examples show that neither existence nor unique-
ness are guaranteed unless we restrict the decompositions in some manner.

Example 4.1. It is easy to show with simple degree arguments that x has no
E-decomposition over the rationals if

Example 4.2. Again let K be the rationals and let E- (x, x + 1). Then 0 has an
infinite number of E-decompositions since

0=(x+l)- C(n,k)x"-k forn=l,2,....
k=l

Let T be a subset of Z and let g: T-Z". We say that in K(x) has a
E-decomposition restricted by g if

i=l j=l

where for all i, al is in T, g(a)= (a, a2,""’, a=) and b # 0 except in the trivial
case where 0 and n 1. Notice that if has a E-decomposition restricted by g,
then we may assume that a < o21 ’’" an1.

Let f be an irreducible element of K[x] and let be a nonzero element of K (x).
By the unique factorization in K[x] we may write =ffp/q where f, p, q are pairwise
relatively prime elements of K[x], q is monic and a is an integer. Moreover, this
representation is unique. We then refer to

LEMMA 4.1. Let and g be as above. Let be a nonzero element ofK(x) and let

i=1 bi I-If)" be a X-decomposition of restricted by g where all (O21 (" (Onl. Then
a is the multiplicity off in

Proof. The proof is trivial if n 1. Therefore assume that n > 1. Letting -fpq
wheref, p and q are pairwise relatively prime elements of K[x] and q is monic, we have

fo P_ blf" l-I f’ + bf,, [I
q j=2 i=2 j=2

(4.1) f -P=f,, b, H fj"+ b,f,,-",, 1-[f]’
q j=2 i=2 j=2

f, for andSince f is relatively prime to fl for j > 2, we have bl Hj=2 Pl/ql some Pl
q in K[x] where fl, Pl, and ql are pairwise relatively prime. Also since Cql-al > 0
for all ->_ 2, we can write

b,f’[’’-’’’ H f"=f P2
i=2 j=2 q2

where f, P2 and q2 are pairwise relatively prime and ff > 0. Substituting these into (4.1)
yields

q \q qq2 q3

where f, P3 and q3 are pairwise relatively prime elements of K[x] and q3 is monic.
Thus a=al. [3

We shall assume throughout this section that K is computable. That is, the field operations can be

effectively carried out in K.

and so

6 G.W. CHERRY

As a consequence of this lemma, we have the following uniqueness theorem for
restricted E-decompositions.

TrtEOREM 4.2. Let E and g be as above and suppose has a E-decomposition
restricted by g. Then this decomposition is unique except for the possible reordering of
terms and combining of like terms.

Proof Let Yi= bi I-I f’J and i=l gi l-I f% be two E-decompositions of
restricted by g. Thus

b, life,J- Y b-] I-[fa, 0.
i=1 i=1

Now reorder and combine the terms in this equation to obtain a restricted E-decomposi-
tion for O"

where 611 < 121 <" < trl. We wish to show that r 1 and c 0. Assuming that r > 1
yields

The multiplicity of f in the left side of this equation is 6 and, by Lemma 4.1, the
multiplicity of f in the right side is t2. But 6 < t2 thus proving that r 1. From
this it follows that el--0. [3

The lemma also yields an algorithm for calculating E-decompositions under the
assumption that the decomposition exists.

THEOREM 4.3. Let E and g be as above. Let be an element ofK(x) and suppose
that has a E-decomposition restricted by g. Further assume that for any a in T we can
calculate g(a in a finite number of steps. Then we can calculate the E-decomposition of
dp in a finite number of steps.

Proof Let i=x bi I-[fj" be the E-decomposition of restricted by g. Using
an inductive argument on n, we need only show that b, a, , a,, can be calculated
in a finite number of steps. (Once these values are known we can apply the induction
hypothesis to -b 1-If,). But by Lemma 4.1, a is the multiplicity off in and,
since g is computable, this allows us to compute a2,’", am. We can then calculate
relatively prime polynomials p and q such that q is monic, gcd (f, q)= 1 and

which implies that

P---* -b,+ b, HfT,,-,,
q Hf;l’ i=2

(4.2) p= blq+ q bi l-[f’v-’’.
i=2

Now since p and bq are in K[x], we have q i=2 bi I-If)" , in K[x]. Then since

ail-a > 0 for each i> 1, we can write (4.2) as

(4.3) p b,q+fQ

with Q in K[x]. Finally, (4.3) implies that b=(p modf)/(q modf). [3

The only question remaining concerning restricted E-decompositions is the follow-
ing: Given an arbitrary element in K(x) and a function g, can we determine in a

INTEGRATION WITH SPECIAL FUNCTIONS 7

finite number of steps if @ has a Z-decomposition restricted by g? A partial solution
is to apply the above algorithm to . The problem, of course, is guaranteeing termination
in the case where has no Z-decomposition restricted by g.

Example 4.3. Let = 1/(l-x), Z=(x), T Z and g(a)=(a). Then the above
calculations will generate bl 1, b2 1,. ., and will not terminate. [3

The theorem below gives conditions under which a termination strategy can be
adopted. Let Yi=l bi I-If) be a Z-decomposition of and, for each j, let pj(a) be
the unique polynomial of degree less than n for which pj(al) a0, 1.2,. , n. We
then define the degree of this decomposition to be the maximum of the degrees of the
p. Although the Z-decompositions which occur in 5 are only of degree one the added
generality here and in the next theorem comes at little cost and, in fact, appears to be
useful when designing algorithms for integrating in terms of other special functions
(e.g., the error function [Cher83]).

THEOREM 4.4. Let Z and g be as above and let d be a positive integer. Suppose that
for any integer, a, we can determine in a finite number of steps if a is in T and, if so,
can calculate g(a). Then given. in K (x), we can determine in a finite number of steps
if has a Z-decomposition restricted by g with degree less than d.

Proof We first calculate a ll as the multiplicity of fl in . If a ll is not in T we
stop and say that has no such Z-decomposition. Otherwise we calculate a12, , al,,,

form @/I-If,J p/q, and let bl =p modfl/q mod fl. If bl is not in K we again stop.
If bl is in K we let (I)2 --(I --b lqfT" and calculate a21 as the multiplicity of fl in (I) 2.
If a2 is in T and a21 > all then continue with the calculation of (b2, a21,"" ", a2m).
In this manner, we compute (b3, a31, a3m),""" (bd, adl," adm) and, with this
data, form pl(a),’",p,,,(a). Once these polynomials are known, we can find an
integer a* such that pj(a) is monotone on the interval (a*,) for each j. Note that
if pj has degree 0 for some j then we may replace a+l with cI,a+l/fJ thereby insuring
that the pj are strictly monotone on this interval. Now continue with the iterations as
before until al > a* for some k => d. If at any point a p(al), then there is no such
decomposition. Otherwise we have an element +1 which we wish to write as

k+l b I-Ifj’J where the sequences (ak+l,j, anj are strictly monotone for each j.
There are two cases"

(i) Suppose the jth sequence is monotone decreasing. Let r be the multiplicity
of f in k+l. By examining the partial fraction decomposition of (I)k+ we see that
a, r. Therefore we may terminate our computations if for some i> k we have a0 < r.

(ii) Assume that all the sequences are monotone increasing. In this case we iterate
until arl, arm are all positive for some r. If (I) is not in K[x] we terminate with
failure. Otherwise we have deg (I-I fj.) deg (r) and can terminate the computations
if for some i> r we have deg ([If’)>deg (r). [3

These results generalize easily to the multivariate case. That is, let Z (fl, ",f,,)
be a sequence of pairwise relatively prime, irreducible elements of K[xl, , xr] where
f is not in K for each i. E-decompositions, restricted E-decompositions, and the degree
of a decomposition are all defined as before.

In order to determine if in K(xl,."", xr) has a E-decomposition restricted by
g of degree d over K we first single out Xk such that fl is not in
K[Xl, ", Xk_l, Xk+l," ", Xr]. Then form Z’= (fl,fkl," ,fks) where fkj is not in
K[Xl,’’’, Xk-1, Xk+I,’’’, X] for each j. Now use Theorem 4.4 to calculate (if they
exist) elements Bi in K(Xl,’’’, Xk-1, Xk+I,’’’, X) and integers a0 so that

(4.4) Bd Hf’f
If has a Z-decomposition restricted by g of degree d over K then (4.4) will be a

8 G.W. CHERRY

E’-decomposition restricted by a projection of g also of degree d over
K(Xl,’’’,Xk-,Xk+,’" ",Xr). At this point we need only factor each Bi over
K (Xl, , Xk-, Xk/, ", Xr) and examine these factors and multiplicities to determine
if has a decomposition over K. Also this decomposition is unique since (4.4) is
unique and each factorization of Bi is unique.

5. The logarithmic integral. In this section a decision procedure for calculating
antiderivatives of transcendental elementary functions in terms of elementary functions
and logarithmic integrals is described. A useful operation when integrating with special
functions is to partition the integrand into a number of simpler expressions. The
following lemma describes how to do this with logarithmic integrals.

LEMMA 5.1. Let F be as in Theorem 2.2 and let 0 be an exponential monomial over
F. Let y be an element of F(O) and, using a partial fraction decomposition, write
T=A,O"+...+A,O’+Ao+P(O)/Q(O) where Ak is in Ffor all r<-k<-_m,p,q are
in F[0], deg (P(0)) < deg (Q(O)) and gcd (Q(0), 0) 1. Then 3/has an antiderivative
in some li-elementary extension ofF(O) ifand only ifeach ofterms A,O", , A,O’, Ao+
P(O)/ Q(O) has such an antiderivative. In this case, for every k, the terms u’/ v involved
in the integration of AkO k are each of the form fO g where f is in F. The terms u’/ v
involved in the integration ofAo+ P(O)/Q(O) are in F.

Proof. If each of the terms A,,O’, .., A,O’, Ao+ P(O)/Q(O) has an antideriva-
tive in some li-elementary extension of F(0) then the sum of these is an antiderivative
of 3’.

Conversely, suppose 3’ has an antiderivative in some li-elementary extension of
F(0). From Theorem 2.2 we have constants ci, d and w, u, and v, in F(0) such that
(2.1) holds. We shall first show that for each we have ul/v =f0, for some integer
ri and some f in F. Applying [Ros76, Thm. 2], we have that v is algebraic over F and
that u- 0r, for some rational r and some tii algebraic over F. But this in conjunction
with Theorem 2.2 implies that r is an integer and that f is in F.

Equation (2.1) therefore becomes

w$
v w+E c,--+E do’.

Wi

Now write both sides of this equation explicitly in terms of 0 over the field F.
This yields

A,,O" +. + An 0’ + Ao+ P(0_.__)
Q(O)

(5.1)
R(O) +Z c,--+E dB,O +" "+BO’+Bo+ S(O)]

where B is in F, R(0) and $(0) are in F[0] and deg (R(0)) < deg (S(0)). Differentiating
and comparing coefficients yields

A,,,O" B,,,O")’ + E dO",

aa, 0
a’ B, 0’ +2 d-O a’

P(O)
Bo "- -- 2 ei---+" E d’/00,ao+ 0o= S w, o

where the notation k implies that the sum includes those terms in (5.1) for which ri k.
This completes the proof, l-]

INTEGRATION WITH SPECIAL FUNCTIONS 9

We shall also need the following.
LEMMA 5.2. Let K be a computablefield and let p and q be relatively prime elements

of K[x]. Given f in K[x] with deg (f)= n > 0, one can determine in a finite number of
steps if there exists a polynomial d in K[x] with degree less than n such that f divides
p + dq. Moreover this polynomial, if it exists, it unique and can be calculated.

Proof. First note that if such a d exists then f and q must be relatively prime, for
a common factor of f and q would also be a common factor of p and q. Therefore
polynomials x and y can be calculated such that xf/ yq 1. We claim now that
d -py modf is the unique solution to the problem. It is a solution since

p+dq=-p-pyq=p(1-yq) =pxf=-O (modulo f).

To show that it is unique let dl and d2 be two solutions such that

and fg2 P + d2q.

Subtracting yields

f(gl g2) q(d, dE).

Since f and q are relatively prime, f must divide dl- d2 which contradicts the degree
conditions.

Although Theorem 5.4 is the main result in this section, most of the work is done
in the following theorem. Much of the proof of the main theorem is a reduction to
this case.

THEOREM 5.3. Let E C(x, 01, On) be a differentialfield of characteristic zero
with algebraically closed subfield of constants C. Assume x is transcendental over C and
a solution to x’= 1, 0i is a monomial over C(x, 01,"’, 0i-1) for each i, and E
C(x, 01,’" ", On) is factored and normalized. Further assume that On is exponential over
C(x, 01," ", 0n-l), the rank of On is r and the rank ofE is (1, mr-l," ", 1). Then given
A in C(x, 01,"’, 0,_1), one can determine in a finite number of steps if AOn has an
antiderivative in some li-elementary extension of E.

Proof. First some notation. Let F- C(x, 01," , 0n-l) and let e and be indexing
sets for the exponential and logarithmic monomials in F:

e { Oi is an exponential monomial},

{ i[0i is a logarithmic monomial}.

Also let 0= Oa for all in e, 0= a’i/a for all in and let 0n =exp (an).
Now assume that AOn has an antiderivative in some li-elementary extension of E.

From Theorem 2.2 and the proof of Lemma 5.1, we have

(5.2) AOn (BO.)’ +. d, u--’

where B is in F, the di are constants, v[u/u and u, vi are in E. We first take a
closer look at the structure of the u and v. Since u is an algebraic exponential over
E, we have by [Roca79, Thm. 3.1] that there exists rational numbers r and r0 and a
constant v so that

v, ria, + E roaj + roO + v,.

Then since u is an exponential of v, we also have

(5.3) u, r/, I-I ay,J H oio 02

10 G.W. CHERRY

where r/i is in C. Thus we may rewrite equation (5.2) as

AOn=(BO,,)’+E di
rian + -’e rijaj + rijOj + vi)’
(rian + -e rijaj +, rijOj + vi) rli I-ill aj,J Oj,Jo.

We may assume by comparing coefficients that ri 1. Also since different values for

rti will change only the constant di, we may let r/ 1 for every i. Finally all of the
factors in (5.3) are pairwise relatively prime elements of C[x, 01," ", 0n]. Hence, u
in E implies ro is an integer for all and j.

The main idea in what follows is to reconstruct the elements vi by examining the
denominator of A. Once these values are known we apply the Main Theorem, part
(b) from [Risch69]. This theorem reduces the calculation of the element B and the
constants di to the solution of a system of linear equations with coefficients in C.

We have, from the conditions on the rank of E and the rank of 0,, that rank (a,)
r- 1 and rank (aj) < r- 1 for all aj, j in e. Thus there exists a monomial, say 0, of rank
r-1 so that an involves 0 and the other aj are free of 0. Let F= D(O) and write
a, p(0)/q(0) where p(0) and q(0) are relatively prime elements of D[0] and q(0)
is monic. We then have

(5.4) AOn (BO,,)’ +_, di
(p(0)/q(O) +e rijaj + ZI rijOj + vi)’ r,
(p(O)/q(O)+Y=: roa +; i/0/-+;7 aj, Oj’,On.

The remainder of the proof is broken down into two cases.
Case (a). 0=exp (a) or O=x. We have

p(O) p(O) + fliq(O)
v, q---+/3i q(O)

where li "--ae rijaj ’.al rijOj -- vi is in D. Since p(O) and q(O) are relatively prime the
right side of this expression is the unique rational expression with monic denominator
for v in the field D(0). Thus for each i, the denominator of v is known. To determine
the numerators first note .that if p(0)+/3oq(0) is in D for some /30 in D then such a

/30 is unique and is easily calculated. Therefore assume that p(O)+ iq(O) is not in D
and let ’tfi"’’’finik, be its factorization where i is in D and each fij is monic and
irreducible. Equation (5.4) then becomes

AO,=(BO,,)’+E d,

or

AOn-- (BO)’+ di(’ (O)t’Jl’=jk’= flj:)1-1I H O;iJOn"
i -qib-) mo

We claim now that each fj must divide the denominator of A unless fj 0. First
note that iffj 0 then fj does not divide fOk for any k-> 0. Also by Lemma 5.2 each
fj determines /3i uniquely and by [Roca79, Thm. 3.1] each /3 determines ro and vi
uniquely.2 Hence each fj 0 must occur as a simple factor of the denominator of
Y du’/vi. Now consider the term (BO,)’. It is easy to show by considering the partial
fraction decomposition of the above expressions that fj is either a multiple factor or

The uniqueness of rij and vi follows from [Roca79, Thm. 3.1] as follows: If fl)-"e rijaj--,! r/Oj + v
and fl -’e ijaj +1 ijOj + i, then 0 e (r/-j)a +t (r-)0 +(v,- t,). By [Roca79, Thm. 3.1], such
a nontrivial representation for 0 contradicts the assumption that E is a transcendental elementary field.

INTEGRATION WITH SPECIAL FUNCTIONS 11

is not a factor of the denominator of (B0,)’. In either casefj must divide the denominator
of A, proving our claim.

Now with each irreducible polynomial, Pi, in the denominator of A, we apply
Lemma 5.2 and determine if a value /3i exists such that p divides p(O)+ q(O). At
this time we also try p 0. With these values for /31,/32," and the value for /3o
calculated earlier we next determine if there exist integers rj and a constant vi such
that/3 Z roa +Y rqO + vi.

In this way one can calculate, for a given A, all of the terms u’i/v which could
occur in (5.2). We may now apply [Risch69, Main Theorem, part (b)] in order to
determine if there exist constants d and an element B satisfying (5.2).

Case (b). 0 log (a). Although the strategy applied here will be the same as Case
(a) it will not be as easy to implement. This is because the expression Ye roa +Yt ro0j + vi
is no longer in D but instead is linear in 0.

Letting l’= {0il is a logarithmic monomial in D} we have

pao) p O + r,Oq O + fl,q O
vi + riO + i q(O)

where fl e roaj + Y r r,Oj + v. As in the previous case this determines the denominator
of v for each i. There are two subcases.

Case (bl). q(O)# 1 or deg (p(0))> 1. First determine if there exist values ro and
/3o such that p(O)+roOq(O)+oq(O) is in D. This yields ro=-lc(p(O)), (where lc
denotes the leading coefficient), and/3o -lc (p(O)+ roOq(O)). We note that the only
case where these values are not determined uniquely, where q(O)= 1 and p(O)+ roO
is in D, does not occur in this case. Therefore assume that p(O)+ rOq(O)+ iq(O) is
not in D and let :],,...fi’ik, be its factorization where :i is in D and each f is
monic and irreducible. Again we rewrite (5.4) as

AO,, BO, + d (q O
O

rno
-f

/ Il a/, l-Ie
Notice that in this case 1-I1 a, I]e 0, is in D and dego (f)<dego (f) for each i.
Consideration of the partial fraction decomposition of (BO,)’ again implies that each

f must divide the denominator of A unless some cancellation occurs among the terms
in Y dul/v. However such cancellation would imply an equation of the form

f’ f,

or

l’ l’

where mi#0 is in C and F divides p(O)+rOq(O)+flq(O) for all l<=i<=t. Since
{a}U {aj}r LJ {0j}e is a set of relatively prime irreducible elements of C[x,
this expression is a E-decomposition (where E= (a, a, 0, .), l’,j 6 e),
for 0. Furthermore given r we can, by Lemma 5.2 and [Roca79, Thm. 3.1], determine
ro uniquely for any i. By Theorem 4.2 such decompositions are unique and therefore

1 and ml 0, a contradiction. Thus we have shown that every factor ofthe numerator
of v is also a factor of the denominator of A.

We can now reconstruct all values vi which appear in (5.2) as follows: The values
v with a linear numerator must have ri 0 or r =-lc (p(0)). With these values for r
calculate, using Lemma 5.2, all values/3 such that p(O)+ riOq(O)+ q(O) is divisible

12 G.w. CHERRY

by a linear factor of the denominator of A. Next calculate all vi with a numerator of
degree greater than one. These can be determined directly from the denominator of
A again using Lemma 5.2. Finally, with each value for fli, we determine if there exist
integers r and constants vi such that fl=Y-e roaj +Yr ruOj +v. Thus all terms u/v
which could appear in (5.2) have again been determined and we apply [Risch69, Main
Theorem, part (b)].

Case (b2). p(O)= tO+ s and q(O)= 1. This case is handled differently from the
previous cases since here one can not calculate all candidates for v by simply examining
the denominator of A.

First break (5.2) into partial fractions with respect to 0 over the field D to obtain

where pi is monic and irreducible for every i. Notice that r + r # 0 since r is a nonzero
integer and E is normalized. Differentiating and comparing terms yields Ak/ =-
-klBk,p (modulo p). We now proceed as in [Risch69, p. 180]: calculate polynomials
R and S so that Rp+Sp=Ak,+I and deg (S)<deg (pl). Then Bk,=-S/k. In this
way we also determine BEk2," ", BKkK. Now replace AO, with AO,-
[(Blk,/pk’+ "+ BKkr/pkK:)O,,] and a repeat this process. Eventually B is reduced to
a polynomial. That is

Al1+. AKAm+ Om+ nt- 4r- Ao+ +__2
P PK

(BmO" +’" + Bo)’+ (rO+ s)’(B,,O +... + Bo)

[(r+r,)’(r+ri) (O+(s+,)/(r+ri))’]i._.(_s_/i._rTr,)). "’+Z d,t. + [I a, 1-Ie
where Ak is in D(O) and dego (Ak)< dego (Pk) for each 1-< k_-< K.

This yields, for each k,

(5.5) Ak’-- E d,
(O+(s+,)/(r+ r,))’

Pk pk (O+(s+,)/(r+ r,)) T

where the notation p implies that the summation is taken only over terms where
p=O+(s+fl)/(r+r). From (5.5) we have

Akl
p

d,a a: 07.
Pk i’

Constants r0, r and v can now be calculated for each k using the results in 4.
First note that equation (5.6) is a E-decomposition for Ak/p, (where E=
(a,. ., a,. ., 0,. .), e I’, j e e). Fuhermore, we have

(5.7) fl (r+ r)Sk- S,

where Pk 0 + k, and so given r one can determine fl and hence r and v for all j.

INTEGRATION WITH SPECIAL FUNCTIONS 13

Therefore (5.6) is a 5:-decomposition restricted by a computable function. The proof
shall be completed by showing that the E-decompositions in (5.6) are of degree one.

Clearly any -decomposition with only one term has degree one. Therefore assume
that (5.7) holds for distinct r and rE. Now define the set S as the collection of all
elements in D which can be written as Ze rjaj +Yl’ 0 + v for some constant v and
rationals r. Notice that $ is closed under addition, subtraction and multiplication by
a rational number. From (5.7) we have

(5.8) (r+ r)tk-- S

and

(r+ r2)k- S

in S. Subtracting and multiplying by 1/(r-r2) we have k in S. Equation (5.8) now
implies that rtk --s is in S. Thus there exist rational numbers Wlj WOj and constants w
and Wo such that

E wa+E wO+ w
l’

and
r s wo:a: + E wo:O + Wo.

l’

Substituting these into (5.7) and collecting terms yields

ria)+E roO+v,= (w,r,+woj)a+E (w,ri+wo)O+(wlri+wo).
l’ l’

Since this representation for elements in S is unique we have for each j, ro wr + Wo,
proving that the degree of the E-decomposition in (5.6) is equal to one.

We can now determine if d and r0 exist satisfying (5.6). If these values exist then
we can again determine all u and v which occur in (5.2) and use [sch69, Main
Theorem, pa (b)] to calculate B and the constants d. This concludes Case (b2) and
concludes the proof.
TEOE 5.4. Let C(x) be a differential fieM of characteristic zero where x is

transcendental over C, a solution to x’= 1, and C is an algebraically closed subfieM of
constants. Let E C(x, 0, ., 0), n O, be a transcendental elementary extension of
C(x) that is factored and normalized. Given in E, one can decide in a finite number

of steps if has an antiderivative in some li-elementary extension of E, and if so, find
constants c and d and elements w, u, v in E such that

"i(5.9) V w+E c,- E d,--
Wi

U’,/U,.where V

oo Assuming that y has such an antiderivative, the existence of constants c
and d and elements w, u, v satisfying the conditions of the theorem is guaranteed by
Theorem 2.2. It remains to show that these elements can be constructed in a finite
number of steps. Denote the rank of E by (m...., ml, 1). Our construction, which
is an induction on the rank of E, is arranged so that if y has no antiderivative in some
li-elementary extension of E then this will be determined and the algorithm will be
terminated.

(i) For the base case we take rank (E)= (1) and so y is an element of C(x). It
is well-known that y has an antiderivative in an elementary extension of C(x) (i.e.
logarithmic integrals are not needed). Also there are well-known methods, such as

14 G.W. CHERRY

given in [Risch69], for constructing this antiderivative. This observation concludes the
base case.

(ii) Assume the theorem is true for factored and normalized fields with rank less
than (mr,’", rnl, 1) and consider 3’ in E C(x, 0,..., 0,) where E is factored and
normalized and the rank of E is (mr, , m, 1). The strategy adopted here is to reduce
all cases to either Theorem 5.3 or the induction hypothesis. There are two basic cases.

Case (a). There is a logarithmic monomial of rank r. Call it 0 with 0’= a’/a and
let E F(O). Since vi is a logarithm of ui we have from [Roca79, Thm. 3.1] that

v rO + Y ra +Z rO + v
l’

where l’ {Jl Oj log (aj) is a logarithmic monomial in F}, e {j] Oj cxp (aj) is an

exponential monomial in F}, r,:s arc rational numbers and vi is in C. Wc also have

l’

where r/i is in C. We may assume without loss of generality that rt 1 for all i.

Now break (5.9) into partial fractions with respect to 0 over the field F. This yields

where/3 e rjaj + r roOj + v and the p are monic, irreducible elements of F[0]. We
may assume by the uniqueness of the partial fraction decomposition that each w not
in F equals some pi, 1-<i=< K, and that each 0 +/3/r equals some p, 1 =<i=< K.

We now proceed as in [Risch69] and calculate B,,/,..., B. This reduces the
polynomial part of the problem to deciding if an expression of the form Ao B(a’/a),
where B1 is known, has an antiderivative in some li-elementary extension of F. By the
induction hypothesis this can be decided, i.e. apply the algorithm recursively to

Ao BI(a’/a) which is in F.
Next calculate Bk,, ", B, ", Blk,,, ", BI using the Hermite reduction

scheme. This yields an equation of the form

(X11 iKl p:+ (O+,/r,)’ ,,+’’’+ =E ci Z d, a H aj"I-I
\ P, PK / P, (0 + ,1 ri r

where AI,..., AK are in F[O] and deg0 (A/l)< deg0 (p) for all i. By the uniqueness
of the partial fraction decomposition, for each p, 1 <- k <= K, there are two possibilities.
If dego (Pk) > 1 then Akl Ckp’ must hold for some constant ck, otherwise the integral
does not exist. Consider therefore the case where Pk is linear in 0. Collecting together
all terms with a denominator of Pk yields

Akl P’k P’k ,.,-Ck--+E di--a H a;ij H oj
Pk Pk Pk Pk 1’

where Pk--0-F i/ri for each in the above sum. Therefore

(5.10) Akl
Ck + Z dia 1-I a/J 1-I oP’k pk l’

INTEGRATION WITH SPECIAL FUNCTIONS 15

and so

(5.11)
(Akl/P’k)’

p k
diriat’ H aj, H

Pk l’

We can now determine ri, r0 and di using the results of 4. We need only show that
(5.11) is a restricted E-decomposition (where E=(a,..., ai,..., 0,...), i l’,j e),
and bound the degree. However fli/r does not depend on and can be written as

Ee Rjaj +El, RjOj -F 1) where R ro/r and v v/ri for all andj. Hence rj Rr proving
that (5.11) is a restricted E-decomposition of degree one. Once these values are known
we determine Ck with (5.10). This concludes Case (a).

Case (b). All the monomials of rank r are exponential. Choose one, say 0, and
let E F(0). Break 3’ into partial fractions to obtain

P(O)
y A,,O" +" + A, 0’ +Ao-t-Q(O)

where r_-<m, deg0 (P) <deg0 (Q) and gcd (0, Q(0))= 1. If y has an antiderivative in
some li-elementary extension of E then by Lemma 5.1 each of the terms
AmOm, , A, 0’, Ao+ P(O)/ Q(0) must have such an antiderivative.

Consider first the term Ao+ P(O)/Q(O). From Theorem 2.2 we have

Ao+ P(0)= Wto-t-E i"W4r" E di ul-
Q(O) wi v,

where c, di are in C, and w, u, vi are in E. By Lemma 5.1, u and v must be in F and
we can therefore proceed exactly as in the exponential case of [Risch69]. This reduces
the problem of deciding if Ao+ P(O)/Q(O) has an antiderivative in some li-elementary
extension of E to the problem of deciding if an expression of the form Ao+ t, where
the t are known, has an antiderivative in some li-elementary extension of F. This is
decided using the induction hypothesis.

Consider next the term AOJ, where j # 0. Two different types of reductions will
be employed to integrate this expression depending on whether mr > 1 or mr 1.

First suppose that mr > 1. This implies that there is another exponential monomial
of rank r. Denote it by t and let F= D($). (We know have E F(O) D(O)(O).) Do
a partial fraction decomposition of Aj with respect to th over the field D and write

Aj Am$’ + +A,O% + Ao, + Qj(d/-----
where the Aj are in D, deg, (Pj) < deg, (Q) and gcd (@, Q) 1. From this we see that
the partial fraction decomposition of AO over the field D(0) with respect to is

0P(6)
AO A,,joJ$" +...+ A,Ohh’ + OJAo + Qj()

Applying Lemma 5.1 again we have that AO will have an antiderivative in some

li-elementary extension of E D(O)(d/) if and only if each of the terms

0JP(,)
A,,j0jtp ", A,j 0 ", OJAoj +

Qj(O)

A careful analysis of this case reveals that, in fact, P(0)/Q(0) must be elementary over F and, hence,
the induction hypothesis can be applied to Ao. Notice also that this allows one to apply the Rothstein

algorithm [Roth76] to (P(0)/Q(0)).

16 G.W. CHERRY

has such an antiderivative. The term 0Aoj + 0JP(0)/Qj(0) can be handled in the same
manner as before. That is, follow the exponential case of the Risch algorithm and
reduce the problem to deciding if a known expression in D(0) has an antiderivative
in a li-elementary extension of D(O). This can be decided using the induction
hypothesis. For the other terms, consider a general representative Aij0Oi. This
expression will have an antiderivative in some li-elementary extension of E if and only
if AiOi, where (R) 0J, ’, has an antiderivative in some li-elementary extension of

D(O).. This is true because E is an elementary extension of D(O). Notice that, in
the field D((R)j), rank ((R)i) -< r and therefore rank (D((R)i)) -< (mr- 1," , ml, 1). Fol-

lowing, our discussion of ranked and normalized fields from 3 we replace D((R) 0)
with Di so that/ is isomorphic to D((R)) and/j is normalized. We then have

rank (/i <= rank D(O <= mr 1," ", m1, 1 < rank E).

Now suppose that in the field/, AijO has the representation.A; Since rank (/) <
rank (E) we can apply the induction.hypothesis to determine ifA has an antiderivative
in some li-elementary extension of Dj and then map the result back to E. This reduction
is applied to each of the terms A,,OJ,", A,jO,%, concluding case where mr> 1.

We may now assume that mr 1. Finding an antiderivative of A0 in some
li-elementary extension of E is equivalent to finding an antiderivative of AO(), where
0(j)= 0, in some li-elementary extension of F(0)). Again this is true because E is an
elementary extension of F(0()). Replace 0() with (J) so that F(()) is normalized
and isomorphic to F(0)). Now in the field F(()), AO will have a representation of
the form/() where A is some element of F. Moreover the rank of F(())is either
less than or equal to the rank of E. If rank (F((J)))< rank (E) then by the induction
hypothesis we can determine if A() has an antiderivative in some li-elementary
extension of F(()). Otherwise rank (F(()))= rank (E)= (1, mr-,’", 1) and in this
case Theorem 5.3 is applicable. This concludes the case where mr 1.

Example 5.1. Consider (x3/log (x2-1)) dx. First the integrand must be rewritten
as x3/(log(x+l)+log(x-1)) with the factored tower of monomials C(x,O=
log(x-l), O,=log(x+ 1)). We then follow Case (a) from the proof of Theorem 5.4

x and p log (x + 1) + log (x 1). With these values thewith 0=0, K=I,
E-decomposition in equation (5.11) becomes

(,/p)’ 2x4- 3x2 + 1
Z d,r(x + 1)ri(x 1 ril,

Also, since/3/r R1 log (x 1) + v log (x 1), we have that the above E-decomposi-
tion is restricted by the function g(r) (ri, Rlr) (ri, r). Next follow the calculations
described in the proof of Theorem 4.4. We begin with tl (2xa-3x2+ 1)/2 and so

r 1, rl 1, drl =1/2. Form dP2=dPl-dlr(x+ 1)rl(x 1)rl= X4--2X2+ 1 and calculate
r2 2, r21 2 and d2r2 1. Since 3 2 (x + 1)2(x 1)2 0, we are done and conclude
that

X 1 1

log (x2_ 1)
dx= li (X4--2X2+ 1)+li (X2-- 1). I-I

Example 5.2. Consider (x2/log (x- 1)) dx. Proceeding as above we have

X2 f X2
log (x2 1)

dx
log (x + 1) + log (x 1)

INTEGRATION WITH SPECIAL FUNCTIONS 17

and

(.,,/p)’ 3x4-4x2+ 1
p 4x Z d,ri(x + 1)r,(x 1)r"

where the E-decomposition is restricted by the function g(ri) (r, r). In the application
of Theorem 4.4 we have c11 rl 1. Since g(ri) is strictly monotone in each of its
components, rl 1 > 0, and 1 is not a polynomial in x, we are able to apply the
termination strategy in Case (ii) and conclude that the above E-decomposition does
not exist. Therefore, (x2/log (x2-1)) dx can not be written in terms of elementary
functions and logarithmic integrals.

Example 5.3. Consider

I[2x+3 e’gx’/2+x+ 1
3 log (x) + 2x x + 1

elg x/E+x)2 dx.

The tower ofmonomials here is C(x, log (x), eg(x)/E+x) and so, in the proofofTheorem
5.4, Case (b) applies. In this case, Lemma 5.1 allows us to consider the problem in
two parts.

(i) J ((2x+3)/(3 log (x)+2x)elg(x)/E+x) dx. This is an instance of the reduced
problem described in Theorem 5.3. In the proof of that theorem, we apply Case (b2),
where r 1/2, s x, K 1, ,11 (2x + 3)/3 and Pl log (x) + 2x/3. The E-decomposition
in equation (5.6) becomes

We have dl rl 1 and so

2x+3

3 log (x) + 2x

All
X dix".

P

elg(x)/2+x dx--d li (x elg(x)/2+x) li (x elg(x)/2+x).

(ii) j 1/(x+ 1)(elgx)/2+x)2 dx. Here the problem is posed in the field C(x, 01
log (x), 02 elgCx/2+x), which has rank (1, 1, 1). We first define 022 as 02 and write
the integrand as 022/(x + 1) in the field C(x, 01 log (x), 022 elg Cx+2x). Next replace
these monomials with a normalized tower of monomials yielding the integrand x/
(x+ 1) e2x in the field C(x, 01 =log (x),/22= e2X). The rank of this field is (2, 1) which
allows us to apply the induction hypothesis. Since 01 log (x) does not occur in the

integrand, we shall consider x/(x + 1) e2 dx in the field C(x, e2X). This is an instance

of Case (a) of the reduced problem (Theorem 5.3). In this case O= x, p(O)/ q(O) 2x,
A x/(x + 1) and/3 is a constant. The only factor of the denominator of A is x + 1

and, by Lemma 5.2, we let /3 2 so that x + 1 divides 2x +/3. Hence, ul e2x and

vl 2x+ 2 are the only values generated for ul and vl. (Notice at this point that
I) log (Ul) yet V In (ul).) [Risch69 Main Theorem, part (b)] is applied next to solve

x
e2x (B e2)’+ dl

(2x)’ e2.
x+ 1 2x+2

This yields B =1/2 and dl =-1. Finally, we replace Ul with tl e2x/2 and dl with

d- =-l/e2 so that Vl =In (al) (see the discussion on transcendental constants in 2)
and write

e2X_ e2 =-e_2 li (eEX+2). I-]
x/l 2

18 G.w. CHERRY

Example 5.4. Consider

2x -x2-6x
+x2+3x+2

2x- 3) log (x)+x

log (x)+ 1
e dx.

This is again an example of Case (b2), Theorem 5.3. We have r x, s x, All 2x- 3
and Pl log (x)+ 1. The ;-decomposition in (5.6) becomes

All 2x2- 3x dix ri.p
This yields d =-3, rl 1, d2 2, r2 2, and so

II X e log (x)+x log (x) + x + log (x) + 1

and

U2 X
2 e log (x)+x, v2 x log (x) + x + 2 log (x) + 2.

We next apply [Risch69, part (b)], and see that

2X X
2 6X

X+3X+2
2X--3] xlog(x)+x U 11;

log (x)+ 1]
e =-3 m+vl 2 m/)2

Finally, letting il eul and ti= e2u2 yields

I(2x3-xz-6x 2x-3) xlog(x)+x

x2+3x+2 +log(x)+l e dx

2 log (x)+x+2 log (x)+2).__3e li (eX lg (x)+x+lg (x)+)+-- li (e [3

6. Conclusions. The importance of this work depends, in part, on whether the
ideas presented here can be readily extended to other special functions. In [Cher83]
a decision procedure, based on similar techniques, for integrating a large class of
transcendental elementary expressions in terms of elementary functions and error
functions:

__112erf (u) u’ e dx

is given (also see [Checa83]). Without any further work, however, Theorem 5.4 can
be applied to a few other special functions due to the following relationships.

(i) The exponential integral:

ei (u) f u’ exp (u)
dx li (exp (u)).

U

(ii) The sine and cosine integrals"

si (u)= f u’ Sinu (u)

ci (u)-
cos (u)

dx 2-[ei (iu)-ei (-iu)],

1
dx [ei (iu)+ ei(-iu)].

INTEGRATION WITH SPECIAL FUNCTIONS 19

For example

cos (x)
x

2x2 ei (2ix)+2x2 ei (-2ix)-2x sin (2x) + cos (2x)+ 1

4x2

sin (2x) cos (2x) 1
-ci (2x)+-

2x 4x 4x"
Appendix. An implementation of an algorithm for integrating a class of elementary

expressions in terms of logarithmic integrals. In the following Macsyma demonstration,
the command "int" will accept as input any element % of a transcendental elementary
field F, and will attempt to determine if y has an antiderivative in some li-elementary
extension of F. This procedure is not a complete implementation of the decision
procedure described in 5. There are two exceptions:

(i) We have only implemented the base case of Risch’s Main Theorem, part (b).
Therefore in Theorem 5.3 only Case (a) where 0 x is covered.

(ii) We have not assumed that the constant field is algebraically closed. Thus the
exponential case demonstrated below will not always recognize logarithmic integrals
involving new algebraic constants. An example of this will be given.

/*Some Examples of Integration with Logarithmic Integrals*/

(el) int (x/log (x)^2, x);

Time 1216 msec.

log (X) dx= 2 li (x)
log (x)

(dl)

(c2)/*The following example shows how transcendental con: ants can be introduced. Int first
calculates the values u =x, v log (x)+3 and d 1. In the last stage of the computations

u is replaced with i 11u =ex and d is replaced with dill. 1/e3,*/

int (1/(log (x)+ 3), x);

Time 983 msec.

ldx li (e3x) td2)e-3
log (x)+3

(c3)/* Writing 3x -f- 5x -f- 2x as a E-decomposition where E (x + 1) (see (5.11)), yields the following
expansion of logarithmic integrals: */

int (x^2/log (x+ 1), x);

Time 1900 msec.

I dx li (x + 3X + 3x + 2 li (x -+" 2x + + li (x + (d3)
log (x + 1)

(c4)/* It follows from Theorem 5.5 that any expression of the form u’g(log (u)) dx where g is a

rational function with constant coefficients can be integrated in terms of elementary functions
and logarithmic integrals. For example */

int ((log (x)^2 + 3)/(log (x)^2 + 3* log (x) + 2), x);

Time 2233 msec.

dx=-7e-Zli(e2x)+4e-li(ex)+x (d4)
log (x)+3

log (x) + 3 log (x) + 2

20 G.w. CHERRY

(c5)/* Macsyma can also differentiate expressions involving logarithmic integrals. ("%" refers to the
previous expression) */

li (x/log (x)* exp (x));

Time 50 msec.

(c6) ratsimp (diff(%, x));

Time 516 msec.

xe
li \log(x)/

(x + 1)e log (x) e

log (x) log (xeX/log (x))

(c7)/* Now integrate this expression: */

int (%, x);

Time 8266 msec.

(x+ 1)e log (x)-e
log (x) log (xeX/log (x))

xe
dx=li\log’(xi]

(c8)/* Since li (u) =ei(eu) (cf. 6), int will use the "ei" notation in these situations. For example */

int (exp (x)/(x + 1)^2, x);

Time 3350 msec.

eX e

+-x-’ 1)2dx=e-ei(x+l)-x+l

(c9)/* The sine integral can be integrated in terms of logarithmic integrals: */

int(sin(x)/x,x);

Time 8216 msec.

sin(X)
dx=

iei(ix)-iei(-ix)
x 2

(cl0)/* as well as a number of other trigonometric integrands: */

int (cos x)^2 / x^3, x);

Time 8750 msec.

cos (X)2 2x ei (2ix)+2x:’ ei (-2ix)-2x sin (2x)+ cos (2x)+
dx=

X3 4X

(c11)/* Any expression of the form u’eUg(u)dx where g is a rational function with constant
coefficients can be integrated in terms of logarithmic integrals: */

int ((x^2 + 3)/(x^2 + 3*x + 2)* exp (x), x);

Time 6800 msec.

(x2+3)e

x2+3x+
dx=-7e-2 ei (x+ 2) +4e- ei (x+ 1)+e

(c12)/* From deficiency (ii) above, however, int will miss some logarithmic integrals: */

int ((x^2 + 1)/(x^2 + x + 1)* exp (x), x);

Time 7100 msec.

f (x2+ l)edx= f (x2+ l)eX
dx

x2+x+ xE+x+

(d5)

(d6)

(d7)

(d8)

(d9)

(d0)

(dll)

(d12)

INTEGRATION WITH SPECIAL FUNCTIONS 21

Acknowledgments. Bob Caviness suggested the original problem and I am grateful
for the many helpful discussions we have had during the course of this work. I have
also benefited greatly from the suggestions of Michael Singer, David Saunders and
James Davenport.

[Bate53]
[Cher83]

[Checa83]

Davtr81]

[Risch69]

[Roca79]

[Ros76]

[Rosi77]

[Roth76]

[SscS1]

[VdwS0]

REFERENCES

H. BATEMAN, Higher Transcendental Functions, McGraw-Hill, New York, 1953.
G. W. CHERRY, Algorithms for integrating transcendental elementary functions in terms of

logarithmic integrals and errorfunctions, Ph.D. dissertation, Univ. Delaware, Newark,
1983.

G. W. CHERRY AND B. F. CAVINESS, Integration in finite terms with special functions: a

progress report in Proc. 1984 ACM Symposium on Symbolic and Algebraic Computing,
J. Fitch, ed.

J. H. DAVENPORT AND B. M. TRAGER, Factorization overfinitely generatedfields in Proc.
1981 ACM Symposium on Symbolic and Algebraic Computation, P. S. Wang, ed.

R. RISCH, The problem of integration in finite terms, Trans. Amer. Math. Soc., 139 (1969),
pp. 167-189.

M. ROTHSTEIN AND B. F. CAVINESS, A structure theorem for exponential and primitive
functions, this Journal, 8 (1979), pp. 357-367.

M. ROSENLICHT, On Liouville’s theory ofelementaryfunctions, Pacific J. Math., 65 (1976),
pp. 485-492.

M. ROSENLICHT AND M. F. SINGER, On elementary, generalized elementary and Liouvillian
extension fields in Contributions to Algebra, Bass, Cassidy and Kovacic, eds.,
Academic Press, New York, 1977, pp. 329-342.

M. ROTHSTEIN, Aspects ofsymbolic integration and simplification ofexponential andprimitive
functions, Ph.D. dissertation, Univ. Wisconsin, Madison, 1976.

M. F. SINGER, B. O. SAUNDERS AND B. F. CAVINESS, An extension ofLiouville’s theorem
on integration in finite terms, this Journal 14 (1985), pp. 966-990. Extended Abstract
in Proceedings of the 1981 ACM Symposium on Symbolic and Algebraic Computa-
tion, P. S. Wang, ed.

B. L. VAN DER WAERDEN, Modern Algebra, second ed., Fredrick Ungar, New York, 1950.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
002

AN AMORTIZED ANALYSIS OF INSERTIONS INTO
AVL-TREES*

KURT MEHLHORN’ AND ATHANASIOS TSAKALIDISf

Abstract. We analyse the amortized behavior of AVL-trees under sequences of insertions. We show
that the total rebalancing cost (=balance changes) for a sequence of n arbitrary insertions is at most 2.618n.
For random insertions the bound is improved to 2.26n. We also show that the probability that or more
balance changes are required decreases exponentially with t.

Key words, balance search trees, insertions, AVL-trees, balance changes, amortized number, expected
number

1. Introduction. As for many balanced tree schemes an insertion into an AVL-tree
consists of a search down the tree followed by a rebalancing phase which works its
way back to the root. Rebalancing is usually restricted to a terminal segment of the
search paths. Experiments (cf. [5]) suggest that the expected length of this terminal
segment is less than two, however, there is no theoretical evidence to support that
claim. A first attempt of an analysis was made by C. C. Foster (see [3], cf. also Knuth
[6, p. 462]). Although his analysis predicts the expected length of the terminal segment
fairly well (he predicts expected length 1.85), it is not precise in a mathematical sense.

In this paper we give a rigorous analysis. More precisely, we prove in 3, that
the amortized length of the terminal segment is at most 2.618. That is, if we consider
an arbitrary (not random) sequence of n insertions into an initially empty AVLotree
then the total length (summed over the n insertions) of the terminal segments is at
most 2.618n. We also prove that this bound is sharp by exhibiting a sequence of n
insertions where the total number of balance changes is essentially 2.618n. Our main
insight is to concentrate on amortized behavior rather than expected behavior. This
led us to stronger results (our results hold for arbitrary not just random sequences of
insertions) and suggested to use combinatorial (not probabilistic) methods of analysis.

For sequences of random insertions we can slightly improve the bound in 4.
The expected length of the terminal segment is at least 1.47 and at most 2.26. Finally
in 5 we prove a result on the distribution of the length of the terminal path. We show
that the probability that the length exceeds decreases exponentially in t. Section 2
contains some definitions.

We close the introduction with a brief discussion of related work. Brown [2] and
Mehlhorn [7], I-8] studied the expected number ofbalanced nodes in random AVL-trees.
We use their results in 4. The amortized cost of insertions and deletions into
(a, b)-trees was studied by Huddleston and Mehlhorn [4]. They prove that the amort-
ized number of node splittings and fusings is 0(1) provided that b => 2a. Finally, we
want to mention that Tsakalidis [9] proves a result which is analogous to the one
presented here for sequences of deletions. He shows that the total number of balance
and structural changes in a sequence of deletions applied to an AVL-tree with n leaves
is 1.618n.

2. Definitions. AVL-trees were introduced by Adel’son-Vel’skii and Landis 1] in
1962. AVL-trees are binary trees in which nodes either have two sons or no sons. The

* Received by the editors August 31, 1983, and in revised form September 1, 1984.

" Fachbereich 10, Angewandte Mathematik und Informatik, Universitit des Saarlandes, D-6600 Saar-
briicken, West Germany.

22

INSERTIONS INTO AVL-TREES 23

latter nodes are called leaves. A binary search tree is AVL if the heights of the subtrees
at each node differ by at most one, where the height Height (v) of node v is equal to
the length of the longest path from v to a leaf.

Let L(v) [R(v)] be the left [right] subtree of the tree with root v. For every node
v we define its height balance hb(v) by

hb(v) Height (R(v))- Height (L(v)).

Hence the height balance can be +1, 0, or -1. We call a node balanced (unbalanced)
if its height balance is 0 (+ 1).

For every insertion we define the critical node as the last unbalanced node on the
search path. We give the last definition more formally:

Let Vo, Vl," ", Vk be a path from the root Vo to a leaf Vk of an AVL-tree. Let be
minimal such that hb(vi)= hb(vi+l) hb(vk)=O. Then node v_l is called the
critical node of the path (if i->_ 1) and vi," ", vk is called the critical path. The length
of the critical path is k-i (and this is equal to the height of node v). For i=0 no
critical node is defined since this insertion causes a height increase of the tree.

We use the insertion algorithm described in Knuth [6, p. 455]. It can be summarized
as follows:

At first the leaf at which the new element is to be inserted is located and this leaf
is replaced by a tree with two leaves. Next the height balance of nodes on the critical
path are changed from 0 to +1 (this corresponds to step A6 in Knuth [6]). Finally
rebalancing is completed by absorption, single rotation or double rotation at the critical
node or a height increase of the tree if no critical node exists.

Let To be the empty AVL-tree, i.e. the AVL-tree with 0 leaves. We consider
sequences of n insertions into To. Let Ti, 0 <=i-< n, be the AVL-tree obtained after the
ith insertion (and completed rebalancing). We are interested in the following quantities:

Xl, the total number of balance changes 0 +/-1 in step A6,
x, the total number of absorptions,
x3, the total number of single rotations,
x4, the total number of double rotations,
xs, the total number of height increases.

We will also refer to the 5 operations (balance change, absorption, single rotation,
double rotation, height increase) as Opl, Op2, , Ops. Since every insertion terminates
in an absorption, single or double rotation or height increase we clearly have

X2 -" X + X4 "- X n.

Quantity x is harder to estimate. Let l, 1-<iN n, be the length of the critical path for
the ith insertion. Then

XI’-- li.
i=1

We will estimate x for arbitrary sequences of insertions in 3 and for random sequences
in 4. Finally let Val (T) be the total number of unbalanced nodes in AVL-tree Ti.

3. The total number of balance changes in arbitrary sequences of insertions. Our
main tool for getting bounds on x, the number of balance changes 0-> +/- I, is Lemma
1 below. In this lemma we relate quantities x, x3, x4, xs, the number of insertions n
and the value Val (T,) of the final tree.

LEMMA 1. Consider an arbitrary sequence ofn insertions into an initially empty tree.
Then

xl Val (T,) + n + x3 + x4- Xs.

24 KURT MEHLHORN AND ATHANASIOS TSAKALIDIS

Proof. We exactly estimate the rate of the increase of Val (T) during the transition
from T_, to T with respect to the alternative operations.

We give the scheme how the node’s balance on the critical path will be changed.
In our diagrams we will always show an insertion into the left subtree ofthe critical node.

Case 1. Absorption.
In the figures +1 denotes a node with balance /1 or -1 and IS] denotes a leaf.

The figure shows an insertion into the left subtree of the critical node, the other case
being symmetric.

With respect to Fig. 1 the following holds:

Val (T) Val (T_,) + (l,- 1).

Height

li+l

In tree T_, before the ith insertion

Balance on search path

In tree T after the ith insertion

Balance on search path

FIG.

Case 2. Reconstruction of the tree.
Case 2.1. Single rotation.
Fig. 2 illustrates this case and the following holds:

(2) Val (T) Val (T_,) + (l 2).

Case 2.2. Double rotation is analogous to Case 2.1. Among the 3 top nodes of
the reconstructed subtree there are exactly 2 nodes with Balance 0.

Case 3. Height increase (li is the height of the root), i.e. no critical node exists.
Fig. 3 illustrates this case and the following holds:

(3) Val (T) Val (T_,) + l,.

We apply the recursive equations (1), (2) and (3) n times, and we get with respect to

INSERTIONS INTO AVL-TREES 25

Height

li+l

In tree T_ before the ith insertion

Balance on search path

In tree T after the ith insertion

Balance on search path

)

)

FIG. 2

Height

li+l

In tree T_1 before the ith insertion

Balance on search path

<-- (root)

In tree T after the ith insertion

Balance on search path

<-- (root)

FIG. 3

26 KURT MEHLHORN AND ATHANASIOS TSAKALIDIS

the definitions of xi (1 _-< -<_ 5):

Val (T,) Val (To) + li- x2- 2(x -’1- X4).
i=1

But Y=I l xl and Val (To)=0 and thus

x Val (T,,) + x2 + 2(X3 d-- X4).

Using x2 + x --[- x4 -- x n we obtain

xl Val (T,) + n + (X - X4 X5).

Since Val (T,)-< n and X --X4 n we infer x-< 3n from Lemma 1, i.e. the amortized
length of the critical path is at most 3. In Lemma 2 below we recall a better upper
bound on Val (T,) and so improve the upper bound on xl.

LEMMA 2 (Knuth). Let Tn be an AVL-tree with n leaves. Then Val (T,) -<

(4)- 1)(n 1) where b (1 +/5)/2 1.618.
Proof cf [6, exercise 6.2.3.3]. 1-1
THEOREM 1. The total number x of balance changes in step A6 of the insertion

algorithm in a sequence of n arbitrary insertions into an initially empty tree satisfies

x =< 2.618n.

Proof Immediate from Lemma and X "3I- X4 /1, X 0 and Val (T,) -< 0.618 n
(Lemma 2).

How good is the bound given in Theorem 1 ? Note first that the bound given in
Lemma 2 is sharp: Fibonacci trees have exactly that number of unbalanced nodes.
Fibonacci trees Fo, F1, F,. are defined as follows:

and Fh+ consists of a root and a copy of Fh and Fh+l each as left and right subtree
respectively. This specifies the Fibonacci trees up to the left-right symmetry. Also
Fh has exactly Fib(h+l) leaves where Fib (0) Fib (1) l and Fib(h+2)=
Fib (h + 1 + Fib (h) for h _-> 0.

Besides the upper bound on Val (T,) given by Lemma 2 we use two more
inequalities in the proof of Theorem 1" x3 + x4 -< n and xs_>- 0. We will next show that
these bounds cannot be improved upon in general.

LEMMA 3. There is a sequence of Fib (h insertions into Fh such that:
1) Every insertion (but the last) is terminated by a rotation or double rotation.
2) The last insertion leads to a height increase of the entire tree.
3) The final tree is Fh+ 1.

Proof The claim is obviously true for h 0, 1 and 2, namely we can go from Fo
to F (F1 to Fz) with one insertion which leads to an increase in height and from F2
to F3 with two insertions one of which leads to a rotation and one of which leads to
a height increase as shown in Fig. 4.

INSERTIONS INTO AVL-TREES 27

insert and insert and

FG. 4

For h => 3 we proceed by induction. So consider

We will first use Fib (h 1) insertions in order to change the left (w.l.o.g.) subtree Fh-1
into an Fh (which we denote F, to distinguish it from our starting tree). Note that by
induction hypothesis all but the last insertion leads to a rotation/double rotation inside
the left subtree. The last insertion will turn the left subtree into an F, and increase
the height of the left subtree to h, thus moving the root out of balance. Next we will
rotate or double rotate at the root.

Case 1. Rotation, i.e.

Rotation yields

Case 2. Double rotation, i.e.

We have to distinguish two cases" whether F,_I is tilted to the left or right, i.e.

F F F--2 -3 -3 Fh-2

28 KURT MEHLHORN AND ATHANASIOS TSAKALIDIS

In the first case double rotation yields

F_: F’[,_: -3 Fh-2 F’[,F F’a-2 -2

In the second case double rotation yields

F’;, F’;,Fh-2 -3 -2 fh-2 fh-2 Fh-2

In either case we obtain up to left right symmetry the same tree" a balanced root whose
subtrees are a Fh-1 and a balanced node A with two copies of Fh-2.

Next we perform Fib (h-2) insertions into Fh-2. All but the last insertion will
lead to rotations/double rotations within that tree without increasing the height. The
last insertion creates a Fh-1 and moves node A and the root out of balance thus
increasing the total height of the tree. Altogether we created an Fh+ out of Fh by

Fib (h- 1)+ Fib (h-2)= Fib (h)

insertions; all insertions (but the last) lead to rotations or double rotations and the
last insertion increased the height.

THEOREM 2. There are infinitely many n and sequences of n insertions such that the
total number of balance changes in step A6 of the insertion algorithm satisfies

x _>- 2.618n O(log n).

Proof Let n Fib (h+ 1) for some h. Start with the empty tree and build
Fo, F,..., Fh as described in Lemma 3. Then x2 0 since absorption never occurs
and hence x3 + x4+ x5 n. Also x5 h O(log n) and Val (T,) (4 1)(n 1). 0

Theorems 1 and 2 together give complete information about the amortized cost
of step A6 of the insertion algorithm in the worst ease. The amortized length of the
critical path is 2.618 in the worst case and thus very small. We want to stress again
that this bound holds for arbitrary sequences of insertions. Experimental data (Foster
[3], Knuth [6], Karlton et al. [5]) is only available for random sequences of insertions.
It suggests that the expected length of the critical path under random insertions is
about 1.8 and hence only slightly less than amortized length.

4. The total number of balance changes under n random insertions.
Randomness assumption. Consider a tree T with n- 1 nodes in it and hence with

n leaves. These n- 1 keys divide all possible key values into n intervals. The insertion
of a new key k into T is said to be a random insertion if k has equal probabilities for
being in any one of the n intervals defined above. In other words, each leaf has equal
probability of being split into two.

INSERTIONS INTO AVL-TREES 29

Mehlhorn [7] has analysed the fringe of an AVL-tree under n random insertions
refining work of Brown [2]. The fringe consists of the 3 types of subtrees shown in
Fig. 5.

Type I.

Type II. and

Type I. and the brother is from Type or II.

FIG. 5

We quote two results from [7].
THEOREM 3 [7]. Let ai(n), for 1--<i=<3, be the respective number of the above

subtree of type in a random AVL-tree T with n leaves. Then

lal(nit 1 t54 3 It I(n)t-4p(n n+ o(n)a2(n
35-28p(n)

a3(n -8p(n o(n)

with 0 <- p(n)<- and p(n) is the probability that the brother of a type I subtree is of
type III in a random AVL-tree with n leaves.

THEOREM 4 [7]. Let Val (n) be the expected number of unbalanced nodes in a
random AVL-tree with n leaves. Then

(l)n-o(n) <=Val (n) <=(5)n+ o(n).

Proof. In [7] it is shown that for the average number/(n) of balanced nodes in
a random AVL-tree with n leaves the following holds:

18()n + o(n) <= B(n) <-_ ()n + o(n).

Since Val (n) +/(n) n we get the bounds of (n)" [3
THEOREM 5. The expected number 1 ofbalance changes in step A6 of the insertion

algorithm in a sequence of n random insertions into an initially empty AVL-tree satisfies
1.47 n o(n) -<_ -< 2.26n + o(n).

Proof Let p(i) denote the probability of the execution of operation Op (see 2)
during the (i+ 1)th insertion into a random AVL-tree with leaves (2_-<j =< 5). Then

30 KURT MEHLHORN AND ATHANASIOS TSAKALIDIS

according to Theorem 3 we have

p2(i) => Probability of the absorptions on the fringe

a2(i) + 2a3(i)
> min 8p) o() 0.230- o(1).

2(4-
35-28p

Also

p3(i)+p4(i) >= probability of single and double rotation on the fringe

_-> (2a2(i) / 4al(i)" p(i))/i- o(1)

>-min {2(5-4p)+4.3.p)}Op<_4/11 2-/ o(1) 0.285 o(1).

This can be seen as follows: a rotation will always happen when the insertion is in
one of the two deep leaves of a Type II tree (probability 2. a2(i)/i) and if insertion
is in any leaf of a type I tree whose brother is a Type III tree (probability 4al(i) p(i)/i).

Furthermore, p2(i) + p3(i) + p4(i) + Ps(i) 1 and hence

0.285 o(1) --< P3(i) + P4(i) _--< 0.770- ps(i) + o(1),

0.770 + o(1),

since ps(i) o(1).
For the + 1) th insertion we define the random variable Yi as follows (0 -< _-< n 1

10 if the (i + 1)th random insertion into a random AVL-tree with

Yl leaves causes a single or double rotation,
otherwise.

The expectation E(yi) of random variables yi is equal to p3(i)+p4(i) and hence

0.285 o(1) =< E(y) <= 0.770+ o(1).
Let 93,4 denote the expected number of single or double rotations in a sequence of n
random insertions, and let g5 be the expected number of height increases. Then

n--1

’3,4--- Z E(yi)
i=0

and hence

0.285 n o(n) -<_ 3.4 0.770n + o(n).

Also log n =< 5-< 1.44 log n since an AVL-tree with n leaves has height between log n
and 1.44 log n.

Substituting into ff Val (n)+ n + 3,4--’5 and using Theorem 4 we get

1.47n o(n) <-_ -< 2.26n + o(n).

As mentioned above, there is considerable experimental evidence for the belief that
should be about 1.78n a figure which is near the average of the lower and upper

bound given in Theorem 3.

5. On the distribution of the balance changes on the levels of the tree. In this section
we study the distribution of the balance changes 0 +1 to the ditterent levels of an
AVL-tree. We need to refine the definition of Val (T) in 3 with respect to the heights.

INSERTIONS INTO AVL-TREES 31

DEFINITION. val, (T) is the number of nodes with balance + 1 and height in the
AVL-tree T.

Example. In the example in Fig. 6

FIG. 6

Height 4

Height 3

Height 2

Height

Height 0

we have vall (T)=0, val2 (T)= 3, val3 (T)=0 and val4 (T)= 1. Note that nodes of
height 1 are always balanced and hence vall (T)= 0 for all trees T.

Next we need to refine the analysis of 3. There we studied the effect of an
insertion on Val T); in this section we investigate this effect separately for each height
t. As in 3 we consider a sequence of n insertions into the initially empty tree To; let
Ti be the tree after the ith insertion.

LEMMA 4. Let h be the height of the critical node for the insertion into T_ if such
a node exists and let h be the height of T_I otherwise. Then

0 ift=lort>h,
1) valt(T)=valt(T_l)+ 1 if2<=t<=h-1,

-1 ift=h,

if a critical node exists;

0 /ft 1,
2) valt (Ti) valt (T_I) +

1 /f2-<_ t_-< h+ 1

if no critical node exists.

Proof By inspection of the figures in the proof, of Lemma 1. E1
It is interesting to observe that absorption, rotation or double rotation have exactly

the same effect on valt (T); this fact makes our analysis possible. Lemma 4 gives the
effect of a single insertion on valt (T), => 1. In Lemma 5 below we study the cumulative
effect of all n insertions.

DEFINITION. Let Ct, t_>-2, be the number of insertions (among our sequence of
n insertions) such that the critical node exists and has height >= and let It, >= 2, be
the number of insertions such that the critical node does not exist and the tree inserted
into has height >= 2.

We have the following Lemmas 5 and 6. In Lemma 6 we derive an upper bound
on valt (T,) and in Lemma 5 we derive bounds on Ct and It in terms of val (T,), i_-< t.
We then use Lemmas 5 and 6 to prove the main result of this section, Theorem 6.

LEMMA 5. a) Ct+ Z ti=2 (val Tn)- I+)/2t+-’ + C2/2t- for > 2,
b) height (T,) + 2 for 2 <= <= height (T,) + 1,
c) C+ Iz= n.

32 KURT MEHLHORN AND ATHANASIOS TSAKALIDIS

Proof. a) The proof of part a) is based on the following claim.
CLAIM. valt (Tn) 2Ct+l -F It+ C for >-_ 2.

Proof. Certainly val, (To)= 0 for t-> 2. Next note that val, is increased by one for
every insertion such that either the critical node exists and has height >-t + 1 or the
critical node does not exist and the tree inserted into has height >-t-1 (there are
exactly Ct+I + It+ insertions of this type) and that valt is decreased by one for every
insertion whose critical node exists and has height (there are exactly Ct-Ct+
insertions of this type).

Thus
val, (T,)=val, (To)+(C,++I,+)-(C,-Ct+) for t->2.

The claim above can be rewritten as

C,+1 (valt T,) It+l)/2 + Ct/2.

Part a) is now easily shown by induction.
b) For l, 0 -< -< height (T,) 1, there is exactly one insertion which increases the

height from to + 1. Thus/ height (T,) + 2- t.

c) The critical node always has height at least 2 and the tree inserted into has
height at least 0.

LEMMA 6. valt (T,) <- n/ (1.618)t for >- 1.

Proof. We use the following notations: ml(t) is the number of unbalanced nodes
of height in T,, and m2(t) is the number of balanced nodes of height in T,. Then
ml(1) =0 and m(t)+ m2(t) is the number of nodes of height t, >- 1. Also valt (T,)=

CLAIM 1. 2m2(t)+m(t+l)+m(t)=m(t-1)+m2(t-1) for 2--<_ -<_ height T,).
Proof. The right-hand side is the number of nodes of height t- 1, the left-hand

side counts the number of edges terminating at height t- 1. There are two such edges
for every balanced node of height and one such edge for every unbalanced nodes
of height or t+l. l-]

If we define m(0)= 0, m2(0)= n then the claim above is also true for 1.
Claim 1 yields

1
mt(+ 1)+ Cm(t) + Cm2(t) -<_-[m(t) + Cm(1)+ Cmz(1)]

for the constant C 1.618 < 2 such that C 1/C 1. Hence

1 n
Cm(t) -<_ -7,[m(1) + Cm(O) + Cm2(0)]

and
n n

valt (T,,) rn,(t) =<--7= (1.618)t.
[3

THEOREM 6. Consider a sequence of n arbitrary insertions into an initially empty
AVL-tree. Then

Ct -< 6.85
(1.618)

and

It <- l.441og n + 2- fort>=2.

Proof. The bound on It is immediate from Lemma 5b and the fact that an AVL-tree
with n leaves has height at most 1.441og n. The bound on Ct follows from Lemma

INSERTIONS INTO AVL-TREES 33

5a, c and Lemma 6, namely from Lemma 5a we get
t--1

C, E (val, (T,)- I,+)/2’-’ + C2/2’-2

i=2

t-1

-<n/2’-2+ vali(T,)/2’-i sinceC2<=nbyLemma5candIt+l>=O
i=2

t-1

<=n/2’-2+ , (n2)/2’(1.618) becauseofLemma6
i=2

=<6.85n/(1.618)’ by straightforward estimation. 13

Theorems 1 and 6 give us good information on the amortized length of the critical
path:

1) The amortized length is bounded by 2.618.
2) The number of insertions which have a critical path of length exceeding

decreases exponentially in t.

6. Conclusions. We have shown that the total number of balance changes required
to process a sequence of n arbitrary insertions into an initially empty AVL-tree is at
most 2.618n. Moreover, the number of insertions in such a sequence which have a
critical path of length exceeding decreases exponentially in t. Finally, for sequences
of n random insertions the expected total number of balance changes lies between
1.47n and 2.26n.

Recently, Tsakalidis [9] has shown that the total number of rebalancing operations
(=balance and structural changes) in processing a sequence of n deletions from an
AVL-tree with n leaves is bounded by 1.618n. Experiments by Karlton et al. [5] suggest
that the expected number of rebalancing operations is 1.126n for a sequence of n
random deletions.

For mixed sequences of insertions and deletions the amortized rebalancing cost
is not constant. The reader should have no difficulty in finding a sequence of n insertions
and deletions which produces O(n log n) balance changes. However, for random
sequences of insertions and deletions the expected number of rebalancing operations
might be O(n) as experiments (cf. [5]) suggest. We leave the proof of this experimental
fact as a major challenge to the reader.

REFERENCES

[1] G. M. ADEL’SON-VEL’SKII AND E. M. LANDIS, An algorithm for the organisation of information, Dokl.
Akad. Nauk SSSR, 146 (1962), pp. 263-266 (in Russian); English Translation in Soviet. Math., 3,
pp. 1259-1262.

[2] M. R. BROWN, A partial analysis of random height-balanced trees, this Journal, 8 (1979), pp. 33-41.
[3] C. C. FOSTER, Information storage and retrieval using AVL-trees, ACM 20th National Conference, 1965,

pp. 192-205.
[4] S. HUDDLESTON AND K. MEHLHORN, A new data structurefor representing sorted lists, Acta Informatica,

17 (1982), pp. 157-184.
[5] P. L. KARLTON, S. n. FULLER, R. E. SCROGGS AND E. B. KAEHLER, Performance of height-balanced

trees, Comm. ACM, 19 (1976), pp. 23-28.
[6] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[7] K. MEHLHORN, A partial analysis of height-balanced trees, Technical Report A 79/13, Univ. des

Saarlandes, 1979.
[8] , A partial analysis ofheight-balanced trees under random insertions and deletions, this Journal, 11

(1982), pp. 748-760.
[9] A. K. TSAKALIDIS, Rebalancing operations for deletions in AVL-trees, RAIRO Inform. th6orique, in press.

SlAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics

003

THE SIGNATURE OF A PLANE CURVE*

JOSEPH O’ROURKE’

Abstract. The signature of a plane curve F associated with every point p of F the length of F to the
left of or on the line tangent to F at p. The signature has properties that make it a useful tool for pattern
recognition: it discards the location, orientation, and scale, and "slant" in special cases, but preserves
symmetries. Its integral is a measure of convexity. This paper explores the theoretical properties of this
concept. It is shown that in the special case of closed rectilinear curves, the signature retains enough
information to permit exact reconstruction of the curve. Computing the signature and reconstructing curves
from their signatures are interesting computational problems; time complexity bounds on these problems
are presented. Several challenging open questions are posed.

Key words, computational geometry, convexity, handwriting analysis, A-matrix, multidimensional sort-
ing, pattern recognition, plane curves, polygons, rectilinear curves, shape, signature

1. Introduction. Goodman and Pollack have defined a process called "multi-
dimensional sorting" that captures the interrelationships among the points in a finite
set in multidimensional Euclidean space [GP]. The sort is encoded in a "A-matrix,"
which in two dimensions records the number of points to the left of each of the O(n:)
directed lines determined by pairs of points in an n point set. Their idea suggests the
following specialization to directed polygonal paths: associate with each edge the
number of vertices of the path that are to the left of the line including the edge. This
association requires only O(n) space, which makes it a viable candidate for practical
applications. However, some of the useful information encoded in the A-matrix is of
course lost when only O(n) of its entries are retained. This paper is the result of
attempting to discover how much information is lost and how much retained. Rather
than studying the A-matrix, however, the signature is investigated: this is a specialization
of the A-matrix in sense above, but a generalization in that it is concerned with
continuous curves. The signature has interesting properties, raises interesting questions
in both geometry and algorithms, and is a useful tool for pattern recognition applications
JOWl. A precise definition follows.

Let F be a continuous, unit-length, directed curve in the Euclidean plane; the
path formed by F may be open or closed, and it may cross itself. Consider F to be
parametrized by its arc length s, so that it is a mapping from [0, 1] to points in the
plane. Let T(s)= dF(s)/ds be a tangent vector to the curve at s when it exists. Then
the signature Er of F is a function that associates with each point of F (identified by
its arc length parameter s) the length of F that is on or to the left of the line determined
by T(s). Thus Er(S) is a function mapping [0, 1] into [0, 1]; often the subscript F will
be dropped when clear from the context. The signature is undefined at points of F
that have no tangent. Attention will be restricted in this paper to curves that have only
a finite number of such "kinks."

Figure 1 shows a simple polygon and its signature. Along the interior of each
edge, E is constant because the tangent is unchanging; thus the signature is a step
function for polygonal curves. It is undefined at every vertex, but vertical lines are
drawn connecting the steps in the figure for visual continuity. Note that the signature

* Received by the editors May 25, 1983, and in revised form January 8, 1984. This research was supported
in part by the National Science Foundation under grants MCS 81-04780 and MCS 83-51468.

t Department of Electrical Engineering and Computer Science, Johns Hopkins University, Baltimore
Maryland 21218.

34

SIGNATURE OF A PLANE CURVE 35

I"(0)

:(s)

0 .2 .4 .6 .8

FIG. 1. A simple polygon and its signature.

is 1 for every edge on the convex hull of the figure, since the curve is of unit length
and is directed counterclockwise.

Figures 2a and 2b show a more complex polygonal path and its signature. Again
it is a step function, but the large number of edges in the path make it approach a
continuous curve. It should be apparent that when a continuous curve is uniformly
and densely digitized, the length of a section of the curve is approximately proportional
to the number of vertices in that section. This intuition is supported by Fig. 2c, which
shows the discrete signature Sr for the curve F in Fig. 2a: Sr is defined only for polygonal
paths, and maps the arc length s e [0, 1] of F to the number of vertices on or to the
left of the tangent at F(s).

In general the signature of a curve does not uniquely identify the curve. For
example, all smooth convex figures (of unit length) have the same signature" a constant
at 1. But there is an important special class of curves for which the signature is a

unique identifier: closed rectilinear curves (with certain degenerate self-intersections
excluded). A proof.of this fact is contained in 3 after basic properties of the signature
are developed in 2. Computational issues are discussed in 4, and several open
problems are posed in the final section.

2. Basic properties. This section will informally present the basic properties of
signatures, mostly without proof.

36 JOSEPH O’ROURKE

(a)

(b)

(c)

.8-

.6-

.4-

.2-

}] (s) 0
0

I-

.8-

.6-

.4-

.2-

FIG. 2. A polygonal path of 89 edges (a), and its continuous (b) and discrete (c) signatures.

The signature of a smooth curve without flat sections (nonzero length portions of
curvature zero) is a continuous function, since the tangent will not meet or disengage
from a finite section upon infinitesimal turning. Also, the signature responds con-
tinuously to a deformation of such curves. The signature is obviously invariant with
respect to translation and rotation of F, and to scale changes if the curve is normalized
to unit length. The signature preserves symmetries in the sense that if F is isomorphic
to its mirror image, then r is also equal to its mirror image. These properties make
the signature attractive as an encoding of the "shape" of a curve, and serve as the
basis for its applications to pattern recognition.

Er symmetric does not imply that F is symmetric, which suggests a notion of "pseudosymmetry."

SIGNATURE OF A PLANE CURVE 37

The signature has especially nice properties for rectilinear curves" those composed
of a finite number of straight segments that are aligned with the axes of an orthogonal
coordinate system. The signature of a rectilinear curve is invariant under "slanting
transformations": those that rotate the orthogonal coordinate axes without changing
their scale, changing to oblique parallel coordinates. See Fig. 3a for an example. This
invariance does not hold for arbitrary curves, as Fig. 3b demonstrates, but it does
suggest that it will be tolerant of slant when applied to handwriting samples (and
hence the name signature). This tolerance has been verified in JOWl, where several
slanted and unslanted handwriting samples were compared. The discrete signature of
arbitrary curves, on the other hand, is invariant under arbitrary affine transformations.

(a)

(b)

FIG. 3. Slanting a rectilinear curve leaves the signature invariant (a), but this is not always true for
nonrectilinear curves: in (b) edge A is 38% of the total curve length, but A’, its slanted counterpart, is only
18% of the total. A slant of 0 maps x and y into x’= x + y cos O and y’= y sin .

The integral of the signature is a measure of convexity in the sense that, among
simple closed curves, it is 1 if and only ifthe curve is convex and traversed counterclock-
wise, and is smaller for highly nonconvex curves. It appears difficult, however, to
construct curves that have very small integrals. This is easily made quantitiative in the
case of highly constrained curves such as rectilinear curves, as the following theorem
demonstrates.

THEOREM 1. Define Iv by

(1) Iv Y-,r(S) ds.
=0

If F is a rectilinear simple polygon directed counterclockwise, then < Iv <- 1, and if
directed clockwise, then 0 <-_ Iv < 1/2.

Proof Let sl be the arc length parameter for an arbitrary noncorner point on F,
and let s2 be the arc length for the closest point of F on the ray orthogonal to the
unique edge on which F(sl) lies, directed towards the interior of the polygon. See Fig.
4. It should be clear that, if s2 is also a noncorner point, then (a) F(s) and F(s2) lie
on edges of the same orientation (horizontal or vertical), (b) the edges have opposite
signs, and (c) the signs are such that the left sides of the edges face one another. It
follows that E(sa)+ E(s2)> 1 since together the two tangents have the entire plane to
their left, and in addition this sum counts the portion of the curve between them twice.

38 JOSEPH O’ROURKE

T(s)

-i_, l_
T(S)

F(s,)

FIG. 4. Noncorner points visible to one another along vertical or horizontal lines are called "antipodal."

Ifwe ignore the finitely-many corner points, the entire length ofF can be partitioned
into such point pairs, which we will call antipodal pairs. Since there is a one-to-one
correspondence between the elements of an antipodal pair, the integral of the signature
may be computed as follows, where we let r(sl)= s2 be a function relating arc lengths
of pair members"

r,(s) ds=1/2 ds.
=0 =0

The inequality derived previously then implies that the integral is >1/2.
The argument for the clockwise case proceeds in the same manner, except that

the relevant inequality is ,(S1)+,(S2)<1. D
This theorem can be extended to curves drawn on hexagonal grids, or in fact on

any grid sufficiently regular to permit partitioning into antipodal pairs.
Several simple closed curves have been found whose integrals are 1/4+ e [GU].

Figure 5 shows an example due to Ungar. It is an open problem to prove or disprove
that is a lower bound.

+0

-o

_+ ox rnL---. 0ooy=

B
0.5

0
C

0 0.5

FIG. 5. Ungar’s "needle", shown here with n 3. As a-->0, the CA contribution becomes negligible. As
n o, the signature value at A approaches O, and at B it approaches 1/2. Also the difference x xl approaches
0, so the signature changes linearly from A to B as illustrated.

SIGNATURE OF A PLANE CURVE 39

3. Uniqueness of signature for rectilinear curves. In order to investigate the amount
of "shape" information that is encoded in the signature, this section studies the special
case of rectilinear curves in some detail. It is shown, somewhat surprisingly, that both
the signature and the discrete signature for rectilinear curves retain enough information
to permit exact reconstruction of the curve from the signature. How to actually compute
the reconstruction will be discussed in the succeeding section. First some additional
notation is introduced.

The signature of a rectilinear curve is punctuated by undefined values associated
with each corner, which partition the signature in correspondence to the individual
straight edges of the curve. Between adjacent undefined points, E is a constant. Label
the edges of the curve el, ea," ", e,, and write E(ei) for the constant value of E for s
varying over edge ei of the curve. The length of edge e, call it A (ei), is easily derived
from the signature (as long as the locations of the undefined points are known), as
can be seen in the example shown in Fig. 6. The signature of a rectilinear curve will
be represented by its sequence of constant values and lengths, (E(e), A (e)), 0-<_ i<= n.

unit

2O

15

22

0 5 I0 1,5 20

FIG. 6. A rectilinear curve and its signature. In this example, the curve is not normalized to unit length.

One additional piece of information permits the curve to be reconstructed from
the signature. Define the sign of an edge r(e) to be +1 if ei aims in either the positive
X or Y direction, and -1 if it aims in the negative X or Y direction (consider an
edge directed towards increasing values of s, the arc length parameter). A rectilinear
curve can easily be reconstructed if the sign of its edges are known; in fact E(e) is
not needed. Arbitrarily set the first edge to be horizontal and draw from (0, 0) to
(r(el).A(el),0), then to (r(el).A(e),cr(e2).A(e2)), then to (r(e).A(e)+
tr(e3) A (e3), tr(e2) A (e2)), and so on. The curve is reconstructed up to a 90 rotation,
dependent upon the initial arbitrary choice.

40 JOSEPH O’ROURKE

It is not immediately clear how to determine r(ei) from the signature. The main
theoretical result of this paper shows that of the 2" possible choices for the sign of
the n edges, only 2 are compatible with the signature values for closed rectilinear
curves, and these two are.inversions of one another.

Assign to each edge e of a rectilinear curve F an orientation of either horizontal
or vertical. Denote by F the curve composed of the same edges as F, in the same
sequential order, each with the same orientation, but with the sign of each edge e
flipped to -tr(e).

LEMMA 1. For any rectilinear curve F, the signature of F is identical to the signature

of F" Zr Zr.
Proof. It is easy to see that F is just an upside-down version of F. Thus, even

though each edge has flipped in direction, the amount of the curve to the left or on
each edge remains the same. [3

The main theorem of this section may now be stated.
THEOREM 2. Let F be a rectilinear curve that is
(1) closed;
(2) nondegenerate in the sense that

(a) no two distinct vertices coincide, and
(b) no two distinct edges collinearly overlap.

Then both the signature and the discrete signature of F are unique within this class of
curves" there is no other closed, nondegenerate, rectilinear curve F’, different from both
F and F, such that Zr,= Zr or Sr Sr.

Before commencing the proof, some discussion of conditions (1) and (2) of the
theorem statement is in order. That the curve be closed is a necessary condition in the
case of discrete signatures, as there exist two nonisomorphic open rectilinear curves
with the same discrete signature" see Fig. 7b. I have been unable to construct two open
curves with the same continuous signature, but the proof to be presented only applies
to closed curves. The nondegeneracy conditions are at least jointly necessary, for both

(a) (b)

FIG. 7. (a) Two nonisomorphic closed rectilinear curves that have the same continuous signature. In these
curves, the parallel and nearly collinear edges are meant to be truly collinear, and are separated in the drawing
so that distinct edges can be distinguished. (b) Two nonisomorphic open rectilinear curves that have the same
discrete signature.

SIGNATURE OF A PLANE CURVE 41

the signature and the discrete signature, as the example in Fig. 7a demonstrates.
Whether (2a) and (2b) are individually necessary remains unsettled by the proof in
this paper.

The proof will be phrased in terms of the continuous signature; remarks on the
changes necessary to prove the theorem for discrete signatures will be made at the end
of this section. The proof is by contradiction. Assume that such a F’ does exist. It must
have the same number of edges as F, and the edges must have the same length and
occur in the same order. We can rotate F’ by 90 ifnecessary to ensure that corresponding
edges in F and F’ have the same orientation. All that can ditter between F and F’ is
the sign of the edges.

After some preliminary definitions, a sketch of the proof will be presented followed
by a series of 9 lemmas necessary for the proof. All lemmas will assume the existence
of F’ as described above.

If two corresponding edges e and e’ in F and F’ have the same sign, tr(e)= tr(e’),
then they will be called fixed edges; if tr(e)=-tr(e’), then they will be called flipping
edges.2 Any contiguous sequence of fixed (flipping) edges will be called afixed (flipping)
chain. For example, the edges drawn solid in Fig. 7 are part of a fixed chain of F, and
the dashed edges form flipping chains. The vector from the tail of the first edge to the
head of the last edge in a chain will be called the displacement A (Ax, Ay) of the chain.

A sketch of the proof is as follows. The signature value associated with an edge
indicates its distance from a boundary measured in terms of the amount of the curve
between it and the boundary. The signature values associated with two edges of the
same orientation are therefore related in accordance with which is closer to a border,
and determine their sorted order. Two parallel edges in F that do not flip in the
transition to F’ must maintain their original sorted order. It is this basic fact that is
used to constrain the possible F’ candidates. Avoiding an interchange of fixed edges
forces each chain to have a longer displacement than its neighbor. Since the curve is
closed, this eventually forces a chain to be longer than itself, a contradiction. This
contradiction is only avoided when every chain has the exact same displacement. This
case can be proven impossible by showing that the signature values for two correspond-
ing edges in F and F’ must be ditierent.

LEMMA 2. The displacement is not equal to (0, O) for any chain of F that is a proper
subset of F.

Proof. If A (0, 0), then two vertices coincide. These vertices are distinct because
the chain is not all of F. This contradicts the degeneracy condition (2a) of the
theorem. [q

LEMMA 3. If C and C’ are corresponding flipping chains in F and F’ with displace-
ments A and A’, then A’=-A.

Proof. Negating each horizontal and vertical displacement in a chain negates the
chain’s total displacement. See Fig. 8. [q

The next lemma shows that fixed edges must maintain their sorted order, which
greatly constrains the structure of F’.

LEMMA 4. Let el and e2 befixed edges in F with the same orientation; assume wlog
that this orientation is vertical Classify their relationship to one another as left if e2 is
strictly to the left ofel, equal ifthey are collinear, and right otherwise. Then the relationship
between the corresponding edges e and e’ in F’ cannot be reversed" if the relationship
is left in F, then it cannot be right in F’, and if right in F, it cannot be left in F’.

Note that which edges are fixed and which flipping depends on the particular F’ candidate under
consideration. If attention is switched to F’, for example, then the sense of fixed and flipping is interchanged.

42 JOSEPH O’ROURKE

FIG. 8. Flipping a chain turns it upside-down, negating its displacement.

Proof. Let el be to the right of e_, and let Li E(e,) and R, 1- L, for 1, 2. If
el and e2 have the same sign, the situation is as illustrated in Fig. 9a: L2 < L] in F, but
if the edges change their sorted order in F’, then L < L, a contradiction. If e] and ea
have opposite signs, as shown in Fig. 9b, then R2 < L in F, but order interchange in
F’ would lead to L1 < R2, again a contradiction, lq

Although two fixed edges cannot interchange position, they can move from
collinearity to noncollinearity. The next lemma delimits the possibilities.

e2 L’

el

(a)

L < L2

e2

R21 L2

F

R2<LI

(b)

e

LI RI

el

LI<R2

FIG. 9. Fixed edges cannot reverse their order in the two curves.

SIGNATURE OF A PLANE CURVE 43

LEMMA 5. Let e and e2 be as in the previous lemma. Then the relationship between
them can changefrom left to equal or vice versa only if tr(el)- + 1 and or(e2) -1, and
from right to equal or vice versa only if or(el)=-1 and tr(e2)= + 1.

Proof. Fig. 10a illustrates the impossibility of the left transition when
or(el) -1 using the same notation and conventions as in the previous lemma: L2 < R1
in F but R < L2 in F’. Fig. 10b shows that the transition is indeed possible when
(el)--+ 1, as long as R2 < L and L2 > R1. The right/equal transition results can be
obtained by inverting Fig. 10.

LEMMA 6. There must be at least 4 distinct chains.

e

RI LI

(a)

RI LI

e

F F’

L2< R R L2

e2

R21L2
(b)

F F’
R 2 L R2 L
L2 R L2 > R

FIG. 10. Fixed edges can only move to collinearity when they point towards one another.

Proof. There can only be one chain if F’= F or F’= F, and these cases are explicitly
excluded in the statement of the theorem. Assume there are precisely two chains, one
fixed and one flipping. Call these chains C and C2 respectively in F. Since the curve
is closed by clause (1) of the theorem, the head of one chain meshes with the tail of
the other; so it must be the case that A2 -"--A in F and A=-A in F’. But, by Lemma
3, A =-A2 because C2 is flipping, whereas A A since C1 is fixed. These equations
are only satisfied when A1--A2=0 which contradicts Lemma 2. Finally, since the
chains alternate between fixed and flipping by definition, and since F is closed, there
must be an even number of chains if there are more than one. Thus there cannot be
precisely 3 chains.

The next three lemmas establish some simple facts about chains.
LEMMA 7. Each chain must consist of at least two edges.
Proof. Assume that there exists a chain that consists of a single edge e. Assume

wlog that e is horizontal. Also assume that the chain is flipping. This can be assumed
wlog because any chain that is fixed in F and F’ is flipping in F and F’ and vice versa,
and Lemma 1 shows that F’ is just as good a candidate for contradiction as F’. The

44 JOSEPH O’ROURKE

edge e is bounded by two fixed vertical edges. By Lemma 3, the displacement represen-
ted by e, which is nonzero by Lemma 2, is negated from F to F’. This interchanges the
relative positions of the bounding fixed edges, contradicting Lemma 4.

LEMMA 8. Each chain must begin and end with edges of different orientation.

Proof Assume wlog that a chain C both begins and ends with horizontal edges,
and that it is a flipping chain.

Case 1. C has a nonzero horizontal displacement, IAxl > 0.
This case is effectively equivalent to the conditions of Lemma 7" the relative

positions of the two bounding fixed vertical edges are interchanged, contradicting
Lemma 4.

Case 2. C has a pure vertical displacement, Ax 0.
Since the two bounding fixed chains each must contain at least two edges by

Lemma 7, they each must include a fixed horizontal edge. Label the vertical coordinates
of the endpoints of the two bounding vertical edges as in Fig. 11, assuming temporarily
that the displacement of C in F is >0. By this assumption, Y2 < Y3, and to avoid the
degenerate overlap forbidden by clause (2b) of the theorem, we must also have Yl < Y4.
By Lemma 3, C’s displacement is negated in F’, implying that y < y. Thus at least
one point of e is below e. But again because the edges cannot overlap, the entirety
of edge e must lie below e, which implies that y< y. But this necessarily interchanges
the relative positions of the fixed horizontal edges eo and e3, contradicting Lemma 4.
Starting with the assumption that C’s displacement is negative is equivalent to inter-
changing the roles of F and F’ in the above argument, and leads to the same contra-
diction.

e Y3

e3

F F’
FIG. 11. A chain that has zero horizontal displacement, and both begin and end with horizontal edges.

The next lemma establishes the crucial constraint on the displacement of adjacent
chains.

LEMMA 9. Suppose there exist three consecutive chains Co, C1, C2, with Co and C2
fixed and CI flipping, and such that Co ends with a vertical edge eo (see Fig. 12). Then
the horizontal displacement of C2 is at least as large as that of CI: IAx=l _-> lAx, I,

Proof If Ax 0, the theorem is trivially true. So assume that IAx] > 0. Let Q be
the vertex adjacent to both C and C2, as shown in Fig. 12. Then every point of C
that falls within the vertical strip of width 2lAx11 centered on Q (call this the Q-strip)
is to the left of eo in F (if Ax < 0 as illustrated), but to the right of eo in F’. If Axl > 0,
the same holds true in reverse. Now since C2 begins with a horizontal edge el, it must
end with a vertical edge e2, by Lemma 8. But this vertical edge cannot lie within the
interior of the Q-strip in F, else it would change its relative position with eo, contradict-

SIGNATURE OF A PLANE CURVE 45

U-21AXI--4

Q-strip

e’

eO

CO

FIG. 12. Co is shown fixed with the same absolute position in F and F’. C1 and C are shown in both
their F and F’ positions.

ing Lemma 4. Therefore the head of C_ must lie on the boundary or outside of the
Q-strip; since its tail is at Q, lax21->_ IAx, I.

LEMMA 10. The preconditions ofLemma 9 must holdfor at least one group of three
chains Co, C1, C2.

Proof Let C1 be any flipping chain. If C1 begins with a vertical edge, rotate F
and F’ by 90 so that C1 begins with a horizontal edge. By Lemma 6, there must be at
least 4 chains, and therefore the two fixed chains Co and C2 adjacent to C1 must be
distinct. Since C1 begins with a horizontal edge, Co must end with a vertical edge.
Thus the conditions of Lemma 9 are established. 1

Proof of Theorem 2. Let Co, C1, C2,’’’, Ck be the distinct chains of F and F’,
with Co, C, C2 satisfying the preconditions of Lemma 9, as guaranteed by Lemma
10. Then Lemma 9 yields IAxl]-<_ [AxI. Now observe that C, C, C3 satisfy the conditions
of Lemma 9 except for the reversal of fixed and flipped" C1 ends with a vertical edge.
If we now switch our attention to F’, then every fixed chain becomes flipped and vice
versa, and Lemma 9 holds. This establishes [AxI-<_ lax31. Continuing in this fashion
we obtain the series of inequalities

(2) laxll--< IAx l =< Izxx31--<"" IAxol-< IZXxll.
Note the final inequality, IAxol IAxl], arises from clause (a) of the theorem statement,
requiring F to be closed and C, Co, C to be consecutive.

The argument of Lemma 9 can be turned on its side, so to speak: if Co, C1, C2
are consecutive with C flipping and C2 beginning with a horizontal edge (el in Fig.
12), then [Ayo >--IAyl. Note that the same three chains guaranteed by Lemma 10 can
serve to start this argument. Proceeding as above, we can conclude

(3) IAy, l>-- IAy21>-- IAY31>-- >-- IAyl>--_ lAyol>-- IAyl.
Now it is clear that the above inequalities lead to a contradiction if any term is

strictly greater or less than its neighbor. Therefore it must be the case that

(4) IAx, I- laxl laxl, IAy, I- IAyI IAyl

for all and j. We will now show that these rather strict restrictions on the chains lead
to a contradiction.

46 JOSEPH O’ROURKE

Assume wlog that eo, the end vertical edge of Co, is directed upwards, tr(eo) + 1.
The above equations require that e2, the final vertical edge of C2, must lie on the
boundary of the Q-strip. Lemma 5 requires that tr(e2)=- 1, and that only a left/equal
(or vice versa) interchange between e2 and eo occur. Thus, independent of whether
Axl +hx or -Ax, e2 must lie on the left boundary of the Q-strip, and so Ax2 =-Ax.
Now since tr(e2) =-1, the same argument applied to C2, C3, Ca yields Ax4= +hx.

Returning to Co, C1, (?2, there are 8 distinct possibilities generated by +hxl, +Aye,
+Ay2 (recall that hx2 must be -Ax). If A =--A2 or A1 A2, then the heads of eo and
e2 touch in either F or F’ respectively. This eliminates the four possibilities

A A

(+Ax, +Ay) (-Ax,-Ay)
(+Ax,-Ay) (-Ax, +Ay)
(-Ax, +Ay) (-Ax, +Ay)
(-Ax, -Ay) (-Ax, -Ay)

The two possibilities

A A

(+Ax, -Ay) (-Ax, -Ay)
(-Ax, +Ay) (-Ax,-Ay)

are illustrated in Fig. 13. Both either lead to a degenerate overlap violating clause (2b)
of the theorem, or an interchange of fixed edges, contradicting Lemma 4. It therefore
must be that Ay2 +Ay, but both A1 (+Ax, +Ay) and A (-Ax,-Ay) are viable.

FIG. 13. When A (-hx, --Ay), then if A (--hx, +Ay), either e will be brought into degenerate overlap
with eo, or the horizontal edges preceding eo and e2 will interchange. If A (+Ax, -Ay), then the same drawing
obtains with the roles of F and F’ reversed.

Repeating the argument for C2, C3, C4 again yields just two possibilities. These
relationships are summarized in Table 1.

TABLE

C, C C C4
flipping fixed flipping fixed

(-Ax,-Ay) (-Ax, +Ay) (+Ax, +Ay) (+Ax,-Ay)
(-Ax,-Ay) (-Ax, +Ay) (-Ax,-Ay) (+Ax,-Ay)
(+Ax, +Ay) (-Ax, +Ay) (+Ax, +Ay) (+Ax,-Ay)
(+Ax, +Ay) (-Ax, +Ay) (-Ax,-Ay) (+Ax,-Ay)

The reason that there are two choices for the flipping chains and only one for the fixed chains is that
we assumed that cr(eo)= + 1, removing one possibility by this convention.

SIGNATURE OF A PLANE CURVE 47

If the x components of A and A are the same, as they are in the 2nd and 3rd
rows of this table, then e4, the last vertical edge of C4, interchanges order with eo in
the transition from F to F’, violating Lemma 4. Thus only rows 1 and 4 of the table
remain viable. Summing up the net displacement in either of these rows reveals that
after 4 chains, the total displacement is zero. Thus, to avoid a degenerate self-
intersection, there must be precisely 4 chains, and C4--Co. We will now show by
explicit calculation that in these two highly constrained situations, the signature values
on certain edges are not consistent in F and F’.

Rows 1 and 4 of the table are clearly just flipped versions of one another, and we
can concentrate on the transition in one direction. Assume then that we have the
arrangement shown in Fig. 14a for F. As usual, we assume wlog that eo, the last edge
of Co, is vertical with tr(eo)= +1, so that e2, the last edge of C2, is vertical with
o’(e2) --1. Edge ez is to the left of eo in F, and they become collinear in F’, a transition
permitted by Lemma 5, as shown in Fig. 14b. The intuitive feeling that the signature
values associated with eo and e must be larger in F than in F’ is borne out by the
following calculation. Let Lo Z(eo) and L_ Z(e2) in F, and L and L similarly in
F’. We will show that Lo + L2 L+ L.

(a) F

e2

3 /33
b3 c3

c!,c, leo

b c d

C3

(b) F’

FIG. 14. The restricted 4-chain curves cannot have the same signature, as can be proven by partitioning
the contribution of each chain into vertical strips.

48 JOSEPH O’ROURKE

At first we will ignore the contributions to the signature values made by the fixed
chains, lumping them into terms Ao, A2, A, A. Partition the flipping chains C1 and
C3 by vertical lines and label the amount of each chain within the strips al, bl, cl, dl
for C1 and a3, b3, c3, d for C3 as illustrated (some of these terms may be zero).
Distinguish the amount of these chains on the critical partition lines collinear with eo
and e2 as a l,/31 for C1 and a3,/33 for C3 as illustrated; the amount falling on the other
partition lines can be assigned to the strip on either side. Then Fig. 14a shows that

Lo a + bl + cl + a3 d- b + c + ce q- fll + a3 +3 h- Ao,

L_ b + cl + d + b3 + c3 h- d + a + fl + ce + 3 q-

where Ao is the total amount of the fixed chains to the left or on eo, and A2 is a similar
term for e2. Fig. 14b shows that

(6)
L dl +/93 + c3 + d3 +1 + c3 + f13 + A,

L al + bl + c1 - a3 -- al -- 1 -- 03 + A,where A and A. are the contributions of the fixed chains.
Now since F and F’ have the same signature, L Lo and L L_, and therefore

Lo + L2 (L+ L) 0. This yields

(7) bl + cl + b3 + c3 + ce +3 + (Ao+ A2) -(A+A) 0.

Note that Ao -> A and A2 => A, since eo and e2 move towards one another anchored
to their fixed chains. As all other terms are ->0, each term must be identically zero.
But it is not possible for both bl and c to be zero, since the endpoint of chain C1 lies
between the bl and cl strips, and some portion of C1 must lie in at least one strip to
reach its endpoint.

End proof of Theorem 2.
The preceding proof, with all the lemmas, also holds for the discrete signature.

The only changes required are that the contradiction illustrated in Fig. 9b is R2 < L
in F versus L =< R_ in F’; and A0 > A in the proof above because at least one vertex
of a fixed chain moves to the right of eo, namely the first vertex of C_.

4. Computational issues. Two challenging computational problems are posed by
signatures: fast construction of the signature from a given polygonal curve and fast
reconstruction of a rectilinear curve from its signature.

4.1. Computing the signature. The signature requires O(n) storage, and this pro-
vides a trivial lower bound on the time complexity of any algorithm that computes it.
The obvious brute-force algorithm (for each edge, traverse the entire path and note
how much length or how many vertices fall to one side) yields an O(n2) upper bound
for both the continuous and discrete signature computation. An fl(n log n) lower
bound for the computation of the unnormalized discrete signature can be obtained by
the following sorting reduction due to Edelsbrunner [E]. Given real numbers y, , Yn,
construct a "histogram" curve F with n vertical bars of heights y,. , Yn as illustrated
in Fig. 15. It should be clear that for each horizontal bar top e, St(e) will assume one
of the values {2n + 2, 2n + 4, , 2n + 2k, , 4n}. These values can be sorted in linear
time with a radix sort [Kn]. Association of the sorted order with the original yk’S
establishes that sorting is linear time reducible to the computation of the discrete
signature. No such lower bound is evident for the continuous signature.

Computing the discrete signature is a special case of the much-studied "half-plane
query counting" problem JEW], [F1], [F2], [W]. This problem requires the construction

SIGNATURE OF A PLANE CURVE 49

Y8

Y5

Y2
Y3

Y

FIG. 15. Construction reducing sorting to computation of the discrete signature.

of a data structure to store n two-dimensional points such that queries of the form,
"How many points are inside this (arbitrary) half-plane?", are swiftly answered. The
discrete signature presents a special case in that the query half-planes are not arbitrary:
there are precisely n relevant half-planes (determined by the edges of the polygonal
path), and each will be used exactly once in a query. The following argument of Seidel
IS] achieves O(n3/2 log n) time and O(n) space bounds for the computation of the
discrete signature. Partition the n vertices into x/ groups each containing x/- points.
Dualize each group of points to a "ranked" arrangement of lines as in [EOW]; this
requires O(n) time and space per group. Now locate the dual point of each of the n
polygon edges within each arrangement at a cost of O(x/ log n) [K] per polygon edge.
The number of points to the left of the edge is available from the ranked arrangement
as the number of lines above or below the dual point [EOS]. Organizing the location
queries to exhaust one arrangement before moving to another permits the space
requirements to be kept to O(n).

Both the continuous and discrete signatures are easily computed in O(n log n)
time for rectilinear curves by a simple plane-sweep algorithm that will not be detailed
here. The status of the general case is summarized in Table 2.

TABLE 2

computation lower bound upper bound

discrete signature f(n log n) O(n3/2 log n)
continuous signature f(n O(n2)

4.2. Reconstruction computation. Since Theorem 2 guarantees unique signatures
for closed nondegenerate rectilinear curves, such curves can be reconstructed from
their signatures by an exhaustive search of the 2 possible reconstructions. This
brute-force algorithm has been implemented. The algorithm arbitrarily fixes the orienta-
tion and direction of one edge, then proceeds to explore both possible directions for
each succeeding edge. A search path is aborted as soon as a contradiction between
signature values is detected. The contradictions are found by actually recording the
path in an array, and examining the projections of the path’s length on the X and Y
axes. As each edge of the path is added, both projections must be checked for
consistency, a calculation that could cost as much as O(n), where n is the total number
of edges in the curve. Since there are potentially 2 different paths, the worst-case
complexity of the algorithm is O(n2").

50 JOSEPH O’ROURKE

The algorithm was tested on 35 randomly generated open rectilinear curves. Each
curve consisted from 1 to 20 edges. In every case, the signature was found to be unique:
only two curves were found to be consistent with the signature, one a completely
flipped version of the other. Figure 16 shows the total number of edge placements
tried by the algorithm as a function of n. In the worst case, this function could be
21+ 22+ + 2"= 2(2"-1), but the graph shows that its growth in the average case is
linear (=<5n). Coupled with the O(n) consistency check, the algorithm runs in O(n2).
This rather remarkable performance may indicate the existence of an algorithm that
does not use brute-force search.

I00

e 50

0
0 I0 20

n
FIG. 16. Performance of the brute-force searching algorithm on 35 random examples. The abscissa is the

number of edges in the polygon, and the ordinate is the number ofedge placements attempted during the search.

5. Open questions. Several interesting questions remain to be answered:
(1) Which functions on [0, 1] are signatures of some curve? Similar characteriz-

ation questions can be asked for polygonal curves, rectilinear curves, closed curves,
etc. It is easily established by a counting argument that not every step function is the
signature of some rectilinear curve, and it is possible to construct a step function that
is not the signature of any connected curve, but otherwise the characterization problem
remains open.

(2) Is 1/4 a lower bound on the signature integral of simple closed counter-
clockwise curves ? This would give a partial characterization of such curves, as well as
representing a surprisingly general property of plane curves.

(3) Can the signature (continuous or discrete) of a n-segment polygonal path be
computed in O(n log n) time? What if the path is restricted to be a simple polygon?

(4) Can a rectilinear curve be reconstructed in polynomial time from its signature
(continuous or discrete), or is this problem NP-complete?

It is possible to modify the definition of signature for simple closed curves to use
the normal rather than the tangent, or to measure the area to the left rather than the
length. It is also possible to extend both this and the original definition to three
dimensions: the length signature can be defined for space curves using a plane
orthogonal to the "osculating plane" [St], and a volume signature for closed surfaces
can be defined using the tangent plane. These notions remain to be explored.

SIGNATURE OF A PLANE CURVE 51

Acknowledgments. I thank Richard Washington for implementing the signature
computation and reconstruction algorithms, and for producing several of the figures.
I thank Herbert Edelsbrunner, Jacob Goodman, Rao Kosaraju, Richard Pollack,
Raimund Seidel, Peter Ungar, and Emmerich Welzl for enlightening discussions.
Finally I thank the two referees, whose remarkably detailed comments made a sig-
nificant contribution to the paper.

[E]
[EOS]

JEW]

[F1]

IF2]

[GP]
[GU]

lOW]

Is]
[st]
[w]

REFERENCES

H. EDELSBRUNNER, personal communication, 1983.
H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL, Constructing arrangements of lines and

hyperplanes with applications, Proc. IEEE 24th Symposium on Foundations ofComputer Science,
1983, pp. 83-91, this Journal, 15 (1986), to appear.

H. EDELSBRUNNER AND E. WELZL, Halfplanar range search in linear space and O(n0"695) query
time, Technische Universitiit Graz Bericht F 111, 1983.

M. L. FREDMAN, Lower bounds on the complexity of some optimal data structures, this Journal,
10 (1981), pp. 1-10.
,A lower bound on the complexity oforthogonal range queries, J. Assoc. Comput. Mach., 28

(1981), pp. 696-705.
J. E. GOODMAN AND R. POLLACK, Multidimensional sorting, this Journal, 12 (1983), pp. 484-507.
J. E. GOODMAN AND P. UNGAR, personal communication, 1982.
D. G. KIRKPATRICK, Optimal search in planar subdivisions, this Journal, 12 (1983), pp. 28-35.
D. E. KNUTH, The Art of Computer Programming III: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
J. O’ROURKE AND R. WASHINGTON, The signature ofa curve: a new toolfor pattern recognition,

Computational Geometry, G. Toussaint, ed., North-Holland, Amsterdam, 1985.
R. SEIDEL, personal communication, 1983.
J. J. STOKER, Differential Geometry, John Wiley, New York, 1969.
D. E. WILLARD, Polygon retrieval, this Journal, 11 (1982), pp. 149-165.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
OO4

SELF-ADJUSTING HEAPS*

DANIEL DOMINIC SLEATORf AND ROBERT ENDRE TARJAN"

Abstract. In this paper we explore two themes in data structure design: amortized computational
complexity and self-adjustment. We are motivated by the following observations. In most applications of
data structures, we wish to perform not just a single operation but a sequence of operations, possibly having
correlated behavior. By averaging the running time per operation over a worst-case sequence of operations,
we can sometimes obtain an overall time bound much smaller than the worst-case time per operation
multiplied by the number of operations. We call this kind of averaging amortization.

Standard kinds of data structures, such as the many varieties of balanced trees, are specifically designed
so that the worst-case time per operation is small. Such efficiency is achieved by imposing an explicit
structural constraint that must be maintained during updates, at a cost of both running time and storage
space. However, if amortized running time is the complexity measure of interest, we can guarantee efficiency
without maintaining a structural constraint. Instead, during each access or update operation we adjust the
data structure in a simple, uniform way. We call such a data structure self-adjusting.

In this paper we develop the skew heap, a self-adjusting form of heap related to the leftist heaps of
Crane and Knuth. (What we mean by a heap has also been called a "priority queue" or a "mergeable
heap".) Skew heaps use less space than leftist heaps and similar worst-case-efficient data structures and are

competitive in running time, both in theory and in practice, with worst-case structures. They are also easier
to implement. We derive an information-theoretic lower bound showing that skew heaps have minimum

possible amortized running time, to within a constant factor, on any sequence of certain heap operations.

Key words. Self-organizing data structure, amortized complexity, heap, priority queue

1. Introduction. Many kinds of data structures have been designed with the aim
of making the worst-case running time per operation as small as possible. However,
in typical applications of data structures, it is not a single operation that is performed
but rather a sequence of operations, and the relevant complexity measure is not the
time taken by one operation but the total time of a sequence. If we average the time
per operation over a worst-case sequence, we may be able to obtain a time per operation
much smaller than the worst-case time. We shall call this kind of averaging over time
amortization. A classical example of amortized efficiency is the compressed tree data
structure for disjoint set union [15], which has a worst-case time per operation of
O(log n) but an amortized time of O(a(m, n)) [13], where n is the number of elements
in the sets, m is the number of operations, and a is an inverse of Ackerman’s function,
which grows very slowly.

Data structures efficient in the worst case typically obtain their efficiency from an
explicit structural constraint, such as the balance condition found in each of the many
kinds ofbalanced trees. Maintaining such a structural constraint consumes both running
time and storage space, and tends to produce complicated updating algorithms with
many cases. Implementing such data structures can be tedious.

If we are content with a data structure that is efficient in only an amortized sense,
there is another way to obtain efficiency. Instead of imposing any explicit structural
constraint, we allow the data structure to be in an arbitrary state, but we design the
access and update algorithms to adjust the structure in a simple, uniform way, so that
the efficiency of future operations is improved. We call such a data structure self-
adjusting.

* Received by the editors October 12, 1983, and in revised form September 15, 1984.

" AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

52

SELF-ADJUSTING HEAPS 53

Self-adjusting data structures have the following possible advantages over
explicitly balanced structures"

(i) They need less space, since no balance information is kept.
(ii) Their access and update algorithms are easy to understand and to implement.
(iii) In an amortized sense, ignoring constant factors, they can be at least as

efficient as balanced structures.
Self adjusting structures have two possible disadvantages:
(i) More local adjustments take place than in the corresponding balanced struc-

tures, especially during accesses. (In a balanced structure, adjustments usually take
place only during updates, not during accesses.) This can cause inefficiency if local
adjustments are expensive.

(ii) Individual operations within a sequence can be very expensive. Although
expensive operations are likely to be rare, this can be a drawback in real-time applica-
tions.

In this paper we develop and analyze the skew heap, a self-adjusting form of heap
(priority queue) analogous to leftist heaps [4], [7]. The fundamental operation on
skew heaps is melding, which combines two disjoint heaps into one. In 2 we present
the basic form of skew heaps, which use top-down melding. In 3 we discuss skew
heaps with bottom-up melding, which are more efficient for insertion and melding. In
4 we study various less common heap operations. In 5 we show that in an amortized

sense skew heaps are optimal to within a constant factor on any sequence of certain
operations. Section 6 compares skew heaps to other heap implementations, and contains
additional remarks and open problems. The appendix contains our tree terminology.

This paper represents only a part of our work on amortized complexity and
self-adjusting data structures; companion papers discuss self-adjusting lists [12] and
self-adjusting search trees [13]. Some of our results have previously appeared in
preliminary form 11].

2. Skew heaps. A heap (sometimes called a priority queue [8] or mergeable heap
[1]) is an abstract data structure consisting of a set of items selected from a totally
ordered universe, on which the following operations are possible:

function make heap(h): Create a new, empty heap, named h.
function find min(h): Return the minimum item in heap h. If h is empty, ret-arn

the special item "null".
procedure insert(x, h): Insert item x in heap h, not previously containing it.
function delete min(h): Delete the minimum item from heap h and return it. If

the heap is initially empty, return null.
function meld(hl, h2): Return the heap formed by taking the union of disjoint

heaps hi and h2. This operation destroys hi and h2.

There are several ways to implement heaps in a self-adjusting fashion. The one
we shall discuss is an analogue of the leftist heaps proposed by Crane [4] and refined
by Knuth [8]. To represent a heap, we use a heap-ordered binary tree, by which we
mean a binary tree whose nodes are the items, arranged in heap order: if p(x) is the
parent of x, then p(x)< x. (For simplicity we shall assume that each item is in at most
one heap; this restriction is easily lifted by regarding the tree nodes and heap items
as distinct, with a pointer in each tree node pointing to the corresponding heap item.)
To represent such a tree we store with each item x two pointers, left(x) and right(x),
to its left child and right child respectively. If x has no left child we define left(x) null;
if x has no right child we define right(x)= null. Access to the tree is by a pointer to

54 DANIEL D. SLEATOR AND ROBERT E. TARJAN

its root; we represent an empty tree by a pointer to null. We shall sometimes denote
an entire tree or subtree by its root, with the context resolving the resulting ambiguity.

With a representation of heaps as heap-ordered binary trees, we can carry out the
various heap operations as follows. We perform make heap(h) in O(1) time by initializ-
ing h to null. Since heap order implies that the root is the minimum item in a tree,
we can carry out find min in O(1) time by returning the root. We perform insert and
delete rain using meld. To carry out insert(x, h), we make x into a one-node heap and
meld it with h. To carry out delete min(h), we replace h by the meld of its left and
right subtrees and return the original root.

To perform meld(hl, h2), we form a single tree by traversing the right paths of hi
and h2, merging them into a single right path with items in increasing order. The left
subtrees of nodes along the merge path do not change. (See Fig. 1.) The time for the
meld is bounded by a constant times the length of the merge path. To make melding
efficient, we must keep right paths short. In leftist heaps this is done by maintaining
the invariant that, for any node x, the right path descending from x is a shortest path
down to a null node. Maintaining this invariant requires storing at every node the
length of a shortest path down to a missing node; after a meld we walk back up the
merge path, updating shortest path lengths and swapping left and right children as
necessary to maintain the leftist property. The length of the right path in a leftist tree
of n nodes is at most [log n 1, implying an O(log n) worst-case time bound for each
of the heap operations, where n is the number of nodes in the heap or heaps involved.

In our self-adjusting version of this data structure, we meld by merging the right
paths of the two trees and then swapping the left and right children of every node on
the merge path except the lowest. (See Fig. 1.) This makes the potentially long right
path formed by the merge into a left path. We call the resulting data structure a skew
heap.

In our analysis of skew heaps, we shall use the following general approach. We
associate with each possible collection S of skew heaps a real number (S) called the
potential of S. For any sequence of m operations with running times tl, t2,..., t,,
we define the amortized time ai of operation to be ai ti + i--(I)i--1, where , for

1, 2,..., m, is the potential of the skew heaps after operation and o is the
potential of the skew heaps before the first operation. The total running time of the
sequence of operations is then

E ti--- E (ai--dPi+dPi-1)--dPo--dPm+ E a,.
i=1 i=1 i=1

That is, the total running time equals the total amortized time plus the decrease in
potential from the initial to the final collection of heaps. In most of our analyses the
potential will be zero initially and will remain nonnegative. If this is the case then the
total amortized time is an upper bound on the actual running time.

This definition is purely formal; its utility depends on the ability to choose a
potential function that results in small amortized times for the operations. Whenever
we use this technique we shall define the potential of a single heap; the potential of
a collection is the sum of the potentials of its members. Intuitively, a heap with high
potential is one subject to unusually time-consuming operations; the extra time spent
corresponds to a drop in potential.

We shall prove an O(log n) bound on the amortized time of skew heap operations.
To do this we define the potential function using an idea of Sleator and Tarjan [9],

Throughout this paper we use base-two logarithms.

SELF-ADJUSTING HEAPS 55

FIG. 1. A meld of two skew heaps. (a) Merge of the right paths. (b) Swapping of children along the path
formed by the merge.

[10]. For any node x in a binary tree, we define the weight wt(x) of x as the number
of descendants of x, including x itself. We use the weights to partition the nonroot
nodes into two classes: a nonroot node x is heavy if wt(x)> wt(p(x))/2 and light
otherwise. We shall regard a root as being neither heavy nor light. The following
lemmas are immediate from this definition.

LEMMA 1. Of the children of any node, at most one is heavy.
Proof A heavy child has more than half the weight of its parent. This can be true

of only one child.
LEMMA 2. On any path from a node x down to a descendent y, there are at most

[log (wt(x)/ wt(y))J light nodes, not counting x. In particular, any path in an n-node tree
contains at most [log n light nodes.

Proof A light child has at most half the weight of its parent. Thus if there are k
light nodes not including x along the path from x to y, wt(y) <= wt(x)/2k, which implies
k-<_log (wt(x)/ wt(y)).

We define the potential of a skew heap to be the total number of right heavy
nodes it contains. (A nonroot node is right if it is a right child and left otherwise.)
The intuition justifying this choice of potential is as follows. By Lemma 2, any path
in a skew heap, and in particular any path traversed during melding, contains only
O(log n) light nodes. Any heavy node on such a path is converted from right to left
by the meld, causing a drop of one in the potential. As we shall prove rigorously below,

56 DANIEL D. SLEATOR AND ROBERT E. TARJAN

this implies that any melding time in excess of O(log n) is covered by a drop in the
potential, giving an amortized melding time of O(log n).

Suppose we begin with no heaps and carry out an arbitrary sequence of skew
heap operations. The initial potential is zero and the final potential is nonnegative, so
the total running time is bounded by the sum of the amortized times of the operations.
Furthermore, since the potential of a skew heap of n items is at most n 1, if we begin
with any collection of skew heaps and carry out an arbitrary sequence of operations,
the total time is bounded by the total amortized time plus O(n), where n is the total
size of the initial heaps.

The amortized time of a find min operation is O(1), since the potential does not
change. The amortized times of the other operations depend on the amortized time
for meld. Consider a meld of two heaps hi and ha, containing nl and n2 items,
respectively. Let n nl + n2 be the total number of items in the two heaps. As a measure
ofthe melding time we shall charge one per node on the merge path. Thus the amortized
time of the meld is the number of nodes on the merge path plus the change in potential.
By Lemma 1, the number of light nodes on the right paths of h and h2 is at most
[log nlJ and [log n2J, respectively. Thus the total number of light nodes on the two
paths is at most 2[log nJ -1. (See Fig. 2.)

13 # LIGHT < [Iog n4JHEAVY---k4 LIGHT< [IognzJ
kz

LIGHT <_ [log n]

AVY= k <_ flog nJ

FIG. 2. Analysis of right heavy nodes in meld.

Let k and k2 be the number of heavy nodes on the right paths of h and h2,
respectively, and let k be the number of nodes that become right heavy children of
nodes on the merge path. Every node counted by k corresponds to a light node on
the merge path. Thus Lemma 2 implies that k3 -< [log n].

SELF-ADJUSTING HEAPS 57

The number ofnodes on the merge path is at most 2 + [log nlJ + kl + [log n2J + k2
1 + 2 [log nJ + k + k2. (The "2" counts the roots of h and h2.) The increase in potential
caused by the meld is k -kl- k2 =< [log n -k- k2. Thus the amortized time of the
meld is at most 3 [log nJ + 1.

THEOREM 1. The amortized time ofan insert, delete min, or meld skew heap operation
is O(log n), where n is the number ofitems in the heap or heaps involved in the operation.
The amortized time of a make heap or find min operation is 0(1).

Proof The analysis above gives the bound for find min and meld; the bound for
insert and delete min follows immediately from that of meld. l-1

One may ask whether amortization is really necessary in the analysis of skew
heaps, or whether skew heaps are efficient in a worst-case sense. Indeed they are not:
we can construct sequences of operations in which some operations take O(n) time.
For example, suppose we insert n, n+ 1, n-1, n+2, n-2, n+3,..., 1, 2n into an
initially empty heap and then perform delete min. The tree resulting from the insertions
has a right path of n nodes, and the delete min takes 12(n) time. (See Fig. 3.) There
are similar examples for the other versions of skew heaps we shall consider.

(b)

INSERT2 7

DELETE
mln

FIG. 3. Insertion of 5, 6, 4, 7, 3, 8, 2, 9, 1, 10 into an initially empty heap, followed by delete min. (a)
The heap after two insertions. (b) Insertion of 2 and 9. (c) The delete min operation.

58 DANIEL D. SLEATOR AND ROBERT E. TARJAN

The following programs, written in an extension of Dijkstra’s guarded command
language [5], implement the various skew heap operations. A val parameter to a
function or procedure is called by value; a var parameter is called by value and result.
The double arrow "-" denotes swapping. Parallel assignments all take place simul-
taneously.

function make heap;
return null

end make heap;

function find min(val h);
return h

end find min

procedure insert(val x, var h);
left(x) := right(x):= null;
h := meld(x, h)

end insert;

function delete min (var h);
vat x;
x := h; h := meld(left(h), right(h)); return x

end delete min

Our implementation of meld differs slightly from the informal description. The
program traverses the two right paths from the top down, merging them and simul-
taneously swapping left and right children. When the bottom of one of the paths is
reached, the remainder of the other path is simply attached to the bottom of the merge
path, and the process terminates. Only the nodes visited have their children exchanged;
the last node whose children are exchanged is the lowest node on the one of the two
paths that is completely traversed. (See Fig. 4.) In the informal description, all nodes
on both right paths are visited. Theorem 1 holds for the actual implementation; the
same proof applies if kl and k2 are redefined to be the number of heavy nodes on the
right paths of hi and h2 actually traversed during the meld.

We shall give two versions of meld: a recursive version, rmeld, and an iterative
version, imeld. The recursive version uses an auxiliary function xmeld to do the actual
melding, in order to avoid redundant tests for null.

function rmeld(val hi,
return if h2 null--> h h2 # null- xmeld (hi, h2) fi

end rmeld

function xmeld (val h
[h2# null]
if h null
if hi > h2 hl--h2 fi;
left(h), right(hi):= xmeld(right(hl), h2), left(h);
return hi

end xmeld

The iterative version of meld uses four variables, x, y, h, and h2, and maintains
the following loop invariant: if left(y) is replaced by null, then x, h, and h2 are the
roots of three disjoint heaps containing all the nodes; y is the bottommost node of
the left path down from x (the merge path) and is such that y < min {h,

SELF-ADJUSTING HEAPS 59

MERGE/

FIG. 4. Implemented version of top-down melding.

function imeld (val hi,
var x, y;
if hi null --> return h2 h2 null --> return hi fi;
if hi > h2--> h,->h2 fi;
x, y, hi, right(hi):= hi, hi, right(hl), left(hi);
do h null-->

if hi > h --> hl*-->h fi;
y, left(y), hi, right(hi):= h, hi, right(hi), left(hi)

od;
left(y) := h2;
return x

end imeld

Note. The swapping of hi and h2 in the loop can be avoided by writing different
pieces of code for the cases hi > hE and hi _-< hE. The four-way parallel assignment can
be written as the following four sequential assignments: left(y) := hi y := h hi :=
right(y); right(y):= left(y). The assignment "y := h" can be deleted by unrolling the
loop. With these changes a meld takes O(1) time plus three assignments and two
comparisons per node on the merge path.

One possible drawback ofskew heaps is the number ofpointer assignments needed.
We can reduce the pointer updating by storing in each node a bit indicating that the
pointers to the left and right children have been reversed. Children can then be swapped
merely by changing a bit. This idea trades bit assignments for pointer assignments but
takes extra space and complicates the implementation.

3. Bottom-up skew heaps. In some applications of heaps, such as in the computa-
tion of minimum spanning trees [3], [16], it is important that melding be as efficient
as possible. By melding skew heaps bottom-up instead of top-down, we can reduce

60 DANIEL D. SLEATOR AND ROBERT E. TARJAN

the amortized time of insert and meld to O(1) without affecting the time bounds of
the other operations. If hi and hE are the heaps to be melded, we walk up the right
paths of hi and h2, merging them and exchanging the children of all nodes on the
merge path except the lowest. When reaching the top of one of the heaps, say h, we
attach the root of h (the top node on the merge path) as the right child of the lowest
node remaining on the right path of h2. The root of h is the last node to have its
children swapped, unless hi is the only node on the merge path, in which case no
swapping takes place. (See Fig. 5.)

hz

MERGE

FIG. 5. Bottom-up melding.

We can implement this method by storing with each node x an extra pointer
up(x), defined to be the parent of x if x is a right child, or the lowest node on the
right path descending from x if x is a left child or a root. Thus right paths are circularly
linked, bottom-up. (See Fig. 6.) We call this the ring representation. We shall consider
alternative representations at the end of the section.

MAJOR

FIG. 6. Ring representation of a skew heap.

SELF-ADJUSTING HEAPS 61

Obtaining good amortized time bounds for the various operations on bottom-up
skew heaps requires a more complicated potential function than the one used in 2.
To define the potential, we need two subsidiary definitions. If T is any binary tree,
we define the major path of T to be the right path descending from the root, and the
minor path to be the right path descending from the left child of the root. (See Fig.
6.) We define node weights and light and heavy nodes as in 2. We define the potential
of a bottom-up skew heap to be the number of right heavy nodes in the tree plus twice
the number of right light nodes on the major and minor paths.

Consider a bottom-up meld of two skew heaps hi and h2. We shall show that the
amortized time of the meld is O(1), if we count one unit of running time per node on
the merge path. Let h be the melded heap, and suppose, without loss of generality,
that hi is the heap whose top is reached during the meld. Let r be the root of hi. (See
Fig. 5.) The merge path is the top part of the left path descending from r in h3. It
contains all nodes on the major path of h and possibly some of the nodes on the
major path of hE. The major path of h consists of the nodes on the major path of hE
not on the merge path, node r, and, if the merge path contains two or more nodes,
the minor path of hi. The minor path of h is the minor path of hE The only nodes
whose weights change during the merge are those on the major paths of hi and h2;
the weights of these nodes can increase but not decrease.

Consider the change in potential caused by the meld. Any node on the major path
of hE not on the merge path can gain in weight, becoming a right heavy instead of a
right light node. Each such change decreases the potential by one. No such node can
change from heavy to light, because the weights of both it and its parent increase by
the same amount. Node r, the root of h, becomes a node on the major path of ha,
increasing, the potential by one if r becomes heavy or two if r becomes light. The top
node on the minor path of h also can become a node on the major path of h3,
increasing the potential by at most two. The remaining nodes on the minor path of h
and the nodes on the minor path of h2 are associated with no change in the potential.

It remains for us to consider the nodes other than r on the merge path. Let x be
such a node. If x is originally heavy, it remains heavy but becomes left, causing a
decrease of one in potential (the new right sibling of x is light). If x is originally light,
its new right sibling may be heavy, but there is still a decrease of at least one in
potential (from two units for x as a light node on a major path to at most one unit
for the new right sibling of x, which is not on a major or minor path).

Combining these estimates, we see that the amortized meld time, a, defined to be
the number of nodes on the merge path, t, plus the change in potential, A, satisfies
a +A _<_ 5: the potential decreases by at least one for each node on the merge path
except r, and increases by at most two for r and two for the top node on the minor
path of h.

TnEORE 2. The amortized time ofa make heap, find min, insert, or meld operation
on bottom-up skew heaps is 0(1). The amortized time for a delete rain operation on an
n-node heap is O(log n).

Proofi Both the worst-case and amortized times of make heap and find min are
O(1), since neither causes a change in potential. The O(1) amortized time bound for
insert and meld follows from the analysis above. Consider a delete rain operation on
an n-node skew heap h. Deleting the root of h takes O(1) time and produces two skew
heaps hi and h:, whose roots are the left and right children of the root of h, respectively.
This increases the potential by at most 4 log n: there is an increase of two units for
each light right node on the minor paths of h and h2. (The major path of h, minus
the root, becomes the minor path of h2; the minor path of h becomes the major path

62 DANIEL D. SLEATOR AND ROBERT E. TARJAN

of hi .) The meld that completes the deletion takes O(1) amortized time, giving a total
amortized deletion time of O(log n).

Since any n-node bottom-up skew heap has a potential of O(n), if we begin with
any collection of such heaps and carry out any sequence of operations, the total time
is bounded by the total amortized time plus O(n), where n is the total size of the
initial heaps. If we begin with no heaps, the total amortized time bounds the total
running time.

The ring representation of bottom-up skew heaps is not entirely satisfactory, since
it needs three pointers per node instead of two. The extra pointer is costly in both
storage space and running time, because it must be updated each time children are
swapped. There are several ways to reduce the number of pointers to two per node.
We shall discuss two in this section and a third in 4.

One possible change is to streamline the ring representation by not storing right
child pointers. An even more appealing possibility is to store with each node an up
pointer to its parent and a down pointer to the lowest node on the right path of its
left subtree. The up pointer of the root, which has no parent, points to the lowest node
on the major path. The down pointer of a node with empty left subtree points to the
node itself. We shall call this the bottom-up representation of a skew heap.

Both of these representations will support all the heap operations in the time
bounds of Theorem 2. We shall discuss the bottom-up representation; we favor it
because swapping children, which is the local update operation on skew heaps, is
especially easy.

The implementations of make heap and find min are exactly as presented in 2.
We shall give two implementations of insert. The first merely invokes meld. The second
includes an in-line customized version of meld for greater efficiency.

procedure insert (val x, var h);
up(x) := down(x):= x;
h := meld (x, h)

end insert;

The more efficient version of insert tests for three special cases: h null, x < h
(x becomes the root of the new tree), and x> up(h) (x becomes the new lowest node
on the major path). In the general case, x is inserted somewhere in the middle of the
major path by a loop that uses two local variables, y, and z; y is the highest node on
the major path so far known to satisfy y > x, and z is the lowest node on the major
path (after the swapping of children that has taken place so far).

procedure insert (val x; var h);
var y, z;
if h null- h :-- up(x) :- down(x) := x; return fi;
if x < h --> down(x):= up(h); h := up(x):= up(h):= x; return fi;
if x> up(h)- up(x):= up(h); down(x):= up(h):= x; return fi;
y:= z:= up(h);
do x < up(y) --> y := up(y); z-down(y) od;
up(x), down(x):= up(y), z;
up(y) := up(h) := x

end insert;

The following program implements meld. The program uses two variables, h and
x, to hold the output heap and the next item to be added to the output heap, respectively.

SELF-ADJUSTING HEAPS 63

function meld (val hi, h2);
vat h3, X;
if h null return h20 h2 null --> return h fi;
if up(h) < up(h2) h’-* h2 fi;
[initialize h to hold the bottom right node of h]
h3 := up(hi); up(hi):= up(h3); t/p(h3) := h3;
do hl h3

if up(h)< up(h2) h’,- h2 fi;
[remove from h its bottom right node, x]
x := up(hi); up(hi) := up(x);
[add x to the top of h3 and swap its children]
up(x) := down(x); down(x):= up(h3); h3 := t/p(h3):- x

od;
[attach h3 to the bottom right of h2]
up(h2)’-- up(h3);
return h2

end meld
The only cleverness in this code is in the termination condition of the loop. Just

before the last node is removed from heap h, up(hi)= hi, which means that at the
beginning of the next iteration hi h3, and the loop will terminate. The code contains
an annoyingly large number of assignments. Some of these can be removed, and the
efficiency of the program improved, by storing up(h), up(h2), and up(h3) in local
variables and unrolling the do loop to store state information in the flow of control.
This obscures the algorithm, however.

Implementing delete min poses a problem" there is no way to directly access the
children of the root (the node to be deleted) to update their up pointers. We can
overcome this problem by performing the deletion as follows" we merge the minor
and major paths of the tree, swapping children all along the merge path. We stop the
merge only when the root is reached along both paths. The following program imple-
ments this method. The program uses four local variables: h is the output heap, y
and Y2 are the current nodes on the major and minor paths, and x is the next node to
be added to the output heap. The correctness of the program depends on the assumption
that an item appears only once in a heap. As in the case of meld, we can improve the
efficiency somewhat by storing tip(h3) in a local variable and unrolling the loop.

function delete min (vat h);
var x, y, Y2, h3;
if h null return null fi;
yl, y2 := up(h), down(h);
if Yl < Y2 Yl Y2 fi;
if Yl h h null; return y fi;
[initialize h3 to hold y]
h3 := Y; Yl := up(y1); t/p(h3):= h3;
do true-*

if y < Y2 Y2 fi;
if y h h := ha; return y fi;
[remove x--Yl from its path]
x :-- yl; y :- up(y);
[add x to the top of h and swap its children]
up(x) := down(x); down(x):= up(ha); ha := up(ha):= x

od
end delete rain;

64 DANIEL D. SLEATOR AND ROBERT E. TARJAN

The same potential function and the same argument used at the beginning of this
section prove Theorem 2 for the bottom-up representation of skew heaps; namely,
make heap and find rain take O(1) time (both amortized and worst case), insert and
rneld take O(1) amortized time, and delete rnin on an n-node heap takes O(log n)
amortized time.

4. Other operations on skew heaps. There are a variety of additional heap
operations that are sometimes useful. In this section we shall consider the following
four:

function make heap(s): Return a new heap whose items are the elements in set s.
function find all(x, h): Return the set of all items in h less than or equal to x.
lrocedure delete(x, h): Delete item x from heap h.
procedure purge(h): Assuming that each item in heap h is marked "good" or

"bad", delete enough bad items from h so that the minimum item left in the
heap is good.

The operation make heap(s) is an extension of make heap as defined in 2 and
allows us to initialize a heap of arbitrary size. The operation find all is a form of range
query. The delete operation allows deletion from a heap of any item, not just the
minimum one. An alternative way to delete arbitrary items is with the purge operation,
using lazy deletion: When inserting an item in a heap, we mark it "good". When
deleting an item we do not alter the structure of the heap but merely mark the item
"bad". Before any find rnin or delete min operation, we purge the heap. Lazy deletion
is especially useful when items can be marked for deletion implicitly, as in the
computation of minimum spanning trees using heaps [3], [16]. Deleting many bad
items simultaneously reduces the time per deletion. The only drawback of lazy deletion
is that a deleted item cannot be reinserted until it has been purged. We can overcome
this by copying the item, at a cost of extra storage space.

We shall begin by implementing the four new operations on the top-down skew
heaps of 2. The operations make heap(s) and purge are best treated as special cases
of the following more general operation:

function heapify(s): Return a heap formed by melding all the heaps in the set s.
This operation assumes that the heaps in s are disjoint and destroys them in
the process of melding them.

As discussed by Tarjan [16], we can carry out heapify(s) by repeated pairwise
melding. We perform a number of passes through the set s. During each pass, we meld
the heaps in s in pairs; if the number of heaps is odd, one of them is not melded until
a subsequent pass. We repeat such passes until there is only one heap left, which we
return.

This method is efficient for any heap representation that allows two heaps of total
size n to be melded in O(log n) time. To analyze its running time, consider a single
pass. Let k be the number of heaps in s before the pass and let n be their total size.
After the pass, s contains only [k/2] =< 2k/3 heaps. The time for the pass is O(k+

k/21 log ni), where ni is the number of items in the ith heap remaining after the pass.
The sizes n satisfy 1 <= n <- n and

n<=n.
i=1

The convexity of the log function implies that the time bound is maximum when all

SELF-ADJUSTING HEAPS 65

the tl are equal, which gives a time bound for the pass of O(k + log (n/k)). Summing
over all passes, the time for the entire heapify is

where k is the original number of heaps and n is the total number of items they contain.
For skew heaps, this is an amortized time bound. For worst-case data structures such
as leftist or binomial heaps [2], [16], this is a worst-case bound.

We can perform make heap(s) by making each item into a one-item heap and
applying heapify to the set ofthese heaps. Since k n in this case, the time for make heap
is O(n), both amortized and worst-case.

We can perform purge(h) by traversing the tree representing h in preorder, deleti,g
every bad node encountered and saving every subtree rooted at a good node encoun-
tered. (When visiting a good node, we immediately retreat, without visiting its proper
descendants.) We complete the purge by heapifying the set of subtrees rooted at visited
good nodes. If k nodes are purged from a heap of size n, the time for the purge is
O(k+k log(n/k)), since there are at most k+ 1 subtrees to be heapified. For skew
heaps, this is an amortized bound.

We can carry out find all on any kind of heap-ordered binary tree in time
proportional to the size of the set returned. We traverse the tree in preorder starting
from the root, listing every node visited that does not exceed x. When we encounter
a node greater than x, we immediately retreat, without visiting its proper descendants.
Note that since heap order is not a total order, find all cannot return the selected items
in sorted order without performing additional comparisons.

If find all is used in combination with lazy deletion and it is not to return bad
items, it must purge the tree as it traverses it. The idea is simple enough" When traversing
the tree looking for items not exceeding x, we discard every bad item encountered.
This breaks the tree into a number of subtrees, which we heapify. It is not hard to
show that a find all with purging that returns j good items and purges k bad items
from an n-item heap takes O(j+ k + k log (n/k)) amortized time. We leave the proof
of this as an exercise.

The fourth new operation is deletion. We can delete an arbitrary item x from a
top-down skew heap (or, indeed, from any kind of heap-ordered binary tree) by
replacing the subtree rooted at x by the meld of its left and right subtrees. This requires
maintaining parent pointers for all the nodes, since deleting x changes one of the
children ofp(x). The amortized time to delete an item from an n-node heap is O(log n).
In addition to the O(log n) time for what is essentially a delete rain on the subtree
rooted at x, there is a possible additional O(log n) gain in potential, since deleting x
reduces the weights of proper ancestors of x, causing at most log n of them to become
light: their siblings, which may be right, may become heavy.

By changing the tree representation we can carry out all the heap operations,
including arbitrary deletion, top-down using only two pointers per node. Each node
points to its leftmost child (or to null if it has no children) and to its right sibling, or
to its parent if it has no right sibling. (The root, having neither a right sibling nor a
parent, points to null.) Knuth calls this the "binary tree representation of a tree, with
right threads"; we shall call it the threaded representation. (See Fig. 7.) With the threaded
representation, there is no way to tell whether an only child is left or right, but for
our purposes this is irrelevant; we can regard every only child as being left. From any
node we can access its parent, left child, or right child by following at most two
pointers, which suffices for implementing all the heap operations.

66 DANIEL D. SLEATOR AND ROBERT E. TARJAN

Now let us consider the four new operations on bottom-up skew heaps. Assume
for the moment that we use the ring representation. (See Fig. 6.) The operation
heapify(s) is easy to carry out efficiently: We merely meld the heaps in s in any order.
This takes O(k) amortized time if there are k heaps in s. In particular, we can initialize
a heap of n items in O(n) time (amortized and worst-case) by performing n successive
insertions into an initially empty heap. We can purge k items from, a heap of n items
in O(k+ k(log n/k)) amortized time by traversing the tree in preorder and melding
the subtrees rooted at visited good nodes in arbitrary order. The main contribution to
the time bound is not the melds, which take O(k) amortized time, but the increase in
potential caused by breaking the tree into subtrees" a subtree of size ni gains in potential
by at most 4log ni because of the light fight nodes on its major and minor paths. (See
the definition of potential used in 3.) The total potential increase is maximum when
all the subtrees are of equal size and is O(k+ k log (n/k)).

The operation find all is exactly the same on a bottom-up skew heap as on a
top-down skew heap, and takes time proportional to the number of items, returned. A
find all with purging on a bottom-up skew heap is similar to the same operation on a
top-down skew heap, except that we can meld the subtrees remaining after bad items
are deleted in any order. The amortized time bound is the same, namely O(j+ k+
k log (n/k)) for a find all with purging that returns j good items and purges k bad
items from an n-item heap.

Arbitrary deletion on bottom-up skew heaps requires changing the tree representa-
tion, since the ring representation provides no access path from a left child to its
parent.. We shall describe a representation that supports all the heap operations,
including bottom-up melding, and needs only two pointers per node. The idea is to
use the threaded representation proposed above for top-down heaps, but to add a
pointer to the lowest node on the right path. (See Fig. 7.) We shall call this extra
pointer the down pointer.

FIG. 7. Threaded representation of a skew heap. All only children are regarded as being left. The dashed
pointer is the down pointer, used only in the bottom-up version.

When performing a heap operation, we reestablish the down pointer when
necessary by running down, the appropriate right path. For example,, suppose we meld
two heaps h and h2 bottom-up, and that heap h is exhausted first, so that the root
of hi, say r, becomes the top node on the merge path. We establish the down pointer
in the melded heap by descending the new right path from r; this is the minor path
in the original heap h unless the merge path contains only r, in which case r has a
null right child. (See Fig. 5.)

To perform a delete rain operation, we descend the minor path of the heap to
establish a down pointer for the left subtree, and then we meld the, left and right

SELF-ADJUSTING HEAPS 67

subtrees; the down pointer for the right subtree is the same as the down pointer for
the entire tree. We perform purge as described above for bottom-up skew heaps,
establishing a down pointer for every subtree to be melded by traversing its right path.

Arbitrary deletion is the hardest operation to implement, because if the deleted
node is on the right path the down pointer may become invalid, and discovering this
requires walking up toward the root, which can be expensive. One way to delete .an
arbitrary node x is as follows. First, we replace the subtree rooted at x by the meld
.of its left and right subtrees, using either top-down or bottom-up melding. Next, we
walk up from the root of the melded subtree until reaching either a left child or the
root of the entire tree. During this walk we swap the children of every node on the
path except the lowest. If the node reached is the root, we reestablish the left pointer
by descending the major path (which was originally the minor path).

By using an appropriate potential function, we can derive good amortized time
bounds for this representation. We must approximately double the potential used in

3, to account for the extra time spent descending right paths to establish down
pointers. We define the potential of a tree to be twice the number of heavy right nodes
not on the major path, plus the number of heavy fight nodes on the major path, plus
four times the number of light right nodes on the minor path, plus three times the
number of light fight nodes on the major path. Notice that a right node on the minor
path has one more credit than it would have if it were on the major path. The extra
credits on the minor path pay for a traversal of it when necessary to establish the down
pointer. A straightforward extension ofthe analysis in 3 proves the following theorem.

THEOREM 3. On bottom-up skew heaps represented in threaded fashion with down
pointers, the heap operations have the following amortized running times: O(1) for
make heap, find min, insert, and meld; O(log n) for delete rain or delete on an n-node
heap; O(n) for make heap(s) on a set of size n; O(k+k log (n/k)) for purge on an
n-node heap if k items are purged; O(j + k + k log (n/k)) forfind all with purging on an
n-node heap ifj items are returned and k items are purged.

5. A lower bound. The notion of amortized complexity affords us the opportunity
to derive lower bounds, as well as upper bounds, on the efficiency of data structures.
For example, the compressed tree data structure for disjoint set union is optimal to
within a constant factor in an .amortized sense among a wide class of pointer manipula-
tion algorithms 15]. We shall .derive a similar but much simpler result for bottom-up
skew heaps: in an amortized sense, skew heaps are optimal to within a constant factor
on any sequence of certain heap operations.

To simplify matters, we shall allow only the operations meld and delete rain. We
assume that there is an arbitrary initial collection of single-item heaps and that an
arbitrary but fixed sequence of meld and deletemin operations is to be carded out.
An algorithm for carrying out this sequence must return the correct answers to the
delete min operations whatever the ordering of the items; this ordering is initially
completely unspecified. The only restriction we make on the algorithm is that it make
binary rather than multiway .decisions; thus binary comparisons are allowed but not
radix sorting, for example.

Suppose there are a total of m operations, and that the ith delete min operation
is on a heap of size n. If we carry out the sequence using bottom-up skew heaps, the
total running time is O(rn + log n). We shall prove that any correct algorithm must
make at least log n binary decisions; thus, if we assume that any operation takes
(1) time, bottom-up skew heaps are optimum to within a constant factor in an
amortized sense.

68 DANIEL D. SLEATOR AND ROBERT E. TARJAN

The proof is a simple application of information theory. The various possible
orderings ofthe items produce different correct outcomes for the delete rain instructions.
For an algorithm making binary decisions, the binary logarithm of the total number
of possible outcomes is a lower bound on the number of decisions in the worst case.
The ith delete min operation has ni possible outcomes, regardless of the outcomes of
the previous delete min operations. (Any item in the heap can be the minimum.) Thus
the total number of possible outcomes of the entire sequence is Hi ni, and the number
of binary decisions needed in the worst case is i log hi.

This lower bound is more general than it may at first appear. For example, it
allows insertions, which can be simulated by melds. However, the bound does not
apply to situations in which some of the operations constrain the outcome of later
ones, as for instance when we perform a delete min on a heap, reinsert the deleted
item, and perform another delete min.

6. Remarks. The top-down skew heaps we have introduced in 2 are simpler
than leftist heaps and as efficient, to within a constant factor, on all the heap operations.
By changing the data structure to allow bottom-up melding, we have reduced the
amortized time of insert and meld to O(1), thereby obtaining a data structure with
optimal efficiency on any sequence of meld and delete min operations. Table 1 summar-
izes our complexity results.

TABLE
Amortized running times of skew heap operations.

top-down bottom-up
skew heaps skew heaps

make heap
find min
insert
meld
delete min
delete

O(1)
O(1)
O(log n)
O(log n)
O(log n)
O(log n)

0(1)
0(1)
0(1)
o()
O(log n)
O(log n)

Several interesting open problems remain. On the practical side, there is the
question of exactly what pointer structure and what implementation of the heap
operations will give the best empirical behavior. On the theoretical side, there is the
problem of extending the lower bound in 5 to allow other combinations of operations,
and of determining whether skew heaps or any other form of heaps are optimal in a
more general setting. Two very recent results bear on this question. Fredman (private
communication) has shown that the amortized bound of O(k / k log (n/k)) we derived
for k deletions followed by a find min is optimum for comparison-based algorithms.
Fredman and Tarjan [6] have proposed a new kind of heap, called the Fibonacci heap,
that has an amortized time bound of O(log n) for arbitrary deletion and O(1) for
find min, insert, meld, and the following operation, which we have not considered in
this paper:

decrease(x, y, h): Replace item x in heap h by item y, known to be no greater
than x.

The importance of Fibonacci heaps is that decrease is the dominant operation in
many network optimization algorithms, and the use of Fibonacci heaps leads to
improved time bounds for such algorithms [6]. The Fibonacci heap cannot properly
be called a self-adjusting structure, because explicit balance information is stored in
the nodes. This leads to the open problem of devising a self-adjusting heap implementa-

SELF-ADJUSTING HEAPS 69

tion with the same amortized time bounds as Fibonacci heaps. Skew heaps do not
solve this problem, because decrease (implemented as a deletion followed by an
insertion or in any other obvious way) takes fl(log n) amortized time.

More generally, our results only scratch the surface of what is possible using the
approach of studying the amortized complexity of self-adjusting data structures. We
have also analyzed the amortized complexity of self-adjusting lists, and in particular
the move-to-front heuristic, under various cost measures [12], and we have devised a
form of self-adjusting search tree, the splay tree, which has a number of remarkable
properties and applications [13]. The field is ripe for additional work.

Appendix.
Tree terminology. We consider binary trees as defined by Knuth [6]: every tree

node has two children, a left child and a right child, either or both of which can be
the special node null. If node y is a child of node x, then x is the parent of y, denoted
by p(y). The root of the tree is the unique node with no parent. If x pi(y) for some

_-> 0, x is an ancestor of y and y is a descendant of x; if > 0, x is the proper ancestor
of y and y a proper descendant of x. The right path descending from a node x is the
path obtained by starting at x and repeatedly proceeding to the right child of the
current node until reaching a node with null right child; we define the left path
descending from x similarly. The right path of a tree is the right path descending from
its root; we define the left path similarly. A path from a node x to a missing node is
a path from x to null, such that each succeeding node is a child of the previous one.
The direction from parent to child is downward in the tree; from child to parent, upward.

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M. R. BROWN, Implementation and analysis of binomial queue algorithms, this Journal, 7 (1978), pp.
298-319.

[3] D. CHERITON AND R. E. TARJAN, Finding minimum spanning trees, this Journal, 5 (1976), pp. 724-742.
[4] C.A. CRANE, Linear lists andpriority queues as balanced binary trees, Technical Report STAN-Cs-72-259,

Computer Science Dept, Stanford Univ., Stanford, CA, 1972.
[5] E. W. DIJKSTRA, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, NJ, 1976.
[6] M. L. FREDMAN AND R. E. TAR.JAN, Fibonacci heaps and their uses in network optimization algorithms,

Proc. 25th Symposium on Foundations of Computer Science, 1984, pp. 338-346.
[7] D. E. KNUTH, The Art of Computer Programming, Volume 1: Fundamental Algorithms, 2nd ed.,

Addison-Wesley, Reading, MA, 1973.
[8], The Art ofComputer Programming, Volume 3: Sorting and Searching, Addison-Wesley, Reading,

MA, 1973.
[9] D. D. SLEATOR, An O(nm log n) algorithmfor maximum networkflow, Technical Report STAN-CS-80-

831, Computer Science Dept, Stanford Univ., Stanford, CA, 1980.
[10] D. D. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, J. Comp. System Sci., 26

(1983),.pp. 362-391; also Proc. Thirteenth Annual ACM Symposium on Theory of Computing,
1981, pp. 114-122.

11 , Self-adjusting binary trees, Proc. Fifteenth Annual ACM Symposium on Theory of Computing,
1983, pp. 235-246.

12], Amortized efficiency of list update and paging rules, Comm. ACM, 28 (1985), pp. 202-208.
[13], Self-adjusting binary search trees, J. Assoc. Comput. Mach., to appear.
[14] R. E. TARJAN, Efficiency of a good but not linear set union algorithm, J. Assoc. Comput. Mach., 22

(1975), pp. 215-225.
[15], A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comp. System

Sci., 18 (1979), pp. 110-127.
[16] Data Structures and Network Algorithms, CBMS Regional Conference Series in Applied

Mathematics 44, Society for Industrial and Applied Mathematics, Philadelphia, 1983.
17] J. VUILLEMIN, A data structurefor manipulating priority queues, Comm. ACM, 21 (1978), pp. 309-314.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
0O5

THE COMPLEXITY OF LANGUAGES GENERATED BY
ATI’RIBUTE GRAMMARS*

JOOST ENGELFRIET’

Abstract. A string-valued attribute grammar (SAG) has a semantic domain of strings over some alphabet,
with concatenation as basic operation. It is shown that the output language (i.e., the range ofthe translation)
of a SAG is log-space reducible to a context-free language.

Key words, theory, compilers, attribute grammars, alternation, complexity, classes of languages defined
by grammars, by resource-bounded automata

CR categories. D3.4, F1.2, F2, F4.3

Introduction. Attribute grammars (AG) are a mechanism for translating the deriva-
tion trees of a context-free grammar into values of some semantic domain [26]. A
particular, very restricted, domain of interest is the set of strings over some alphabet
with concatenation as basic operation. Such "string-valued" attribute grammars (SAG),
see [10], are of importance for two reasons. The first reason is that every attribute
grammar can be viewed as a SAG. In fact, viewing the right-hand sides of semantic
rules of an AG as strings rather than meaningful expressions, a SAG is obtained whose
attribute evaluation corresponds to the symbolic evaluation of the attributes of the
AG: the SAG translates the derivation trees of the context-free grammar into strings
(usually expressions) which eventually may be interpreted again as the values computed
by the AG. The second reason that string-valued attribute grammars are important is
that they can be used as a language generating mechanism: the range of the translation
of a SAG G, denoted OUT (G), is a formal language. If G describes a compiler that
translates high-level programs into assembler programs, then OUT (G) is the "assem-
bler dialect spoken by the compiler," i.e., the set of all assembler programs that are
the translation of some high-level program. For the more restricted formalism of
top-down tree transducers, such "tree transformation languages" were first studied
in [32].

In this paper we prove that for every SAG G, OUT (G) is in LOG (CF): the class
of languages log-space reducible to context-free languages.. Hence these output
languages are recognizable in polynomial time or log square space (on a deterministic
Turing machine). The proof of this result was obtained as a generalization of the proof
of IO_ LOG (CF) in [2], where IO is the class of inside-out macro languages 19]. In
fact, IO is equal to the class of all OUT (G), where G is a SAG with one synthesized
attribute (and an arbitrary number of inherited attributes), see [10]. To show that a
language L is in LOG (CF), one can use the technique introduced in [36] (and used
in [2]) to accept L by a nondeterministic multihead pushdown automaton (MPDA)
in polynomial time: the equivalence of polynomial time MPDA and LOG (CF) is
shown in [36]. To show that OUT (G) is in LOG (CF) we will use a variation of this
technique that concerns alternating multihead finite automata (AMFA) rather than
MPDA. It is well-known that AMFA and MPDA accept the same class of languages
(viz. PTIME, the class of deterministic polynomial time Turing machine languages,

* Received by the editors December 27, 1982, and in final revised form April 15, 1984.

" Department of Computer Science, Twente University of Technology, 7500 AE Enschede, the Nether-
lands. Present address, Department of Mathematics and Computer Science, University of Leiden, Leiden,
the Netherlands.

70

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 71

see [7], [5]). It is shown in [35] that time of the MPDA is polynomially related to
tree-size of the AMFA (where tree-size is the number of nodes of the accepting
computation tree of the AMFA). Thus LOG (CF) is the class of languages accepted
by AMFA in polynomial tree-size.

The simulation of some grammar-like formalism by a polynomial tree-size AMFA
can be obtained by simulating any derivation tree of the grammar by an AMFA in
such a way that its tree-size is polynomial in the size of the derivation tree and the
length of the produced string, and then showing that every string produced by the
grammar can actually be produced by a derivation tree of polynomial size (in the
length of the string); see, e.g., [37], [2], [17] where this is done for polynomial time
MPDA, simulating a left-most derivation of the grammar. In our case, we simulate
the attribute evaluation of G on an arbitrary derivation tree by an AMFA with
polynomial tree-size, and show that every string v in OUT (G) can be obtained from
a derivation tree of size linear in the length of v. Since the computation tree of the
AMFA branches in the same way as the derivation tree it is simulating, we obtain as
a particular case the fact that if G is linear (i.e., the underlying context-free grammar
is linear), then OUT (G) can be recognized by a nondeterministic multihead finite
automaton, and so OUT (G) NSPACE (log n), the class ofnondeterministic log-space
Turing machine languages. Since EDTOL is contained in this class of output languages,
this generalizes the result from [25] that EDTOL NSPACE (log n); see also [38], [21].

The paper is organized as follows. In 1 we establish some rather precise ter-
minology for discussing attribute grammars, in particular SAG. In 2 we show how,
for an arbitrary AG G, OUT (G) can be recognized by a nondeterministic recursive
program, and that for SAG this program can be implemented on an AMFA. This
section already contains the above-mentioned result on linear SAG. In 3 we prove
that for a restricted class of SAG a linear bound can be put on the size of the derivation
tree (linear in the length of the string into which the SAG translates the tree). Finally,
in 4, we show that every SAG is output-equivalent to such a restricted SAG. In 5
we give the main theorem and discuss some of its consequences.

1. Preliminaries. In this section we provide the reader with the unavoidable heap
of terminology needed to discuss attribute grammars. For an example of an AG see

1.5 and Fig. 1. The last subsection contains terminology on complexity classes.
The empty string is denoted ;Iwl is the length of string w. We do not distinguish

between languages L and L-{ }.

1.1. Context-free grammars. The class of context-free languages is denoted CF.
A context-free grammar (CFG) G (N, T, P, Z) consists of nonterminals, terminals,
productions, and the initial nonterminal, respectively. A derivation tree has leaves
labeled by elements of T t_J {,}; if the root of is labeled Z, then is a complete
derivation tree; if some leaves of are labeled by a nonterminal, then is a partial
derivation tree. A node of is a nonterminal node if it is labeled by a nonterminal.
The nonterminal size of is the number of its nonterminal nodes. The root of is
denoted by root (t), and its yield by yield (t).

A production is usually written as Xo wl XI w2 wkXkwk/ with X N, wj T*,
k >= 0. A production is final if k 0 (i.e., it is X w with X N and w T*), and it
is linear if k 1 (i.e., of the form X w Yw2 with X, Y N and ww T*). G is
linear if all its productions are linear or final.

Let be a (partial) derivation tree. An occurrence of a production p:Xo-
w XI... wkXw+l in consists of a node Xo of t, labeled Xo, and all its sons, such
that the labels of the sons, from left to right, form the string wl XI wXkw/. We

72 JOOST ENGELFRIET

say that p is applied at Xo. We will always denote by x,. , xk the sons of Xo labeled
X,. , Xk (in their order from left to right); thus Xo, Xl, , Xk are the nonterminal
nodes of the occurrence of p. We always assume that G is reduced in the usual sense
that every production occurs in some complete derivation tree.

1.2. Attribute grammars. An attribute grammar (AG) G is described in the follow-
ing 4 points, see [26].

(1) G has a semantic domain (V,) where V is a set (of values) and is a
collection of functions of type V -> V, m-> 0.

(2) G has a context-free grammar (N, T, P, Z) such that Z does not occur in the
right-hand side of any production.

(3) Each nonterminal X has a finite set ATT (X) of attributes. ATT (X) is the
union of two disjoint sets IN-ATT (X) and SYN-ATT (X) of inherited and synthesized
attributes, respectively. For the initial nonterminal Z, IN-ATT (Z)= and SYN-
ATT (Z) {d}; d is called the designated attribute (the value of d will be the meaning
of the derivation tree).

(4) For a production p:Xo-w1X1 WkXkWk+l, a pair (a,j) such that a
ATT (X), 0 _-<j _-< k, is called an attribute ofproduction p. The set of all attributes of p
is denoted ATT (p). Each production p has an associated set RULES (p) of semantic
rules. A semantic rule of p is specified by a function f, say of type V"- V
(m_->0), and a sequence of m+l (not necessarily distinct) attributes of
p:((ao,jo),(a,j),’",(a,j,,)). Such a semantic rule is denoted (ao,jo):
f((a,j),... ,(a,,,jm)) and we say that it defines (ao,jo) using (ai,ji), l<-i<-m.

RULES (p) contains one semantic rule defining each attribute (a, 0) with a
SYN-ATT (Xo), and one semantic rule defining each attribute (a, j) with j_-> 1 and
a IN-ATT (X), and no other semantic rules. Moreover we assume, without loss of
generality, that G is in Bochmann Normal Form, i.e., that no attribute defined by a
semantic rule is also used in a semantic rule.

This ends the definition of attribute grammar. An attribute grammar is linear
(linAG) if its context-free grammar is linear.

1.3. Dependency graphs. We define dependency graphs as in [26], except that, for
the dependency graph of a derivation tree, we label each node with a (modified)
right-hand side of a semantic rule. Let G be an AG as described in 1.2.

The dependency graph of a production p is the directed graph of which the nodes
are the attributes of p and which has an edge from (a, i) to (b, j) iff there is a semantic
rule in RULES (p) which defines (b, j) using (a, i).

Let be a (partial) derivation tree of G. Let x be a nonterminal node of labeled
X. An attribute ofnode x is a pair (a, x) with a ATT (X). The set ATT (t) of attributes

of is {(a, x)]x is a nonterminal node of t, (a, x) is an attribute of x}.
The dependency graph of is obtained by combining all dependency graphs of

all (occurrences of) productions in t. The dependency graph D(t) ofa (partial) derivation
tree is the labeled directed graph whose nodes are the attributes of (i.e., ATT (t))
and whose edges and labels of nodes are determined as follows. Consider an occurrence
of a production p Xo--> wX WkXkWk/ in with nonterminal nodes Xo, x , Xk.
For every semantic rule r: (ao,jo):=f((a,jl),’’’, (am,jm)) in RULES (p) there is an
edge from (ai, xj,) to (ao, Xjo) for every (1-<i=< rn), and (ao, Xo) is labeled with
f((a, x,),..., (a,,, xj.)), i.e., with the function f and the sequence ((a, x),. .,
(a,,, xjm)). We also say that semantic rule r defines attribute (ao, Xo) of t. It is easy to
see that each attribute of is defined by at most one semantic rule, and thus, if is
complete, each node gets a unique label (if is not complete, some nodes do not have

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 73

a label). Note that each labeled node n of D(t) is labeled byf(nl,’’’, t/m) withf
and nl,..., n,, are all nodes of D(t) from which at least one edge runs to n.

An AG is noncircular if no dependency graph of a complete derivation tree contains
an oriented cycle. We assume throughout this paper that AG are noncircular, see [26].

Note that the dependency graph D(t) of some complete derivation tree contains
all information needed to compute the value of the designated attribute of the root of
t. An AG is reduced if for every complete derivation tree and every node (a, x) of
D(t) there is an oriented path from (a, x) to (d, root (t)). This means that every attribute
of is needed to compute the meaning of t. It is shown in [18] that for every AG there
is an equivalent reduced AG.

Let be a derivation tree with root labeled X. The i/s-graph is(t) of is the
directed graph with the attributes of X as nodes and with an edge from a to b if
a IN-ATT (X), b SYN-ATT (X), and there is an oriented path from (a, root (t)) to
(b, root (t)) in D(t). The set of all i/s-graphs for nonterminal X is defined by is(X)=
{is(t)l is a derivation tree with root labeled X}. It is shown in [26] that these sets
are computable.

1.4. Assignments and output set. We define assignments of values to attributes for
nonterminals, productions, and derivation trees. This determines the semantics of
attribute grammars. Let G again be an AG as described in 1.2 (with semantic domain
(v,)).

An assignment for nonterminal X is a mapping ATT (X)-> V.
An assignmentfor production p Xo--> wX wkXkwk/ is a mapping ATT (p) -->

V. If /3j :ATT(X)--> V is an assignment for X, O<=j<=k, then we denote by
(0,1,’’" ,k the assignment a:ATT(p) V for p such that a((a,j))=flj(a).
Clearly every assignment for p is of the form (/30, ill,’", fig) for some fl, 0_-<j_-< k.
An assignment a for p is correct if, for every semantic rule (ao,jo):
f((al,j),’", (a,,j)) in RULES (p), a((ao,A))=f(a((a,j)), a((a,,,j,,))).

An assignmentfor derivation tree is a mapping a ATT (t) V. If c is an occurrence
in of a production p" Xo- Wl XI WkXkWk+ with nonterminal nodes Xo, Xl , Xk,

then the assignment a for p is defined by a((a,j))= a((a, x)). An assignment a for
is correct if a is correct for p, for every occurrence c of p in (for all p P). Thus,

a correct assignment for is an assignment of values to the attributes of such that
the semantic rules are satisfied. It is easy to prove that a correct assignment a for is
a mapping from the nodes of D(t) to V such that if node n of D(t) is labeled
f(r/1,""" n,,), then a(n)=f(ce(r/1), a(rlm)). It is now not difficult to see that for
noncircular AG every complete derivation tree has exactly one correct assignment
a; for each attribute (a, x) of t, a((a, x)) is called the value of (a, x); the meaning of
is the value of (d, root (t)). Thus a noncircular AG translates every complete derivation

tree into its meaning a((d, root (t))). In this paper we are interested in the range of
this translation.

For an AG G, the output set of G, denoted by OUT (G), is the subset of V defined
by OUT (G)= {a((d, root (t)))lt is complete derivation tree with correct assignment
a}. Two AG G1 and G2, are output-equivalent if OUT (G1)=OUT (G2).

1.5. String-valued attribute grammars. An AG is string-valued if the values of its
attributes are strings and the only operation on strings is concatenation, see [10].

A string-valued attribute grammar (SAG) is an AG with semantic domain (E*,)
for some alphabet E (called the output alphabet), where consists of all derived
functions of the free monoid E* generated by the elements of E. Formally, this means
that for every string v (E [.J {Yl, ",Y,,})*, m >= 0, where Yl, , Y,, are new symbols,

74 JOOST ENGELFRIET

the function fo is in , where fv(wl,"" ", w,) is the result of substituting wi for Yi
throughout v (1 =< -< m). Informally, this means that we specify our semantic rules by
(ao,jo):=u(a,j)u2(a2,j2)...u,(am,j,)u,+ with uiZ*, l<=i=<m+l. Thus the
right-hand side of a semantic rule in RULES (p) is any element of (Z t_J ATT (p))*. A
correct assignment cr :ATT (p)-* for production p should satisfy the following: if
a((a,ji))=wi for l<=i<=m, then a((ao,jo))=UlWlU2W2 UmWmUm+ The label of
(ao, Xjo) in D(t), defined by this semantic rule, is u(a, xj,)u2" u,(a,,, Xm)Um+l. The
output set OUT (G) of a SAG G is a language over : the output language of G. We
define the classes of output languages OUT(SAG)={OUT(G)IG is a SAG} and
OUT (linSAG) {OUT (G)IG is a linear SAG}.

We mention the following property of SAG. Let be a derivation tree of a SAG G.
If there is an oriented path from (al, x) to (a2, x2) in D(t) and a is a correct assignment
for t, then a((a, x)) is a substring of a((a2, x2)). This can easily be proved by induction
on the length of the path, using the special form of the semantic rules (see also in

1.4 what it means for D(t) that a is correct). Thus the value of each attribute needed
to compute the meaning v of occurs as a substring in v. In particular, for a reduced
SAG every attribute value is a substring of v.

Example of a SAG. Consider the following SAG G with output alphabet Z
{a, b, $} and with CFG (N, T, P, Z) where N= {Z, A}, T= {a, b}, ATT (Z)= {d},
IN-ATT (A)= {i} and SYN-ATT (A)= {s}. The productions of P with their semantic
rules are as follows:

p RULES (p)

ZaA
Z-bA
A-aA
AbA

(d, O):= (s, 1), (i, 1):= a;
(d, O):= (s, 1), (i, 1):= b;
(s, O):= (s, 1)(s, 1), (i, 1):= (i, O)a;
(s, O):= (s, 1)(s, 1), (i, 1):= (i, O)b;
(s, O) := (i, 0)$(i, 0)$.

The meaning of the derivation tree in Fig. 1 is abSab$abSab$, as can easily be
seen from its (labeled) dependency graph. It is easy to see that OUT(G)=
{(w$)nln =2Iwl, we{a, b}*, w# A}. Note that G is linear and reduced.

1.6. Complexity classes. As usual (see [22] and [5]) we denote by DSPACE (f(n)),
NSPACE (f(n)), and ASPACE (f(n)) the classes of languages accepted by determinis-
tic, nondeterministic, and alternating (respectively) Turing machines in space f(n).
The definitions for TIME are analogous; also PTIME= U{DTIME (n)lc-> 1} and
NPTIME= t_J{NTIME (nC)lc >- 1}. LOG (CF) is the class of languages reducible to
context-free languages in log-space, see [36].

A multihead finite automaton (MFA) is, as usual, a nondeterministic automaton
with a two-way read-only input tape on which the input string is written, surrounded
by endmarkers. The automaton has a finite number of read-heads, each of which can
move in both directions on the input tape; the automaton is able to see whether two
heads are on the same square of the input tape. Let MFA also denote the class of
languages accepted by these automata; it is well-known that MFA NSPACE (log n).

An alternating multihead finite automaton (AMFA), see [5], is like an MFA but
its states are partitioned into existential and universal states. A computation tree (see
[29], [35]) of an AMFA M is a finite tree of which the nodes are labeled by configur-
ations of M such that the descendants of any internal node labeled by an existential
(universal) configuration consist of one (all, respectively) successor(s) of that configur-

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 75

Z

(i)

(s, x2)

a

(s, x3)(s, x3)

(i, x2
(i, x3)$(i, x3)$

(ii)

(iii) (iv)

FIG. 1. (i) Complete derivation tree t; its nonterminal nodes are xl, x2, and x3. (ii) Dependency graph
D(t) of t, labeled with strings over E U ATT (t). (iii) Dependency graph ofproduction A aA (and A hA).
(iv) i/s-graph is(t1) where t is any of the subtrees oft with root A.

ation. A computation tree is accepting if all its leaves are labeled by accepting
configurations. M accepts a string v if there is an accepting computation tree with the
initial configuration for v at the root. If the size (i.e., the number of nodes) of the
computation tree is k, then v is said to be accepted within tree-size bound k [35]. Let
AMFA also denote the class of languages accepted by such devices, and let P-AMFA
denote the class of languages accepted by AMFA in polynomial tree-size. Note that
an MFA is an AMFA with no universal states; the tree-size is the length of the
computation, i.e., time.

It is well known that AMFA=ASPACE (log n)= PTIME (see [5], [7]) and P-
AMFA LOG (CF), see [35], [36], cf. the introduction. Since MFA clearly work in
polynomial time, MFA_P-AMFA_AMFA, i.e., NSPACE (Iog n)LOG(CF)
PTIME. We finally note that, since CF DSPACE (log2 n), see [30], also LOG (CF)
DSPACE (log2 n). In [35] it is even shown that LOG (CF) ATIME (log2 n); note
that ATIME (log2 n) DSPACE (log2 n), see [5].

2. Recognizing the output set. Let G be an AG with semantic domain (V,) and
CFG (N, T, P, Z). Let us consider the problem of finding out whether a given value
v V belongs to the output set OUT (G) of G. Clearly, it suffices to find a complete
derivation tree and a correct assignment a (of values to the attributes of t) such that
a ((d, root (t))) v, where d is the designated attribute. To do this we can use recursion
to construct nondeterministically a derivation tree of the CFG, guessing simultaneously
the values of the attributes of the nodes constructed so far (except of course the value
of (d, root (t)) which is taken to be v) and checking that this partial assignment is
correct (in the sense that the assignments for each occurrence of a production p in
the partial derivation tree are all correct for p, cf. 1.4). If the computation is successful,
i.e., the guessed assignment of the complete derivation tree is correct, then v
OUT (G), because has only one correct assignment.

Note that this would also work for circular AG, if for such an AG we put
a((d, root (t))) in OUT (G) for every correct assignment a of every complete derivation

76 JOOST ENGELFRIET

tree t. For the reader familiar with affix grammars ([28], [39]) and their correspondence
to attribute grammars, we note that in fact the above recursive algorithm simulates a
derivation of the affix grammar corresponding to the AG. A similar notion of derivation
can also be defined for (extended) attribute grammars, see [31].

We now write down the algorithm in some more detail in the form of an Algol-60-
like program consisting of a call of a recursive boolean procedure "test", which has
two (value) parameters: a nonterminal X and an assignment a for X. In the body of
the procedure a local variable/3 is used of type "array of assignments for nonterminals"
(of length maxrhs, i.e., the maximal number of occurrences of nonterminals in the
right-hand side of a production in P). For a given v V, we denote by av the assignment
for Z such that av(d)= v.

The program that tests whether v OUT (G) is as follows.

begin
boolean proc test (X, a); nonterminal X; assignment a;

begin assignment array 1: marhs];
boolean result; integer i;

guess a production p" X wX WkXkWk+l in P;
1. for := I to k do fl[i] := any assignment for X
2. if (a,/3[1],. ., fl[k]) is correct for p
3. then result := test (X,/3[1]) and. and test (Xk, fl[k])

else result := false;
test := result

end;
{main program}
if test (Z, no) then accept

end.

Note that (c,/3[1],..., fl[k]) is an assignment for p, see 1.4. Line 3 should of
course be replaced by: result := true; for := 1 to k do result := result and test (X,/3[i]).
Note that, in case k- 0, test just checks whether (a) is correct for p.

It is not difficult to see that this program indeed recognizes OUT (G). In fact, a
call test (X, a) has a computation that returns the value true if and only if there exist
a derivation tree with root labeled X and a correct assignment 3’ for t, such that
3,((a, root (t)))= a(a) for every aATT (X). This can be shown by induction on the
recursion depth of the procedure and the height of the derivation tree.

We now show that for a reduced string-valued AG the above program can be
implemented on an alternating multihead finite automaton (AMFA), and we estimate
the tree-size used by the automaton (see 1.6). Let G be a reduced (see 1.3) and
string-valued (see 1.5) AG with output alphabet E. Then the program above tests
whether v E* is an element of the output language OUT (G)_ E*; v is now on the
input tape of the AMFA, between endmarkers. Since G is reduced, the program only
has to consider assignments a:ATT(X)E* such that a(a) is a substring of v for
every a ATT (X), see 1.5. The parameter a and each variable/3[i] of type "assign-
ment" is simulated by 2n heads, where n is the maximal number of attributes of a
nonterminal. The heads may be given names (3, a, q) where 3’ is a or fl[i], a is an
attribute of a nonterminal, and q {left, right}. The string 3’(a) is recorded by putting
the (% a, left)-head and the (% a, right)-head on the first and last (respectively) symbol
of an occurrence of 3’(a) in v. The other information in the program (such as the
parameter X and the guessed production p) can be kept in the finite control of the
automaton. Finally, the automaton has two additional work-heads.

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 77

The program can be implemented on the AMFA as follows. Initially, the automaton
has all its read-heads at the left end marker, and then moves its (a, d, left)-head one
square to the right and its (a, d, right)-head to the square just before the right endmarker
(to obtain the initial assignment av). To simulate "/3[i] := any assignment" in line 1,
for each attribute a, the two (/3[i], a, q)-heads are moved nondeterministically, i.e.,
using existential branching, to some input square and then the (fl[i], a, right)-head is
moved some more squares to the right. To check, in line 2, the correctness of the
assignment y (c,/3 1],. .,/3 [k]) for p, the automaton checks that y((ao, jo))
uy((a,j))u2’’’ Umy((a,.,j,,,))Um+l for every semantic rule (ao, jo)
u(a,j)u.., u,.(a.,,j.,)u.,+l in RULES (p). This can be done as follows; rename
Y=(yo, y,’", Yk). Let work-head 1 move from the (yo, ao, left)-head to the
(Yo, ao, right)-head checking that this substring equals Ul 3’((al, jl)) 3’((am, jm))U.,+.
Each u is checked using the finite control. Each y((a,j)) is checked by moving
work-head 2 simultaneously from the (y,, a, left)-head to the (y,, a, right)-head.
Finally, line 3 is implemented by a k-fold universal branching; in the ith branch, the
automaton first moves each (a, a, q)-head to the same position as the corresponding
(/3[i], a, q)-head.

This shows how the program can be implemented on an AMFA. We now determine
the tree-size used, i.e., the size of the computation tree, in terms of Iol, the length of
the input string of the AMFA. It should be clear from the above description that each
line of the program can be executed in linear time, i.e., in o(Ivl) steps (where the
constant depends, of course, on the given SAG G). Thus, one execution of the body
of test (without the recursive calls) has a (monadic) computation tree of size o(Ivl),
Furthermore, if the program "constructs" a complete derivation tree t, then test
is called s times, where s is the nonterminal size of (i.e., the number of nodes
labeled by a nonterminal). Thus the total tree-size is o(Ivl, s). We state this as a
lemma.

LEMMA 2.1. Let G be a reduced SAG. OUT (G) is accepted by an AMFA, such
that v OUT (G) can be accepted in tree-size O(Ivl s), where s is the nonterminal size

of a complete derivation tree with meaning v.
Since AMFA PTIME (see 1.6), this already shows that OUT (SAG) PTIME

(note that for every SAG there is an output-equivalent reduced SAG [18]). It remains
to show that s can be taken polynomial in vl; to obtain this, the grammar G has to
be transformed (see the next sections).

We conclude this section by considering linear SAG (i.e., the underlying CFG is
linear). For a reduced linear SAG the program can be implemented on an ordinary
multihead finite automaton (MFA), because in line 3 no "and" occurs (i.e., no universal
branching is needed), and the (final) recursive call of test can easily be replaced by
iteration. Since for each linear SAG there is an output-equivalent reduced linear SAG
[18], this proves the following result.

TI-IEOREM 2.2. OUT (linSAG) NSPACE (log n).

3. Bounding the size of the derivation tree. To show that OUT(SAG)_
LOG (CF)= P-AMFA it now suffices to show that, in Lemma 2.1, s can be taken
polynomial in vl. In this section we show that for certain SAG that "do not make
superfluous computations," we can take s -< 61 vl, i.e., the nonterminal size of a derivation
tree is linear in the length of its meaning. To prove this we need a lemma on dependency
graphs of derivation trees of SAG, which we will put in the more general framework
of string-computing DAGs. Thus, the next subsection does not depend on the previous
two sections.

78 JOOST ENGELFRIET

3.1. String-computing DAGs. A DAG is a finite directed acyclic graph. For a DAG
one can use the same terminology as for trees. Thus, if there is an edge from node ml
to node rn2 we say that ml is a son of m2, and m a father of m. A root is a node
without father and a DAG is rooted if it has only one root.

To prove (or define) something for the nodes of a DAG one can use induction
on its structure as for trees, i.e., when proving (or defining) it for a node one may
assume that it has already been proved (or defined) for the sons of the node.

DAGs are often used to represent computations; here we consider in particular
the computation of strings. A string-computing DAG is a DAG G of which the nodes
are labeled as follows. Let E be an alphabet. Each node m of G is labeled with a
string label (rn) (E [_J son (m))*, where son (rn) is the set of sons of m, such that each
son of m occurs at least once in label (rn).

For a node rn of G, the result of rn is defined inductively to be the string in E*
obtained by replacing, in label (m), each son n of m by the result of n. The result of
a rooted string-computing DAG is the result of its root.

(It should be clear that the dependency graph of a derivation tree of a noncircular
SAG G is a string-computing DAG. Moreover, the result of each node (a, x) is a((a, x)),
where a is the correct assignment for t.)

A string-computing DAG is A-free if no node is labeled A. A node rn of a
string-computing DAG is passing if it has exactly one son n and label (m)= n (i.e.,
the result of n is passed to m, without computation). We now show that the (nonpassing)
size of a DAG can be bounded by its result.

LEMMA 3.1. Let v be the result of a rooted A-free string-computing DAG G. Let k
be the number of nonpassing nodes of G. Then 2Iv[-_> k + 1.

Proof. Unrolling the DAG G into a tree, we can use the following well-known
fact on trees.

Fact. For an arbitrary tree t, 2y(t) ->_ x(t) + 1, where y(t) is the number of leaves
of t, and x(t) is the number of nonmonadic nodes of (i.e., nodes with degree 1).
In particular, if is a binary tree (i.e., all nodes have degree 2 or 0), then 2y(t) x(t) + 1,
see [27, p. 399].

We now define the unrolling of G in a formal way. Let ’[t... t] denote a tree
with root labeled - and direct subtrees t, , t (a tree consisting of one node labeled
z is denoted -), and let 8 be an arbitrary symbol not in E (where E is the alphabet of
G). For each node m of G we define a labeled tree t(m) inductively as follows:

(a) If label (m) a E, then t(m) a.
(b) If label (m)=uE* and]u[->2, then t(m)=6[u].
(c) If label (rn)=unlu... UnsUs+l with uiE* and nison(m), then t(m)=

6[utu_. utu+], where ti t(n).
Finally, t(G)= t(m0) where mo is the root of G; t(G) is the unrolling of G. Note

that in both (b) and (c), 6 has [label (m)[sons, i.e., each symbol from E in u and ui
counts as a direct subtree (of one node).

It is easy to show, by induction, that v is the yield of t(G). Thus y(t(G))= Iv[.
It should be clear that every node m of G corresponds to one or more nodes of t(G):
the root of t(m) occurs at least once in t(G); here we use the fact that every son of
m occurs in label (m), for every m. Furthermore, as can be seen from (a), (b), and
(c), a nonpassing node of G corresponds to nonmonadic nodes of t(G). Hence
k<-_x(t(G)). Thus, using the Fact, k+ l <-_x(t(G))+ l <=2y(t(G))=2[v[.

Note that the Fact is actually a special case of this lemma. For a tree t, consider
the following labeling of t: if m is a leaf then label (m)= e (where e is some fixed

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 79

symbol), and otherwise label (m)= nl..’n (where hi,"’, n are the sons of m).
Clearly, for the resulting string-computing DAG, Ivl Y(t) and k x(t).

We finally note that this lemma can also be proved directly (without use of the
Fact), by induction. S

3.2. Linear size of derivation tree. Let us be more precise about what we mean by
a SAG G which "does not make superfluous computations" (cf. the beginning of this
section). First of all, G should not compute attribute values which are not needed for
the meaning of the derivation tree, i.e., G should be reduced (see 1.3). Second, G
should not spend its time concatenating the empty string with itself, thus computing
A only. We prevent this by requiring that G is A-free, i.e., it has no semantic rules of
the form (a,j):= A. Third, G should not have too many "passing" semantic rules. A
passing semantic rule is a semantic rule of the form (ao,jo):= (al,jl). We restrict the
number of passing semantic rules as follows. A production p P of an AG with
underlying CFG (N, T, P, Z) is called a passing production if all its semantic rules (i.e.,
elements of RULES (p)) are passing. We now require that G has no passing final

productions and no passing linear productions (cf. 1.1), i.e., every passing production
should have at least two occurrences of a nonterminal in its right-hand side. We now
show that for a SAG satisfying all these restrictions the nonterminal size of a derivation
tree is linearly bounded by the length of its meaning.

LEMMA 3.2. Let G be a A-free reduced SAG that has no passing final productions
and no passing linear productions. If is a complete derivation tree ofG with nonterminal
size s and meaning v, then s <-_ 61vl.

Proof Let p, l, and f be the number of occurrences of nonpassing, nonlinear, and
final productions in t, respectively. Note that these properties are not independent; in
particular, every final production is nonlinear.

The following four inequalities suffice to show the result.
(a) s <-p+ l, because G has no passing linear productions.
(b) f<_-p, because G has no passing final productions.
(c) 2f-> + 1. Let tl be the result of deleting, all leaves from t. Then, clearly, the

number of leaves of tl is f, and the number of nonmonadic nodes of tl is I. Hence
2f_-> l+ 1 by the Fact mentioned in the proof of Lemma 3.1.

(d) 2[v[->_p+ 1, by Lemma 3.1. In fact, the dependency graph D(t) is a string-
computing DAG and v is the result of the node (d, root (t)) of D(t). Since G is reduced
and A-free, D(t) is rooted (with root (d, root (t))) and A-free, and v is its result. A
node of D(t), i.e., an attribute of t, is passing iff it is defined by a passing semantic
rule. Since there are p occurrences of nonpassing productions in t, at least p nodes of
D(t) are defined by a nonpassing semantic rule. Hence the number k of nonpassing
nodes of D(t) is >- p. Thus p + 1 _-< k + 1 -< 21 v[.

From inequalities (a)-(d) we now conclude that

s<-p+l by(a)

<p+2f by (c)

_-< 3p by (b)

<6Iv[by(d).

Note that in this proof we have used the Fact (of the proof of Lemma 3.1) twice.
In (c) it was applied to (without leaves), and in (d) to the unrolled D(t), cf. the
proof of Lemma 3.1. [3

80 JOOST ENGELFRIET

COROLLARY 3.3. IfG is a A-free reduced SAG with no passingfinal and no passing
linear productions, then OUT (G) LOG (CF).

Proofi From Lemmas 2.1 and 3.2 it follows that OUT (G) can be accepted by an
AMFA in tree-size O(n2), where n is the length of the input. Thus OUT (G)
P-AMFA= LOG (CF), cf. 1.6. 11

4. Removing superfluous computations. To prove that OUT (SAG)_ LOG (CF) it
now suffices, by Corollary 3.3, to show the following lemma.

LEMMA 4.1. For every SAG G there is an output-equivalent SAG G’ such that (1)
G’ is A-free, (2) G’ is reduced, (3) G’ has no passing final productions, and (4) G’ has
no passing linear productions.

The present section is devoted to the proof of this lemma. Since the constructions
used to obtain G’ are straightforward and rather standard, we do not prove their
correctness.

Proof of (1). Let G be a SAG with output alphabet E and CFG (N, T, P, Z). We
construct a A-free SAG G’ as follows. Intuitively, G’ is obtained by adding to each
nonterminal of G the finite amount of information telling which of its attributes have
value A. The productions of G’ are then constructed in such a way that this information
is correct; the semantic rules are of course changed by replacing attributes with value
AbyA.

Formally G’ has the same output alphabet E and has CFG (N’, T, P’, Z’) where
N’= {(X, A)IX e N, A_ ATT (X)} and Z’- (Z,). For every (X, A) S’,
ATT ((X, A)) ATT (X) A (intuitively, the attributes in A have value A). The division
into inherited and synthesized attributes is the same as in G. Let p’Xo-
wl XI WkXkWk+ be a production in P, and let Aj

_
ATT (X) for 0_-<j _<- k. Consider

the following candidate production p’: (Xo, Ao)- w(X, A) wk(Xk, Ak)Wk+. If
the construction of RULES (p’) is successful, then p’ is in P’ and has the semantic
rules of RULES (p’), otherwise p’ is not in P’. We construct RULES (p’) as follows.
For every semantic rule (ao,jo):= ul(al,j)’’" Um(am,jm)Um+l in RULES (p), define
the string w(EtAATr(p))* by w=us"’UmS,,U,,+, where s=(a,j) if aC_Aj,,
and s= h if aA,. If aoAo and w A, then the construction of RULES (p’) is
unsuccessful. If ao Ao and w A, then the construction of RULES (p’) is also unsuc-
cessful. If ao Ao and w A, then the semantic rule (ao, jo) := w is added to RULES (p’).
(Of course, if ao Ao and w A, then nothing is added to RULES (p’).)

This ends the construction of G’. By construction G’ is h-free. It is left to the
reader to prove that there is a bijection between complete derivation trees of G (with
meaning A) and complete derivation trees t’ of G’, such that and t’ have the same
meaning. In fact, t’ is the same as t, except that a node x of with label X has label
(X, A) in t’ where A is the set of attributes of x with value h. Hence OUT (G’)-
OUT (G) {A }, and we have shown (1) of Lemma 4.1.

Proof of (2). This is shown in a more general setting in [18]. For the sake of
completeness we repeat the construction for our case. Let G be a h-free SAG with
output alphabet E and CFG (N, T, P, Z). We construct a A-free reduced SAG G’ as
follows. Intuitively, G’ is obtained by adding to each nonterminal of G the finite
amount of information telling which of its attributes are used to compute the meaning
of the derivation tree. Only these attributes are kept, the other ones are thrown away.
Formally, G’ has the same output alphabet E and has CFG (N’, T, P’, Z’) where
N’={(X,A)IXN, A__ATT(X)} and Z’= (Z, {d}). For every (X,A)N,
ATT ((X, A)) A. P’ is the set of all p’: (Xo, Ao)- Wl(X1, A). Wk(Xk, Ak)Wk+ such
that (i) p:Xo- wX... WkXkWk+ is in P; (ii) for every semantic rule (ao,jo):

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 81

ul(al,j)" Um(am,jm)Um+ in RULES(p), if aoAjo then aiAj, for l<-i<=m; and
(iii) if a A for some 1 -<_j -< k and there is no semantic rule in RULES (p) that defines
(a,j), then there is a semantic rule (ao,jo):= u(al ,jl)" Um(am,jm)Um+l in RULES (p)
such that ao Ao and (a, j)= (ai,ji) for some 1 <-i=< m. For such a p’, RULES (p’)
consists of all semantic rules (ao,jo):= u(a,j)... (am,j,,)u,,,+l of RULES (p) such
that ao Ao. Thus RULES (p’) RULES (p) and so G’ is still A-free. The proof that
G’ is reduced and output-equivalent to G, can be found in 18] (it uses the noncircularity
of G).

Proof of (3). Let G be a A-free reduced SAG with output alphabet E and CFG
(N, T, P, Z). We construct a A-free reduced SAG G’ which has no passing final
productions. We first need some terminology. A passing derivation tree is one in which
all (occurrences of) productions are passing, i.e., all semantic rules that define the
attributes of are passing. For a nonterminal X, let pass (X)={is(t)lt is a passing
derivation tree with root labeled X}. Thus pass (X) contains all i/s-graphs (see 1.3)
of passing derivation trees with root X; such an i!s-graph contains all information
concerning the attribute computation in the tree" if there is an edge from to s in the
i/s-graph of t, then (s, root (t)) gets the value of (i, root (t)). Note that if g pass (X)
and s SYN-ATT (X), then there is a unique i IN-ATT (X) such that there is an
edge from to s in g; let us denote this by g(s), thus viewing g as a mapping
SYN-ATT (X)-> IN-ATT (X).

We now construct G’ from G by removing from each complete derivation tree of
O the passing subtrees and by short-cutting the attribute computations in these subtrees,
using the information in their i/s-graphs. The construction is very similar to the usual
method of making a context-free grammar A-free.

G’ has the same output alphabet and has CFG (N, T’, P’, Z) with T’= TU PASS,
where PASS= U {pass (X)IX N}. Thus we use the i/s-graphs of passing derivation
trees as terminals. Each nonterminal has the same attributes as in G. P’ consists of all
productions p’: Xo-> w Y wYw+ (k _-> 0) such that, for some X,. , X e N,
p:Xo-> wiX.., wXw+ isin P, and for everyj (l_-<j_-< k), Y X or Y e pass (X),
and, finally, if p is a passing production, then (k _-> 1 and) Y X) for somej (1 _-<j <- k).
The final condition will ensure that G’ contains no passing final productions. For
production p’:Xo->wY’" wYw+ as above, RULES(p’) is constructed from
RULES (p) by the following algorithm (intuitively, the dependency graph of p’ is
obtained by "pasting together" the dependency graph of p and all graphs Y)e
pass (X)). Let S be a variable of type "set of semantic rules".

(a) Initialize S to the set of all semantic rules of RULES (p) that define attributes
(a,j) with Y X, 0=<j -< k. (We now have semantic rules defining all (appropriate)
attributes in p’, but their right-hand sides still contain (synthesized) attributes of
nonterminals Xj that have been replaced by Y e pass (Xj). This is taken care of in
the next step: each such synthesized attribute a has the same value as the corre-
sponding inherited attribute Yj(a), which is again defined by a semantic rule in
RULES (p).

(b) Repea the following until it cannot be repeated any more. In some semantic
rule of S, replace an occurrence of some (a, j) sueh that 1 -j k, a SYN-ATT (X),
and Y pass (X), by he right-hand side of the semantic rule defining (Y(a),j) in
RULES (p). (When he repetition stops, he right-hand sides of semantie rules in S
only contain attributes (a,j) wih Y X, as required.)

() RULES (p’) is defined to be S.
This ends he construction of RULES (p’). I should be dear tha the repetition

in (b) always hals, because G is noneircular.

82 JOOST ENGELFIIET

It is not difficult to show that the complete derivation trees of G’ are obtained
from those of G by replacing (maximal) passing subtrees by their i/s-graphs. If t’ of
G’ corresponds in this way to of G, then D(t’) is obtained from D(t) by short-cutting
the paths through each passing subtree. Thus it should be clear that G and G’ are
output-equivalent, and that G’ is still reduced, noncircular, and A-free. We finally note
that if p and p’ are related as in the definition of P’ above, then p’ is passing if and
only if p is passing (this uses the fact that G is reduced). Hence G’ has no passing
final productions.

Proof of (4). Let G be a A-free reduced SAG with no passing final productions,
with output alphabet E and CFG (N, T, P, Z). We construct a SAG G’ with all these
properties and no passing linear productions. The idea of the construction is very
similar to that in the proof of (3): We short-cut the attribute computations in those
parts of the derivation tree that consist of passing linear productions only. Again we
need some additional terminology. A linear partial derivation tree from X to Y (with
X, Y N) is a partial derivation tree of which the root is labeled X, a leaf is labeled
Y, and all productions occurring in are linear. If is a linear partial derivation tree
from X to Y, then the passing graph pass (t) of has the set of nodes {(a,-1)la
ATT (X)} t_J ((a, 0)la ATT Y)}, and there is an edge from (a, i) to (b,j) (i,j {-1, 0})
itt there is an oriented path in D(t) from (a, x(i)) to (b, x(j)), where x(-1) is the root
of and x(0) is the leaf of labeled Y. Note that pass (t) is very close to the dependency
graph of some production X- Y. For nonterminals X and Y, let pass (X, Y)=
{pass (t)l is a linear partial derivation tree from X to Y, and all productions occurring
in are passing}. It is left as an exercise to the reader to show that the sets pass (X, Y)
are computable (in a way similar to the i/s-graphs of a nonterminal). If g pass (X, Y)
and (b,j) {(c, 0)lc IN-ATT Y)}U {(c, -1)[c SYN-ATT (X)}, then there is a unique
(a, i) {(c, 0)]c SYN-ATT (Y)} U {(c,-1)lc IN-ATT (X)} such that there is an edge
from (a, i) to (b,j) in g. We will denote this (a, i) by g((b,j)). See the symbolic picture
in Fig. 2.

IN SYN

IN SYN

FIG. 2. Dependencies between attributes in a passing graph.

We now construct G’ from G by removing from the complete derivation trees of
G the linear partial subtrees that contain passing productions only. The construction
is similar to that of the removal of monadic productions (Xo- X1) from a CFG. G’
has the same output alphabet E and has CFG (N, T’, P’, Z) with T’ T U PASS, where
PASS t_l {pass (X, Y)IX, Y N}. Let Po be the set of all productions in P that are
not passing linear. P’ consists of all productions of P0, and all productions X gfl,
where Y/3 is in P0 and g pass (X, Y). Each nonterminal has the same attributes
as in G. For p Po, the semantic rules of p are the same as in G. For a production
p’ X g/3 obtained from p Y/3 and g pass (X, Y), the set RULES (p’) is construc-

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 83

ted from RULES (p) in the following steps (during these steps symbols (a,-1),
a ATT (X), occur in the semantic rules; at the end these are replaced by (a, 0)).

(a) Remove from RULES (p) the semantic rules defining the attributes (s, 0) with
s SYN-ATT (Y).

(b) To the resulting set add all semantic rules (s, -1) := g((s, -l)), s
SYN-ATT (X).

(c) In the resulting set, repeat each of the following steps (i) and (ii) until they
cannot be repeated any more.

(i) In every semantic rule in the set, replace every occurrence of (i, 0), i
IN-ATT (r), by g((i, 0)).

(ii) In every semantic rule in the set, replace every occurrence of (s, 0), s
SYN-ATT (Y), by the right-hand side of the rule defining (s, 0) in (the original)
RULES (p).

(d) Replace every occurrence of (a, -1), a ATT (X), by (a, 0).
This ends the construction of RULES (p’). Note again that step (c) halts because

G is noncircular. Note that the dependency graph ofp’ is obtained by "pasting together"
g and the dependency graph of p.

As in the proof of (3) it can be argued that G and G’ are output-equivalent, and
that G’ is still A-free and reduced. Also, if p and p’ are as above, then p’ is passing
iff p is passing. This shows that G’ has no passing linear and no passing final
productions.

This concludes the proof of (4) and thus the proof of Lemma 4.1. 13

5. Main theorem. We have now shown the main result of this paper.
THEOREM 5.1. OUT (SAG)_ LOG (CF).
Proof. Immediate from Corollary 3.3 and Lemma 4.1.
Note that the inclusion is effective (because all constructions in this paper are

effective).
In Fig. 3 we display an inclusion diagram of some of the discussed classes of

languages together with some of their subclasses (cf. 1.6 and Theorem 2.2).

PTIME DSPACE (log n)

LOG (CF)

OUT(SAG) NSPACE (log n)

IO yDT (REC) OUT (lin SAG)

EDTOL

FIG. 3. Inclusion diagram of language classes.

84 JOOST ENGELFRIET

IO is the class of inside,out macro languages [19]; IO OUT (SAG) was shown
in [10], see also [13]. The inclusion of IO in LOG (CF) was shown in [2], and the
idea of the present paper came from combining these two results, yDT (REC) is the
class of deterministic topdown tree transformation languages (see [32]), i.e., the class
of yields of output languages of deterministic top-down tree transducers (with a
recognizable tree language as input language). It equals the class of ranges of general-
ized syntax-directed translation schemes (GSDTS, 1]). For the inclusion ofyDT (REC)
in OUT (SAG), see [20], [8], [13]; in fact yDT (REC) is the class of output languages
of SAG which have synthesized attributes only. EDTOL, one ofthe classes of languages
generated by L systems [34], is equal to the class yDT (REC), where the input trees
are all monadic [16]; hence EDTOL is the class of output languages of IinSAG which
have synthesized attributes only. For the fact that EDTOL IO, see [9]. The inclusion
of EDTOL in NSPACE (log n) was shown in [25] (see also [38], [21]) and the proof
of IO___ LOG (CF) in [2] was partly based on the proof in [25]. The idea of Theorem
2.2 came from reading [25]. Actually, our notion of assignment is an immediate
generalization of the one used there.

The fact that yDT (REC) is in PTIME and in DSPACE (log2 n) did not seem to
be known in the literature. For the corresponding class yT (REC) of nondeterministic
topdown tree transformation languages, it is shown in [33] that yT (REC)___ NPTIME
and in [4] that yT (REC) DSPACE (n). We note that yDT (REC) contains yB (REC),
the class of nondeterministic bottom-up tree transformation languages [11]; hence
these are also in LOG (CF) (to determine the complexity of the languages in yB (REC)
was put as a question in [33]). Also, yDT (REC) contains the closure of the context-free
languages under homomorphic replications [16], shown to be included in LOG (CF)
in [37]. Finally, we note that yDT (REC) contains the images of the context-free
languages under 2-way deterministic gsm-mappings [16].

The diagram of Fig. 3 could have been extended with yDT (lOT), the images of
the IO context-free tree languages under deterministic top-down tree-to-string transduc-
tions; IO and yDT (REC) are both included in yDT (lOT), and yDT (lOT) is included
in OUT (SAG); in fact, yDT (lOT) is equal to the class of output languages of L-SAG,
i.e., SAG whose attributes can be evaluated in one pass from left to right, see [13].

In this paper we do not wish to prove the correctness of the diagram below
OUT (SAG), i.e., to establish proper inclusions and incomparabilities. We just observe
that EDTOL OUT (linSAG); in fact, the language generated by the example IinSAG
in 1.5 is not in EDTOL and not even in yDT (REC), see [12]. We finally note that
it is very probable that it can be shown that CF is not included in OUT (linSAG),
along the lines of the proof in [16] of the fact that CF is not included in EDTOL.

6. Conclusion. The Main Theorem shows that there is a close relationship between
string-valued attribute grammars and alternating multihead finite automata, or,
equivalently, multihead pushdown automata. Actually, by adding semantic constraints
to SAG, it is possible to define a class of attribute grammars so that the corresponding
class of output languages equals AMFA (=PTIME). It is to be expected that more
relationships can be established between various types of attribute grammars and
alternating automata, or automata with some type of pushdown storage such as, e.g.,
the auxiliary pushdown automata [7]. Note that in [24] DSPACE (n) auxiliary push-
down automata are used to determine the complexity of the circularity problem for
AG; see also [15], [23] for the use of ASPACE (n) Turing machines for the same
purpose. These automata may also be useful to study the complexity of the general
membership problem for SAG.

LANGUAGES GENERATED BY ATTRIBUTE GRAMMARS 85

Acknowledgments. I thank Peter Asveld and Gilberto Fil for many valuable
comments.

REFERENCES

1] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation, and Compiling, two volumes,
Prentice-Hall, Englewood Cliffs, NJ, 1972.

[2] P. R. J. ASVELD, Time and space complexity of inside-out macro languages, Internat. J. Comput. Math.,
10 ,1981), pp. 3-14.

[4] B. S. BAKER, Generalized syntax directed translation, tree transducers, and linear space, this Journal, 7
(1978), pp. 376-391.

[5] A. K. CHANDRA, D. C. KOZEN AND L. J. STOCKMEYER, Alternation, J. Assoc. Comput. Mach., 28
(1981), pp. 114-133.

[7] S. A. COOK, Characterizations of pushdown machines in terms of time-bounded computers, J. Assoc.
Comput. Mach., 18 (1971), pp. 4-18.

[8] B. COURCELLE AND P. FRANCHI-ZANNETI’ACCI, Attribute grammars and recursive program schemes,
Theoret. Comput. Sci., 17 (1982), pp. 163-191 and pp. 235-257.

[9] P. J. DOWNEY, Formal languages and recursion schemes, Ph.D. Thesis TR 16-74, Harvard Univ.,
Cambridge, MA, 1974.

[10] J. DUSKE, R. PARCHMANN, M. SEDELLO AND J. SPECHT, IO-macrolanguages and attributed transla-
tions, Inform. and Control, 35 (1977), pp. 87-105.

[11] J. ENGELFRIET, Bottom-up and top-down tree transformationsma comparison, Math. Syst. Theory, 9
(1975), pp. 198-231.

[12] ., Three hierarchies of transducers, Math. Syst. Theory, 15 (1982), pp. 95-125.
[13] J. ENGELFRIET AND G. FILI, The formal power of one-visit attribute grammars, Acta Informatica, 16

(1981), pp. 275-302.
[15] Passes and paths of attribute grammars, Inform. and Control, 49 (1981), pp. 125-169.
16] J. ENGELFRIET, G. ROZENBERG AND G. SLUTZKI, Tree transducers, L systems, and two-way machines,

J. Comput. System Sci., 20 (1980), pp. 150-202.
[17] W. J. ERNL On the time and tape complexity ofhyper (1)mAFL’s, Proc. 4th ICALP at Turku, Lecture

Notes in Computer Science 52, Springer-Verlag, Berlin, 1977, pp. 230-243.
[18] G. FIL, Interpretation and reduction of attribute grammars, Acta Informatica, 19 (1983), pp. 115-150.
19] M. J. FISCHER, Grammars with macro-like productions, Ph.D. Thesis, Harvard Univ., Cambridge, MA,

1968.
[20] Z. Ff3L6P, On attributed tree transducers, Acta Cybernetica, 5 (1981), pp. 261-279.
[21] T. HARJU, A polynomial recognition algorithm for the EDTOL languages, ElK, 13 (1977), pp. 169-177.
[22] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,

Addison-Wesley, Reading, MA, 1979.
[23 M. JAZAYERI, A simple construction for showing the intrinsically exponential complexity of the circularity

problem for attribute grammars, J. Assoc. Comput. Mach., 28 (1981), pp. 715-720.
[24] M. JAZAYERI, W. F. OGDEN AND W. C. ROUNDS, The intrinsically exponential complexity of the

circularity problem for attribute grammars, Comm. ACM, 18 (1975), pp. 697-706.
[25] N. D. JONES AND S. SKYUM, Recognition ofdeterministic ETOL languages in logarithmic space, Inform.

and Control, 35 (1977), pp. 177-181.
[26] D. E. KNUTH, Semantics of Context-free languages, Math. Syst. Theory, 2 (1968), pp. 127-145;

Correction, Math. Syst. Theory, 5 (1971), 95-96.
[27] ., The Art of Computer Programming; Volume 1: Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1979.
[28] C. H. A. KOSTER, Affix grammars, in: Algol 68 Implementation, J. E. Peck, ed., North-Holland,

Amsterdam, 1971, pp. 95-109.
[29] R. E. LADNER, R. J. LIPTON AND L. J. STOCKMEYER, Alternating pushdown and stack automata, this

Journal, 13 (1984), pp. 135-155.
[30] P. M. LEWIS, R. E. STEARNS AND J. HARTMANIS, Memory bounds for the recognition of context-free

and context-sensitive languages, Proc. 6th Annual IEEE Symposium on Switching Circuit Theory
and Logical Design, 1965, pp. 191-212.

[31 O. LEHRMANN MADSEN, On defining semantics by means ofextended attribute grammars, in Semantics-
Directed Compiler Generation, N. D. Jones, ed., Lecture Notes in Computer Science 94, Springer-
Verlag, Berlin, 1980, pp. 259-299.

[32] W. C. ROUNDS, Mappings and grammars on trees, Math. Syst. Theory, 4 (1970), pp. 257-287.

86 JOOST ENGELFRIET

[33] W. C. ROUNDS, Complexity of recognition in intermediate-level languages, Proc. 14th Ann. IEEE
Symposium on Switching and Automata Theory, 1973, pp. 145-158.

[34] G. ROZENEIG AND A. SALOMAA, The Mathematical Theory of L Systems, Academic Press, New
York, 1980.

[35] W. L. Ruzzo, Tree-size ounded alternation, J. Comput. System Sci., 21 (1980), pp. 218-235.
[36] I. H. SUDBOROUGH, On the tape complexity of deterministic context-free languages, J. Assoc. Comput.

Mach., 25 (1978), pp. 405-414.
[37], The complexity ofthe membership problemfor some extensions ofcontext-free languages, Internat.

J. Comput. Math., 6 (1977), pp. 191-215.
[38], The time and tape complexity of developmental languages, Proc. 4th ICALP at Turku, Lecture

Notes in Computer Science 52, Springer-Verlag, Berlin, 1977, pp. 509-523.
[39] D. A. WAX’r, The parsing problem for affix grammars, Acta Informatica, 8 (1977), pp. 1-20.

SIAM J. COMPUT.
Voi. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
O06

UPPER AND LOWER TIME BOUNDS FOR PARALLEL RANDOM ACCESS
MACHINES WITHOUT SIMULTANEOUS WRITES*

STEPHEN COOKer, CYNTHIA DWORK:I: AND RODIGER REISCHUK

Abstract. One of the frequently used models for a synchronous parallel computer is that of a parallel
random access machine, where each processor can read from and write into a common random access
memory. Different processors may read the same memory location at the same time, but simultaneous writing
is disallowed. We show that even if we allow nonuniform algorithms, an arbitrary number of processors,
and arbitrary instruction sets, f(log n) is a lower bound on the time required to compute various simple
functions, including sorting n keys and finding the logical "or" of n bits. We also prove a surprising time
upper bound 0f.72 log2 n steps for these functions, which beats the obvious algorithms requiring log2 n steps.

If simultaneous writes are allowed, there are simple algorithms to compute these functions in a constant
number of steps.

Key words, parallel computation, parallel random access machines, time lower bounds, sorting

1. Introduction. In this paper we are concerned with the time required to perform
sorting and other simple tasks on a synchronous parallel random access shared-memory
computer. Various models for such computers have been proposed, distinguished
mainly by whether a shared-memory cell can be read and/or written into by more than
one processor at once. Following the terminology of Borodin and Hopcroft [BH], we
shall mainly be concerned here with the PRAM [FW], which allows simultaneous
reads but disallows simultaneous writes, and the WRAM, which allows both simul-
taneous reads and simultaneous writes, but in the latter case all processors must write
the same thing [SV].

It is easy to see that the task of sorting n keys drawn from an arbitrary totally
ordered list can be performed by a WRAM with an exponential number of processors
in constant time (see Theorem 2 below). However, for a PRAM the best known time
is O(log n) (see [BH] and Theorem 3 below).

The main result of this paper (Theorem 7) is that for PRAM’s, log n is a lower
time bound not only for sorting, but for such simple problems as computing the logical
"or" of n bits. The lower bound applies even for nonuniform algorithms with an
arbitrary number of processors, where each processor may execute arbitrary instruc-
tions. The only conditions on the parallel machine are that in one step each processor
can read at most one memory cell and write into at most one memory cell (and of
course no two processors can write into the same cell at once). Notice that this implies
that even algorithms like bucket sort cannot be faster, except for some trivial cases;
for example, if all keys are different and known beforehand.

It is interesting to note that the lower bound does not apply to the task of merging
two ordered lists of size n. In fact, in [BH] it is shown that merging can be done in
O(log log n) steps by a PRAM with n processors, and this is also a lower bound even
for WRAM’s, provided only n processors are allowed.

* Received by the editors December 21, 1983, and in final form September 18, 1984.

" Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4. This
author’s research was supported by the Killam Foundation of Canada.

$ Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02138. This author’s research was supported by the National Science Foundation under grant 81-01220 and
the Office of Naval Research under grant ONR-N000 14-76-C-0018.

Fakult/it fiJr Mathematik, Universit/it Bielefeld, Bielefeld, West Germany. This author’s research was
conducted during visits to the IBM Research Laboratory, San Jose and Universit/it des Saarlandes, Saar-
briicken.

87

88 STEPHEN COOK, CYNTHIA DWORK AND RCIDIGER REISCHUK

In 2 we describe our version of PRAM. In 3 five simple problems, including
sorting and logical "or", are defined. We show that all five require essentially the same
time on a PRAM, and all can be solved in constant time on a WRAM. In 4 a surprising
algorithm is presented for computing the logical "or" of n bits (and hence solving the
five problems of 3) by a PRAM in only about .72 log2 n steps. The algorithm beats
the obvious method requiring log2 n steps by exploiting the fact that a processor can
transmit information by not writing into a cell. In 5 a lower bound of about .442 log2 n
steps is proved (Theorem 7) for any PRAM which computes the logical "or". The
proof is somewhat subtle because of the possibility just mentioned of transmitting
information by not writing. To clarify the situation, a stronger lower bound of log2 n
steps is proved by a simpler argument in Theorem 4 when this possibility is disallowed.
In Theorem 5 a lower bound of about .72 log2 n steps is proved under the assumption
that at most one fixed processor can write into a given cell at a given time step,
regardless of the input. This result shows that the algorithm in Theorem 3 is exactly
optimal for such restricted machines. Theorem 6 helps explain why the proof of
Theorem 7 needs to be so complicated, and Theorem 8 shows that the upper bound
of Theorem 3 can be beaten in case the function computed differs from the logical
"or" on a small fraction of inputs.

The results in 3 first appeared in [R], and the upper bound in Theorem 3 and
versions of the lower bound in Theorem 7 were first proved in [CD] and in JR]
independently.

2. The nonuniform PRAM model. The parallel machines which mainly concern
us here are generalizations of the PRAM’s of Fortune and Wyllie [FW]. For our
purposes, a PRAM consists of a collection {P(1), P(2),...} of processors, a collection
{M(1), M(2),...} of common memory cells, and an execution time T. At each step,
each processor can read from one memory cell, do some computing, and write into
one memory cell. Any number of processors can read a given memory cell at once,
but we allow at most one processor to write into a given memory cell in one step. In
order for the PRAM to compute a function f with n input variables (X, , X,) and
rn output variables Y, , Y,,) the input values (X1, , X,) are stored initially in
cells M(1),..., M(n), with all cells M(i) containing 0 for i> n. After T steps, cells
M(1),. , M(rn) should contain the m components off (X1,. ", X,).

No restrictions are placed on the kind of computing done by each processor in
one step, except it must be deterministic (see 5 for a more formal definition). We
even allow the number of processors and memory cells to be infinite, although the
proof of Theorem 7 places a finite bound (exponential in T) on the number which
can actually affect a computation. Also, our PRAMS are nonuniform in the sense that
we allow a different PRAM for each value of n, the number of input variables, and
the processors for a given value of n may have different programs. Thus our PRAMs
are really extreme generalizations ofthose in [FW]. This makes the lower bound proved
in 5 more potent. In fact, the lower bound depends on the limited rate at which
processors can exchange information, and not on any limitations of the processors
themselves.

3. Reductions and upper bounds for WRAMs. Let us consider the following
problems:

PI: Sort n keys X,..., X, drawn from an arbitrary total ordered set.
P2: Sort n numbers X,..., X,, each either 0 or 1.
P3: Compute the sum of n numbers X,. ., X,, each either 0 or 1.

TIME BOUNDS FOR RANDOM ACCESS MACHINES 89

P4: Compute the logical "or" of n bits X1,"" ", X,.
PS: Let W-Wl’’’w, be a binary string of length n. Compute the function

id W; ... , .): {0, 1}" {0, 1} which is defined by: id W; X1," , X,) 1 iff for all

iwi--Xi.

DEFINITION. Let TIME (P/, n) be the minimum T for which some PRAM solves
problem Pi on n inputs in time T (i-1,..., 5).

THEOREM 1. TIME (Pi, n) =TIME (Pj, n)+ O(1) for 1 _<- i,j<-5. More precisely,
1. TIME (P1, n)<_-TIME (P3, n)+3.
2. TIME (P3, n)_-<TIME (PS, n)+ 2.
3. TIME (P5, n)_-<TIME (P4, n)+2.
4. TIME (P4, n)_-<TIME (P2, n).
5. TIME (P2, n)_-<TIME (P1, n).
Proof. To prove the first inequality we must reduce sorting arbitrary keys to

addition of n bits. In the first two steps each pair of keys Xi, X (1 _-< i, j _-< n) is compared
by one processor which writes 1 in cell M (Hi /j) itt xi > xj or x xj and _->j; otherwise
0 is written. Now for each i, the bits in locations ni + 1,. , ni + n are taken as inputs
for a PRAM which computes their sum S. In the final step, the original input X is
written into location M(S).

To prove the second inequality, we must reduce addition to the id(W; .,... ,.)
function. For each of the 2" possible values of W- Wl w, take a PRAM to compute
id(W; XI,..., X,) (after first copying over the inputs X1,"" ", X, in one step). In
the final step, the unique PRAM which has found id(W; X1,’", X,) to be 1 writes

wl +. + w, into cell M(1).
To prove the third inequality, for each such that wi- 1 complement X in one

step, compute P4 of the result, and complement the output.
To prove the fourth inequality note that the logical "or" of X1,"" ", X, is 1 itt

the largest of X1,’’ ", X, is 1.
The last inequality is obvious.
Now suppose a WRAM is the same as a PRAM, except write conflicts are possible

provided the same symbol is written. Let WTIME (P/, n) be defined analogously to
TIME (Pi, n). Then clearly all the inequalities of Theorem 1 hold when TIME is
replaced by WTIME. Furthermore, there are easy algorithms which show P4 can be
solved in one step and P5 can be solved in two steps on a WRAM. Since the first and
second inequalities of Theorem 1 can be improved for our specific algorithms, we have
the following.

THEOREM 2.
1. WTIME (P4, n)= 1 and n processors suffice.
2. WTIME (PS, n)-<_2 and n processors suffice.
3. WTIME (P3, n)_-<3 and n2" processors suffice.
4. WTIME (P1, n)-<_4 and n22" processors suffice.

4. An upper bound for PRAMs. There is a straightforward algorithm for a PRAM
to compute the logical "or" of n bits in [log2 n + 1 steps. At first glance it may appear
that this is close to an obvious lower bound, since at each step apparently each
processor, and therefore each memory cell, can at most double the number of input
bits it "knows about". This argument is false, however, because a processor can
communicate information to a memory cell by not writing into it. This fact is exploited
in the proof of Theorem 3 below to beat the [log2 n + 1 algorithm. It is this fact also
which makes a lower bound even of [l(log n) far from obvious, and causes most of
the complication in the proof of Theorem 7 in the next section.

90 STEPHEN COOK, CYNTHIA DWORK AND RDIGER REISCHUK

Let the Fibonacci numbers be defined recursively by Fo 0, F 1, and Fm+2
Fm/ +Fm for m >= 0. Then

THEOREM 3. A PRAM can compute the logical "or" ofF2r+ input bits in T steps
using F2r+ processors and memo cells, with no read (or write) conflicts. us any of
the functions P1 to P5 can be computed by a PM on n arguments in at most
log2.68n + O(1) steps.

The last sentence follows from the first using Theorem 1 and the fact that
F2r =0((2.618)). To describe the PM claimed in the first sentence, let T 1 be
arbitrary and choose n F2+. Recall that initially the input bits X1,’", X, are
stored in cells M(1),. , M(n), respectively. Each processor P(i) has local variables

(Boolean) and (integer) which are initially 0. At step t, 0, 1, , T- 1 processor
P(i), i= 1,..., n, executes the instructions

if + F2t n then or M(+ F2t)];
if (i> F2t+ and = 1) then M(i-Ft+I) 1;
tt+l;

Note that at each step each processor reads at most one cell M(j), 1 j n, and
then writes into at most one cell M(k), 1k n. Fuaher the read cells are distinct
for distinct processors, and similarly for the write cells.
e time saving over the obvious algorithm comes from avoiding reading M(i-

We will prove by induction on t, that for 0 T, before step

(.) = X, v X,., v v x,+,_,
and 1 n Fr+.

(**) M(i) X v Xi+ v... v X+z,,+_
To make sense of these equations, we interpret 0 for j > n.

For =0, (.) reduces to =0 (since the empty disjunct is 0) which is true initially
by assumption. Similarly (**) reduces to M(i)= X, which is also true initially.

For the induction step, let Y[and M’(i) be the contents of and M(i),
respectively, before execution of step t. Let X(i, l) stand for X v X+ v...v X+_.
Then the induction hypothesis states that Y[= X(i, F,) and Mr(i)= X(i, Fz,+). The
first statement of step gives (interpreting Mr(j) as 0 for j > n)

MYv (i+F:,)

X(i, ,) v X(i+ F,, F:,+)

X(i, ,+ F,,+,)

X(i, F,,+).
The second statement of step gives (interpreting +. as 0 for j> n)

vt+lM’+(i)=M’(i) v

x(i, F,,+,) v X(i + F:,+,,

X(i F2t+, - F2,+2

X(i, F,/,)/,).

TIME BOUNDS FOR RANDOM ACCESS MACHINES 91

This completes the proof of formulas (.) and (**). In particular, M(1) X1 v. v

XF2/, before step T (that is, after T steps, if we start counting from 1 instead of 0). [

Note that if Y 0, the second statement of the program communicates this fact
to cell M(i-F2t+l) by not writing into it.

5. Lower bounds for PRAMs. In this section we prove that a PRAM requires
lI(log n) steps to compute the logical "or" of n bits. The lower bound applies to each
of the problems P1 to P5 defined in 3, and holds independent of the numbers of
processors and cells available. Because the proof is slippery, we first provide the
following careful definition of PRAM.

DEFINITION. A PRAM consists of a set II {P(1), P(2), } of processors, a set
F {M(1), M(2), } of cells, an alphabet 51, a number n of inputs, and an execution
time T. Each processor P(i) consists of a state set Qi (any of the sets H, F, 51, Qi may
be infinite), and functions p: Q--> N+, z: Q--> N, tri: Q--> 51, and : Qi 51 - Q. Here
for q Q, pi(q) is the index of the next cell to be read, ri(q) is the index of the next
cell written into (r(q)-0 indicates no cell is written into), try(q) is the symbol written,
and is the state transition function.

At each time t- 0, 1,. ., T each processor P(i) is in a state q Qi and each cell
M(i) contains a symbol s E. At time -0, cells M(1),..., M(n) contain the inputs

oo X, i-1 n, and s=bo for i>n, where bo is someX1,’",Xn. That is, s-
distinguished (blank) member of 5;. All processors are initially in the distinguished
state qo, i.e. qO qo for all i. In general,

q+’= ,(ql, sj) where j=

and

t+l [)(qj+’) if "t’j(qj+l)-- i,
si s if 5()eifrall

t+lIt is a condition of correctness of the PRAM that for 0, 1,. , T- 1, "(qj and
rk(q:+l) are either both zero or distinct for all j k. The value f(X1,’", Xn) of the
function f computed by the PRAM is the contents s of cell M(1) at time T.

Notation. For a binary string I X1X2"’" Xn of length n we denote by I(i)
(1 =<i -< n) that string which differs from I exactly at position i. If f: (0, 1} (0, 1},
then I is a critical input for f iit f(I) #f(I(i)) for 1, 2,. , n.

For example (0, 0,. , 0) is a critical input for P4 (logical "or"), and in fact each
of the functions P1,. , P5 has a critical input when restricted to (0, 1 } with the ouput
suitably reinterpreted in (0, 1}. Therefore the lower bounds given in Theorems 4, 5,
and 7 below apply to the functions P1,. ., P5.

Before proving the lower bound for general PRAMs let us prove a stronger and
more intuitive lower bound for a restricted class of PRAMs. We will call a PRAM
oblivious itt the cell written into by each processor (and whether or not it is written
into) is independent of the input, but depends only on and the processor number.
In the above formal definition, this amounts to saying that for each j, the value

_t+ldepends only on t, and not otherwise on q as the inputs X1,’" ", X vary.
THEOREM 4. If tl >=2 andf: {0, 1} ->{0, 1} has a critical input, then every oblivious

PRAM which computes f requires at least 1 + log n steps.
The proof is relatively straightforward, but we shall define the relevant concepts

with some care, since they will be used again in the subtler proof of Theorem 7.
DEFINITION. An input index affects a processor P (respectively, a cell M) at

time with I if[the state of P (respectively, the contents of M) at time with input

92 STEPHEN COOK, CYNTHIA DWORK AND RDIGER REISCHUK

configuration I differs from the state of P (respectively, the contents of M) at with
input configuration I(i).

Let K(P, t, I) (respectively, L(M, t, I)) be the set of input indices which affect
processor P (respectively cell M) at with I. Let Kt and Lt satisfy the recurrence
equations:

(1) Ko=0,
(2) Lo 1,
(3) Kt+ Kt + Lt,
(4) Lt+l Kt+l.

LEMMA 1. [K(P, t,I)l<=Kt and IL(M, t,I)l<-Ltfor all P, M, and L
The proof of the lemma is by induction on t. When 0, K (P, t, I) is empty and

L(M(i), t, I)= {i}. In general, if processor P reads cell M at time t+ 1 with input/,
then K(P, t+ 1, I)_ (L(M, t, I)U(P, t, I)), so equation (3) is appropriate.

The only subtle point concerns equation (4). We distinguish two cases" either
some processor P writes into cell M at time t+ 1 or no processor writes. Since the
PRAM is oblivious, the determination of P and the determination of which case holds
depends only on M and and not on L In the first case, we have L(M, t+ 1, I)
K(P, t+l,I), and in the second case we have L(M, + I, I) L(M, t,I). Thus
IL(M, t+ 1, I)1-<_ Lt+l by (4) and the induction hypothesis. I-]

To prove Theorem 4 from the lemma, note that the solution to the recurrence
equations is Kt Lt 2t-, for > 1. If I is the critical input, then at the final step T
every one of the n input indices must affect the output cell M(1), so [L(M(1), T, I)1- n.
Hence by the lemma, n <- 2

Of course Theorem 4 is false when the PRAM is not required to be oblivious, as
the upper bound in Theorem 3 demonstrates. In particular, to compute the logical
"or" of 2 bits (n 2), the PRAM in Theorem 3 requires only 1 step, whereas according
to Theorem 4, an oblivious PRAM requires at least 2 steps. In fact, the nonoblivious
PRAM reads cell M(2) during its first step, and manages to store M(1)v M(2) in
M(1) by using its option of not writing if M(2)= 0.

The algorithm in Theorem 3 is particularly simple because for each time and
each cell M(i), there is at most one processor P(j) which can write into M(i) at no
matter what the input (although whether or not P(j) writes may depend on the input).
Let us call a PRAM semi-oblivious if it satisfies this restriction. It turns out that for
semi-oblivious machines the upper bound in Theorem 3 is optimal.

Recall that Fm is the mth Fibonacci number (defined before Theorem 3).
THEOREM 5. If f’{O, 1}"->{0, 1} has a critical input and n= F2T+I then every

semi-oblivious PRAM which computes f requires at least T steps, no matter how many
processors and memory cells it uses. Thus the time bound in Theorem 3 is exactly optimal
for semi-oblivious PRAMs.

Proof. Let K (P, t, I) and L(M, t, I) be as in the proof of Theorem 4. Let/, and
L, satisfy the recurrence equations:

(5) o=0,
(6) Lo 1,
(7)
(8) Lt+, Kt+l + t It + 2t.

LEMMA 2. IK(P, t,I)l<=I, and IL(M, t,I)l<-,for all P, M, t, and I.
The proof of Lemma 2 is the same as the proof of Lemma 1, except that there is

an extra complication in establishing the bound on IL(M, + 1, I) I. Again we distinguish
two cases" either some processor P writes into cell M at time + or no processor

TIME BOUNDS FOR RANDOM ACCESS MACHINES 93

writes. Since the PRAM is semi-oblivious, the determination of P depends only on M
and and not on I, but the determination of which case holds may depend upon I.
In the first case we have L(M, + 1, I)_ K(P, + 1, I). In the second case, we have
L(M, + 1, I)

_
(K (P, + 1, I) U L(M, t, I),,), since a change in one input bit could cause

P to write into M. Thus L(M, / 1, I) _-< Lt+l by (8) and the induction hypothesis.
To prove^Theorem 5 from^ Lemma 2, note that the solution to the recurrence

equations is Kt- F2 and L- FEt+. As before, if I is the critical input, then every
one of the n F2T+I input indices must affect the output cell M(1) at the final step u,
so IL(M(1), u, I)1 n. Therefore u >-- n, so FEu+l >-- FET+, so u >_-- T.

Note that the upper bound of F2 on IK(P, t, I)1 is exactly met in the algorithm
of Theorem 3.

The reader may have noticed that the argument I in K (P, t, I) and L(M, t, I) in
the above two theorems is not really necessary, since I can be assumed to be the
critical input throughout. This, means that even if the no-write-conflict rule is relaxed
to apply only for the critical input I and to the inputs I(i) which differ in only one
place from/, the lower bounds in Theorems 3 and 4 still apply. This relaxation cannot
be allowed for general (as opposed to oblivious and semi-oblivious) PRAMs however,
as the following result shows.

THEOREM 6. For all k, n >-1 there is a WRAM which computes the logical "or"
of n bits in 2k- 1 steps and which has no write conflicts for inputs with at most k l’s.

Proofi For each subset {i, , ik} of {1, 2," , n} with i < i2 <" < ik there is
a processor P(il,’’’, ik) which at the first k steps reads input cells M(il),’’’, M(ik)
and at step k writes 1 into M(1) if[M(il) M(ik)--1. At step k/ 1, for each
i1<i2<.. "<ik- there is a processor P(il,’", ik-) which has read input cells
M(i),..., M(ik-1) and which now reads M(1) and writes 1 in M(1) if[(M(1)=0
and M(il) M(ik_l) 1). Similarly, for steps k + 2, , 2k- 1 at step k / some
processor writes a 1 in M(1) if[no 1 has been written before and there are at least
(and therefore exactly) k-t l’s in the input. After 2k-1 steps the correct output
appears in M(1), and there have been no write conflicts if the input has at most k l’s.
Note that the bound in the theorem can be improved to k/ O(log k) by using the
technique of Theorem 3 in the first steps.

Theorem 6 shows that a lower bound proof of T steps for general PRAMs must
consider inputs I which differ from the critical input in at least 1/2T places. Hence in
the proof below the argument I for K (P, t, I) and L(M, t, I) is really necessary.

THEOREM 7. If f:{O, 1}n-{0, 1} has a critical input, then every PRAM which
computes f requires at least lOgb n steps, where b 1/2(5 + /21) 4.79 .

COROLLARY. Every PRAM which computes one ofthefunctions P1,..., P5 requires
at least 1Ogb n steps.

Proof of Theorem 7. Let K (P, t, I) and L(M, t, I) be as in the proof of Theorem
4, and let Kt and L satisfy the recurrence equations"

(9) Ko-O,
(10) Lo 1,
(11) Kt+ Kt + Lt,
(12) Lt+l 3Kt + 4Lt.

LEMMA 3. IK (P, t, I)1 <-_ K and IL(M, t, I)l <-- L, for all P, M, t, and I.
To prove Theorem 7 from Lemma 3, note that the solution to the recurrence

equations is

94 STEPHEN COOK, CYNTHIA DWORK AND RIDIGER REISCHUK

where b 1/2(5 +4i) and/7= 1/2(5- 4-). As before, if I is the critical input, then at the
final step T every one of the n input indices must affect the output cell M(1), so
IL(M(1), T, I)1 n. Hence by the lemma, n <=/7- <- b t, and the theorem follows.

Now we prove Lemma 3 for all P, M, and I by induction on t. The base case
0, and the part of the induction step showing IK (P, / 1, I)l--</+ are the same

as in the proofs of Lemmas 1 and 2. To get a bound on IL(M, / 1, I)1 we distinguish
two cases.

Case A. Some processor P writes into M with input I at time + 1. Then index
can only affect M at + 1 with I if affects P at + 1 with I. Hence]L(M, + 1, I)1 <_-

IK(P, t+ I, I)I<=Kt+= K,+ L, < L,+,.
Case B (the interesting case). No processor writes into M with input I at time + 1.
DEFINITION: Input index causes processor P to write into M at + 1 with I if[

P writes into M with I(i) at time + 1.
Thus index can only affect M at t+ 1 with I if affects M at with I or if

causes some P to write into M at + 1 with L Hence

(13) L(M, t+ 1, I) (L(M, t, I)(_J Y(M, t+ 1, I)),

where Y Y(M, + 1, I) is the set of indices which cause some P to write into M
at + 1 with I.

Our goal now is to obtain a bound on{Y[. Let Y={u,..., ur}, where r=
and suppose index ui causes processor Qi to write into M with I, for 1, 2,..., r.

LEMMA 4. For all pairs u, u Y with Q # Q, either u affects Q at + 1 with I(us)
or u affects Q at + 1 with I (ui).

The reason for Lemma 4 is simply that if neither condition holds, then with input
I(u)(u) both Q and Q will write into M at time + 1.

Now consider the bipartite graph G whose two node sets are {ul,’’ ", ur} and
{v,. ., v}, where the v’s are any r distinct new objects. Let us say that there is an
edge between u and v iff ui affects Q at + 1 with I(u). Let e be the number of
edges in G. Then the degree of node v. is at most IK(Q> t+ 1, I(ug))l<-_K,+. Hence

(14) e<=r,+.
Now let us obtain a lower bound on the number of pairs ui, u in Y with Q # Qg,

as in Lemma 4. There are r YI choices for ui, and given u there are at least r-
choices for us, since at most IK(Q, t+ 1, I)1-< Kt/ indices can cause Q to write into
M at + 1 with L Therefore by Lemma 4 we have

(15) 1/2r(r-g,+)<=e.

From (14) and (15) we obtain 1/2r(r-/(t+l) -< rt+l or r_-< 3/(t+l 3/t + 3, by (11).
Since r=IY(M t+ 1, I)1, we have by (13) and the induction hypothesis IL(M, t+
1, I)l <= 3/, +4/, =/,+1, as required.

There is a gap between the upper bound of 10g2.618 n steps in Theorem 3 and the
lower bound of 1og4.79 n steps in Theorem 7. According to Theorem 5, the only way
to improve the upper bound is by a PRAM for which two different processors write
into the same cell at the same step for different inputs. We do not know how to design
such a PRAM to improve the upper bound for the logical "or", but it can be improved
for a function which resembles the "or" and has a critical input.

THEOREM 8. Let n be a power of 3. Then there is a function f" {0, 1} --> {0, 1} with
a critical input which can be computed by a PRAM in 1 + log3 n steps with n processors.

Proofi The function f (computed by the program below) will be the logical "or"
of the inputs when at most two input bits are 1, so that (0, 0,. , 0) is a critical input.

TIME BOUNDS FOR RANDOM ACCESS MACHINES 95

In accordance with Theorem 6, at each step k> 1 there are up to three different
processors which may write into a given cell, depending on the input.

It will be convenient to number the processors and memory cells from 0 instead
of 1. Thus initially input bits X,. , X, are stored in cells M(0), , M(n- 1). After
1 / log3 n steps the output appears in M(0). Each processor P(i) has a local variable

Y initially 0, and M(i)-0 for i_-> n. For 0_-< i<n, each processor P(i) executes the
following steps"

Step 1 of processor P(i):
(a) if =- 0 mod 3 then Y - M(i)
(b) if i=- 1 mod3 then Y - M(i-1)
(c) if i=-2 mod3 and M(i-1)- 1 then M(i).-1.

Step k of processor P(i) for k > 1:
(a) if i=-O mod3k then Y[Y or M(i+3k---l)]

and M(i) - Y or M(i/3k-l--1)]
(b) if i=- 1 mod 3 k then Y-[Y or M(k/3k--2)]
(c) ifi=-3k- mod3k and Y= 1 andM(i/3k--l)-O then M(i--2*3k---l) 1
(d) if i-=3k-/l mod3kand Y-O andM(i/3k-l-1)-I

then M(i / 2"3 k-1 2) - 1
(e) if =- 2"3k- mod 3k and Y 0 and M(i 1) 1 then M(i / 3k- 1) - 1.

To show that there are no write conflicts, observe that for any k_>-1 and any
c- 0, 1,. , at step k processors with numbers between C’3 k and (c + 1)’3k- 1 access
only memory locations in that same range for reads and writes. In that range for k > 1
only location M(c*3k) in instruction a) and M((c+ 1)’3k--1) in instructions c), d)
and e) are possibly written into. To see that only one of the 3 processors addressed
in instructions c), d) and e) actually writes into cell M((c/ 1)’3k- 1), we check that
the "ands" of the second and third conditions of the if clauses in instruction c), d)
and e) are mutually exclusive. This is because for each value of c,

(1) M(i + 3k-l- 1) in c) and M(i-1) in e) are the same cell,
(2) the value of Y in c) and the value of Y in d) are the same, by the lemma

below, and
(3) the value of M(i+3k---l) in d) and the value of Y in e) are the same, by

the lemma below.
We now give a recursive definition of the functions computed in various cells and

variables Y. To this end, we shall use the notation x[i, l] to mean x[i],x[i+
1],. ., x[+ l- 1], and the notation x[-l, i] to mean x[+ 1], x[+ 2],. ., x[i].
For k_>- 1 let fk and gk be Boolean functions of 3k-1 and 2"3k- variables, respectively,
defined by

f(x) x, g(x[1], x[2])= x[1] or x[2],

fk(x[1, 3k-]) fk-l(x[1, 3k-2]) or gk-l(x[--2*3 k-E, 3k-]),

gk(x[1, 2"3k-])= z4 or ([z or Z2 or z3] and [1 or 2 or 3])

where i- not zi and
Zl=fk-’(X[1,3k-2]),

Z2 gk-l(x[--2*3k-2, 3k-l]),

Z3 fk-(x[3k- + 1, 3k-2]),

Z4= gk-l(x[--2*3k-2, 2"3k-]).

96 STEPHEN COOK, CYNTHIA DWORK AND R/IDIGER REISCHUK

TIME BOUNDS FOR RANDOM ACCESS MACHINES 97

For i>-0 and k>= 1 let m(i, k) be the value of cell M(i) and let y(i, k) be the
value of local variable Y after execution of step k.

LEMMA 5. 1) Fori=O mod3k y(i,k)=m(i,k)=y(i+l,k)=fk(M(i, 3k-1)).
2) For i= -1 mod 3 k m(i, k)= gk(M(--2*3 k-l, i)).
The proof is by induction on k. For k 1, the equations in 1) become y(i, 1)=

m(i, 1)=y(i+l, 1)=M(i), and the equation in 2) becomes rn(i, 1)=(M(i-1) or
M(i)). These are evident from the instructions for step 1.

For k > 1, the instructions a) and b) of step k update the values of Y and M(i)
appropriately for). To see that (2) holds, refer to Fig. 1, and note that if (c + 1)’3 k

1 and if we set zl --fk-l(M(c*3 k -F 3 k-l, 3k-2)), Z2"- gk-(M(--2*3k-2, C’3 k "+- 2"3k-)),
Z3 =fk-(M(c*3k + 2"3k-, 3k-2)), and z4 gk-(--2*3k-2, i) then

m(i, k)=z4 or (z and z2) or (zi and z3) or (z3 and z2).

The last expression is equivalent to the expression in the definition of gk. [3

From the lemma we see that fk/(X,’" ",X3k) is computed by processors
P(O),..., P(3k-l) in k+l steps. It is easy to check by induction on k from the
definitions of fk and gk that both functions behave like the logical "or", provided at
most two of their arguments are 1. Therefore (0,. ., 0) is a critical input for fk. [3

It is interesting to estimate the fraction of inputs for which fk and gk differ from
the logical "or". Let p(k) (respectively q(k)) denote the ratio between the number of
inputs on which fk (respectively gk) equal 0 and the total number of inputs. These
two functions have the following recurrence relations:

p(1) =0.5, q(1) =0.25,

p(k+ 1)=p(k)*q(k) and q(k+ 1)=p(k)2*q(k)2+q(k)*(1-p(k))2*(1-q(k)).

By simple arithmetic calculation we get

p(k + 2)/p(k + 1) q(k + 1) q(k)[p(k)2*q(k)+(1 p(k))2*(1 q(k))]

<-q(k).

This implies that q(k) is monotone decreasing, and for fixed lp(k) can be bounded
by O(q(l)’). Evaluating the recurrence relations for some values yields q(7)<=0.04.
Thus p(k) O(.04).

Acknowledgments. Les Valiant got the first two authors started out right on their
version of the lower bound proof, and Allan Borodin, John Gilbert, John Hopcroft,
and Les Valiant all provided helpful criticisms of early attempts at that proof.

[BH]

[CD]

[FW]

[R]

[sv]

REFERENCES

m. BORODIN AND J. E. HOPCROFT, Routing, merging, and sorting on parallel models ofcomputation,
extended abstract. Proc. 14th ACM STOC (May 1982), pp. 338-344, J. Comput. System Sci., to
appear.

S. A. COOK AND C. DWORK, Bounds on the time for parallel RAM’s to compute simple functions,
Proc. 14th ACM STOC (May 1982), pp. 231-233.

S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, Proc. 10th ACM STOC (May
1978), pp. 114-118.

R. REISCHUK, A lower time-boundfor parallel random access machines without simultaneous writes,
IBM Research Report ILl 3431 (March 1982).

Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging, and sorting in a parallel computation
model, J. Algorithms, 2 (1981), pp. 88-102.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

(C) 1986 Society for Industrial and Applied Mathematics
007

THE BOYER-MOORE-GALIL STRING SEARCHING
STRATEGIES REVISITED*

ALBERTO APOSTOLICO" AND RAFFAELE GIANCARLO:

Abstract. Based on the Boyer-Moore-Galil approach, a new algorithm is proposed which requires a
number of character comparisons bounded by 2n, regardless of the number of occurrences of the pattern
in the textstring. Preprocessing is only slightly more involved and still requires a time linear in the pattern
size.

Key words, string searching, pattern matching, shift functions, text editing, analysis of algorithms

1. Introduction. The string searching problem is to find all occurrences of a given
pattern y in a given text x, both y and x being strings over a finite alphabet.

Letting Ix n and [y[m, brute force procedures that involve O(nm) comparisons
in the worst case can be quickly developed. However, as the copious literature 1]-[8]
devoted to this subject over the past decade shows, the bound can be lowered to O(n),
provided some preprocessing of the pattern is allowed. As pointed out by Boyer and
Moore [2], the time spent in the preprocessing generally plays a secondary role in the
overall design perspective. However, it is fortunate that all preprocessing strategies set
up so far perform in time (R)(rn).

As is well known, one of the first string searching algorithms was proposed in [2].
Unlike the Knuth-Morris-Pratt algorithm [6], it compares y with x starting from the
right end of y. The performance of this algorithm is quite good on the average case,
where it performs in O(n/m). On the other hand, it displays a worst case running
time O(n2).

Improving over the Boyer-Moore (BM) algorithm, Knuth, Morris and Pratt [6]
also set up a modified version of it that performs at most 6n character comparisons,
if the pattern does not appear in the text. More recently, Guibas and Odlyzko [5]
narrowed that bound to 4n and conjectured it is 2n. Zvi Galil [3] presented a new
version of the modified BM algorithm and, by using the Guibas and Odlyzko result,
showed a 14n character comparison worst case running time for his algorithm. This
version is obtainable by the former one in a straightforward manner, even though it
is not straightforward to prove its correctness.

As pointed out in [6], the analysis of the BM procedure is not simple. This is due
to the fact that, when the BM algorithm shifts the pattern to the right, it does not
retain any information about characters already matched. Based on this observation,
Knuth, Morris and Pratt [6] suggested that the algorithm be made less oblivious by
arranging the various situations that could arise in the course of the pattern matching
process into a suitable table of "states". Problem is that the number of "states" in
such a generalization of the BM strategy can be quite large (the obvious upper bound
is 2’, but it is not known how tight a bound this is). Thus the work involved in

* Received by the editors February 21, 1983, and in revised form November 8, 1984. This work was
supported in part by the Italian Ministry of Education. Additional support was provided by the Italian
National Council for Research and by NATO under research grant no. 039.82. An extended abstract related
to this paper was presented at the 20th Annual Allerton Conference on Communication, Control, and
Computing, Monticello, Illinois, October 6-8, 1982.

" Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907.
t Dipartimento di Informatica ed Applicazioni, The University of Salerno, 184100 Salerno, Italy.

98

STRING SEARCHING STRATEGIES 99

preparing that table is prohibitive in practice. There is room to suspect that a good
portion ofthetables is not needed in general.Galil’s algorithm can be regarded in fact
as a nonoblivious version of the BM strategy which only exploits two "states".

We present here still another upgrade of the BM that keeps track of which
substrings of the pattern matched which substrings of the text during previous align-
ments, and exploits such recordings later in the matching process. If we allow for at
most one recording per shift, then the number of such states is obviously bounded by
n-m + 1. The resulting algorithm works in linear time and displays three interesting
features:

(1) It performs at most 2n-m + 1 character comparisons.
(2) The proof of linearity is very simple.
(3) dd heuristics (in the sense of [6]) can be used instead of dd’, not affecting

(1), (2).
The first feature conveys in our view the most interesting result of this paper"

indeed it is seen to follow from the even stronger finding that no character of the text
needs to be accessed more than twice. The inspection of text characters is the main
(and obviously unavoidable) means by which information is acquired during any
pattern matching process, so that the number of character comparisons performed is
customarily considered especially significant. We shall show, however, that even taking
into account the other comparisons (with the exception of those hidden in the control
structure) yields the palatable bound of In.

This paper is organized as follows. In 2 we review briefly the salient features of
the BM and some of its derivations. Section 3 is devoted to the exposition of our
method, under the assumption that the information conveyed by preprocessing is
already available. This latter problem is addressed in 4.

2. The Boyer-Moore approach to pattern matching. We will assume that the input
x (y) is stored into the array text [1: n] (pattern [1: m]).

The obvious way to locate all occurrences of y in x is by repeated aligning and
checking from left to right. One innovative feature of the BM strategy is in that, for
each alignment of the two strings, character comparisons are performed from right to
left, starting at the right end of the pattern. As is well known, this contributes a
significant speed-up in cases of mismatch (cfr. [6]), even though it leads to a quadratic
worst case behavior. A compact presentation of the BM algorithm is given in [3]. We
report it below for the convenience of the reader.

Procedure BM

do while j =< n
begin

end

* (j) points to the current character *
* of the pattern (text); s [character, i] is the auxiliary*
* ’shift’ function. *

do :-- rn to 0 by until pattern i] text [j m + i]
if i= 0 then begin output (match at j-m + 1)end

else j := j + s text [j rn + i], i]

Tables such as s are usually referred to as shift functions. In [3], [6] s is formally
defined as follows:

s [character, i] max {s.match [i], s.occ [character, i]}

100 ALBERTO APOSTOLICO AND RAFFAELE GIANCARLO

where"

s.match i] min { / -> and (t _-> or pattern t] pattern i])
and ((t>=k or pattern [k-t]=pattern [k]) for i<k<=m}

(this is called rid’ in [6])
and

s.occ [character, i]

min (m + / m or (0-< < m and pattern m t] character)}.

The s.match portion ensures that (1) when moved to the right the pattern will
match all previously matched characters, and (2) the character of the text that causes
the mismatch will be aligned with a different character of the pattern.

The s.occ heuristics causes text [j-m + i] (i.e. the mismatching character) to be
aligned with the closest matching character of the pattern.

The shift function s’, originally introduced in [2], neglects the (2) heuristics.
Instead of s.match [i], we have there (cfr. the dd function in [6])"

s’.match (i)

min {t/t 1 and (t>=k or pattern [k]=pattern [k- t]) for i<k<-m}

and, correspondingly:

s’[character, i] max {s’.match i], s.occ [character, i]).

Both s and s’ can be computed in O(m) steps. The reader is referred to [6], [7]
for the details of such constructions.

It is convenient to extend s (s’) to deal with the case i= 0, as follows"

s [character, 0] s’[character, 0]

min {t >_- 1 and pattern k] pattern k + t] for _-< k _-< m t}.

This helps to resume efficiently the pattern matching process following the detection
of an occurrence of the pattern.

One more improvement is derived from the observation that if the pattern is
periodic (i.e. y-’ukU ’, with k> and u’ a prefix of u), consecutive overlapping
occurrences can be detected at once. indeed, let u be the shortest string such that
y= uku and let k> 1. Also let denote the length of u and take /o m-t+ 1. By
combining the above observations, Z. Galil set up the following modified procedure
BM’ [3]"

Procedure BM’
j:= m; 1:=0;
do while j <- n

begin

end

do := m to by- 1 until pattern i] text j m + i]
if i= then

begin
output (match at j m + 1); := 1o; := 0

end
else := 0

j := j + s text [j- m + i], i]

STRING SEARCHING STRATEGIES 101

The BM’ takes linear time even in the worst case. For a periodic pattern in the
form uku ’, the shift, following a complete match must lead the prefix u(k-1)U of the
pattern to be aligned with the position of the text previously matched against the suffix
of the pattern of the same form. This corresponds to singling out and exploiting exactly
one of the many possible "states" described in [6] (all other configurations could be
thought of at this point as funneled into a single "superstate".

3. The algorithm. It is convenient to give first an informal outline of our approach.
To start with, consider the situation of Fig. 1, which depicts one possible "instantaneous
description" of the pattern matching process: the pattern has undergone, say, shifts,
and m- successful character matches have been performed.

According to BM (BM’), if text [j- rn + i] pattern [i] the pattern will undergo
one more shift as prescribed by the s function. Letting the value of s be s k, Fig. 2
displays the situation that would arise if k more successful matches are performed.
Plainly stated, BM (BM’) would keep trying to extend the matched region to the left.
In view of the matches achieved during the stage of Fig. 1 (dotted region in the text),
however, it is immediately seen that two possibilities are open at this point:

(A) The dotted portion of the pattern is also a suffix of the pattern. In principle,
this region could be skipped at once, resuming comparisons at the two characters
immediately preceding the dotted areas.

(B) The dotted portion of the pattern is not a suffix of the pattern, in which case
one more shift could be imposed right away.

m

j-m/i

FIG.

i-k m-k rn

j-m,i j+k

FIG. 2

Thus, if track is kept of past matched segments of the text, and if the structure
of the pattern is a priori known, then the characters falling within these segments need
not be reaccessed at subsequent stages. It should be pointed out that, unlike case (A)
above, the segments of the text to be skipped at some stage may be more than one, in
general. However, we show in this paper that the simple observation above does in
fact contribute a substantial saving on the number of character comparisons needed
in the process.

In order to proceed to a more formal description of our algorithm we need some
means to keep track of which segments of the text matched some suffix of the pattern.
In addition, we have to devise a tool--based on the structure of the pattern--that shall
enable us to exploit such recorded information in a fast way.

102 ALBERTO APOSTOLICO AND RAFFAELE GIANCARLO

To simplify our description at this stage, we will solve the first problem via the
auxiliary array skip [1: n] initialized to 0 and such that whenever in the course of the
matching it turns out that, say, text l-k + 1:/] pattern m- k+ l:m] then skip l]
is set to k. We will show later that a much more space efficient implementation of this
bookkeeping is possible, as the reader might already suspect.

The second problem calls for the introduction of the Boolean function
Q: {1,2,..., m} x{1,2,..., m} {true, false}, defined as follows:

true iff (k-<_i and pattern[i-k+1" i]pattern[m-k+l" m])
Q[i, k]= or (k> and pattern [1" i]pattern [m-i+ 1" m]),

Ifalse otherwise.

We defer to 4 the actual construction of Q.
The role of the above two implements is transparent. Indeed, assume that

skip[l]>O and Q[i, skip[/]] is false. Then either text l- skip l] + l l]
pattern skip [l] + 1: i] and > skip 1], or text + 1: 1] pattern 1 i] and <-

skip [/]. In the first case a text segment has been bumped into, which falls entirely
within the pattern and which is known to match the pattern in its current position.
Otherwise an occurrence of the entire pattern has been detected. We shall see that the
management of this latter case embodies the ideas in [3].

The listing of the procedure BM", which is given below, features the function s’
in place of s. This has to do with the computations of the shifts that have to follow
the detection of the condition: Q[i, skip [/]] =true. In this case it is known that an
already visited segment of the text does not match the substring w of the pattern
currently aligned with it, yet it is not known where exactly a character mismatch is
located. On the other hand, the function s (s’) takes characters and not substrings as
one of its arguments. We stipulate in this case to impose a shift based on the value
returned by s’ in correspondence, with the rightmost characterof the string w. Notice
that this extension of the function s’ cannot result in a longer shift, compared to that
based on the character that actually causes mismatch. We leave it as an exercise for
the reader to show that, in unorthodox circumstances such as above, s could not
consistently handle the shift. Although one could envision to use both tables, we elect
here to give up the more informative shift function s (dd’ in [6]), in favor of the
conceptually simpler version s’ (dd in [6]). Fortunately, this has no influence on the
upper bound on the number of character comparisons, for our strategy. The construct
andif in the listing of BM" is assumed not to check the second condition if the first is
false.

Procedure BM"

do while j n
begin

end

do i:= m to 0 by -max (1, skip [j- m+ i])
until Q[i, skip [j- m + i]] or ((skip [j- m + i] =0) andif (pattern [i]

text [j- m + i]))
if _-< 0 then begin output (match at j- m / 1); := 0 end
skip [j] := m i; j :=j + s’[text [j m + i], i]

As mentioned, the BM" turns out to embody the ideas in [3]. In fact it behaves like
BM’, soon after detecting an occurrence of a periodic pattern of the form uku’ (k > 1).

STRING SEARCHING STRATEGIES 103

In this case skip [j] is set to m, resulting in a shift of length t= lul. Since Q[m t, m]
is false, BM" will detect a new occurrence of the pattern after only more successful
matches.

THEOREM 1. BM" detects all occurrences ofpattern [1: m] in text 1, n] by perform-
ing at most 2n-m + 1 character comparisons.

Proof. The preceding discussion and the listing of BM" establish that all the
occurrences of the pattern in the text are indeed detected. The construct andif does
not check the second condition if the first is false. Each comparison between a character
of the text and a character of the pattern may result in either a match or a mismatch.
If they match, then the text character will be skipped later, whence each text character
can be involved in a matching comparison at most once. It is easily seen that the
overall number of mismatching comparisons cannot exceed n-m + 1. Indeed, each
time a mismatch is detected this causes a shift to be performed, and there are at most
n-m + 1 shifts. Thus the number of character comparisons performed by BM" is at
most 2n- m+ 1.

Theorem 1 conveys the main result of this paper. Such gain in efficiency in terms
of character comparisons is largely traded in exchange for a somewhat more compli-
cated preprocessing. The reader might also suspect that the savings on character
comparisons boosts the number of the other comparisons, some of which could be
taken as surrogates for the former ones. Thus, it is of interest to account for the
comparisons needed to check skip and Q. The condition skip [j- m + i] 0 is obviously
detected in one comparison. We will show later than it takes two comparisons to check
that Q[i, skip [j m + i]] is true. Both conditions are tested exactly each time a character
comparison is performed, plus each time skip [j-m + i] > 0. Since this latter circum-
stance can occur at most n-m + 1 times, we derive that the checks of Q and skip
cannot exceed a total of 3n-2m+2, which yields 3(3n-2m+2)=9n-6m+6 com-
parisons. Thus the number of both character and noncharacter comparisons is bounded
by lln-7m+7, which is still slightly better than the 14n in [3]. This figure can be
lowered further, at the expense of a more involved construction. This task, however,
goes beyond the scope of this paper.

The auxiliary array skip [1: n] could be substituted by a circular array of size m
in a straightforward way. An even better approach is to make use of a doubly linked
list, as follows. Let text [j] be currently aligned with pattern m]. Whenever a mismatch
occurs following k-> 1 successful matches (possibly both of characters and string
segments) the right end of the list is updated by appending a new record that stores
the values of j and k. Those records that account for the segments falling within the
span (k) of the newcomer record are disposed of. Finally, the leftmost record is released
whenever the total number of records exceeds m. The details of this construction are
quite standard and we leave them for the reader as an exercise. Having stored the
value of the text index j each time a record is created makes it also trivial to check
later as to whether or not the information stored in it is consistent with the current
alignment of pattern and text. One nice feature of this implementation is its payoff in
terms of space occupancy. In absolute terms, this lat.ter is obviously bounded by O(rn).
We notice, however, that a new entry is appended to the list only following at last one
successful character match. The number cc of such matches can be very small, yielding
an O(cc) bound that might, in some instances, be better than the former.

4. Preprocessing. The analysis following Theorem 1 relies on the assumption that
the truth value of Q[i, k] can be retrieved in exactly two comparisons. We show now
how this is made possible by a suitable preprocessing of the pattern.

104 ALBERTO APOSTOLICO AND RAFFAELE GIANCARLO

Let u be a generic string of m characters. For simplicity, we will denote v[i+ 1" j]
shortly as i, j]. Recall that a string u is a period of v if v is a prefix of u k with k > 1
For each i<= m let [4]:

reach[i]=max {j<=m/[O, 1] is a period of [0,j]o}

+ max {j <= m i/[O,j] [i, +j]}.

Letting v v R, the reverse string of v, we associate with each position in v the
position i’= m- + 1 in w. We call i’ the conjugate of i. Let now revpat pattern R.

LEMMA 1. Q[i, k] true iff reachrevpat i’- 1 < min (m, i’ + k 1).
Proof. Assume that Q[i, k] true. By definition, either (case 1) 0 <= k <- and

pattern[i-k+l’i]#pattern[m-k+l,m] or (case 2) i<k and pattern[1, i]#
pattern [m i+ 1, m]. Case 1 implies that revpat [1" k] # revpat [m- i+ 1" m- i+ k],
that is to say [0, k]reopat i’- 1, m + k]revpat. Thus the largest q such that [0, q]ret,pat
m i, m + q]eopa, must be less than k. It follows that reacheop, i’- 1 i’- 1 + q <
i’- 1 + k m + k-<_ m. Case 2 implies that m < + k- 1, whence we again need to
prove that reacheop, [i’- 1 < m. This is easily accomplished by an argument analogous
to that of case 1. Conversely, assume that reachreopa, [i’- < min (m, i’+ k- 1)
min (m, m-i+ k). Now reachrep,t [m-1]= m-i+ q, where q is the largest integer
such that [0, q]eo,, m i, m + q]eo,,. Consider the case where k > i. Then m <
m + k, whence reacheo,a [m i] < m. Since m m + i, it follows from the
definition of reach that [0, i]reop, # [m-i, m]evp,, which implies that Q[i, k] =true.
An analogous argument holds for the case where 0-< k =< i.

The information needed for the table reach could be collected in linear time as a
byproduct of the Knuth-Morris-Pratt algorithm [6]. A more explicit construction is
the following. Let dl, d2, , d, be the sequence of all differences between consecutive
occurrences of will in w[l" m]. We can put reachw [i] i-prefiXw [i], where prefiXw [i]
is the longest prefix of w that starts at position + 1. This enables us to reason in terms
of the more handy table prefiXw. To simplify matters even further, we extend w[1" m]
by appending one "sentinel" location to its right end. In other words, we have now
an array w[l’m + 1] and we assume that w[m + 1] contains a symbol not appearing
in w[1" m]. The array prefiXw[1" m] is now filled in care of the following procedure.

Procedure Prefix
1. for :- 1 to n do prefix[i] := 0 *initialize*
2. i:=dl-1; k:=O;
3. repeat k:= k+ 1 until w[k] w[k+ i] *compute first nontrivial entry*
4. prefiXw i] :- k- 1
5. for f:-2 to p do *compute all other nontrivial entries*
6. begin
7. j:=i
8. i:= i+df
9. if prefixw [dr -1] < k dr then prefixw [i] := prefiXw dy]

10. else begin k := max (0, k dy)
11. repeat k := k + 1 until w k] w + 1 + k]
12. prefix i] := k
13. end
14. end

TI-IEOREM 2. The procedure Prefix correctly computes prefix 1" m].
Proof. prefix [1" d 1 is filled with zero’s by initialization, and it is easy to check

that lines 2-4 compute prefiXw [d- 1]. Assume now that prefix has been correctly

STRING SEARCHING STRATEGIES 105

computed up. to a certain position such that w [i+ 1] w [1] and let prefixw [i] be
equal to some integer p => 1. Let also d be the smallest integer such that w + d + 1
w 1]. Let j i+ d. The repeat loop of line 11 clearly computes prefix, [j] in the case
k-ds <=0 (recall that all entries of prefiXw are nonnegative). It remains to show that

als.o the case k-dy> 0 is dealt with consistently. This case splits in two subcases, both
of which exploit the circumstance that position j falls within a replica of a prefix of
w starting at i. The value of prefix, i] has simply to be recopied from prefiXw [d- 1
if this latter is less than k-dy (line 9). Otherwise, prefix [i] is at least k-dy and we
need only check the following characters in an attempt to lengthen it. 1-1

THEOREM 3. The procedure Prefix takes O(m) time.

Proof. The total work for accessing positions such that w i]- w 1] is obviously
bounded by m. We can charge the work involved in comparing w [k] and w [i+ 1 + k]
to position / 1 / k. Each such position cannot be charged more than one matching
comparison. Mismatching comparisons cannot exceed p _<-m, which concludes our
proof. [q

The procedure Prefix, once applied to w revpat, makes readily available the
desired table reachreopat.

5. Concluding remarks. We have shown that the Boyer-Moore-Galil approach to
pattern matching can be upgraded by keeping track of the segments of the pattern
successfully matched with the text at each stage. Combining such recordings with a
priori knowledge about the structure of the pattern yields an algorithm which accesses
each text character at most twice.

From the standpoint of algorithmic combinatorics, this result is of some merit.
Moreover, the increase in terms both of control structure and preprocessing overhead
seems to be tolerable. Thus, the overall strategy compares rather favorably with other
nontrivial ones, also in the practical perspective.

Acknowledgments. We are indebted to Z. Galil for many helpful comments and
suggestions. We are also indebted to the referees for their excellent work in the revision
of a preliminary version of this paper. In particular, we gratefully acknowledge the
contribution conveyed by one of them, whose selfless profusion of punctual and
thoroughly expert advice was of invaluable help in improving the presentation of our
ideas.

REFERENCES

[1] A. V. AHO AND M. J. CORASICK, Efficient string matching: an aid to bibliographic search, Comm.
ACM, 18 (1975), pp. 333-340.

[2] R. S. BOYER AND J. S. MOORE, Afast string searching algorithm, Comm. ACM, 20 (1977), pp. 262-272.
[3] Z. GALIL, On improving the worst case running time of the Boyer-Moore string searching algorithm,

Comm. ACM, 22 (1979), pp. 505-508.
[4] Z. GALIL AND J. SEIFERAS, Time space optimal string matching, J. Comput. System Sci., 26 (1983),

pp. 280-294.
[5] L. J. GUIaAS AND A. M. ODLYZKO, A new proof of the linearity of the Boyer-Moore string searching

algorithm, Proc. 18th Annual IEEE Symposium on Foundations of Computer Science, 1977, pp.
189-195.

[6] D. E. KNUTH, J. H. MORRIS AND V. B. PRATt, Fast pattern matching in strings, this Journal, 6 (1977),
pp. 189-195.

[7] W. RYTTER, A correct preprocessing algorithm for Boyer-Moore string searching, this Journal, 9 (1980),
pp. 509-512.

[8] A. C. C. YAO, The complexity ofpattern matching for a random string, Technical Report, Computer
Science Dept., Stanford Univ., Stanford, CA, 1977.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
008

EFFICIENT SIMULATIONS AMONG SEVERAL MODELS
OF PARALLEL COMPUTERS*

FRIEDHELM MEYER AUF DER HEIDE"

Abstract. A parallel computer (PC) with fixed communication network is called fair if the degree of
this network is bounded, otherwise it is called unfair. In a PC with predictable communication each processor
can precompute the addresses of the processors it wants to communicate with in the next steps in O(t)
steps. For an arbitrary e>0 we define fair PC’s M and M’ with O(n+) processors each. M(M’) can
simulate each unfair PC vith predictable communication and O(log (n)) storage locations per processor
(each fair PC) with n processors with constant time loss. M’ improves a result from [Acta Informatica, 19

(1983), pp. 269-296] where a time loss of O(log log (n)) was achieved. Assuming some reasonable properties
of simulations we finally prove a lower bound l)(log (n)) for the time loss of a fair PC which can simulate
each unfair PC. Applying fast sorting or packet switching algorithms (Proc. 15th Annual ACM Symposiums
on Theory of Computing, Boston, 1983, pp. 1-9; 10-16; Proc. ACM Symposiums on Principles of Distributed
Comparing, Ottawa, 1982) one sees easily that this bound is asymptotically tight.

Key words, parallel computers, general purpose machines, simulations

1. Introduction. In this paper we deal with the following question: How efficiently
can one parallel computer (PC) with fixed communication network with bounded
degree simulate all members of a certain class of PC’s?

By a PC we mean a finite set of n processors which have the usual sequential
capabilities. They are partially joined by wires. The graph defined by the processors
and the wires is its communication network. In one step each processor is allowed to
read a piece of information from a (relative to the communication network) neighboring
processor. We allow several processors to read from the same processor at the same
time. We assume the PC is synchronized.

Technological restrictions demand the degree of a PC, i.e. the degree of its
communication network, to be bounded by a small constant.

We shall call such PC’s fair. Those with large degree we call unfair. Later we shall
always assume that their degree is n- 1, i.e. that their communication network is the
complete graph. We furthermore assume that each processor only has O(log(n))
storage locations, each able to store one integer.

An important class of unfair PC’s are those with predictable communication
(unfair PC’s with pred. com.).

Such a PC has the additional property that for each integer t, each processor can
compute for itself the sequence of addresses of processors it wants to read from during
the next steps in O(t) steps.

Famous examples of unfair PC’s with pred.com, are the ascend- and descend-
programs for cubes defined by Preparata and Vuillemin in [5]. Such a cube is an unfair
PC with N 2k processors, and its communication network is a k-dimensional cube.
The prediction of the communication is very easy for each processor: Neighbour in
direction of the first dimension, neighbour in the direction of the second dimension,
and so on.

Preparata and Vuillemin could simulate this special, very regular PC with pred.com.
by a fair PC with N processors, the Cube-Connected Cycles, and constant time loss.

* Received by the editors May 19, 1983, and in revised form October 1, 1984.

" Fachbereich Informatik, Johann Wolfgang Goethe-Universitit, 6000 Frankfurt a.M., Federal Republic

of Germany.

106

SIMULATIONS AMONG PARALLEL COMPUTERS 107

The aim of this paper is to determine the efficiency of the following types of fair
PC’s:

n-universal PC’s. They can simulate each fair PC with n processors and fixed
degree.
n-simulators. They can simulate each unfair PC with pred.com, and n processors.
general n-simulators. They can simulate each unfair PC with n processors.

In [3] an n-universal PC with O(n) processors and time loss O(log(n)) is
constructed. In [4] an n-universal PC with O(n1/) processors for some arbitrary e > 0
is constructed which has only time loss O(log log (n)).

In the third chapter of this paper this last result is improved by presenting an
n-universal PC with the same number of processors as above but with constant time
loss only.

In the fourth chapter we refine the ideas of the simulation of the third chapter to
obtain an n-si,,=ulator. It also has O(n+) processors for some arbitrary e>0 and
constant time loss.

For the above constructions we need a PC which can execute packet switching
in a much more general way than for example permutation networks. In the second
chapter, such PC’s, so-called (a, b)-distributors, are introduced.

The last section of this paper shows that we cannot hope for fast simulations if
we want to construct a general n-simulator. We prove a lower bound f(log (n)) for
the time loss of a general n-simulator, independent on the number of its processors.
This result holds when assuming some reasonable properties ofthe design ofsimulations
as they are already defined in [4] for proving a time-processor trade-off for n-universal
PC’s.

By the results of Ajtai, Komlos and Szemeredi [1] or Reif and Valiant [6] one
can show that this lower bound is tight within a constant factor.

The above authors have developed fair sorting PC’s which can sort n numbers
using only O(log (n)) steps (with overwhelming probability in the case of Reif and
Valiant).

One can easily see that with such a fair PC one can simulate one step of an unfair
PC in O(log (n)) steps, using such a fair sorting PC as "post-office" for transporting
the respective informations betweenthe processors. The same result can be achieved
by using the parallel packet switching algorithm for Cube-Connected Cycles presented
by Upfal in [7] who generalizes the corresponding algorithm for cubes due to Valiant
and Brebner [8].

2. The construction of (a, b)-distributors. In this section we construct PC’s which
are able, in a more general way than permutation networks, to broadcast information.
They are constructed similarly to the distributors shown in [4]. These PC’s are needed
for the constructions of the n-universal PC and the n-simulator in the next sections.

Let a, b be integers, a _-< b. An (a, b)-distributor Da,b is a fair PC which has a + b
distinguished processors, a input processors A,..., Aa and b output processors
B,. ., Bb. It has the following property:

If each Bi, {1, , b}, has stored an integer ci {1, , a + 1}, then D, can
initialize itself such that afterwards the following holds:

If each Aj, j {1,. , a}, contains an integer string xj of length O(log (n)), then
D, can distribute (x,..., x) according to (c,..., c), i.e. can transport each x,
j{1,..., a}, to each B with ci=j, i{1,’’ ", a}, in O(log(b)+log(n)) steps. The
above initialization is called the initialization of D, for (cl,. , cb), and the time it
needs is the initialization time of Da,.

108 FRIEDHELM MEYER AUF DER HEIDE

We now present an (a, b)-distributor based on the well-known Waksman permuta-
tion network (see [9]).

Let b’:= 2 g(b)l. The b’-Waksman permutation network Wb’ is a fair PC with b’
input processors A,..., Ab, and b’ output processors B,..., Bb,. For each partial
permutation II on { 1,. , b’}, Wb, can initialize itself for II such that afterwards there
are marked pairwise disjoint paths of length O(log(b’)) in Wb, form Ai to Bn(i),
i{1,..., b’}.

In [3], Galil and Paul have shown that this initialization of Wb, for II can be
executed in O(log (b’)4) steps. Furthermore it is well known that Batcher’s sorting
algorithm [2] can be implemented on Wb’ and sorts b’ numbers in O(log (b’)2) steps.
Wb, has 2b’ log (b’) processors. W8 is shown in Fig. 1.

We now shall insert some additional wires in Wb, as illustrated for W8 in Fig. 2.
The resulting network we call Wb,.

Output processors

Input processors

FIG. 1. The fair PC W8.

FIG. 2. The fair PC

In addition to the capabilities of Wb, this network can do the following: If for
i {1,..., b’}, A contains a number c, c <-_ <-Cb,, Wb, can mark pairwise disjoint
trees of depth 2 log (b’)- 1 in Wb,, one for each x {c, , Cb}. The leaves of a tree
belonging to some such x are those A with c=x, its root is that Bi with i=
min {i’,cv- x}. The existence and construction of such trees is obvious; an example is
shown in Fig. 3.

We shall use these trees for transporting data from one input to many output
processors along the paths in the trees. For i{1,..., b} let ci{1,’", a+ 1} be
stored in Bi. The following algorithm will mark a trees G,..., Ga in W,. For
i {1,..., a}, the root of G is A and its leaves are all Bj’s with cj i. G has depth

SIMULATIONS AMONG PARALLEL COMPUTERS 109

X

X
X

X
X

...x

x
XX
XX
x

2 2 2 2 the G’s

FIG. 3. ff’8 with marked trees for (c,. , ca) (1, 1, 1, 2, 2, 2, 2, 2).

O(log (b’)). Each processor of Wb, lies on at most three such trees. Clearly after such
a marking Wb, can distribute a strings each of length O(log (n)) according to
(cl,’", Cb) in O(log (b’)+log (n)) steps by sending them along the paths of the
respective trees. Thus Wb’ is initialized for (Cl,. ", Cb).

The algorithm works as follows.
Part 1. Wb, SOnS Cl, ", Cb to the sequence dl," ", db.
Part 2. Wb, initializes itself for the partial permutation which maps to j, if di cj,

ie{1,...,a}.
Remark 1. Now there are pairwise disjoint paths marked for each e {1,. ., b}

from Bi to the Aj where c is transported to in Part 1. For e { 1, , a + 1} let s denote
the smallest je{1,. , b} with d i. Then for each ie{1,. , a}, d for each
j{s,,’’", s,+- 1}.

Part 3. Mark a pairwise disjoint trees in /b,. For i {1,. ., a}, the ith tree has
the root B,, and the leaves A, j {s,. , s+l 1 }.

Remark 2. As shown above such trees can be marked in O(log (b’)) steps. Each
tree has depth 2.log (b’)- 1.

Part 4. Wb, initializes itself for the partial permutation which maps si to i, i
{1,’’ .,a}.

For i {1,..., a}, G now is the tree which consists of the ith path from Part 4,
the ith tree from Part 3 and the jth paths from Part 2, j {s,..., S/l- 1}.

By the explanation above we know that we hereby have initialized Wb, for
(c,..., Cb). Furthermore we know that Part 1 can be executed in O(log (b’)2) steps,
Part 3 in O(log(b’)) steps and Part 2 and 4 in O(log(b’)) steps each. Thus the
initialization time of Wb, is O(log (b’)4).

THEOREM 1. Let a, b be integers, a<-b, b’=2 [lg(b)]. I17b, is an (a, b)-distributor
with O(b log (b)) processors and initialization time O(log (b)4).

Without proof we will point out two possible improvements of this theorem. We
can construct (a, b)-distributors with initialization time O(log (b)) if we are able to
sort b numbers in O(log (b)) steps. Ajtai, Komlos and Szemeredi [1] have done so
with the help of a fair PC with O(b log (b)) processors. This fair PC can also sort
packets of length s according to some keys in O(log (b)+ s) steps. With this result we
can construct an (a, b)-distributor with O(b log (b)) processors and initialization time
O(log (b)). A similar construction can be found in [10].

A similar result can be achieved when using the sorting algorithm from [6] due
to Reif and Valiant. They have sorted b numbers on Cube-Connected Cycles using
O(log (b)) steps with overwhelming probability. In order to sort packets of length

110 FRIEDHELM MEYER AUF DER HEIDE

O(log (n)) we here need O(log (n)) such fair PC’s in order to do so in O(log (b)+
log (n)) steps. Thus we obtain an (a, b)-distributor with O(b log ((n)) processors and
initialization time O(log (b))which allows distributions using O(log (b)+ log (n))steps
with overwhelming probability.

3. The construction of an n-universal PC. In this section we will construct an
n-universal PC M0, that means a fair PC which can simulate each fair PC with n
processors and fixed degree c.

Let H be a fair PC with n processors R1," ", Rn and communication network G.
The idea of our simulation is as follows. We construct a fair PC Dr* which can

simulate H for steps, if it is prepared suitably. Furthermore we shall see that we can
apply an (a, b)-distributor to prepare Dt* before each phase of simulated steps as
demanded above. We shall choose such that a preparation needs O(t) steps. Thus
steps of H are simulated in O(t) steps which yields constant time loss.

We shall now construct D,*. It consists of n copies D it, D nt of a fair PC D,,
whose communication network is a complete c-ary tree of depth t. We now show how
to initialize D* such that it can simulate steps of H. First we attach to each processor
P of D* an address l(P) of the processor of H, P has to simulate.

For i{1,..., n} the root P of D gets l(P)=i. If Ri has c’<-c neighbours
Ri," ", Ric, in H, the first c’ neighbours P1," ", Pc, of P get l(P) ij, j {1,. , c’}.
This attachment is completed in the obvious way.

Let K be a configuration of H represented by the tuple (K1, , K,) of configur-
ations of the processors of H. We say, D,* is prepared for K, if each processor P of

Dr* for which l(P) is defined contains gl(p). We say Dr* simulates steps of H started
K’in the root of Di, i{1 n},whereK’=(K1,..with K, if it computes K

is the tth successor-configuration of K.
LEMMA 2. If D*t is prepared for K, it can simulate steps of H started with K in

O(t) steps.
The proof can be done by induction on and is obvious. Now suppose that Dr*

has simulated steps of H started with some configuration K. We now have to prepare
D* for K’, the tth successor configuration of K. We know that for each { 1, , n},
the root processor of D has computed K’, but the other processors P of Dr* with
l(P) have not computed this configuration because they have earlier stopped
simulating. Therefore the root processor of D has to inform these processors .about
K. Applying an idea from [4] it suffices to transport the string Info(K, R, t) of numbers
R reads from neighbours during steps of H started with K. As a processor P of D,*
with l(P)= knows K, it can, with the help of Info(K, R, t), compute K’i in O(t)
steps. Info(K, R, t) has length at most t. Thus we need a network which transports
Info(K, R, t) from the root processor of DI to each processor P with l(P)= i, i=

1,..., n. Let m be the number of processors of D*, then the above is exactly what
an (n, m- n)-distributor as defined and constructed in the last section can do, if we
identify its input processors with the root processors of Dit, D "t and its output
processors with the other processors of Dr*. This fair PC we call Mo.

Thus the exemplary of D,* in Mo can be prepared for K’ needing O(log (m n)+ t)
steps for distributing Info(K,R,t)’s and O(t) steps for computing K’ in
each processor P with l(P)=i, i=l,...,n. Therefore, the preparation needs
O(log (m- n)+ t)/ O(t) steps. Thus O(log (m- n)+ t) steps are necessary to simulate
steps of H.
We now choose t= [elogc(n)J for some arbitrary e>0. Then Mo has

O(n1+ log (n)) processors and needs O((1 + e) log (n)+ e log (n))

SIMULATIONS AMONG PARALLEL COMPUTERS 111

O((1 + 2e) log (n)) steps for simulating [e logo (n)J steps of H. Thus its time loss is
o((1+2)/).

THEOREM 3. Mo is an n-universal PC with O(n1+ log (n)) processors and time
loss O((1 +2e)/e) (which is a constant for fixed e >0).

4. The construction of an n-simulator. In this section we shall construct an n-
simulator. The basic idea of the construction is similar to the one in the last section.
Let H be an unfair PC with pred.com, and n processors R1, , R,. We again describe
a fair PC Tt* which can simulate steps of H in O(t) steps if it is prepared in a
suitable way. But in this case we see that we are not able to prepare Tt* in O(log (n))
steps, if we chose O(log (n)). The reason is that in the case of an n-simulator, we
may not demand that a processor of Tt* simulates the same processor of H all over
the simulation. Therefore we have to inform the processors of T* after each phase of
simulated steps which processors of H they have to simulate now. Although it is

possible to compute fast which processor of H has to be simulated by which processor
of Tt*, it turns out that broadcasting this information needs ll(log (n)2) steps if

O(log (n)). The idea of how to solve this problem is the following. We shall execute
an initialization of Tt* each time before d phases of simulating steps of H. This
initialization will not be much slower than one preparation and will guarantee that
afterwards d preparations can be done fast. Thus we obtain constant time loss by
choosing d in an appropriate way. For simplifying the description of the simulation
we shall use d copies of Tt* in our simulation, each responsible for one of the d phases
between two initializations. Each of these exemplaries, together with some (a, b)-
distributors, will be called a weak n-simulator.

First we describe the fair PC Tt* for some fixed integer t. Tt* can simulate steps
of each unfair PC with pred.com, in O(t) steps if it is prepared in an appropriate way.
T* consists of n exemplaries T,..., T’ of a fair PC T, which we will define now.
Its communication network is a tree whose vertices are replaced by cycles. The cycle
corresponding to its root is called the root cycle, each processor on it is a root processor
and one of them is the main root.

Tt is inductively defined as follows" To consists of one processor, it is its main
root and forms its root cycle. For > 0, Tt consists of exemplaries of To," , Tt-1 and
new processors Po,’", P,-1. These processors form the root cycle of T, by wires

between P, and P(p+l)mod(t) for p {0, , t- 1}. Po is the main root. Furthermore, for
each p {0,..., t-1}, P, is joined to the main root of

An example of this fair PC is shown in Fig. 4. The following lemma can easily
be proved by evaluating the obvious recursion for the number of processors of T, and
by the above definition.

LEMMA 4. For >-- 1, T has 3 2’-1- 1 processors and degree 3.
Now let H be an unfair PC with pred. com. and n processors R.1," ", R,. A

configuration K (K1, , K,) of H consists of configurations Ki for each processor
Ri of H, {1, , n}. Recall that each processor has only O(log (n)) storage locations.
Thus each K can be represented by a coding of its program and a list of the contents
of its storage locations. This representation is an integer string of length O(log (n)).
In the sequel we shall identify this string with the configuration.

Let K-(K1,’’’, K,) be the pth successor-configuration of K. Then for
{1,..., n}, Ki is the pth successor-configuration of K for Ri.

For an integer p and {1, , n}, Com (K, R, p) denotes the string of addresses
of processors Ri reads from during p steps of H started with K. For q {1,..., p},
Com (K, R, p)q denotes the qth element of Com (K, R, p). If for some such q, H does

112 FRIEDHELM MEYER AUF DER HEIDE

main root

root cycle

FIG. 4. The fair PC T4.

not read from another processor in the qth step started with K, we assume that
Com (K, R,, p)= i.

Let { 1,. , n}. We say Tt is prepared for K and Ri for t steps, if the following
holds:

If 0 then Tt contains Ki.

Let > 0. Then each root processor contains K, and for each p {0,..-, t-1} the
exemplary of Tp joint to the pth root processor is prepared for K and Rj for p steps,
if j =Com (K, Ri, t)p/l and j i. If j i, there is no condition on Tp.

T* is prepared for K if for each i {1,-.., n} TI is prepared for K and R for
steps.

The processor of H being attached by the above preparation to some processor
P of T* is said to be represented by P relative to K.

We say T* simulates steps of H started with K, if T,* executes a computation
which finishes with the tth successor-configuration of K for Ri in each root processor
ofT, i{1,...,n}.

LEMMA 5. If T* is prepared for K, it can simulate steps of H started with K in
O(t) steps.

Proof. Let i{1,..., n} be fixed, Po,’",Pt- be the root processors of T.
Suppose that T* is prepared for K.

For p { 1, , t} we say that the root cycle of Tit is p-prepared if Pp_ and Pp rood t
contain the pth successor-configuration of K for R and for each q {1,,.., p-1},
P,+qnodt contains the (p- q)th successor configuration of K for Ri. The root cycle
of TI is 0-prepared, if Po contains Ki. (This is fulfilled for example, when T* is prepared
for K.)

We now want to find an algorithm which transfers a p-prepared root cycle to a
(p+ 1)-prepared one. For this purpose we first assume that for each q {0,. , t- 1}
the main root Q of the exemplary of Tq joint to Pq contains the qth successor-
configuration of K for the processor Rj being represented by Q. Thus Q contains the
message R wants to read from R in the (q + 1)th step of H started with K.

Now if the root cycle is p-prepared for p {0,. , t-2}, it becomes (p + 1)-
prepared by the following algorithm.

SIMULATIONS AMONG PARALLEL COMPUTERS 113

Part 1. For each q {1,..., p}, P(p+q) mod(t) simulates the (p-q+ 1)th step of
with the help of P(p+q-)mod(t).

Remark 1. As P(p+q-1)mod(t) has already executed this step by the definition of
"p-prepared", Part 1 can be done in constant time.

Part 2. Pp simulates the (p + 1)th step of Ri.
Remark 2. This can be done in constant time because we have assumed that the

message Ri perhaps wants to read from another processor is stored in the main root
of the Tp joint to Pp.

Part 3. For each q{1,...,p+l}, P(p+q)mod(t)simulates the (p-q+2)th step
of R with the help of P(p+q-1)mod(t)"

Remark 3. This works in constant time, because in step 1 (resp. step 2)
P(p+q-1)mod(t) just has simulated this step.

Thus T,* is (p+l)-prepared in a constant number s’ of steps. Now we may
inductively assume that after s’. p steps the root cycle of the exemplary of Tp joint to
Pp is p-prepared. But this means that its main root contains the message R needs to
execute its (p + 1)th step after s’.p steps.

By our algorithm this message is needed after s’. p + (time for step 1) many steps
that means it is available when it is required by Pp. Thus P0 contains the tth successor-
configuration of K for R after s’. steps. Clearly in further s". steps each root
processor can have stored this configuration.

Executing this algorithm in parallel for each e {1,..., n} we have simulated
steps of M started with K in (s’+ s"). steps.

Figure 5 shows the states of the p-prepared root cycle of T for some { 1, , n}
and each ps{1,..., 8}. A number in the qth column and pth row, q{0,...,7},
p {1,..., 8} means: If Ts is p-prepared, P, contains the Ith successor configuration
of K for R.

0 0 0 0 0 0
2 0 2 2 0 0 0 0
3 0 0 3 3 2 0 0
4 0 0 0 4 4 3 2
5 2 0 0 5 5 4 3
6 4 3 2 0 6_ 6 5
7 6 5 4 3 2 7 7
8 8 7 6 5 4 3 2 8

FIG. 5. The design of a p-prepared root cycle.

In order to obtain a fast simulation of arbitrarily many steps of H we have to
prepare T* before each phase of steps for the appropriate configuration of H. In
order to obtain an n-simulator of at most polynomial size we have to choose t-
O(log (n)) because of Lemma 4. But then we have to prepare T* before each phase
of steps in O(log (n)) time in order to obtain a constant time loss. We shall see later
that such algorithms would need f/(log (n)2) steps. They have to execute f/(log (n))
initializations of(a, b)-distributors sequentially each of which needs f/(log (n)) steps
(see . 2). Therefore we will execute an initialization each time before d such phases
of steps, where d is chosen suitably. It turns out that this initialization for d
preparations can be done in parallel and does not need much more time than one
preparation.

114 FRIEDHELM MEYER AUF DER HEIDE

The effect of this initialization is that afterwards d preparations can be executed,
each in O(log (n)) steps. This trick will guarantee constant time loss. Let in the sequel
e >0 be fixed and t:= [e log (n)J. Then by Lemma 4, T* has at most 3n1+ processors.

Now we shall first define a type of fair PC’s, so-called weak n-simulators, which
will be used for constructing n-simulators. An explicit construction of a weak n-
simulator will be given later.

A weak n-simulator M is a fair PC with the following properties.
M contains an exemplary of Tt*.
If K (K1, "’’, K,) is some configuration of H and for each i {1,..., n},

each root processor of T contains Corn (K, Ri, t), then M can initialize itself such
that afterwards the following holds" If for each {1,. , n}, each root processor of
TI contains Ki, then M can prepare Tt* for K in O(log (n)) steps.

The above initialization we call the initialization of M for K and the time it needs
the initialization time of M. Note that the initialization does not include the preparation
of T* but only guarantees that this preparation can be done fast.

We now shall construct n-simulators. Let M be some weak n-simulator with
initialization time d. Then the fair PC M* consists of r:= [d/t] exemplaries of M
called M, Mr-1. For each /{0,..., r-1}, i{1,..., n}, each root processor
of Tit in M is joint to the corresponding processor in M(t+l)md(r).

THEOREM 6. Let M be a weak n-simulator with initialization time d. Then M* is
an n-simulator which can simulate steps of some arbitrary unfair PC with pred. com.
and n processors in O(d + l/ e steps. IfMhas mprocessors, M* has d/ m processors.
(For fixed e >0, we thus have achieved constant time loss, if f(d).)

Proof The computation of the number of processors of M* is clear. We shall
construct an algorithm which simulates d’:= t.r steps of H started with K=
(KI,...,K,). For j{1,...,r} let KJ=(K{,...,K,) be the (t.j)th successor-
configuration of K.

Assume that for each i{1,..., n}, q{0,..., r-l}, K,. is stored in each root
processor of TI in M.

Now d’ steps of H started with K can be simulated as follows.
Part 1. For each q{0,. , r-l}, i{1, , n}, each root processor of T in

Mq computes Com(K q, Ri, t).
Remark 1. This can be done in O(r. t) O(d’) steps because of the definition of

predictable communication.
Part 2. For each q {0, , r-1}, Mq initializes itself for K.
Remark 2. This can (after having executed Part 1) be done in d steps as d is the

initialization time of the Mq’s.

Part 3. For q 0,..., r-1 do (sequentially)

Begin
a) Mq prepares the exemplary T’ of T* in Mq for K q.
b) T’ simulates steps of H started with K q.

Comment. Now for each i {1,..., n} each root processor of T in T’
contains Kq+l).

c) For each i6{1,..., n}, each root processor of T in T’
transports Kq+l) to the corresponding processor in M(q+l)md(r).

End

Remark 3. Now for each i{1,..., n}, each root processor of TI in M has
stored K’, the d’th successor-configuration of K for

SIMULATIONS AMONG PARALLEL COMPUTERS 115

Remark 4. Each pass of the loop of Part 3 needs O(log (n)) steps: O(log (n)) for
a) because of the definition of a weak n-simulator, O(t) for b) because of Lemma 2,
O(log (n)) for c) because we have assumed that each configuration of a processor is
represented by an integer string of length O(log (n)). Thus Part 3 needs O(r. log (n))
O(d/e) steps.

Part 4. For each q {0, , r- 1}, {1, , n}, K7 is transported to each root
processor of TI in Mq.

Remark 5. This can be done in O(r. log (n))= O(d’) steps because of the above
bound for the lengths of the representations of configurations.

Now we have achieved all preconditions for starting this algorithm again with
K K r. Remarks 1, 2, 4 and 5 guarantee that we have only needed O(d/e) steps for
simulating d’ steps of H. Repeating this algorithm we obtain that we need O(l!e)
steps for simulating steps of H, if f/(d). If is smaller, we still have to execute
Parts 1 and 2 once. Thus we need O(d) steps also in this case. Therefore in general
we need O(d + l/e) steps for simulating steps of H. tq

Now the problem of constructing n-simulators is reduced to constructing weak
n-simulators.

This will be done with the help of (a, b)-distributors.
For j {0, , t- 1} let Lj be the following subset of the set of processors of T*.
Lo is the set of root processors of T,. ., T’.
For j > 0, Lj is the set of all processors which belong to cycles which are joint to

processors of L_I and which do not belong to L_2 or L_I.
Informally, L consists of those processors which belong to a cycle in depth j of

some Tit in T*. Let # Lj =: m, j {0,. ., t- 1}.
For j {0,..., t-1} let D be an (n, m)-distributor with initialization time d.
Then the fair PC M based on Do," ", Dt_ is defined as follows: M consists of

T,* and D1,’’’, D,_I where for j{0,..., t-l} Lj is the set of input processors of

D and the jth root processors of T, T7 are its output processors.
t--1LEMMA 7. M is a weak n-simulator with initialization .time 0 (log (n)2+=o d).

Proof Let K (K,..., K,) be a configuration of H, and suppose that for each
i {1,..., n}, each root processor of T has stored Com (K, Ri, t). Let for each
processor P of T*t l(P) be the number i {1,..., n} such that Ri is represented by P
relative to K. Clearly, for each i {1,..., n}, l(P)= for each root processor P of
TI. The following algorithm initializes M for K.

For j 0,. , t- 1 do (sequentially)
Begin

b)

End

d)

Dy initializes itself for (l(P), P Lj).
D distributes (Com(K, Ri, t), i {1,..., n}) according to (/(P), Pc L).
For each PLy; If for q{1,...,t 1},p{0,...,q-1}, P is the pth root
processor of an exemplary of To in Tt*, then P sends z := Com (K, Rl(p), t)p+l
to its neighbour Q in L+ and l(Q):= z.
Comment: Now for each cycle whose processors belong to Lj, one of its
processors Q knows l(Q).
For each Q L+ which knows L(Q): Q transports l(Q) to each processor Q’
of the cycle it belongs to, and l(Q’):= l(Q).

Obviously this algorithm attaches the correct address I(P) to each processor P of
T*. Because of the initializations of Do," , Dt_ in step a) of the passes of the loop,
finally M is initialized for K.

116 FRIEDHELM MEYER AUF DER HEIDE

For j e {0,. ., t- 1}, the jth pass of the loop needs O(dj)+ O(log (n))+ O(1)+
O(t)-0(4 +log (n)) steps. Thus the initialization time of M is O(log (n)2+Y_Slo 4).
Now a preparation of Tt* in M can be executed in O(maxj {log (d) +log (n)})
O(log (n)) steps.

We now apply Theorem 1 to Lemma 7 and obtain a weak n-simulator M1. Because
of the choice of the number of processors of T,* is at most 3n 1/’. The distributors

t--10(rn log (m;))= O(log (n) -’o m;)=Do," , Dr-1 all together have Yi=o
O(n+ log (n)) processors, as Y_’ rn is the number of processors of T,*.

Thus M1 has O(n+ log (n)) processors.
Inserting the bound for the initialization time of Wb, from Theorem 1 in Lemma

7, we obtain that the initialization time of M is O(log (n)5).
Inserting these results in Theorem 6 we obtain
THEOREM 8. M* is an n-simulator with O(n+ log(n)) processors. M* can

simulate steps ofsome arbitrary unfair PC with pred.com, and nprocessors in O(log (n) +
I/e) steps.

With the help of the two distributors mentioned at the end of 2, one can construct
weak n-simulators M2 and M3.

TI-IEOREM 9. M*2 (M*3 is an n-simulator with O(n+ log (n)2) processors. M*
(M*3) can simulate steps of some arbitrary unfair PC with pred.com, and n processors
in O(log (n)2 + l/ e) steps (with overwhelming probability).

5. A lower bound for the time loss of general n-simulators. In this section we show
that we may not hope for such fast simulations as described in the previous sections,
if we want to construct general n-simulators, i.e. if we remove the restriction "predict-
able communication" from the unfair PC’s being simulated.

We now shall define a graph-theoretical model of simulations of unfair PC’s by
a fair PC. For this purpose we first note that the problem arising during a simulation
is that of realizing the communications between processors. Therefore we represent
a step of a computation by the directed graph F with n vertices R,. , R,, in which
(Ri, Rj) is an edge for some i,j e {1,..., n}, i#j, if Ri reads a piece of information
from R in this step. As each processor can read information from at most one other
processor in one step, F has outdegree one. We now call such a directed graph F with
n vertices and outdegree one a computation step. A sequence F, , Ft ofcomputation
steps is called a computation (of length I).

We now define a graph theoretical model of a simulation of a computation of
length by a fair PC M with degree c and m processors Q,. ., Qm for some integer
m-> n. We shall identify M with its communication network.

The following model of simulation is that of a simulation of type 3 as defined in
[4]. This model is very general: for example, each simulation developed so far in the
articles quoted in this paper or in previous sections is of this type.

Let F1, , Ft be a computation. Then a simulation of F,. ., F by M consists
of pairwise disjoint, nonempty subsets A,...,At, of {Q,..., Q,} for each t
{0, , l}. For {0,..., l}, i {1,..., n}, A[contains those processors which simu-
late Ri when steps of the computation are simulated. The members of A[are called
the representatives of R at time t. A,..., A have one element, each. In order to
simulate the t-th step, {1, , 1}, each Q e A[, {1,. , n}, must be joint by a
path in M to some Q’ A[- and some Q"A-, if (i, j) is an edge in Ft. These paths
are called the t-transport paths and their maximal length is kt, the t-time loss of
simulation. The time loss of the simulation is

k=- k;.
j=l

SIMULATIONS AMONG PARALLEL COMPUTERS 117

We now describe the difference between a simulation of an unfair PC with
pred.com, and an unfair PC whose communication can not become predicted fast. In
the first case we may assume that M knows the whole computation F1," ", Ft already
in the beginning of the simulation, because it can precompute it without loss of time.
In the second case this is impossible; we only may assume that a general n-simulator
simulates "on-line" i.e. it gets to know Ft after having simulated F1," ", Ft_l for each
t(2,...,1).

Now let the time loss of a general n-simulator M be the maximal time loss of the
simulation of some computation.

We shall prove:
THEOREM 10. Each general n-simulator has time loss /(log (n)).
As pointed out in the introduction, this bound can be achieved with the help of

the fair PC’s from [1], [6], or [7].
In order to prove this theorem let M be a fair PC with m processors. We shall

define a computation of infinite length for which each finite initial sequence is simulated
by M with time loss fl(log (n)).

If in some step of a simulation A, , A, are the sets of representatives at time
t, we sayM is initialized with A, , A,. The key observation ofthis proofis as follows"

There is a computation F such that either M needs at least y log (n) steps to
simulate it for some suitable 3’ > 0 or the number of representatives at time + 1
decreases considerably relative to the number of representatives at time t. As this
number may not become smaller than n, we may not too often simulate fast. This will
prove the theorem.

LEMMA 11. For each e (0, 1/2) there is y > 0 such that for each initialization ofM
with some A, , An there is a computation step F with the property: M needs at least
y log (n) steps to simulate F or the sets ofrepresentatives A, , A’, after the simulation

of this step fulfills

A’i <- # Ai.
i=l lie i=1

Proof Let i {1,..., n} be fixed, and for j {1,..., n}, j # i, let F be the
computation step with one edge, namely (i, j). Let M be initialized with A,..., An.

Let e (0, 1/2) be fixed.
Claim. There is y>0 such that the following holds" if for each j {1,..., n},

j # i, M can simulate F in less than 3’ log (n) steps, then there is j’ { 1,. ., li}, j’ i,
such that M simulates F’ in at least y log (n) steps, or such that the set A of
representatives for R after the simulation of F fulfills # AI <= #A/n.

Proof Let k be the maximal time loss of M when simulating some Fq, q
{1,. , n}, q i. Let j {1, , li}, j i. Let A,. , A’, be the sets of representatives
after the simulation of F. We say, a processor P A survives, if there is a transport
path from P to some processor Q of A. In this case we say Q is created by P. We
denote the set of surviving processors form A by Bj. For each P B we fix some
C(P)A which is created by P. The element of A which is joint to C(P) by a
transport path is called the partner of P. (If there are more than one such element in
Aj, pick one of them.) We now may conclude the following:

1) The partner of each P B belongs to U2k(P) 1.
2) Each Q A is the partner of at most U2k(P) processors of B.
For a processor P of M, Ur(P) denotes the set of all processors of M which can be reached from P

by a path of length at most r. For a subset A of the processors of M, Ur(A):= t3 Pea Ur(P)"

118 FRIEDHELM MEYER AUF DER HEIDE

1) and 2) hold because P and its partner are joined by a path of length at most
2k via C(P).

As for each processor P of M, # U2k(P) <= c:zk/l we may conclude by 2) that there
are at least (BJ) c-:zk- different partners of processors from B which all belong
to Uk(B) because of 1).

As this holds for each j { 1, , n}, j i, and as these sets of partners are pairwise
disjoint we obtain:

U(Ai)>- 1----. #B.c2k+l j=l
ji

As on the other hand # Uk(A) <- ck+" #A, we obtain that

B <= # Ai C4k+2.
i=1
i#j

Now let j’ {1, , n}, j # i, be chosen such that # B;’ is minimal.
Then

1
Bj’ <-- C

4k+2 :: Ai <--_ # Ai,
rI 1 tl

2

if we choose k_-< 3" log (n) for some suitably chosen y’> 0. Note that e <1/2, thus
1- 2e > 0 and we may choose

,’=1/4(1-2e) log (c)> 0.

Here we assume that each F can be simulated with less then 3" log (n) steps.
As we know that only surviving processors from A can create members of A’,

we know that only processors of BJ’ can do so if U’ is simulated. We may choose
7"> 0 such that # Utv,,og(,,)j(P =< n for each processor P of M. Let 3’ := min {y’, 3’"}.
Now assume that Fj’ is simulated with less than 3/log (n) steps. As y_-< 3" we know
from above that # Dr<= #A/n2. As T < T" we know that each member of B’ can only
create n elements of AI. Thus #A <- # B’ n <= # A/ n which proves the claim.

We now can define the computation step F demanded in Lemma 11. If there are
i, j 6 {1, , n}, j, such that the simulation of the computation step which only has
the edge (i, j) needs at least y log (n) steps, then this is F. Otherwise, let F contain
all those edges (i,j’), 6 {1,..-, n}, where j’ is defined for in the claim. Now if M
simulates F faster than y log (n), we know that for the sets of representatives
A,...,A’, after this simulation, #AI<-Ai/n for each i{1,...,n}. Thus
E ni=l #t=Ai--’< 1/n. E=I = Ai, which proves the lemma.

Proof of Theorem 10. Consider the computation F, F2,. which is defined step
by step by Lemma 11. Let be an integer and for 6 {0, , 1} let h denote the number
of representatives at time t. Let kl,’", kt be the t-time losses of the simulation of
F,..., Ft and let Sc {1,..., l} be the set of those indices for which k, is smaller
than 3/log (n), s := # S. Then

(*) E kt >= Z kt>:(l-s)Tlog(n)
t=l tS

It remains now to bound s. We know that ho n, h,-> n for each {1, , l}. Further-
more we know by Lemma 11 that during the simulation the number of representatives
is decreased s times by a factor of at least 1/n, namely during the simulation of each

SIMULATIONS AMONG PARALLEL COMPUTERS 119

tth step with S. On the other hand it is at most (I-s) times increased by a factor
of at most ck,/l for each {1,..., l}\S. Thus we may conclude

J[’- 1 l+l kn<_h<_ho.
1 s.. H ck,+l<

t=l De. s-1

tS

If now yt k, > I. (e. logo (n)/2-1) the theorem is proved.t=l

Otherwise n -< n()/2/n s- which implies n -< n()/2. Thus s < 1/2.
Inserting this bound in the inequality (,) from above, we obtain ,__

I. (y/2) log (n), which proves the theorem.

REFERENCES

[1] M. ATAI, J. KOMLOS AND E. SZEMEREDI, An O(n log (n)) sorting network, Proc. 15th Annual ACM
Symposium on Theory of Computing, Boston, 1983, pp. 1-9.

[2] K. BATCHER, Sorting networks and their applications, AFIPS Spring Joint Computing Conference, 32
1968, pp. 307-314.

[3] Z. GALIL AND W. J. PAUL, A general purpose parallel computer, J. Assoc. Comput. Mach., 30 (1983),
pp. 360-387.

[4] F. MEYER AUF DER HEIDE, Efficiency ofuniversal parallel computers, Acta Informatica, 19 (1983), pp.
269-296.

[5] F. P. PREPARATA AND J. VUILLEMIN, The cube-connected cycles: a versatile network for parallel
computation, Comm. ACM, 24 (1981), pp. 300-310.

[6] J. H. REIF AND L. G. VALIANT, A logarithmic time sort for linear size networks, 15th Annual ACM
Symposium on Theory of Computing, Boston,. 1983, pp. 10-16.

[7] E. UPFAL, Efficient schemes for parallel communication, Proc. ACM Symposium on Principles of
Distributed Computing, Ottawa, 1982.

[8] L. G. VALIANT AND G. J. BREBNER, Universal schemesfor parallel communication, Proc. 13th Annual
ACM Symposium on Theory of Computing, Milwaukee, WI, 1981, pp. 263-267.

[9] A. WAKSMAN, A permutation network, J. Assoc Comput. Mach., 15 (1968), pp. 159-163.
[10] U. VISHKIN, A parallel-design-distributed-implementation (PDDI) general purpose computer, Technical

Report No. 96, Dept. Computer Science, New York Univ., New York, 1983.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
O09

AN O(EV log V) ALGORITHM FOR FINDING A MAXIMAL
WEIGHTED MATCHING IN GENERAL GRAPHS*

ZVI GALILf, SILVIO MICALI, AND HAROLD GABOW

Abstract. We define two generalized types of a priority queue by allowing some forms of changing the
priorities of the elements in the queue. We show that they can be implemented efficiently. Consequently,
each operation takes O(log n) time. We use these generalized priority queues to construct an O(EV log V)
algorithm for finding a maximal weighted matching in general graphs.

Key words, matching, augmenting path, blossoms, generalized priority queues, primal dual algorithm,
time complexity

Introduction. We are given a graph G- (V, E) with vertex set V and edge set E.
Each edge (i,j) E has a weight wij associated with it. A matching is a subset of the
edges, no two of which have a common vertex. We want to find a matching with the
maximal total weight.

In this paper we deal with the general problem. There are three restricted versions
ofthe problem" we can restrict attention to bipartite graphs, or to maximizing cardinality
(unit weights) or both. For a survey on the status of the four versions of the problem
see [5]. In the time bounds mentioned below we use V and E for the size of the
corresponding sets. No confusion will arise.

Edmonds [3] gave the first polynomial time algorithm to the problem, whose time
bound is O(V4). Lawler [8] and independently Gabow [4] improved Edmonds’
algorithm by finding a way to implement it in O(V3).0

We develop an O(EV log V) algorithm, which is much better for sparse graphs.
We note that for the problem of finding a maximal flow in networks, a number of
efficient algorithms for sparse graphs have been developed in recent years ([6], [9]),
while an O(V3) algorithm has been known for some time [7]. Our algorithm is also
an implementation of Edmonds’ algorithm.

Our improvement is derived from some simple observations on data structures.
We design two .generalized types of a priority queue by allowing some forms ofchanging
the priorities of the elements in the queue. We show that each operation on these
priority queues can still be implemented in time O(log n), where n is the total number
of elements.

In 1 we define the two types of priority queues. In 2 we show how to implement
each operation on these priority queues in time O(log n). In 3 we review the notions
of augmenting paths and blossoms. In 4 we describe our version of Edmonds’
algorithm. We leave out some details of the implementation. In 5 we show how a
straightforward implementation yields an O(EV2) algorithm. (Edmonds’ bound was

* Received by the editors June 16, 1983, and in revised form May 15, 1984.

" Computer Science Department Tel-Aviv University, Ramat Aviv, TeloAviv, Israel, and Computer
Science Department, Columbia University, New York, New York 10027. The research of this author was
supported in part by the National Science Foundation under grant MCS78-25301 at the University of
California at Berkeley, by the Israel Commission of Basic Research, and by the National Science Foundation
under grant MCS-8303139 at Columbia University.

t Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts
02138. The research of this author was supported in part by DARPA under grant N00039-82-C-0235 and
by the National Science Foundation under grant MCS82-04506 at the University of California at Berkeley.

Computer Science Department, University of Colorado, Boulder, Colorado 80309. The research of
this author was supported by the National Science Foundation under grant MCS-8302648.

120

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 121

O(V4).) Then we show the changes needed to obtain an O(V3) bound, yielding (a
more complete version of) the algorithm by Lawler [8]. In 6 we show how to use
the generalized priority queues to obtain the O(EV log V) algorithm.

1. Generalized priority queues. A priority queue 1 or a p.q. in short is an abstract
data structure consisting of a collection of elements, each with an associated real valued
priority. Three operations are possible on a p.q."

(1) insert an element with priority Pi;
(2) delete an element; and
(3) find an element with the minimal priority.

An implementation of a p.q. is said to be efficient if each operation takes O(log n)
time where n is the number of elements. Many efficient implementations of p.q.’s are
known, e.g., 2-3 trees 1].

In p.q.’s elements have fixed priorities. We consider here the following question.
What happens if we allow the priority of the elements to change? Obviously, an
additional operation which changes the priority of one element can be easily imple-
mented in time O(log n). On the other hand, it is not natural to allow arbitrary changes
in an arbitrary subset of the elements in one operation simply because one has to
specify all these changes.

We introduce two generalized types of p.q.’s which we denote by P.q.1 and P.q.2.

The first simply allows a uniform change in the priorities of all the elements currently
in it. The second allows a uniform change in the priorities of an easily specified subset
of the elements.

More precisely, p.q.1 enables the following additional operation:
(4) subtract from the priorities of all the current elements some real number 3.

This type of p.q. is not new. A version of p.q. was used by Tarjan [10]. Note that in
(4) we can add instead of subtract. In our case we will mostly subtract > 0.

To define p.q._ we first need some assumptions. We assume that the elements are
partitioned into groups. Every group is either active or nonactive. An element is active
(or not) if its group is. We assume that the elements are totally ordered. By splitting
a group according to an element we mean. to create two groups from all the elements
in the group greater (not greater) than i. Note that unlike the usual split operation we
split a group according to an element and not according to its priority.

The operations possible for p.q. are:
(1)’ insert an element with priority pi to one of the groups;
(2)’ delete an element;
(3)’ find an active element with the minimal priority;
(4)’ decrease the priorities of all the active elements by some real number 3;
(5)’ generate a new empty group (active or not);
(6)’ delete a group (active or not);
(7)’ change the status of a group from active to nonactive or vice versa; and
(8)’ split a group according to an element in it.
In 6 we use p.q. and p.q. to obtain an improved algorithm for finding a maximal

weighted matching in general graphs.

2. An efficient implementation for P.q.l and P.q.2. It may look at first that one may
need up to n steps to update all the priorities as a result of one change. However, it
is possible to implement efficiently p.q. and p.q.. In particular, the change of priorities
will be achieved implicitly by one operation.

p.q. can be easily simulated by a conventional p.q. We maintain A 3, where
the sum is over all changes so far. In the p.q. we use modified priorities which are

122 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

computed when elements are inserted into the p.q. The modified priority of is Pi + A.
So when an element is inserted we add A to its priority. The nice property of the
modified priority is that, unlike the original priority, it does not change. Tarjan’s
implementation [10] is more complicated because he also allows merging of p.q.’s.
Instead of storing priorities he maintains differences of priorities.

The efficient implementation of p.q., is less straightforward. Each group g has a
p.q. Ag corresponding to it, and each element has its modified priority. However, the
modification is not the same for all the elements. If is inserted into group g, then its
modified priority is set to pi + Ag, where Ag y 6, and the sum is over the changes
made when g was a part of an active group (possibly g itself). As for P.q.1, these
modified priorities do not change. To update Ag we maintain Agast, which is the value
of A when g was last considered (in operations (1)’, (2)’, (7)’, or (8)’). Whenever we
consider an active group g, before resetting its A last

_g we update Ag as follows" Ag -Ag+ A-Agast. When we split a group g to groups gl and g2 we set Ag,, Aaist---Ag for
1, 2. We also maintain a p.q. B which contains one element with the minimal

priority from every active group.
Implementing the first seven operations is quite easy. Note that an insert to or a

delete from Ag may require an insert to or a delete from B (or both). Note also that
if is in group g and its modified priority which is stored in Ag is q p + Ag), then
if it is inserted to B, the modified priority in the p.q. that implements B should be
qi-Ag + A. To efficiently implement a split one needs to make a key observation on
2-3 trees. We need the observation because, unlike conventional p.q.’s, we split
according to an element and not its priority.

In [1] two kinds of priority queues are described. In the first kind the elements
are stored in the leaves and each internal node contains the smallest element of the
two (or three) subtrees rooted at his sons. In the second kind the elements are stored
in the leaves, and in addition the order is preserved; i.e. the smallest element is stored
in the leftmost leaf, etc. This kind supports the operations of concatenate and split.
Such priorities queues are called concatenable queues.

In our case we have two order relations: the priorities and the order ofthe elements.
Fortunatey, the same. 2-3 tree can support both. It contains the information of the first
kind for handling the priorities, and of the second kind to handle the order of the
elements. The ability to handle both simultaneously is the result of the following
observation" assume we treat our 2-3 trees as being of the second type; we split them
or concatenate them. If we visit and possibly make changes in a node, we also visit
all its ancestors in the tree up to the root. These are exactly all the nodes that may be
affected and have to be updated if the tree is of the first kind. For more details on the
various operations see [1].

3. Blossoms and their representation. We assume that we are given a graph referred
to as the original graph, and a matching M. The algorithm discovers certain sets of
vertices (of odd size) called blossoms and shrinks them. It is convenient to consider
also the vertices of the graph as (trivial) blossoms of size one. Consequently, at any
moment the blossoms constitute the vertices of the current graph.

An alternating path from a vertex Uo to a vertex u in the original graph is a
sequence of edges {e=(u_, ui)}= such that u,..., Ur are distinct and for i=
1,..., r-1, e M iff e+l M. An alternating path from a blossom Bo to a blossom
Br (possibly Bo=Br) is a sequence of edges {ei=(U_l, v)}7=1 such that for i=
0, 1,. , r u, v Bi where B1," ", Br are distinct blossoms and for 1,. ., r- 1,
e M iff e+l M. When the algorithm discovers an alternating path of odd length

MAXIMAL WEIGHTED MATCHING IN GENERAL GRA,PHS 123

{ei=(ui-1, vi)}=l (r odd) from a blossom Bo to itself (Bo=Br; el, er-M), a new
blossom B is formed. The blossoms B1,’’ ", Br stop being blossoms and are referred
to as the subblossoms of B. Consequently, at any time each vertex is in a unique blossom.

Each blossom has a base vertex. The base of a trivial blossom is the unique vertex
in it. The base of the blossom B defined above is the base of Br. Note that if b is the
base of B and c is a vertex in B then (b, c) M. Also if u is in B and is not the base
of B, then there is a v in B such that (u, v) M and for every w not in B (u, w) M.

A nontrivial blossom is represented by the doubly linked list {(Bi, ei)}=l and by
its base. Note that

Fact 1. For every 1 =<i=< r-1, (el, e2, , ei) and (er, er-1, ", ei/l) are alternat-
ing paths from Bo to Bi. One is of odd length and one of even length. The one of even
length is the one whose last edge is in M.

An easy induction on the structure of the blossom implies
Fact 2. In the original graph, there is an even length alternating path from the

base of the blossom to any vertex in it.
A vertex is matched if there is an edge (i, j) in M, and is exposed otherwise. A

blossom is matched (exposed) if its base is. Edges in M are said to be matched. An
augmenting path is an alternating path between two exposed vertices (blossoms). By
Fact 2, any augmenting path between two exposed blossoms can be expanded to an
augmenting path in the original graph between the two (exposed) bases of these
blossoms.

One can define a tree that represents the structure of a blossom. In this tree
B1," , Br are the sons of B, and the leaves are the vertices of the blossom. We call
it the structure tree. This tree is implicitly represented by the lists {(Bi, ei)} --1. The tree
implies a total order on the vertices of the blossom: u < v if u is to the left of v in the
tree. Note that the base of a blossom is its largest vertex.

Although we conceptually consider the blossoms shrunk, we do not actually shrink
them. Edges (u, v) retain their identity. So u and v may belong to blossoms but the
edge remains (u, v). If we use such an edge and reach a vertex v we will need to find
the blossom of v. So in addition we represent blossoms as ordered sets of vertices. The
operations that we need are find, concatenate and split [1].

4. The algorithm.
4.1. A sketch of the algorithm. The algorithm applies the primal-dual method [8].

At any moment we have a matching M and an assignment of values to the dual
variables: ui for every vertex i, and Zk for every odd subset Bk of vertices, [Bkl 2rk + 1,
rk > 0. As will be explained below, it is not important to know what is the meaning of
the dual variables.

For every edge (i, j) we define

"rro=ui+uj-wj+ Zk.
k:i,jBk

By duality theory (see [8]), the matching has maximum weight if (0)-(3) hold for every
vertex i, edge. (i,j), and odd subset Bk:

(0) Ui, 7"fij Zk 0"
(1) i, j e M=22 "ffij O’,
(2) exposed =:> ui 0; and
(3) Zk>OB is full (l{(i,j)li,jn, (i,j)M}l--rk).
In fact, we need duality theory for motivation only. The following short proof

implies that if (0)-(3) hold, then the matching M has maximal weight: let ui, zk and

124 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

7r0 be the values associated with M, and let N be any other matching. Then

Z wo<= Z (u,+u)+ y y z,,<-Zu,+y.,’,,z,,= Z wo.
(i,j)eN (i,j)eN (i,j)eN k:i, jeB k (i,j)eM

The first inequality follows from o 0; the second from ui, Zk 0 and the fact that N
is a matching; and the equality follows from (2), (3) and the fact that M is a matching.

The algorithm will have Zk > 0 only for blossoms Bk. Consequently the number
of positive Zk’S will be small (O(V)). Moreover, (3) will hold automatically.

We start with M= and ui (maxk,/Wk,l)/2 for all and no blossoms (and no
Zk’S). So except for (2) all other conditions for optimality hold. The algorithm makes
changes that preserve (0), (1), (3) and eventually reduce the number of violations of
(2) to zero. The resulting matching therefore has maximal weight.

4.2. The search. The main part of the algorithm consists of a search for an
augmenting path between two exposed blossoms. The search uses only edges (i,j) with
7r =0. During the search, blossoms are labeled by $ and T, where an $ (T) label
denotes an even (odd) length alternating path from an exposed blossom. (Other papers
use outer and inner for S and T.) A blossom labeled by S (T) is referred to as an
S-blossom (a T-blossom). A vertex in an S-blossom (a T-blossom) is an S-vertex (a
T-vertex). We also have free blossomsmthose without a label, and free vertices--those
in free blossoms. During the search new (S) blossoms can be generated. The search
may lead to the discovery of an augmenting path. In this case the matching is augmented
and we have two less exposed vertices and consequently two less violations of (2).
After an augmentation all the labels are erased. So, all blossoms become free. Each
augmentation terminates a stage.

Initially all exposed blossoms are labeled S. Then the search uses useful edges to
label more blossoms. A useful edge is an unmatched edge (i, j) with r=0, an
S-vertex and j is either a free vertex (Case 1) or an S-vertex in a blossom different
from the blossom of (Case 2).

Case 1. j is in a free blossom B with base b. In this case B is labeled with T, (i, j)].
There must be an edge in M of the form (b, c) (otherwise B would be labeled by S).
Assume c is in a blossom C. C must be free because we always use immediately the
edge in the matching. (It cannot be labeled S because an $ label arrives always through
a matched edge, so it could arrive only through (b, c). It cannot be labeled by T
because if C were labeled by T, we would have immediately labeled B by S.) We label
C by IS, (b, c)]. The second part of the label records the edge through which it has
arrived. In the case of an $ label, this part is redundant because c is the base of C
and (b, c) is the unique edge in M that is incident with c.

Case 2. j is in an S-blossom B, is in an S-blossom C B.
Using the second part of the labels, we backtrack along the two paths from exposed

blossoms to B and to C. If the exposed blossoms are different, an augmenting path
has been found. If they are the same, a new blossom is discovered.

If we discover an augmenting path between two exposed blossoms, we first change
the status of the edges on the path (from matched to unmatched and vice versa).
Consider a blossom B on this path and the two edges e M and e’ M incident with
it. The first enters b, the base of B, and the second leaves through some vertex c that
is in some subblossom B of B. (See Fig. 1.) We recursively find the even length
alternating path in B from b to c (guaranteed by Fact 2) and change the status of its
edges: Using the list of subblossoms of B and Fact 1, we find the alternating path
through the subblossoms of B (el," ", e or ei+l, ek) of even length. We change
the status of the edges on this even length path. We also change the base of B to c

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 125

(a) (b)

FIG. 1. Recursivelyfinding the augmentingpath. Matched edges are drawn wiggly. (a) Before the augmenta-
tion in a blossom B. The base is b and the list ofsubblossoms {(B1, el)," , (B7, e7)}. (b) After the augmentation
in B. The base is c and the subblossom list is {(B3, e4) (B2, e3) (B1, e2)(B7, el), (B6, e7) (B5, e6), (B4, es)}.

and cyclically permute the list of subblossoms of B (so Bi is now last). We continue
recursively with the subblossoms along this even length path. The parts ofthe alternating
paths inside the two exposed blossoms are found similarly.

In case the backtracking leads to the same exposed blossom, we find the first
common blossom D on the two paths. We use the parts of the paths from D to B and
to C to generate the list {(Bi, ei)}__l for the new blossom. Br D and ei are taken
from the two paths. We initialize the dual variable associated with the new blossom
to 0, and label the new blossom by $.

During the search we choose any useful edge and act according to the case we
are in. As a result, some useful edges may stop being useful and some edges may
become useful. The search may succeed (if we find an alternating path) or fail (if there
are no more useful edges).

4.3. A change in the dual variables. If the search fails, we make the following
changes in the dual variables. We choose 8 > 0 and execute"

(a) u u-8 for every S-vertex i;
(b) u u + 8 for every T-vertex i;
(c) Zk Zk + 28 for every S-blossom Bk; and
(d) Zk Zk--28 for every T-blossom Bk.
Such a choice of 8 preserves (1) and (3). To preserve (0) we choose 8=

min (81, 82, 83, 84), where

81 min u
i: S-vertex

82 min r0
(i,j)E
i: S-vertex
j: free vertex

83 min rij/ 2)
(i,j)E
i,j: S-vertices not in the same blossom

84 min (Zk/2)
Bk a T-blossom

Note that 81 u (maxk, Wk,)/2- A, where io is any exposed vertex and A is the
sum of the changes 8 so far. This is because initially u=(maxk, Wk,)/2 for every
S-vertex i, and the fact that the exposed vertices were always S-vertices and their u’s
were always decreased by & Consequently, if 8 81, then after the change (2) is
satisfied and we have a matching with maximal weight.

126 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

If 3 34, we expand all T-blossoms Bk on which the minimum was attained.
(Their Zk becomes 0.) Expanding a blossom B is described in Fig. 2. B stops being a
blossom and its subblossoms become blossoms. The label of B is IT, (p, q)] where
(p, q) is the edge through which B received its T label. Assume q Bi, where B1, , Br
are the subblossoms of B. The subblossoms on the odd length path from Bo Br to

Bi (see Fact 1) except for Bo and Bi become free. The ones on the even length path
get alternating labels starting and ending with T. It is here where we need the split
operation. For i= 1,. ., r-1, we split each Bi from B according to its base which is
its largest element. As a result of expanding a T-blossom some edges may become
useful. If that is the case we resume the search. Otherwise we make another change
of the dual variables.

(a)
FIG. 2. Expanding a T-blossom: (a) before, and (b) after the expansion.

(b)

If 3 32 (3 33), all edges (i,j) with an S-vertex andj a free vertex (an S-vertex
not in the same blossom) on which the minimum was attained become useful (their
7rj becomes 0) and we resume the search. The two cases correspond to the two cases
in 4.2.

At the end of each stage we also expand all S-blossoms Bk with zk 0. Note that
finding the alternating path within a blossom can be deferred to the time we expand
it. This way we save the repeated changes within the same blossom.

Keeping the blossoms with positive dual variables to the next stage is important.
This makes sure that (3) always holds. This explains why T-blossoms can be generated.
The latter are expanded whenever their dual variables become 0.

5. The known algorithms. Let us call a substage each change in the dual variables.
Obviously, there are O(V) stages. There are O(V) different blossoms per stage: each
S-blossom corresponds to a unique node in one of the structure trees at the end of a

stage. Each T-blossom (free blossom) corresponds to a unique node in one of the
structure trees at the beginning of the stage. But, whenever 3 32 (3 "--33) a new
T-blossom (S-blossom) is generated, and whenever 3 34 a T-blossom isexpanded.
Hence, 3 3, i= 2, 3, 4, at most O(V) times per stage. Finally, 3 31 at most once.
Consequently, there are O(V) substages per stage.

The most costly part in a substage is finding useful edges and computing 3. The
obvious way to do it takes O(E) steps (in each substage we consider all the edges)
and yields an O(EV2) algorithm. To maintain the sets one uses ordered lists for
concatenate and split and an array for the find. The naive implementation costs O(V3).
(There are O(V) concatenates and splits per stage, each costs O(V).) The cost of
maintaining the dual variables is also O(V3) (O(V) per substage). The resulting

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 127

algorithm is essentially Edmonds’ algorithm. The time bound that was given for it was
O(V4) because E was bounded above by V2.

The only parts which require more than O(V3) are maintaining 62 and 63 and
finding useful edges. The latter is handled automatically because 62-0 (63 --0) if
there are useful edges of Case 1 (Case 2) and these are the edges on which the minimum
(0) is attained. We show first how to take care of 62. For every free vertex (T-vertex)
j let

Then

rj= min ro.
(i,j)F

i: S-vertex

62 min
j: free vertex

Together with rj we record an edge (i, j), an S-vertex, such that r r0. For each
change of 6, we only change r. for free vertices j. Consequently, the changes of {
and computing 62 cost O(V3). Recall that free vertices may become T-vertices (when
a blossom is labeled by T) and T-vertices may become free (when we expand a
T-blossom). That is why we need 5’s for T-vertices as well.

To take care of 8, we define for every pair of S-blossoms Bk, B,

ok, min (i/2).
(i,j)E
i Bk,j B

We record the edge ek, on which the minimum is attained and maintain pg min p,.
We do not maintain Pk,, but any time we need it we compute it by using ek,. Obviously
83 mink Pk. The changes in the dual variables and computing 83 cost O(V3) as for
82. We have to update {Pk} and {ek,} any time an S-blossom Bk is constructed from
Bi,..., B; Recall that (r+ 1)/2 of them are S-blossoms and (r-l)/2 of them are
T-blossoms. We first "make" each T-blossom B, an S-blossom by scanning all its
edges and computing for it {p,,,} and {e,,,}. Then we use the p,,’s of B,,. ., B to
compute Ck, { ek,} for the new blossom Bk, and to update {#j} for j # k.

The total cost (per stage) to make T-blossoms S-blossoms is O(E). We now
compute T(n), the rest of the cost of maintaining 83, where n is the number of
S-blossoms plus the number of non S-vertices in the graph. As above, assume that a
new S-blossom is constructed from r subblossoms. It follows that T(n) <-

crn + T(n r + l) because rn is a bound on the number of Pk,’S considered after making
the T-blossoms S-blossoms. T(n) O(n2) (by induction on n), and the cost of comput-
ing 83 is O(V3). The resulting O(V3) algorithm is essentially a (more complete version
of) Lawler’s algorithm [8].

6. The O(EV log V) algorithm. The most costly part of Edmonds’ algorithm is
the frequent updates of the dual variables, which cause changes in {zr,j}. Note that
all the elements that determine each 8 are decreased by 8 for each change in the dual
variables.

The new algorithm is also an implementation of Edmonds’ algorithm. The high
level description of 4 (including the search, augmenting the matching, the change of
dual variables and the resulting changes in the blossoms) is identical. The main
difference is in maintaining the 8’s by generalized priority queues that we describe next.

We maintain 8 by a p.q.. In this p.q. the elements are the S-vertices and their
priorities u. We do not need this p.q. for computing 8, since
(maxg, Wk,)/2--A where io is any exposed vertex and A is the sum of the 8’s so far.
We use a p.q. because we need to maintain the u’s for computing zr) when the edge

128 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

(i,j) is considered. For the same reason we maintain another P.q.1 for the ui’s of the
T-vertices.

We maintain 83 by a P.q.1. The p.q. contains all good edges (i, j) with and j in
different S-blossoms as well as some superfluous edges (i, j) with and j in the same
S-blossom. The reason for having superfluous edges is that we do not have time to
locate them and delete them any time a new S-blossom is constructed. The priority of
a good edge (i, j) is 7rij/2.

We maintain 84 by a P.q.1. The elements in the p.q. are the T-blossoms Bk and
their priority Zk/2. We have a similar p.q.1 for the S-blossoms, because we need to
maintain their Zk. (At the end of a stage they become free and in the next stage they
may become T-blossoms.)

If we try to maintain 82 by a P.q.1, we have a difficulty. Consider Fig. 3. Initially
there may be a large free blossom B. At that time all edges in Fig. 3 should be
considered for finding the value of 82. B may become a T-blossom. Then these edges
are not among those edges that determine 82. Later on B1 may be expanded and one
of its subblossoms, B2, may become free. The latter may later become a T-blossom
and so on. A simple implementation requires the consideration of each such edge an
unbounded number of times (up to k in Fig. 3).

$

FIG. 3. Edges from an exposed vertex to the innermost blossom that we may have to consider again and

again if the blossoms B, , Bk are eventually expanded.

To maintain 82 we have a P.q.2. For every free blossom (T-blossom) Bk we have
an active (a nonactive) group of all the edges from S-vertices to vertices in Bk. The
priority of an edge (i, j) is 7rij. Note that if (i, j) is in a nonactive group (i is an S-vertex
and j is a T-vertex), then 7rj does not change when we make a change in the dual
variables. It is now easy to verify that the eight operations of P.q.2 suffice for our
purposes.

Consider a group g which corresponds to a blossom B. The elements of the group
are the edges {(i,j)[i an S-vertex, jB}. The order on the elements is derived from
the order on the vertices of B. The order between two edges (i, j) and i2, j) is arbitrary.
The order enables us to split the group corresponding to B to the groups corresponding
to B,. ., Br when we expand B to its subblossoms.

The search is similar to the one described in 4.2. The labeling process is identical.
During the search, whenever we have a new S-vertex we consider in turn all the

MAXIMAL WEIGHTED MATCHING IN GENERAL GRAPHS 129

edges (i, j). This requires a queue Q for new S-vertices, since we sometimes have many
new S-vertices at once. When considering an edge (i, j) we distinguish between 3 cases
depending on the type of B the blossom of j.

Case I (II). B is a free blossom (T-blossom). We insert (i, j) with priority ri to
the active (nonactive) group corresponding to B.

Case III. B is an S-blossom. If the blossom of is not B we insert (i, j) with
priority ri/2 to the P.q.l that maintains 83.

During the search we compute 8 min (81, 82, 83, 84). If 8 > 0, we make a change
of 8 in the dual variables. This is accomplished by increasing A by 8, and results in a
new value of 8 0.

If 8 0, we consider all 8 0. If 81 0, then we are done. If 82 0, this means
that the minimum (0) is achieved on an edge (i, j) j in a free blossom B; i.e. (i, j) is
useful. We delete (i, j) from the corresponding p.q. and label as in Case 1 of 4.2. In
addition the group corresponding to B becomes nonactive (B is labeled by T) and
the group corresponding to C is deleted and the vertices in C (that become S-vertices)
are inserted into Q. We repeat the above as long as 82 0.

If 83 0 we delete one by one the elements (i, j) in this p.q. with priority r 0.
If and j are in the same blossom we do not do anything. Otherwise ((i,j) is useful)
we act as in Case 2 of 4.2. If a new S-blossom is generated, then for all the subblossoms
B that were T-blossoms up till now we delete the group corresponding to B (from
the P.q.2 of 82) and insert all the vertices of B to Q.

If 84 -’-0, we delete one by one the elements Bk in this p.q. with priority Zk O.
For each such Bk, we expand it and label the-new blossoms (the previous subblossoms
of Bk) as in 4.3 and Fig. 2. We split the corresponding group in the P.q.2 of 82. The
groups corresponding to the new free blossoms (T-blossoms) are inserted as active
(nonactive) groups to the P.q.2. The vertices of the new S-blossoms are inserted to Q.

To derive an O(EV log V) time bound we need to implement carefully two parts
of the algorithm:

1. We maintain the sets of vertices in each blossom (for finding the blossom of
a given vertex) by concatenable queues 1]. Note that the number of finds, concatenates
and splits is O(E) per stage.

2. Assume we consider an edge (i,j) where both and j are S-vertices not in the
same blossom. If we execute the backtracking as described above, we may need up to
O(V3) time. Instead, we make a careful backtrack by backtracking one blossom on
both paths each time, marking the blossoms on the way. If there are r subblossoms
in the new blossom, then we will visit at most 2r blossoms before discovering the first
common blossom on both paths (D). So the total number of blossoms that we traverse
in one stage is O(V). (Charge 2 each one of the corresponding nodes in the correspond-
ing structure tree.)

The time bound is easily derived as follows. There are at most V augmentations.
Between two augmentations we consider each edge at most twice and have O(E)
operations on (generalized) p.q.’s. (This includes 1 and 2 above.)

Note added in proof. The Q(EV log V) algorithm for finding weighted matching
in general graphs has been recently improved (slightly) to O(EV log log logd V+
V210g V), where d=max.(E/V, 2) [11]. This time bound equals O(EV) if E=
f(Vl+a), for any a > 0 and consequently is o(EV log V) unless E I’(V2) and is
o(V2) unless E O(V). The new algorithm is similar to the O(EV log V) algorithm.
The main difference is the use of new data structures instead of regular p.q.’s in the
p.q.l’s and P.q.2.

130 ZVI GALIL, SILVIO MICALI AND HAROLD GABOW

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. EDMONDS, Path, trees and flowers, Canad. J. Math., 17 (1965), pp. 449-467.
[3], Maximum matching and a polyhedron with O, vertices, J. Res. NBS 69B (April-June 1965),

pp. 125-130.
[4] H. N. GABOW, Implementation ofalgorithmsfor maximum matching on nonbipartite graphs, Ph.D. thesis,

Stanford Univ., Stanford, CA, 1974.
[5] Z. GALIL, Efficient algorithms for finding maximal matching in graphs, Tech. Rep., Dept. Computer

Science, Columbia Univ., New York, 1983.
[6] Z. GALIL AND A. NAAMAD, An O(EV log V) algorithm for the maximal flow problem, J. Comput.

System Sci., 21 (1980), pp. 203-217.
[7] A. V. KARZANOV, Determining the maximal flow in a network by the method ofpreflows, Soviet Math.

Dokl., 15 (1974), pp. 434:-437.
[8] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New

York, 1976.
[9] D. D. SLEATOR, An 0 (mn log m) algorithm for maximum network flow, Ph.D. thesis, Stanford Univ.,

Stanford, CA, December 1980.
[10] R. E. TARJAN, Finding optimum branchings, Networks, 7 (1977), pp. 25-35.
[11] H. N. GABOW, Z. GALIL AND T. H. SPENCER, Efficient implementation of graph algorithms using

contractions, Proc. 25th IEEE Symposium on Foundations of Computer Science, 1984, pp. 347-357.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
010

OPTIMAL TERMINATION PROTOCOLS FOR NETWORK PARTITIONING*

FRANCIS CHIN AND K. V. S. RAMARAOt

Abstract. We address the problem of maintaining the distributed database consistency in presence of
failures while maximizing the database availability. Network Partitioning is a failure which partitions the
distributed system into a number of parts, no part being able to communicate with any other. Formalizations
of various notions in this context are developed and two measures for the performances of protocols in
presence of a network partitioning are introduced. A general optimality theory is developed for two classes
of protocols--centralized and decentralized. Optimal protocols are produced in all cases.

Key words, commit protocols, consistency, database availability, distributed databases, fault-tolerance,
network partitioning, optimal protocals, transaction processing

1. Introduction. A database DB consists of a collection of entities D=
{dl, d2," ’’, din} such that each di in D has a value set V associated to it, and a set R
of relations r on Xi=l V which we call consistency constraints for DB. An instance of
the database DB is an element from Xi=l V. An instance (Vl, v2,"" ", v,) of DB is
consistent if and only if (Vl, v2,’’ ", Vm) is in r for all r in R.

User programs map the set of database instances into itself. We are primarily
interested in those programs that map the set of consistent database instances into
itself. Executions of such programs are known as transactions and play the central
role in database literature [10], [12]. Formally, a transaction is an execution of a
(user) program, t’X=l V--> X=I v such that for any consistent instance I, t(I) is
also consistent. If only a sequence of transactions is allowed to operate on a consistent
database instance, then the final instance is also guaranteed to be consistent. We require
that all transactions are ensured that the instances they are going to operate on are
consistent. This guarantees the database consistency, without any need for an explicit
validation of the consistency constraints. Several mechanisms are available which
guarantee .that any transaction sees an initial consistent instance and can map the set
of consistent DB instances into itself even if several transactions are being concurrently
run. See [2], [3] for a comprehensive survey on this area.

Without loss of generality, assume that, if O1, O2,’", Ok is the sequence of
operations in a transaction, then no subsequence O1, 02, , Op, 1 <= p < k, guarantees
the resulting database instance to be consistent. At the implementation level, this would
imply that, given a consistent instance I1 of DB, a transaction acting on I1 would
lead to a consistent instance I_ if and only if either does not modify I1 or all
modifications made by are incorporated onto I1. Such an implementation of a
transaction is known as atomic implementation [12]. Thus, a transaction can legally
be completed in only one of two possible modes--either it is committed in which case
all its effects are incorporated into the database instance, or it is aborted in which case
none of its effects are incorporated.

A distributed system is an undirected connected graph (3 (V, E). Each node
represents a site consisting of a processor and possibly storage and other modules.
Each edge represents a communication link. A database is said to be distributed if it
physically resides at more than one site. That is, each site contains a subset of the
database entities. We make no assumptions on the degree of replication--each entity

* Received by the editors November 29, 1982, and in revised form August 25, 1984.
f Department of Computer Studies, University of Hong Kong, Pokfirlam Road, Hong Kong.
Department of Computer Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260.

131

132 FRANCIS CHIN AND K. V. S. RAMARAO

di resides at a number of sites rti, 1 _-< n, <-[VI. A transaction is said to be distributed if
it is physically run at more than one site. A site at which a distributed transaction is
executed is known as a "participating site" for that transaction. It can be seen that a
distributed transaction can be atomically implemented if and only if either all participat-
ing sites commit it or all of them abort it. Communication among the participating
sites is required to guarantee this condition and such protocols are known as commit

protocols [10]. Thus, an execution of a commit protocol is associated with each
transaction. Without loss of generality, assume that each transaction has all sites in
the distributed system participating in its execution.

A number of possible failures could occur in a distributed system. "Processor
malfunctioning" is one of the most widely studied failures in the literature. See [14]
for an informal survey of this topic. "Clean" site failures, where the processor at a
site simply stops in case of a fault, are also extensively studied [1], [4], [8], [10], [11],
[15]. A third kind of failure, the one we are interested in, is "network partitioning"
where the graph G gets partitioned into a number of connected subgraphs. Existing
literature on this problem is rather sparse [6], [7], [17].

In practice, commit protocols are not expected to handle failures in the system.
Thus, the commit protocol is simply frozen when a fault is detected and a new type
of protocol, known as "termination protocol" (TP) is invoked to handle the exception.
(Formal definitions of these protocols will be given in 2.) An execution of the TP
directs the termination of an incomplete transaction. We require that the TPs also
guarantee the database consistency. A commit protocol P is said to be nonblocking
[15] to a failure type F if and only if there is a TP associated with P such that any
incomplete transaction in presence of an arbitrary instance of F can be consistently
completed at all operational sites by that TP. P is blocking otherwise. Obviously, one
would prefer nonblocking protocols since they enhance the availability of the database.

Our interest in the network partitioning problem stems from the fact that there
exists no commit protocol nonblocking to network partitioning [17]. Contributions
made in this paper are as follows:

1. Formalization of termination protocols for network partitioning which extracts
all the available information into the formalism.

2. Study of the properties of TPs, introducing the notion of "nontrivial" TPs.
3. Characterization of commit protocols allowing nontrivial TPs, recognition of

a canonical commit protocol.
4. Introduction of measures for the performance of TPs.
5. Development of an optimality theory for these measures and the design of

optimal termination protocols.
Organization of this paper is as follows: Section 2 develops the necessary theoreti-

cal background for the study of TPs. Notion of nontrivial TPs is introduced and a
characterization theorem is proved. Section 3 presents the optimality results and optimal
protocols for a class of protocols known as decentralized protocols. Section 4 deals
with the centralized protocols. The effectiveness of centralized and decentralized
protocols is compared and it is proved that certain centralized protocols are superior.
Section 5 discusses certain consequences of our results and concludes the paper.

2. Formal background. The following model of a distributed transaction is used
throughout the paper: a transaction is initiated at some site in the system and is
decomposed into an appropriate number of subtransactions such that each site par-
ticipating in would run exactly one subtransaction. No assumption is made on how
this is accomplishedma simple scheme is for the site where is originated itself to

PROTOCOLS FOR NETWORK PARTITIONING 133

compute this. Each participating site receives its subtransaction, runs it concurrently
with others and makes a (local) decision of "commit" or "abort." All participating
sites then cooperatively make a global "commit" or "abort" decision following a
commit rule. Finally, they commit or abort the transaction according to the global
decision. The only requirement on the commit rule is that the conditions for "commit"
and "abort" global decisions partition the set of all possible combinations of local
decisions. For instance, a simple commit rule is as follows" if there is a site whose
local decision is "abort" then the global decision is "abort"; otherwise it is "commit."
The "commit" and "abort" actions, once implemented, are irreversible. Here, observe
that we are making a definite distinction between making a decision and implementing
it. In theory, a decision is reversible; but, once it is implemented, it cannot be reversed.

In this model of distributed transaction, commit protocol comes into play in
implementing the commit rule. Specifically, its task is to ensure that, a) a global decision
according to a commit rule is made on the mode of completion, and b) the same
decision is implemented by all sites. We assume that the processors do not exhibit any
malicious behavior.

One simple commit protocol is to pool all local decisions at a specific site, let that
site apply the commit rule and compute the global decision which can be sent to all
other participating sites. Such protocols where a single site coordinates the task of
completing a transaction are known as "centralized" protocols. At the other extreme,
each site can independently contact all other sites. These are known as "decentralized"
protocols. Though several intermediate schemes are possible, results obtained in these
two cases can be easily extended to all other cases. In this paper, we study only the
centralized and decentralized protocols.

We model the execution of a commit protocol by a collection of finite state
automata (FSA), one associated with each participating site [17]. An FSA in a state
s reads a set of messages from other sites, performs local computation (if any), sends
a (possibly empty) set of messages to other sites, and changes its state. Each FSA
satisfies the following conditions:

1. It is indeterministic.
2. Each transition is associated with a unique input.
3. The final states are partitioned into two classes--"abort states" Ab and "commit

states" Com.
4. There are no transitions from a final state.
5. The state graph is acyclic.
Notation. For any FSA, we denote all nonfinal states that lead only to commit

states by Pc, all nonfinal states that lead only to abort states by Pa, and all states that
lead to both commit and abort states by N. When necessary, we use the identity of
the site as a suffix to distinguish FSAs at different sites. For simplicity, we equate the
FSA at a site to the site itself. Thus, we use "site i" to mean "the FSA at site i" when
no confusion can arise.

DEFINrrION 1. A protocol P represented by a collection of FSAs with the above
properties is a commit protocol if and only if for every input (from the input alphabet
of messages on local and global decisions), the FSAs all reach final states from the
same class (either Ab or Com) in the absence of any failures.

2.1. Structure of the FSAs. State graphs of FSAs in a commit protocol are acyclic
digraphs by definition. Now, we assume that they are in fact trees. (It is easy to see
that any acyclic FSA with the above properties can be converted into a tree FSA, by
introducing some dummy states if necessary.) Practical considerations introduce more

134 FRANCIS CHIN AND K. V. S. RAMARAO

structure into the FSAs. One such aspect is the "degree of synchronization" among
the FSAs [17]:

DEFINITION 2. Let P be a protocol and F, F2,’’ ", F, the FSA in P. A global
state of P, (s, s2,"’", s,), is an element of S(F) S(Fa) ... S(F,) where S(Fi) is
the set of states in F,, 1 -<_ -<_ n, with the property that there is an input for P on which

F are concurrently in states s, 1 _<- <- n.
For any state s in an FSA, let d(s) represent the number of state transitions

required to transform the initial state into s. A protocol P is said to be "synchronized
within k states" for k_>-l, if and only if ld(s)-d(t)l<-_k for all pairs of states s, in
two different FSAs such that there is a global state of P in which both s, occur.
During the execution of a commit protocol, each site sends certain messages out and
waits for similar messages or responses to its own messages from certain other sites.
Thus, the sites "progress" through the execution of the protocol at approximately the
same pace. In fact, no site leads any other site by more than one state transition. Thus,
all commit protocols being used are synchronized within one state. For instance, if a
site has reached a final state, any other site is either in a final state or in a state adjacent
to a final state. Commit protocols synchronized within one state can be justified by
the fact that they are inexpensive while no generality is sacrificed in using them.

LEMMA 1. Let P be a commit protocol synchronized within one state. Then, all its
FSA are isomorphic.

Proofi Let F, F: be two FSAs of P. For any path from the initial state to a final
state of F1, there corresponds a path in F: from its initial state to a final state. The
lengths of these paths can differ at most by one, due to the synchronization. When
they differ, a dummy state can be introduced into the appropriate FSA without changing
its behavior. Since there is a unique input associated with each transition, there
correspond two different paths in F: for any two different paths in F1. Hence, being
trees, the state graphs of F1, F: are isomorphic. Q.E.D.

All FSAs in a protocol can be identical in which case we call it a uniform protocol.
It is nonuniform otherwise. Observe that the decentralized commit protocols are
uniform while the centralized are not.

2.2. Termination protocols. Given that a site is in state s, consider the set of all
possible states any other site j could be in at the same (global) instance. In a uniform
commit protocol where the FSAs are synchronized within one state, such possible
states are simply the states adjacent to s (assuming the same names for states in different

FSAs).
DEFNrrION 3. Let P be a commit protocol. The concurrency set of a state s at

site i, denoted by R(i, s), is the set of all ordered pairs (j, t) such that there is a global
state (Sl, s_,..., sn) of P satisfying s si and sj.

The following property of commit protocols is immediate:
PROPERTY 1. If S Ab [_J Pa, then there does not exist an ordered pair (j, t) in

R (i, s) for any Corn U Pc and for any sites i, j, and conversely, if s Com U Pc, then
there does not exist (j, t) in R (i, s) for any Ab [_J Pa.

Let Q be the set of states in a uniform commit protocol P. Let J denote the power
set of V x Q. Let D be the maximal subset of J such that S D if and only if

i) (i, s) S and (i, t) S implies s t,
ii) (i, s), (j, t) S implies (j, t) R(i, s) and (i, s) R(j, t).
It is not hard to extend the definition ofD to nonuniform protocols. The importance

of D is based on the following concern: Recall that a network partitioning partitions
the graph G into a number of connected subgraphs such that there is no edge joining

any two of these subgraphs. This could happen due to the deletion (failure) of certain

PROTOCOLS FOR NETWORK PARTITIONING 135

nodes (sites) and/or edges (communication links). When such a partitioning is detected,
the commit protocol is frozen and each site remains in a well defined state. The entity
D defined above provides us with the formal representation of the status of each
subgraph immediately after a partitioning is detected. Any set S in D corresponds to
a physically realizable subgraph, embedding the status of a transaction being run with
the commit protocol P. Notice that all the information available in the physical
partitioning has been extracted into this formalism: the first condition represents the
fact that no site can be in more than one state at the same time, while the second
ensures that the concurrency relations of states under P are preserved. We call such
S in D a component so that D represents the set of all physically realizable components
ofthe given network under a given commit protocol. For $ in D, let site (S) { il(i, s) S
for some s Q} and state (S) {s[(i, s) S for some V}. Extending the above
definition of concurrency to different components, we say two components S, T are
concurrent if and only if a) site (S)f’)site (T) =, and b) for (i, s) S and (j, t) T,
(i, s) R(j, t) and (j, t) R(i, s). The second condition can be restated simply as
S tA T D. In the following, we first describe the centralized version of the general
termination protocol before formally defining it.

When a network partitioning is detected, sites in each component S "elect" a
single site as a "coordinator" to execute the termination protocol (TP). (See [9] for
some election protocols.) Coordinator collects the identities of the sites and their states,
and applies the TP based on this information. Let x, y, z represent the actions to be
taken by a TP. The coordinator delays the transaction until a network reconfiguration
if the action is z. It directs the other sites to commit (abort) if the action is x (y). The
primary requirement for a TP is that it consistently terminates a transaction in presence
of faults. The situation is quite involved in case of network partitioning since there
can exist a number of components in the system, each trying to complete the incomplete
transactions, independent of all other components. In spite of these independent
activities, each transaction’s atomic implementation and consistency should be guaran-
teed. The following definition formulates the notion of a TP:

DEFINITION 4. Let P be a commit protocol. Let f: D {x, y, z} be any function.
We say f has preservation property if and only if, for any S in D,

i) state (S) f) Com implies f(S) x,
ii) state (S) f) Ab implies f($) y.
f has commit property if and only if, for any two concurrent components S, T in

D, {f(S),f(T)} {x, y}.
f is a termination protocol (TP) if and only iff has both preservation and commit

properties.
Observe that the commit and preservation properties are mutually consistent due

to Property 1. Notice that we have considered three possible actions x, y, z for a TP,
in contrast to only two actions for a commit protocol. This is due to the following
previously known result:

THEOREM 1 [17]. Let P be a commit protocol Assume that arbitrary network
partitionings are possible. Then, for any TP f of P, there exists a component S in D such
that f(S) x and f(S) y.

Thus, there are occasions on which a component should wait until a reconfigur-
ation. Given the above limitation, we want to optimize the performance of TPs.

The above definition of TPs does not specify how a TP is implemented and how
reconfigurations are handled. We leave these details unspecified. We do not require
any assumptions in this respect for the purposes of this paper. The interested reader
is referred to [13].

The following property of TPs is immediate from the definition.

136 FRANCIS CHIN AND K. V. S. RAMARAO

PROPERTY 2. Let P be a commit protocol synchronized within k states, for k_-> 1.
For any FSA, let Pak={SPalld(a)-d(s)I<-_k for some aAb}, Pce-
{sPclld(c)-d(s)l<-_k for some c Com}. Let f be any TP of P. Then, for any S in
D,

i) state (S)__ (N Pak) implies f(S) x,
ii) state (S)

_
Pce implies f(S) y.

2.3. Measuring the performance of TPs. For a given commit protocol, we wish to
find the TP which maximizes the number of incomplete transactions that can be
completed, when used in conjunction with all possible network partitionings. This is
because an incomplete transaction makes its resources unavailable to the other transac-
tions. Since a transaction may be completed in one component and kept incomplete
in another, the number of components where transactions are completed needs to be
maximized. On the other hand, it is not wise to complete a transaction in a "small"
component (containing a few sites) while leaving an incomplete transaction in a large
component. Hence, the number of sites should also be considered in assessing the
performance of a TP. Given a TPf, let CM (f) [{S D[f(S) z}[and SM (f)
where S D and f(S) z}.

DEFINrrION 5. Let P be a commit protocol. A TPf of P is component optimal in
a class of TPs F if and only if CM (f)_-< CM (f’) for all f’ in F.

DEFINITION 6. A TP f of P is site optimal in F if and only if SM (f)_-< SM (f’)
for all f’ in F.

2.4. Nontrivial termination protocols. As the first step towards an optimality theory,
we ask: how many TPs does a commit protocol have? Clearly, any commit protocol
has at least one TP defined as follows: for S D, states (S) 71Com # implies f(S) x,
state (S) VI Ab implies f($) y, and f(S) z otherwise. This TP is trivial since it
satisfies the commit property by doing nothing. We intend to find more effective,
"nontrivial" TPs.

For simplicity, we restrict our attention to commit protocols synchronized within
one state throughout the remainder of this paper. The results obtained can be extended
without much difficulty.

DEFINITION 7. Let P be a commit protocol (synchronized within one state) and
fa TP of P. For any FSA of P, let Np--’{sG Nlld(t)-d(s)[= 1 for some Pc Com}
and PN={s6Pcl[d(t)-d(s)l= for some t N}. We sayf is a nontrivial TP (NTP)
if one of the following is true: i) There exists S in D such that coordinator site (S)
(for centralized P), state (S) __c_ Np and f(S) z. ii) Let PN for some FSA. There
exists S in D such that state (S)c_ Pv and f(S) # z.

This definition extracts the cases where an intelligent behavior is demanded from
the TP. Existence of NTPs depends directly on the commit protocol. For instance,
consider the following decentralized version of the widely-used two-phase commit
protocol [10], [11]:

Step 1. Each site sends its local decision to all other participating sites and receives
the local decisions of all other participating sites.

Step 2. Using the commit rule, each site computes the global decision. The
transaction is completed accordingly.

Figure 1 is the state diagram for these FSAs. Messages received are shown above
the line and messages sent out below the line.

It is not hard to check that this protocol has no NTP. In fact, it can be shown
that its only TP is the trivial one. Following is a characterization ofthe commit protocols
having NTPs.

PROTOCOLS FOR NETWORK PARTITIONING 137

\\
Subtransacti on Subtrans
--’e’--- I \

No
acti on

commit

\\

\\\\\,
()

FIG. 1. Two-phase commit protocol.

THEOREM 2. Let P be a commit protocoL Then, P has an NTP ifand only if Pc
for an FSA of P.

Proof. SufficiencymAssume that Pc for some FSA of P. Define f: D {x, y, z}
as follows:

for S D, state (S) f) (Com U Pc) <=>f(S) x,
state (S) CI (AbU Pa) <=>f(S) y, and
f($) z otherwise.

Let S, TeD such that SCIT=, f(S)=x and f(T)=y. Then, state(S) CI
(Com U Pc) and state (T) f) (Ab U Pa) . But, this implies by Property 1 that
S U T D, proving that f is a TP. Since there is an FSA in which Pc is nonempty by
hypothesis, Pv is nonempty for that FSA. Hence, f is an NTP.

NecessitymAssume that Pc for all FSAs of P, and that there is an NTP f of
P. Thus, there exists S D such that coordinator site (S), state (S) Np and f(S) # z.
As in Property 2, it can be shown that f(S)# x. Thus, f(S)= y. Consider S’ D such
that site (S’)c V-site (S) and state (S’)___ Com. Then, S LJ S’ D by the hypothesis.
Since f is a TP, f(S’)= x due to the preservation property. But, this implies that
(f(S),f(S’))=(y,x), a contradiction to the commit property off. Q.E.D.

Consequently, any version of the two-phase commit protocol cannot have an NTP.
In view of the above characterization, the simplest commit protocol with NTPs has at
least one FSA with the state graph shown in Fig. 2.

Any other commit protocol with NTPs can be considered as an extension of this
canonical commit protocol. This commit protocol is known in the literature as the
"three-phase commit" 15]. For simplicity, we consider only the commit protocol with
the above canonical state graph for a detailed study. This can be justified as follows:
It is clear from the definition of NTPs that the only states that need special attention
are the Np and P states, i.e., "wait" and "commitable" states. Hence, even if a more
general protocol is considered, all other states play no critical role in studying the
NTPs. Thus, the TPs of the canonical commit protocol can be extended to TPs of
more general protocols in a simple fashion.

138 FRANCIS CHIN AND K. V. S. RAMARAO

Subtransacti on Subtransacti on
Yes \

No

\\
ack

abort ’ \

FIG. 2. Three-phase commit protocol.

We consider the decentralized and centralized versions of the above canonical
commit protocol P: initial state is q, "wait" state is w, "commitable" state is p, "commit"
state is c, and "abort" state is a.

3. Decentralized commit protocol.
DEFINITION 8. A version P of the canonical commit protocol is decentralized if

and only if all FSAs are identical and each site communicates with all other sites.
TPs of the decentralized protocol are referred to as decentralized TPs (DTPs).
LEMMA 2. Letfbe a DTP ofP. Let S, T D such that state (S LJ T) fq (Com LJ Ab). Then, f(S) x and f(T) y implies that site (S) f-1 site (T) .
Proof. Assume that the claim is false and that there exist S, T in D with the above

properties. Then, state (S) N and state (T)t Pc by Property 2. This, together with
the assumption that site (S)f’l site (T)= Z implies that SLJ T D, thus violating the
commit property of f. Q.E.D.

From the definition of a TP, the above conditions are also sufficient. Hence, we
have,

THEOREM 3. Necessary and sufficient conditions that f: D-> {x, y, z} is a DTP are,
i) f satisfies the preservation property,
ii) state (S tA T) f’l (Com U Ab) , f(S) x and f(T) y implies that site (S)

site (T) # .
Following are two simple but powerful properties of DTPs which play a critical

role in obtaining the optimality results"

PROTOCOLS FOR NETWORK PARTITIONING 139

LEMMA 3. Let S D such that state S)
_

N. Construct T such that state (T)
_
Pc

and site (T) V-site (S). Then, for any DTP f (of the canonical commit protocol P),
either f(S) z or f(T) z or both.

Proof. Follows immediately from Theorem 3.
LEMMA 4. Let S, T D such that site (S) site (T), state (S) N, state (T)

_
Pc,

f(S) y and f(T) x. Then, f(R) z for any R in D such that site (R) V-site (S),
Proof. S R D and T R D for any such R. Owing to the commit property

of f, f(R) can neither be x nor y. Q.E.D.
For an intuitive understanding of the above result and the results to follow, let

us consider a simple tabular representation for the components. Consider for example
the case of three sites 1, 2, 3. Each site represents a column and each row is a vector
of states. It is sufficient to consider only the states w and p.

Each row in Table 1 can be interpreted as a component. For instance, row 1
represents the component {(3, w)} while row 5 represents the component {(1, w),
(3, w)}. If a TP f maps row (component) 1 to y, then it is easy to see that rows
(components) 12, 8, 9 should be mapped to z. Lemma 3 above formalizes this fact.
Similarly, if row 1 is mapped to y and row 7 is mapped to x by f, then the rows 2, 3,
6, 8, 9, 12, 17, 18 should all be mapped to z. This is formalized by Lemma 4.

TABLE

sites

states

2 3 2 3

1. w 10. p
2. w 11. p
3. w 12. p p
4. w w 13. w
5. w w 14. p
6. w w 15. w
7. p 16. p
8. p 17. w p
9. p 18. p w

We now give a lower bound on the component measure of the TPs, which can be
easily appreciated from the above tabular representation.

THEOREM 4. Let f be a DTP of P. Then, CM (f) _-> 2 2 where n VI.
Proof. Let S D such that state (S)

_
N. Let T D such that site (T) V-site (S)

and state (T)_ Pc. Either f(S)= z or f(T)= z by Lemma 3. Clearly, for any S in D
such that state (S)

_
N and ISI <_- n 1, there is a T such that eitherf(S) z orf(T) z.

But, the total number of such S in D is 2 -2. Thus, CM (f)= I{S DIf(S z}l >-

2-2. Q.E.D.
Observe that Theorem 1 follows simply as a corollary of this lower bound result.
DEFINITION 9. A quorum protocolf of P, characterized by an ordered pair (d, e)

of positive integers satisfying d + e > n, is a function f: D- {x, y, z} such that, a) f
satisfies the preservation property, b) state (S)fq Pc and ISI_-> d implies f(S) x,
c) (state (S) f’) Pc= OR Isl d) AND (state (S) f) S and ISI--> e) impliesf(S) y,
and d)f(S)= z otherwise.

Each ordered pair of integers (d, e) represents a different quorum protocol. It can
be verified using Theorem 3 that any quorum protocol is a DTP. Hereafter, we refer
to quorum protocols as QTPs. See [16] for a discussion of quorum protocols used as
commit protocols. The following result shows that QTPs exist in pairs in a strong sense:

140 FRANCIS CHIN AND K. V. S. RAMARAO

LEMMA 5. Let f be a QTP characterized by (d, e). Then, there exists another QTP
f’ such that CM (f)= CM (f’) and SM (f)= SM (f’).

Proof. Consider the QTP f’ characterized by (e, d). Observing that for any m,
1 <- m <- n, there exist S, T in D such that ISI TI m, state (S)

_
N and state (T)

_
Pc,

it is easy to check that the claim is true. Q.E.D.
THEOREM 5. There is a QTP g which is component optimal among all DTPs of P.
Proof. Consider the QTP g characterized by (1, n). Then, for any S in D, g(S) z

if and only if state (S)_ N. Thus, there are exactly 2n- 2 such components in total,
corresponding to all proper subsets of V. (Recall that IN 1.) Q.E.D.

The "dual" QTP given by (n, 1) is also optimal by Lemma 5. In fact, it is not hard
to see that the QTPs given by (2, n-1) and (n-l, 2) are also component optimal.
However, for n > 2, no other QTPs are component optimal. This can be checked from
the following general formula for CM (f) when f is the QTP given by (d, e)" assuming
that d _-> e,

CM (f)= 2 +
r----1

On the other hand, not all component optimal DTPs are QTPs. For instance,
consider a specific site i, map the component (i, w)) to z and T with site (T)- V-i
and state (T)= {p} to x while all other components are mapped as for the QTP given
by (n, 1). This new DTP is component optimal but not a QTP.

3.1. Site optimal protocols. First, we notice that the component optimal DTPs
obtained above may not be site optimal. To see this, let us consider the QTPs first.
For the QTP f given by (d, e), SM (f) can be shown to be

r. + r"
r=l

assuming that d -> e. Let f’ be the QTP given by (n 1, 2) and f" by (n -2, 3). Then,
it can be verified from the above formula that SM (f")< SM (f’) for n > 8. In general,
let ko be the smallest positive integer k such that k >-(n-k)(2n-k- 1). Denote by u
the QTP characterized by (ko, n- ko / 1). Now, we prove that u is site optimal among
the DTPs of P.

THEOREM 6. U is site optimal among all QTPs of P.
Proof For any m, n/2 -< rn < n, let f,, be the QTP given by (m, n rn + 1). Then,

For m<ko, m<(n-m)2--n+m, so that (n-m)2"-’-n>O. Thus, SM (f,)>
SM (f+). On the other hand, SM (f,,,)-<_ SM (f+l) for m -> ko. Hence, SM (f,) is
minimum for m ko. Q.E.D.

THEOREM 7. U is site optimal among all DTPs of P.
Proof. We want to show that every DTPf has a QTP of better performance under

the site measure. Application of the above theorem then proves our claim.
Case 1. Consider DTPf such that there are no S, T satisfying site (S) site (T),

state (S) N, state (T) Pc, f(S) y and f(T) x. Thus, for any M
_

V, at least one
of U or W where site (U) site (W) M, state (U) Pc, state (W) N, is mapped

PROTOCOLS FOR NETWORK PARTITIONING 141

n-1to z. Since there are subsets of V with size r, 1-<_ r< n, SM (f)_>-Er=l r" (7). Now,
consider the QTP s characterized by (n-1, 2). SM (f)- SM (s)= n2-2n > 0 for n> 2.

Case 2. Consider DTP f such that there exist $, T satisfying M =site (S)=
site (T), state (S) N, state (T) Pc, f(S) y and f(T) x. Assume that f(S’) z for
all S’ such that site (S’)= site (S) since it would not increase SM (f). Let S be the
smallest component satisfying the above conditions. If S <- [n/2], then it is not hard
to check that SM (f)> SM (g). (Recall that g is the QTP given by (n, 1).) Assume that
S> [n/2J. Let

L {M

V[there exist S, S’ in D, such that site (S) site (S’) M,
state (S) N, state (S’)= Pc, f(S) y and f(S’) x}.

If [M’I > ko for some M’c__ V not in L, observe that SM (f) is not increased when
M’ is inserted into L (due to the definition of ko and Lemma 4). Thus, in general, all
M’ not in L such that M’> ko can be placed into L without increasing SM (f).

If IM’I < ko for some M’ in L, then pick the smallest such M’ and delete it from
L. Again, by the definition of ko, this cannot increase SM (f). Repeating this process,
we can convert f into a QTP without increasing SM (f). Q.E.D.

The following results are immediate from the above theorem and Lemma 5.
COROLLARY 1. There are at most two QTPs which are site optimal among the DTPs

and these are the only site optimal DTPs.
COROLLARY 2. For n >--_ 9, no component optimal DTP is site optimal and vice versa.
These results are slightly disturbing since they show that the site and component

optimalities are complementary. Ideally, one would like to have a TP that simul-
taneously optimizes the number of sites and components. But, we have just proved
that it is not possible when the commit protocol used is decentralized. Furthermore,
QTPs are not very desirable due to the fact that, for any QTPf, there exist partitionings
in which all components (and hence all sites) wait under f. Thus, they cannot guarantee
that at least one component in any partitioning can be allowed to complete the
incomplete transaction.

We now consider the centralized commit protocol where the situation is rather
pleasant: we produce a TP which is both component and site optimal. Furthermore,
this TP guarantees the transaction completion in at least one component, as long as
the coordinator site is operational.

4. Centralized commit protocol. We first present a slightly generalized definition
of centralized protocols. Define a partial ordering on the states of an FSA as" t-<_ s if
and only if the distance of s to its nearest final state is no less than the distance of
to its nearest final state. A set of FSAs LS is said to be a leading set if and only if for
any S in D, (i, s), (j, t) S and i LS implies s <_-t.

DEFINITION 10. A version P of the canonical commit protocol is centralized if
and only if it has a leading set of sites.

TPs of the centralized commit protocol are called centralized TPs (CTPs). Observe
first that the class of DTPs considered in the previous section is a subclass of the CTPs
when their domain is restricted to the realizable components for the centralized protocol.
This is because the commit and preservation properties of a TP hold even if the TP
is restricted over a proper subset of its domain. Secondly, we observe that there is a
natural class of CTPs which is very interesting: the CTPs that explicitly exploit the
existence of leading set. Notice that, when a leading site (a site whose FSA is in the
leading set) is in state w ("wait"), all sites in the system are in states from {w, q}. We
call the CTPs which use this fact leading set TPs (LTPs). Formally,

142 FRANCIS CHIN AND K. V. S. RAMARAO

DEFINITION 11. A CTP is an LTP if and only if, for all S in D, site (S) f-) LS
implies f(S) z where LS is the leading set.

COROLLARY 3. IFI absence of the simultaneous failure of all leading sites, for any
transaction, there is at least one component in any partitioning that can successfully
terminate that transaction when an LTP is used.

In principle, it is possible to abort a transaction in a component as long as it is
guaranteed that no other component commits it. But, due to practical considerations,
this approach is not satisfactory. Typically, an aborted transaction is repeatedly tried
until it is committed. Thus, a TP should try to commit a transaction if it is possible to
do so. This is equivalent to saying that for any LTP f and S in D, f(S)= x whenever
state (S) f3 (Com U Pc) .

LEMMA 6. Let f be an LTP. Then, f(S)= z whenever site (S)f’)LS= and
state (S)

_
N.

Proof. Notice that, if there are S’, S" such that S t_J S’ D, S t_J S" D, (site (S’)
site (S")) (q site (S) , f(S’) x, and f(S") y, then f(S) z. It is easy to see that one
can produce such S’, S" when f is an LTP and site (S)0 LS . For instance, take
site (S’)= site (S") LS, state (S") N and state (S’)- Pc. Q.E.D.

Based on this lemma, we construct a simple but effective CTP. But, first we
generalize the notion of quorum protocols introduced in the previous section.

DEFINITION 12. A quorum TP is weighted if, in the definition of the QTP, each
site is assigned a weight and the size of a set is replaced by its weight, i.e. sum of the
weights of its elements. The condition d / e > n is replaced by d / e > sum of the
weights of all nonleading sites.

Now, consider a weighted QTP defined as follows: assign a weight of 1 to all sites
not in the leading set and assign a weight of n to each leading site. Set d and e n.
This CTP can be explicitly given as follows: Call it h.

1. state (S) f’) (Com I.J Pc) implies h (S) x,
2. state (S) f) (Corn t_l Pc) and state (S) f) (Ab {q}) implies h(S) y,
3. site (S) 0 LS and state (S) N implies h (S) y,
4. h(S)= z otherwise.
It can be easily seen that h is indeed an LTP. Following result shows that h is

the "best" among the LTPs in a very strong sense:
LEMMA 7. Let f be an LTP. Then, f(S)= z whenever h(S) z.

Proof. h(S)=z only if site (S)f3LS= and state (S)_ N. f(S)=z in this case,
by Lemma 6. Q.E.D.

COROLLARY 4. h is both component and site optimal among the LTPs.
We now consider the decentralized TPs of the centralized commit protocol, which

pay no attention to the existence of the leading set. Since these are only restrictions
of the DTPs considered in 3, we call them restricted DTPs (RDTPs).

LEMMA 8. Let f be an RDTP. Then, CM (f) > 2n-lLSI- 2.

Proof Let D’= {S Dlsite ($) f-I LS }. Then, as in the proof of Theorem 4, it
can be shown that I{S o’lf s)= Since f is an RDTP, there exists
S 6 D such that f(S) z and site (S) f’l LS . Q.E.D.

THEOREM 8. Let f be an RDTP. Then, CM (f) > CM (h).
Proof

"-ILSl (n ILSI) ,,-I,.slCM(h)= E =2 -2<CM(f)
--1 k Q.E.D.

THEOREM 9. Let f be an RDTP. Then, SM (f)> SM (h) for sufficiently large n.

PROTOCOLS FOR NETWORK PARTITIONING 143

Proof The DTP u is site optimal among all DTPs by Theorem 7. It can be proved
that u, when restricted to the centralized commit protocol, remains site optimal among
RDTPs. Thus, it is sufficient to show that SM (u)> SM (h) in the restricted domain.
The following inequality holds for the restricted u:

SM (u)-> Z k. 2 k-lesl + k.
k=l k=n-ko+l

k. + 2 k’(zk-lesl--1) --Y (k+ko-1)
k=l k=l ,=1 k + ko- 1

On the other hand,

SM (h)= 2 k. _-< k
k=l k=l k

Thus, SM (h)< SM (f) for sufficiently large n. Q.E.D.

5. Conclusion. Network partitioning is harder to deal with than many other failure
problems in a distributed environment. Though its occurrence is not very frequent, it
cannot simply be ignored in certain applications. But, none of the existing systems
have tried to consider the network partitioning problem. Being termed as a "catastrophic
situation," it is manually handled 11].

In this paper, we have formalized various aspects of network partitioning problems
and designed effective protocols to be used in the presence of this failure. Certain
practical criteria are used for measuring the performance of termination protocols.
Both decentralized and centralized versions of commit protocols are studied and
optimal termination protocols are presented. For the centralized case, a single TP is
shown to be optimal under both component and site measures. In the absence of
coordinator failures, this optimal protocol guarantees continued transaction processing
in at least one component in any partitioning. Quorum protocols are shown to be
optimal in the decentralized case. This is not greatly satisfying since one cannot
guarantee continued processing in any component in this case. Thus, it is desirable
that a centralized TP be used when the coordinator sites are reasonably failure-free.
This in turn would imply that a centralized commit protocol be employed during the
normal (failure-free) operations ofthe system. Hence, our results can also be interpreted
as lending support to the usage of centralized protocolsmnot only because they are
less expensive (in terms of messages) than the decentralized ones, but also due to their
effectiveness in handling network partitionings.

From our bounds on the component and site measures, it is not hard to see that
the fraction of waiting components/sites in the event of an arbitrary network partition-
ing is very small when the optimal TPs are used.

We have also proved that any commit protocol should have a "committable" state
to be of use in presence of partitioning. This tends to increase the cost of the normal
operation. But, one can fine-tune the protocol by running FSAs with committable states
only at certain critical sites.

The measures we have used involve no statistical information. They are somewhat
simplified approximations of the actual system availability. Generalizations of these
measures, which utilize the statistical information on partitionings and the states of
the commit protocol are considered elsewhere [5].

144 FRANCIS CHIN AND K. V. S. RAMARAO

REFERENCES

P. ALSBERG AND J. DAY, A principlefor resilient sharing ofdistributed resources, Proc. 2nd International
Conference on Software Engineering, October 1976, pp. 562-570.

[2] P. A. BERNSTEIN AND N. GOODMAN, Concurrency control in distributed database systems, Comput.
Surveys, 12 (1981), pp. 185-221.

[3] P.A. BERNSTEIN AND O. W. SHIPMAN, Aformal model ofconcurrency control mechanismsfor database
systems, Proc. 3rd Berkeley Workshop on Distributed Data Management and Computer Networks,
August 1978.

[4] F. CHIN AND K. V. S. RAMARAO, An information-based model for failure handling in Distributed
databases, IEEE Trans. Software Engrg., to appear.

[5] Maximization ofdatabase availability in presence ofnetwork partitioning, submitted to J. Assoc.
Comput. Mach.

[6] E. C. COOPER, Analysis of distributed commit protocols, Proc. ACM SIGMOD, 1982, pp. 175-183.
[7] S. DAVIDSON AND H. GARCIA-MOLINA, Protocols for partitioned distributed database systems, Proc.

IEEE Symposium on Reliability in Distributed Software and Database Systems, June 1981.
[8] H. GARCIA-MOLINA, Reliability issues for completely replicated distributed databases, Proc. IEEE

COMPCON, Fall 1980, pp. 442-449.
[9], Elections in a distributed computing system, IEEE Trans. Comput., C-31 (1983), pp. 393-481.

[10] J. N. GRAY, Notes on database operating systems, operating systems: an advanced course, Lecture Notes
in Computer Science 60, Springer-erlag, New York, pp. 393-481.

[11] M. HAMMER AND D. SHIPMAN, Reliability mechanisms for SDDol, ACM Trans. Database Systems,
5 (1980), pp. 431-466.

[12] B. LAMPSON, Atomic transactions, distributed systems architecture and implementation: an advanced
course, Lecture Notes in Computer Science 100, Springer-Verlag, New York, Chapter 11.

[13] K. V. S. RAMARAO, On the completion of distributed transactions while recovering from a network
partitioning, Proc. 1984 Princeton Conf. on Information Sciences and Systems.

14] H. R. STRONG AND D. DOLEV, Byzantine agreement, Proc. IEEE COMPCON, Spring 1983, pp. 77-82.

[15] D. SKEEN, Nonblocking commit protocols, Proc. ACM SIGMOD, 1981, pp. 133-147.
[16], A quorum-based commit protocol, Computer Science TR 82-483, Cornell University, Ithaca,

NY, 1983.
[17] D. SKEEN AND M. STONEBRAKER, A formal model of crash recovery in a distributed system, IEEE

Trans. Software Engrg. TSE-83.

SlAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
011

COMPUTATIONAL COMPLEXITY: ON THE
GEOMETRY OF POLYNOMIALS AND A THEORY OF COST: II*

M. SHUB" aND S. SMALEt

Abstract. This paper deals with traditional algorithms, Newton’s method and a higher order generaliza-
tion due to Euler. These iterations schemes and their modifications have had a great success in solving
nonlinear systems of equations. We give some understanding of this phenomenon by giving estimates of
efficiency. The problem we focus on is that of finding a zero of a complex polynomial.

Key words. Newton, Euler, approximate zero, polynomial, average

1. This paper deals with traditional algorithms, Newton’s method and a higher
order generalization due to Euler. These iteration schemes and their modifications
have had a great success in solving nonlinear systems of equations. We give some
understanding of this phenomenon by giving estimates of efficiency. The problem we
focus on is that of finding,a zero of a complex polynomial.

Following the work of Newton and Euler we define a rational map (or iteration
scheme) E:C->C (C the complex numbers) which depends on three parameters:

(a) f, a polynomial, f(z)=d
i=o aiz, ad # O. Often times we take f to be in the

space Pd (1) where

and

Pa(1)= {f f(z)=
,=o

a,z’, aa=l, 1};
(b) a positive integer k (which amounts to the number of derivatives used);

(c) A number h, 0 < h :< 1.
Then define E E k,h,f, E’C --> C by

E(z) Tk(f-l((1 h)f(z))).

Here f-i is the branch of the inverse of f which takes f(z) into z, given as an
analytic function in a neighborhood of f(z) (provided f’(z) 0).

Tk is the truncation of the power series expansion in h about h 0 at degree k.
It is easy to check that E l,l.S is Newton’s method. One can see a full discussion in
Shub-Smale (1982) (hereafter referred to as [S-SI]).

Consider first the problem: Given (f, e), f Pd(1), e > 0, produce a z C with
If(z)l < e. For this we particularize the Newton-Euler iteration scheme by choosing k
and h to depend only on f and e, in a certain way. Let

k [max (log Ilog el, log d)]
where Ix is the least integer greater than or equal to x. We will define in 2, universal
constants H and K, approximately 52 and 512 respectively. Then we will take

* Received by the editors November 17, 1983, and in revised form September 15, 1984. This work was

supported in part by grants from the National Science Foundation.
f Mathematics Department, Queens College and the Graduate School, City University of New York,

New York, New York 11367.
t Mathematics Department, University of California, Berkeley, California 94720.

145

146 M. SHUB AND S. SMALE

Thus with these specializations the Newton-Euler iteration scheme E’C-C
depends only on (e,f) and we write E E. With e > 0 define

ALGORITHM (N-E). Let fe Pa(1) and n K(d +llog el).
(1) Choose zoeC, [Zo[=3 at random and set for i= 1, 2,3,.-. (an iteration)

zi E(Zi_l) terminating if ever [f(zi)] < e
(2) If i= n, go to (1) (a cycle).

THEOREM A. For each f, e, (N-E) terminates with probability one and produces a
z satisfying]f(z)l < e. The average number of cycles is less than or equal to 6. Hence the
average number of iterations is less than 6K(d +llog el).

Here average and probability refer to the choice of the sequence of Zo in (1) of
(N-E).

Remark. With certainty it only takes about twice as long. See 2 for an elucidation
of this remark. In practice one can obviously do better by trying and testing h 1,,..., H. We have not analyzed this. Also see 2 for the total number of arithmetic
operations required.

Next consider sharpening the goal [f(z)l < e. Machine or discrete processes will
not generally succeed in finding exact zeros of polynomials. For our theory we use the
notion of approximate zero z of a polynomial f, Smale (1981), [S-SI]. This complex
number z is one close to an actual zero, where closeness is defined without any arbitrary
choices. The justification of close is given in both theoretical and practical terms. More
precisely define

py= rnn If(O)l.
f’(0)=0

There is a universal constant c (about) and z is an approximate zero of f if
If(z)[< cpy. Then this proposition follows.

PROPOSITION. Let E E k,f, be the Newton-Euler scheme with arbitrary k and
h 1, and E the composition E E times. Let z be an approximate zero off, so
If(z)[< bcpf with b < 1. Then

[f(E’(z)) < b(k+’)’cpf.

The extremely rapid convergence gives some good justification for "approximate
zero".

In Algorithm (N-E) there was a random element, the choice of Zo. Now probability
enters into our analysis in a second way. We average over f Pal(l) with respect to a
uniform distribution; that is we normalize Lebesgue measure on Pal(l) Cd= i2d. We
use these probabilities since speedy algorithms are not usually infallible.

Define for each f Pd (1)

where Ds is the discriminant off (see Lang (1965)). With K as above let

,’,= K d +llog

Let E be the Euler-Newton iteration scheme
[max (log Ilog ey[, log d)], so that E depends only on f

with h=H, and k=

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 147

ALGORITHM (N-E). Let f Pd(1), satisfy e>0.
(1) Set m=l;
(2m) Choose Zo C, lZol 3 at random and set zn En(zo). If If(z,)l < ef terminate

and print: "z, is an approximate zero;"
(3) Otherwise let m m + and go to (2m).

THEOREM B. Algorithm (N-E) terminates (and hence produces an approximate
zero) with probability 1 and the average number of iterations is less than K1d log d where
K1 is a universal constant.

We make the probability considerations a bit more precise.
Let S be the circle in C defined by Izl R and endow it with the uniform

probability measure (Lebesgue measure normalized to 1). Set R 3 and denote by 12
the product of S with itself a countable number of times. Thus a point Zo of f is a
sequence $ (1, a,""" with I,1- 3. Endow 12 with the product measure as well as
Pd(1) X12. Let T: Pd(1) f Z+ be defined by: T(f,) is the first m such that E"($m) <

Thus the total number of iterations of Algorithm (N-E) for a given f is of the
form S(f,) nT(f,), n K(d +llog eel). Theorem B asserts than when ey>0, S(f,)
is defined for almost all f. Moreover S(f)= S(f,) is defined and finite for
almost all f and

ff S(f) <-_ Kid log d.
Pal(l)

By Fubini’s theorem, we could equally well assert that

(f,)Pd(1)
S(f,) <= Kid log d.

Remark 1. We are assuming exact arithmetic in the theory here. In general, because
of the robust properties of Algorithms (N-E) and (N-E), this is reasonable. However
the calculation of ey in Algorithm (N-E) is not so robust. In that respect, Theorem A
is more satisfying than Theorem B.

Remark 2. Our work emphasizes the theoretical side, and the understanding of
classic algorithms, rather than the design of new practical algorithms. Yet the results
do have some implications for the latter. For example they suggest calculating deriva-
tives up to order [log d] and/or [log Ilog eli could give speedier routines, especially
for one complex polynomial. We have not tested our algorithms on the machine.

Remark 3. The number of arithmetic operations in contrast to the number of
iterations is approximately quadratic in d. This is proved in 2.

Remark 4. Questions of variance arising in these theorems can be handled. See 2.
At this point we review some of the motivation from Smale (1981), Hirsch and

Smale (1979) and [S-SI]. Letf be a polynomial, f:CC, let zC and w=f(z). The
ray from w to 0 is the segment in the target space from w to 0. Let Rw denote this ray
and fz the branch of the inverse of f taking f(z) back to z. If f- is defined on all of
Rw then sr=f-l(0) is one of the zeros of f (Fig. 1). Since a polynomial maps a

FG.

W

148 M. SHUB AND S. SMALE

neighborhood of infinity to a neighborhood of infinity and has only finitely many
critical points it is a fairly simple calculus exercise to see that except for a finite number
of rays (at most d 1) f-i is defined on all of Rw. Thus we attempt to follow the curves
f-(Rw) from an initial starting point z to a zero sr of t. One way to do this is to
parameterize the Rw as (1 h)f(z) for 0-< h <- 1. Then try to follow the ray by analytic
continuation in h, f-l((1-h)f(z)). Finally, truncate the power series at degree k in h
to make the computation finite, Tk(f-((1 h)f(z)). This is Ek,h,f(Z). If P(h) is positive
for small positive h then (1-P(h)) is also further down the ray and we may try
Tkf(1-P(h))f(z)). The inverse images of the rays are also solution curves of the
differential equations ;= -f(z)/f’(z) and =-1/2 grad If(z)l = (see Smale (1981)). Thus
we may attempt to solve these equations numerically with step size h to attempt to
follow the ray. These examples are given in greater detail in [S-SI].

We analyze a class of fast algorithms broader than the Euler iterations, but which
still agree with the inverse of the ray to high order. First we extend the E k,h,.f(Z)--
Tk(f-((1-h)f(z))) by replacing h on the right-hand side by P(h)=ik= cih where
ci is real for all and c > 0. These generalized Euler iterations are

GE,,h, (z) T(f-((1-P(h))f(z)).
Thus Ek,h,,C is given by P(h)= h. The GEp,k,h,f are polynomials in h of degree k. We
allow modifications of these polynomial iterations by addition of a well bounded
remainder term of order k + 1 in h. We denote this largest class of iterations we consider
by GEMk (GEM Generalized Euler with Modification). These iterations are fast.

An important ingredient in the analysis is the function Pd C "--) R+. (f, 7.)’--)Of,
which was introduced in [S-SI]. We recall the definition of this function. Given f, z
and 0 =< c <- r/2, let

{ w,- wClO<lwl<21/()l, argf-- <c

w is an open wedge of angle a centered at f(7.). Let , be the max -< ’/2 on
which f-i is defined by analytic continuation (Fig. 2).

(zl

Fa. 2. f[is defined on this wedge.

In 3 we prove Theorem C.
THEOREM C. Suppose that 7.’= Ih,z(7.) is a GEM iteration. Then there is a constant

k depending only on I such that: If ,o> 0 and If(zo)l > L>O then chere is an h given
explicitly such that

,f(z.)l<L forn=k[lg’f(z)/LI] k+’)/

Ozzo
and z. Ih.y)" Zo).

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 149

Theorem C can be used to show that any GEMk iteration can be adapted to
produce fast algorithms as in Theorems A and B of this paper. Finally, in 3 we show
that the GEMk iterations are precisely the efficiency k incremental algorithms defined
in [S-SI] which satisfy an additional "smallness" condition.

2. The main goal of this section is to prove Theorems A and B of 1. We require
some of the main results of [S-SI]. First Proposition 1 is a special case of [S-SI, Thm.
2] at least after a short translation of constants. The constants K, K’ are universal, not
very large and well estimated via [S-SI]. Let k 1, 2,. ., arid e > 0.

PROPOSITION 1. There exist.K, K’>0 so that if O<h<-K/(d+llogel) l/k, n=
(K’/h)(d +llog el), f Pd(1) and [Zol-3 with Of,o=> 7r/12 then

If(E’(zo))l < e for some 0 <- < n.

Here E is E E, times and E is the Eulerk iteration of 1.
Next by specializing k to k =max ([log d], [log Ilog eJ]) we obtain
COROLLARY. There exist universal constants H, K so that for n K (d +llog

E= Ek,H, f Pd(1) and IZol=3 with Of,zo>= r/12
If(E’(z0))l < e for some 0<-_ < n.

Finally we require the following proposition which is obtained from [S-SI,
Proposition 3, 4]. For fePd(1), let v-{zllzl-3 and Oy,z> 7r/12}. Then using the
uniform probability measure on S {zllzl- 3} we have Proposition 2.

PROPOSITION 2. The measure of Vf >- for any f.
We recall a bit of probability theory. The set S has a probability measure. Impose

the product measure on II the (ordered) countable product of S with itself. Suppose
Vc S has measure v. For efl, (1, 2,"""). Let m() be the m such that i V
for i< m but ,, e V.

PROPOSITION 3.

m(e)
1

Proof Let V={lm()=i}, i=1,2,.... Let vi be the measure of V. Then
vi r(1 v)-1 and moreover

m()= E ivi iv(l--v)i-l=-"
i=1 i=1

Now we can prove Theorem A of 1. In fact it is an immediate consequence of
the corollary of Proposition 1, and Propositions 2 and 3. Q.E.D.

We will need a few more facts to prove Theorem B. We begin with another
elementary result of probability theory.

DEFINITION. Let (X, IX) be a probability space with no atoms. Let S: X R+ be
a real valued nonnegative measurable function and let f: (0, 1)-* R be decreasing and
Riemann integrable. We say that S(x)<-f() with probability 1-ix if Ix{xls(x) <-

f(y)} >_- 1 y for all 0 < y < 1.
PROPOSrrION 4. Suppose as above that S(x) <f(ix with probability 1- Ix. Then

1) E(S)= S(x)Ix(dx)<= f(Ix) dIx.

2) Yar (S) (S(x)-E(S))2Ix (dx) <-_ f(Ix) dIx-((S)).

150 M. SHUB AND S. SMALE

Proof We only prove 1). Let y, (0, 1) for -<i<c be a decreasing sequence
with 0 and 1 as limit points. Let. = My, My,_, . be constructed so that/ (My,)
l-y, and S(x)<--f(y,) for xMy,. Then S(x)l(dx)<=f(y,)l(My,-Myi_,)=
,f(Yi)(Yi-a-Y) which converges to the Riemann integral off

Recall that py= mino.y,(o)=o If(O)l. From Smale (1981) we have Proposition 5.
PROPOSITION 5.

Vol {f Pd(1)IPT < a} < da2.

Here Vol means normalized volume so that Vol (Pd(1))= 1 and Vol is a probability
measure on Pd (1).

PROPOSITION 6.

]log pf[" 1/2 log d + 1.
Pd(1)
pf

Proof Let/z da so from Proposition 5, Vol {f Pd(1)[P < x///d} </z and

Vol (f Pd (1), pf< 11110g Pfl <1/2 log d +1/21log

Now apply Proposition 4 to finish the proof.
PRO’OSrrXON 7. There is a constant K2 and forf Pd (1),
a) ddp-a<- Dy,
b) e <= cp.r,
c) p)Ilog efl <= KEd log d.

Proof Dy=da 1-[o,.t.,.ro,)=of(O) (see Lang (1965)) so

IDf[>= d d min If(Oi)])d-1 ddp-’.
Ois.t.

f’(Oi)=O

which proves a). We will use a lemma to prove b). First recall that the discriminant
is given as the determinant of a (2d-1) by (2d-1) matrix, see Lang (1965). Dy=
R(f,f’)=adR(f,f’la).

LEMMA 1. 1) For a polynomial f of degree d with la, I-<- 1 for >-_ 1 then

OR(ff’/d)
Oao

=< (2d 1)! j laol
j=l j

2) IffPd(1) then (2d-1)!(d-1)(py+2)d-2pf>=R(ff’/d).
Proof The resultant is a polynomial of degree d- in ao. Crude estimates give

that the modulus ofthe coefficient ofa by expanding the determinant is =<(d-1)(2d- 1-
j)! so

OR(f,f’/d) 1 (d-l)<= j (2d-l-j)!lao[-’
Oao j=l j

_-<(2d-)! j
j----! j

Let f’(0)=0 and
Letfo=f f(O). Then ao(fo) ao-f(O), a(fo) at(f) for i> 1 and R(fo, f’o/ d) 0.

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 151

Applying the mean value theorem to the line segment between fo and f gives

[R(f, f’/ d)l IR(f, f’/ d) R(fo, f’o/ d)l

<= (2d 1)! j (lao[+ py)’i-l[f-fol
j=l j

_-<(a-! j
j=l j

(2a 1)!pf((1 +

(2d- 1)!(a- 1)(py + 2)d-:py.

pf+ t

Now to prove b), note that

py < d + 1 and dd(2d- 1)!(d- 1)(d + 3)d-2 < c(2d)4d.
For the proof of c), note that ey < 1.

By definition

Ilog ec[-- log
(2d)4d

Therefore by using Proposition 7a,

]log ef[_<- K3dllog d + Ilog p ll and

f llogey[<=K3d(logd+Ips<lllogpy[)+K3d(logd+fpy>,llogpy[)
Now the first term on the left is estimated by Proposition 6. The second is estimated
using the fact that py < d + 1. This yields Proposition 7.

With these preparations we now prove Theorem B from Theorem A. Note first
that by Proposition 7b, Algorithm (N-E) does terminate with an approximate zero if
it terminates. Now apply Theorem A with Algorithm (N-E) where e is chosen to be
ey, and then integrate over Pa(1). This yields

fP, S(f’)6Kd+6K Ifllg
Now apply Proposition 7c. Q.E.D.
Remark 1. There are various ways to compute the Euler iterations

z’= E,.h(zo) Tk(f-’((1 h)f(z))).

a) The Taylor series expansions of f at z, fz may be calculated by the algorithm
of Shaw and Traub with (2d 1) multiplications, d 1 divisions and d2+ d/2 additions,
after writing f(w)=(W-Zo)Q(w)+R. See Knuth (1981, p. 470) or Borodin-Munro
(1975, p. 33). Moreover fz may be calculated in O(d log d) arithmetic operations and
perhaps in O(d) operations, see Borodin-Munro (1975, p. 106).

b) Tk(f-) may then be computed in k3/6 multiplications by Lagrangian power
series reversion (Knuth (1981, p. 508)). The algorithm of Brent-Kung (1976) (see also
Knuth (1981, p. 510)) computes Tkf in O(klogk)3/2 operations and the value
Tkf-((1 h)f(z)) in O(k log k) operations once the Taylor series off at z is known.

152 M. SHUB AND S. SMALE

c) Putting together a) and b) to get a good asymptotic estimate gives that Tkf-[(1
h)f(z)) is computable in O(d + k log k) operations.

d) Thus in Theorem A the average of the total number of operations is

O((d +llog el)(d + k log k)),

where k max [log d, log [log eli or simply

O(d2 + dllog el).

e) For Theorem B, the situation is a bit more subtle since k depends on f. The
average total number of operations is

O(I S(f, Zo)(d+klog k))
Pd (1) Xl’

where k max [log d, log Ilog el], which gives eventually

O(d(log d)2 log log d).

f) D may be computed in O(d(log d)) arithmetic operations according to J. T.
Schwartz (see Knuth (1981, p. 619)).

Remark 2. An estimate for the variance of the numer of iterates in Theorem B is
simple to calculate by Proposition 4. The variance is O(If (d log d +[log pf[)2) which
is O(d2(log d)2).

Remark 3. It is possible to devise deterministic algorithms in place of Algorithms
(N-E) and (N-E). By [S-SI, Prop. 3, 4] Of,zo->- zr/12 except for at most 2(d- 1) arcs
of S of angle 10zr/12d each. Thus if we place 24d points evenly around S at least
one-twelfth of them will have O bigger than zr/12. Now for the sake of Theorem A
or B we can pick from this finite set at random eventually exhausting the set and still
not take more than 12 choices on the average. Thus for Theorems A and B a deterministic
version is possible with a factor of 2 in the number of steps. Now the algorithms always
terminate. It is not necessary to say with probability one (in the case of Theorem B
as long as er > 0).

3. We begin this section with a description of the GEM (Generalized Euler with
k ch isModification) iterations that we consider. Throughout this section P(h)=

a polynomial with c real and c>0. Thus for small real h, (1-P(h))f(z) is on the
line segment between f(z) and 0. The Generalized Euler iterations are GEp,k,h. (Z)=
Tk(f-l((1- P(h))f(z))).

DEFINITION 1. Z’= In,f(Z) is a GEMk iteration iit there is a polynomial P(h) and
constants c > 0, > 0 such that:

where

Ih,f(Z) =GEp,k,h,f (z)+ FRk+l(h,f, z)

f(z)
f’(z)

and IRk+i(h,f, z)l<-Chk+ max (1, 1/hk) for 0<h<8 min (1, hi).
The number hi hi(f, z) is the radius of convergence of f;l((1-h)f(z)) as a

power series in h around zero.
Examples of GE iterations without modification are described in [S-SI] these

include incremental Newton’s method, kth order incremental Euler, and kth order
Taylor’s method for the solution of the differential equation dz/dt =-f(z)/f’(z).

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 153

It is sometimes more convenient to express the GE iterations and the modifications
in terms of the polynomials 0-f,z introduced in [S-SI].

(w) ,z(W) E ,w’

where
(-1)i+lf(i)(z)fi-l(z)

0-0--0, o’1=1, 0"i-- i!(f’(z))’
We recall some basic facts about 0". Given the iteration z’= Ih,y(Z) write

Ih,f(Z) Z + FR(h,f)(z).
We frequently write R(h,f, z) or just R(h), R(z) or R. By Taylor’s formula (see
[S-SI, 1])

f(z’) f(z)(1-0"o R)

or

f(z’)
-1-0"oR.

f(z)

Thus R(h,f)(Z)E 0"-a(1-f(z’)/f(z)). 0" is a polynomial of the same degree d as f, thus
there are d points z’ which give the same value for f(z’)/f(z). If Ih,f(Z) is continuous
then at least for small values of h

f(z)]

where 0"-a is the branch of the inverse of 0" taking 0 to 0. The radius of convergence
of 0"-a is ha. Comparing coefficients of powers of h (see [S-SI]) shows that

GEp,k,h,y (z) Z+ FTk(0"-l(p(h))).

Consequently we may restate Definition 1.
DEFINITION 1’. Z’= Ih,f(Z is a GEMk iteration if[there is a polynomial P(h) and

constants c > 0, 6 > 0 such that

Ih.f(Z) Z + F(Tk(0"-l(p(h + Rk+ h, f, z)

where IRk+l(h,f, z)l<= chTM max (1, 1/hk) for 0< h < 6 min (1, h,).
One may also express the Generalized Euler iterations in the source as follows:
PROPOSITION 11 [S-SI]. There are universal polynomials Pj=Pj(0"1,"’, 0"j+1,

Cl,"’’, Cj+l) such that given any Generalized Euler iteration (without modification):
k-1

GEp,k,h,f (Z) Z + F Pjhj+l,
j=0

Po-- Cl,

P1 c2- 0"1 c12
2P2 c3 20"2ca c2 (o" 20-2) C

One can write down Pj explicitly inductively, in terms of Pi, i<j, 0-j+a and cj+a.

Proof. The coefficients of 0-- are computed from the 0-i and P(c, 0") is defined by

2 P(c, 0")hj+’= Tk P(h)
j=o t= l!

154 M. SHUB AND S. SMALE

The GEMk iterations may be similarly written with the addition of a remainder
term. Examples of Generalized Euler with Modification are the simple Runge-Kutta
approximation to the solution of dz/dt= -f(z)/f’(z) (see [S-SI]) and an incremental
Laguerre method. For the latter do the following. Instead of letting R TkO’-a(h) as
for Euler we let (Tktr R)= h and solve for R. We can do this for k 2. That is we
solve tr2R + R h for R yielding R (-1 +x/1 + 4tr_h)/2o’2. For h 1 this is Laguerre’s
method of Henrici (1977, p. 53) with 3’ 2.

We now turn to an analysis of the GEM iterations with the goal of showing that
GEM’s are cheap, Theorem C.

Given P(h) there is a 6 > 0 such that P is injective on the disc of radius 6, D(3).
Let K be the Lipschitz constant of P on D(3), K SUpzD()IP’(z)l. Let "yk(Ca) be the
first positive root of

(1-y)E-4cly(1 +B(k+ 1)yk)

where 1-< B < 1.07 and B is a constant which makes the Bieberbach conjecture true
(see [S-SI]). Finally, let

yk(P) =min 3,-, y(ca)

LMMa 1. Suppose that O< h, _-<min (1, ha(f, z)) and that h ah, forsome complex
number a with al , and 0 < y < /(P). Then:

a) r-a P(h)l <- c, yh,/(1 y)2;
b) r-lp(h) Tr-P(h)l<-ch,B(k+l)3,+/(1-3,)2;
c) T(r-P(h))l < h,/4;
d) Tk(O’-aP(h) tr-l(D(h,)).

Here D(h is the disc of radius h around O.
Proof Since h, <- (1/ K)ha P(D(h,))c D(hl) and since h, < 3ha tr

-a p is defined
and injective on D(h,). (tr-ao P)=ca so (1/ca)(cr-lo P) is defined and injective on
D(h,). It has derivative 1 at 0. Now [S-SI, Lemma 7, 2] applied to
proves a) and b). By the triangle inequality

< Clyh,)2+cah,B(k+ 1)yk+l

]Tk(’-a(P(h))]=(l_y (1_),)2

and the right-hand side is < h,/4 since y < yk(Ca). This proves c). Since ITktr-a(P(h)] <
h,/4, [S-SI, Lemma 5, 2] proves d).

LEMMA 2. Let In.y(z) z + F(z)Rn,y)(z) be a GEM iteration then there is a 3 such
that

h,(f,z)
4

for 0< h < 3 min (1, hi(f, z)).
Proof There is a P(h) and Rk/l such that Rh,f= Tk(r-a(P(h))+ Rk+a. Now use

Lemma lc with h, =1/2 min (1, hi) and further choose 3 < Yk(P) small enough so that
IRk+[< ha for 0< h < 3 min (1,

LEMMA 3. Let lh,f(Z) Z + F(z)R(h,f)(z) be a GEMk iteration. Then there is a 3 > 0
such that for 0 < h <3 min (1, hi), o--1 (tro R) R.

Proof By the Koebe theorem

r (D(h,)) D

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 155

where D(r) denotes the open disc of radius r around 0 in C. By Lemma 2 there is a
such that

hl(f 2’)

for 0< h < 5 min (1, hi(f, z)). Thus R(h,f)(Z cr-l(h ’) for some h’e D(hl)
(r R(h,f)(Z h’ and r-l(cr R(h,f)(z)) o’-l(h ’) R(h,f)(z).

PROPOSITION 2. If z’= Ih,f(z)= z+ F(TKr-l(p(h))+ Rk+l(h)) is a GEMk itera-

tion, then there are constant K > O, e > 0 such that

(,)
f(z’)

1 P(h)+ Sk+l(h)
f(z)

where ISk+l(h)l<Khk+ max (1, 1/h) for 0<h<e min (1, hi).
Proof.

f(z’)
1-,to R= 1-,r(T,r-P(h)+ R/,(h)).

f(z)

There are K, 5 > 0 such that for 0 <- h < 5 min (1, h)

and

Sk+l(h o’((r-l(p(h))- o’(Tko’-l p(h + Rk+l(h))

I-l(p(h))J<2ch,

Itr-l p(h Tr-l(p(h + R+,(h)l < Kh+’ max (1, -k)
by Lemma 1, the definition of Rk+l(h) and the triangle inequality. Now by the
generalized Loewner theorem (see Smale (1981) say)I,,i /’- < 4! h. Now apply [S-SI,
Lemma 3, 2] with a =4/hi, b=2ch, c=(k/2c)hk/ max (1, 1/hl). Make sure that
6 is small enough to guarantee (1 + c)ab < 1.

Iterations satisfying (,) were called efficiency k in [S-SI]. One of the fundamental
estimates on speed is proven for iterations of efficiency k [SS-I, Thm. 4]. Since a
polynomial f of degree d is generally d to 1 a point z’ is only determined by f(z’) up
to this d to 1 ambiguity. Efficiency k iterations are determined by the ratios f(z’)/f(z)
and thus are determined up to this same ambiguity. We impose a continuity condition
on iterations.

DEFINITION. The iteration Ih.y(Z)= Z+ FR(h,f, z) is called small iff there is a
5>0 such that o--l(o’(R)) R for all 0<h<6 min (1, hi).

Here, as above, r- takes 0 to 0 and is defined and convergent on the disc of
radius hi hi(x, z).

THEOREM D. The small iterations of efficiency k are precisely the GEMk iterations.

Proof. Proposition 2 proves that the GEMk are efficiency k and Lemma 3 that
the GEMk are small. Now to prove the converse. If

and

z’= Ih,s(Z) Z + FR

f(z’)
f(z)

-1-(P(h)+ Sk+l(h))

156 M. SHUB AND S. SMALE

where I&/(h)l<Kh/ max (1, 1/hk) for 0<h<e min (1, 1/h) then

oR=P(h)+&/(h);

and there is a 0 < 8 < e such that

R tr-l(p(h) + Sk+i(h))

for 0 < h < min (1, hi) since I is small. Thus it only remains to prove that for

Rk+l g-l(P(h)+ Sk+l(h))- Tkg-lp(h),

there are c > 0, > 0 s.t.

(1)IR+I < ch k+l max 1, h---
for 0< h < min (1, hi).

IR+(h)l<=l-l(p(h)+ &+(h))--(P(h))[+l-(P(h)) T-(P(h))[.
We estimate the two terms on the right. For h, =min (1, hi) and h yh, with

y < Yk(P) Lemma lb asses that

I-’(p(h))- Tk-(p(h))] ch*B(k+ 1)rk+

(l-T)

so for O< < (P)/2 min (1, hi)

hk+l ()]-(P(h))- Tk-(P(h))<4c=4chk+ max 1,
h,

Now estimate

Icr-l(p(h) + Sk+l(h))-cr-l(p(h))l

as in Proposition 2.

1o--111/i-1 < (Bi) ’/i-1

hi
For 0< h < (,(P)/2) min (1, hi) (,(P)/2)h,,

4

1
IP(h)[<

yk "n’tr) h and Io-lp(h))[<4ch

by Lemma l a and there are 8, K such that

ISk+(h)l < Khk+l max (1,-kl) K
for 0 < h <

Thus by [S-SI, Lemma 3]

1o-.-l(p(h) + Sk+l(h))--l(P(h))]
kKhk+l/h,

hk+l
kh,

(1-(4/Tk(P))h/hl)(1-(1 + KTk(P)(h/h,)k)((4/Tk(P))h/hl))"

Now it is easy to produce a 8 such that for 0<h<Sh,, K divided by the
denominator is bounded.

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 157

LEMMA 4. Suppose If(z)l<-If(z)l and that zl=f;l((1-h)f(z)) for 0<lhl<
sin (R)y,zo, then

f(z1)
19y,z, >= Oy, arg

f(z)

Proof Since If(zl)l < If(z)l it suffices to see that Zl f-1(Wy,z) see [SS-I, 3] for
thenf, is defined on a wedge of angle at least the angle of Wy, minus larg (f(zl)/f(z)[.

But the open disc of radius [f(z)l sin Oy, centered at f(z) is contained in Wy, as

Fig. 3 shows. Thus (1-h)f(z) is in this disc for 0-<[hi<sin 0y, and zlfl(Wy,z).

FIG. 3

LEMMA 5. Let Ih,f(Z) be a GEMk iteration. Then there is a constant a, >= a > 0
depending only on I such that: If 0 < h < a sin Oy, then

(R)f,z, => Of, arg
f(z’)]f(z)

Proof. By Lemma 4 we need only show that there is an a such that if 0 < h <
a sinOf, then z’=f-l((1-h)f(z)) for some h with 0<lhl<sinOy.z. Now f-l((1-
h)f(z))= z+ Fo’-l(h). Thus it suffices to show for z’= Ih,f(Z)= Z+ FR that R(h,f, z)=
(r-l(h ’) for some h’ with 0< Ih’l < sin Oy, Since a GEM iteration is small, there is a

81> 0 such that for 0< h < 81 min (1, hi), o’-l((rR(h,f, z)) R. We will let h’-
o’R(h,f, z). Since sin Oy.z <rain (1, hi) we know that 81 sin Oy, < 81 rain (1, hi). Now
we claim that there is an a, 0<a-<_81 such that if 0<h<a sinOy, then h’l=
Io’R(h,f, z) < sin Oy, The last claim finishes the proof, for then h’= o-R(h,f, z) satisfies
0<lh’l<sinOy, and o-l(h’)=R(h,f,z). To verify the claim we may assume 81_-<1.
Let L be the Lipschitz constant of P(h) on D(1) o-R(h,f, z)= P(h)+ S+l(h) where
C,/x > 0 with the property that

,Sk+l(h)l<Chk+lmax(1,-kl) for 0< h </x min (1, hi),

max 1,
min (1, hi)

<"sin O,z
Thus for 0 < h < x sin 01,

IS+(h)l < z+’ sin Oy,

158 M. SHUB AND S. SMALE

We may assume/x <min (1/2L, 1/2) for 0< h </x sin
(1/2)k+l sin (R)y,z and we are done.

We now can prove that GEM’s are cheap. This is the analogy of [S-SI, Theorem
4] but for GEM’s Ay, can be replaced by Oy,o.

THEOREM C. Suppose that z’= Ih,f(Z) is a GEMk iteration. Then there is a constant
K depending only on I such that: If (R)y,,zo > 0 and If(zo)l > L> 0 then there is an h given
explicitly such that If(z,)[< L for

n [K (lg Jf(zo)/ L’.) (k+l’/k]Of,o

and z, Ih,f)" Zo).
Proof The proof is the same as [S-SI, Thm. 4]. Take a to be the min of the a

considered there and the a of Lemma 5 above, and replace Ay, by (R)y,o.
Remark. It is easy to adapt the algorithms of Theorem A and B to GEMk iterations

and prove analogous theorems. We state a particular theorem which is the analogue
of the "Main Theorem" of [SS-I] and which has the same proof starting from
Theorem C.

THEOREM E. If z’= Ih,(z) is a GEMk iteration, there are positive constants K1,
K2 depending only on P(h with the following true: Given d > 1, 1 > tx > 0 there are R,
h such that" If (zo,f) SR Pd(1) then z (Ih,)(Zo) will be an approximate zero off
with probability l-Ix for any s >- K(d(llog tZ]/tX))k+l)/k+ K2.

4. This section consists of a series of problems and remarks.
(1) There is the general problem of comparing speeds of different algorithms for

root finding of complex polynomials. See Dejon-Henrici (1969) and Henrici (1977)
for a number of such algorithms. Comparison by experiment on machines can often
be done readily. But the theoretical study of which algorithms are faster is another
story. Such an analysis must deal seriously with round off errors and eventually
consideration of the question: What are appropriate models of algorithms for this
problem? Perhaps even the question must be confronted; what is the best model for
the machine for this kind of study? Is a Turing machine always the right model? See
the Traub-Wozniakowski (1982) critique of Khachiyan’s work on linear programming
for a good perspective on related questions.

For the comparison of algorithms lower bounds on speed are important. See
Traub-Wozniakowski (1980).

Finally in this discussion, we note that we have just received the paper of Sch6nhage
(1982). This takes a different approach to the study of speed related to the fundamental
theorem of algebra. It seems to be quite an interesting work.

(2) We only have results for one variable. It is a wide open and central problem
to extend the analysis to more than one variable, especially to polynomial maps from
C" to C" (or " to "). Since the theory of schlicht functions, used heavily here, is a
one variable theory, finding the right estimates in several variables is a challenging
problem. Relevant to this problem is that a mild algebraic condition on a polynomial
map f: C" C" guarantees that f is proper and hence has a zero, see Hirsch-Smale
(1979).

(3) We have studied the problem of efficiency for finding one zero of a polynomial.
What about the problem of finding all zeros of a polynomial f? The natural algorithms
would follow paths in the space I C I=[0, 1]. Define fd(Z)--I-I di=1 (z ffi) where
’l,...,ra are the dth roots of unity. Let F:ICC be defined by F(t,z)-
(1--t)fd(z)+tf(z). Generally F-(O)c IC consists of d curves leading from the

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 159

known sri to zeros of f. One obtains good algorithms by following these curves
simultaneously. We suspect that the speed in this case can be understood by the
methods in these papers.

(4) We have used the space

Pa(1)--{(ao,’’", aa-1, aa}lla, <- 1, aa-- 1}

of coefficients off(z) d=0 aiz . While this parameterization has a simple immediacy,
the projective space Ca/I/(C -0) is more natural. Here (ao," , aa) Ca/l is equivalent
to (hao, , ,aa), each nonzero complex h. It would seem reasonable for the results
to go over. Also we have used one particular probability measure, the uniform one. It
would be useful to make a generalization to a wide class of probability measures, say
given axiomatically as in Smale (1982b). Finally the problem suggests itself to replace
polynomials by other classes of comlex analytic functions. For example much of the
analysis applies to rational functions which are also invertible up to the "first" critical
value.

(5) We recall a problem, yet open, from Smale (1981) which has received some
attention. For any polynomial f, degf> 1, and complex number z, f’(z) O, it seems
likely that there exists a critical point O(f’(O)= 0) such that

It is proved there that

min

f(z)-f(O)

o
f’(0)=0

f(z)-f(O)
<-KIf’(z) with K 4.

One can express the conjecture in a slightly sharper form by making K a function of
d, K Ka d- lid. This conjecture is the best possible as can be seen by choosing
f(z) zd--dz, and z 0. The conjecture is false for entire functions such as f(z)= e z.

Dick Palais first pointed out to Smale that the estimate (K 1) was true for f
with real zeros. Nan Boultbee confirmed Smale’s early calculations for degree f-<4.
And recently David Tischler (1982) has proved the conjecture when one root of f is
zero and the others have the same absolute value. Linda Keen and Tischler have
produced some supportive numerical evidence, but as mentioned above, the general
conjecture remains open.

(6) We remark that although detailed techniques are different, there are basic
similarities between the main theorems here and in Smale (1982a). Each gives a good
estimate for the average number of iterations of a well-known algorithm or variation
thereof. Moreover the underlying geometry of the algorithm in each case is following
the inverse image of a segment in the target space.

The work of Kuhn-Zeke-Senlin (1982) and Renegar (1982) on the speed of
piecewise linear algorithms to find zeros of polynomials relates to both our paper here
and Smale (1982a).

(7) The algorithms in [S-SI] and in this paper start with Zo e C satisfying Izol >> 1,
e.g. Izol-3. This is necessary for our analysis since the rough behaviour offe Pd(1)
on points Zo with Izol large enough is independent of f. On the other hand the large
starting value contributes eventually to the d in the estimates of the main theorems.
This suggests that if one started with [z0]-< 1, e.g. Zo 0 at least that factor of d would
be eliminated, sharpening the theorem drastically.

160 M. SHUB AND S. SMALE

The problem here is to obtain information on the behavior of Oy, for Iz[1 or
even z 0. Consider the integral On of (R)y,z over the space Pa(1) x S with the usual
uniform probability measure. Is there an e > 0 independent of d such that Oa > e > 0?
A related question is: Do there exists universal constants el, e2> 0 such that fPd(1)
(measure of {z Sl[Oy, > el}) -1 <e. An affirmative answer would imply that the d
in d log d of Theorems A and B could be eliminated.

In the case of Theorem A this is very direct; Theorem B actually requires a slightly
different algorithm. The idea is to switch to h 1 at some point. We develop such an
algorithm a bit.

Let fly min (1/2c, 1/2cp}/) and j =jk [IOgk+l (8d log2 (d))]. Here c is about 2 as in
the definition of approximate zero. It is a simple computation to check from the
proposition of the introduction that:

LEMMA. Suppose f Pd 1 and ef > O. If If(zo)[< fif then [f(E(zo))l < ef.
< pl/2/2)cpf. ThusProof. If py 1 then [f(zo)[< y

If(Ek(zo))l < P-P---- Cpf <=28dlog2d

24d24dlog2d (2d)4d < ef

If py>= 1 then [f(Ek(zo)l < c/(2d)4d < ef by a similar calculation.
We are now ready to describe the Algorithm (N-E)’:

0) m=l
1) k=max([logd],m)

j [Iogk+ (8d log2 d)]
n=K(d+m)

2) Pick Zo with Izol 3 at random.
3) z E k,,y(E

If If(z)l < ey terminate and print "z is an approximate zero off".
4) If not m=rn+l and go to 1.

Once 2-"< fly all that is needed for this algorithm to produce an approximate
zero is to pick a Zo with Oy,zo => 7r/12. So in the mean the algorithm goes through six
additional cycles of the loop. Thus for fixed f with ey > 0, Algorithm (N-E)’ terminates
with probability one.

Let m(f)= [log

S(f)<-_ m(f)[K(d + m(f)+j]+ E -(K(d + m(f)+k=l

m(f) < C log d for C a constant.
Pd(1)

This shows that Theorem B applies to Algorithm (N-E)’. The extra computations
involved in increasing k do not seriously effect the total number of arithmetic operations
either.

REFERENCES

A. BORODIN AND I. MUNRO, (1975), The Computational Complexity ofAlgebraic and Numerical Problems,
American Elsevier, New York.

ON THE GEOMETRY OF POLYNOMIALS AND A THEORY OF COST 161

R. BRENT AND KUNG (1976), O((n log n)3/2) algorithms for composition and reversion ofpower series, in
Analytic Computational Complexity, J. F. Traub, ed., Academic Press, New York, pp. 217-225.

(1978), Fast algorithms for manipulating formal series, J. Assoc. Comput. Mach., 25, pp. 581-595.
B. DEJON AND P. HENRICI (1969), Constructive Aspects of the Fundamental Theorem of Algebra, John

Wiley, New York.
P. HENRICI 1977, Applied and Computational Complex Analysis, John Wiley, New York.
M. HIRSCH AND S. SMALE (1979), On algorithms for solving f(x) =0, Comm. Pure Appl. Math., 32, pp.

281-312.
D. KNUTH (1981), The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed., Addison-

Wesley, Reading, MA.
n. KUHN, W. ZEKE AND X. SENLIN (1982), On the cost of computing roots ofpolynomials, preprint.
S. LANG (1965), Algebra, Addison-Wesley, Reading MA.
J. RENEGAR (1982), On the complexity of a piecewise linear algorithm for approximating roots of complex

polynomials.
A. SCH6NHAGE (1982), Thefundamental theorem ofalgebra in terms ofcomputational complexity-preliminary

report, Math. Inst. der Univ. Tiibingen.
M. SHUB AND S. SMALE (1982), Computational complexity; on the geometry ofpolynomials and a theory of

cost (Part I), Ann. Scient. Ec. Norm. Sup. 4 serie, 18 (1985).
S. SMALE (1981), The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc., (New

Series), 4, pp. 1-36.
(1982a), On the average speed of the simplex method of linear programming, preprint.
(1982b), The problem of the average speed of the simplex method, to appear in the Proceedings of the
International Symposium of Mathematical Programming, Bonn, 1982, Springer, Heidelberg.

D. TISCHLER (1982), preprint.
J. TRAUB AND n. WOZNIAKOWSKI (1980), A General Theory ofOptimal Algorithms, Academic Press, New

York.
(1982), Complexity of linear programming, Oper. Res. Lett., 1, pp. 59-62.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
012

A PROVABLY GOOD ALGORITHM FOR THE TWO MODULE
ROUTING PROBLEM*

BRENDA S. BAKERf

Abstract. In the Mead-Conway design methodology for LSI, modules are designed and then connected
by wires to form larger modules in a hierarchical fashion. It would be helpful to have a design aid that
would do the routing automatically and be guaranteed of coming within some fixed percentage of the size
of an optimal routing. With this goal in mind, we investigate the problem of routing two-terminal nets
between two modules of the same width but possibly different heights, assuming that the sides are aligned
vertically. The terminals may lie on any of the sides of either module. Wires must be routed according to
the "Manhattan" reserved-layer model, in which all wires must lie on a rectilinear grid, and wires running
the same direction must be separated by at least unit distance. Finding an optimal routing for this problem
is NP-hard, where the measure of performance is the perimeter of the bounding box around the whole
routing region. We describe an algorithm whose worst-case performance is asymptotically at most 19/10
times that of an optimal routing. The algorithm runs in O(n log n) time, where n is the number of nets.

One of the problems encountered in routing is how to evaluate a routing when the optimal routing is
not available for comparison. The techniques given here can be used to calculate lower bounds on the size
of an optimal routing. Thus, these techniques may be useful in evaluating routings produced by methods
other than the algorithm in this paper.

Key words, wire routing, channel routing, NP-hard, worst-case performance bound

1. Introduction. In the Mead-Conway design methodology for LSI, modules
(cells) are designed and then connected by wires to form larger modules in a hierarchical
fashion. The modules may be objects like PLAs that are generated automatically from
logic descriptions, or they may be individually designed cells performing some par-
ticular function. It would be helpful to have software to do the routing of the
interconnection wires automatically. With this goal in mind, this paper develops and
analyzes an algorithm for routing two-terminal nets between two rectangular modules
that can have terminals on any of their sides. The modules must have the same width
and be aligned vertically. The ideas in this paper could also be extended to multiterminal
nets.

For our wiring model, we use the Manhattan reserved-layer wiring model which
is designed for a technology in which two layers are available for wires and a routing
discipline in which one layer is reserved for horizontal wires and the other for vertical
wires. Thus, it specifies that all wire segments must be vertical or horizontal, and that
wire segments running the same direction must be separated by at least unit distance.
Perpendicular wires may cross. Wires must also stay at least unit distance from sides
of the modules except where they connect to terminals. For convenience, we assume
that all terminals, wire segments, and sides of modules lie on the lines of a unit grid.
Vertical and horizontal lines of the grid are termed columns and tracks, respectively.

In our two-module routing problem, the modules are rectangles with the same
width but possibly different heights. Their left and right sides are aligned as shown in
Fig. 1. The distance between the modules is not fixed, i.e. it may be adjusted by the
routing algorithm. Nets are specified as pairs of terminals that may lie on any of the
four sides of the two components. The goal is to connect the pair of terminals for each
net with a wire, subject to the constraints of the Manhattan model.

* Received by the editors March 13, 1983, and in revised form October 22, 1984.
t AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

162

TWO MODULE ROUTING PROBLEM 163

An algorithm can only be evaluated with respect to some performance measure.
Two obvious possible measures are the area and perimeter (in grid units) of the
bounding box of the routing region, including the modules and all wires, as shown in
Fig. 1. Note that of all rectangles with the same area, a square has the smallest perimeter,
while for all rectangles of fixed perimeter, the smallest area is achieved by letting one
dimension approach zero. Therefore, it is reasonable to expect that optimizing with
respect to perimeter may tend to produce aspect ratios close to 1, which are desirable
for some applications, while optimizing with respect to area may not.

FIG. 1. An example of two-module routing. The bounding box around the routing region is drawn with

dotted lines.

In this paper, we describe an O(n log n) time algorithm PAIR-SPLIT (PS) for the
two-module problem. We show that for every two-module routing problem, the
perimeter of the routing produced by PS is at most a constant plus 19/10 times the
perimeter of an optimal routing. For channel routing, a subproblem of the two-module
routing problem in which all terminals are on the facing sides of the modules, we give
an algorithm SPLIT that produces a routing whose perimeter is never worse than a
constant plus times the perimeter of an optimal routing. Examples are given to show
that these performance bounds are tight. These algorithms are among a small number
of routing algorithms [1], [3], [5], [9], [10], [11], [12], [14] that have been analyzed
to be provably good in some sense.

Channel routing is an aspect of the two-module problem that is difficult to handle
in the general case. In fact, producing an optimal routing is NP-complete, even for
two-terminal nets, using either the channel width or perimeter as a measure of perform-
ance [13]. The channel-routing algorithm SPLIT used in PS is guaranteed always to
find a routing, unlike some previous channel routing algorithms. However, it will not
perform as well in many cases as other heuristics that may have worse worst-case
performance bounds or that handle only restricted instances of the problem, but still
seem to perform well on real applications. Such an algorithm can be substituted for

164 BRENDA S. BAKER

the general channel routing algorithm given here, since the rest of PS is independent
of the channel routing algorithm used. Thus, the algorithm of this paper guarantees
that a routing can always be achieved for any instance of the two-module problem,
while the flexibility afforded by substitutability of other channel routing algorithms
allows for potential improvements for some instances of the problem.

It is also possible that use of a different channel-routing algorithm could lead to
a better worst-case bounds for PS. An obvious candidate is the algorithm of Baker,
Bhatt, and Leighton 1] that produces routings for which the channel width is asymptoti-
cally within a constant times optimal. Its behavior has not been analyzed with respect
to the perimeter measure, but very likely its worst-case performance is better than that
of SPLIT with respect to the perimeter measure, and its use might improve the worst-case
performance of PS as well.

The two-module problem is also related to two previously studied problems other
than channel routing. For a single module with two-terminal nets whose terminals can
be on any side, LaPaugh [9] and Gonzalez and Lee [7] give polynomial time algorithms
that produce routings optimal for both area and perimeter. For a restricted case of the
two-module problem, Chandrasekhar and Breuer [3] give an algorithm that produces
a routing that is area-optimal over a class of routings that excludes certain paths for
wires and sharing of tracks between wires for certain types of nets.

One of the difficulties in routing is knowing how good a routing is when the
optimal routing is not available for comparison. Since the size of the PS routing is
bounded compared to that of the optimal routing, the PS routing can be use to estimate
the size of an optimal routing and hence the degree to which the current routing could
potentially be improved. The time consumed in obtaining the estimate would be low
thanks to the fast running time of PS. Thus, even in cases where other heuristics
perform better than PS, the PS routing may be useful. In fact, the techniques used to
obtain the performance bound for PS can be used directly to compute lower bounds
on the size of the optimal routing.

Section 2 discusses the difficulties inherent in the two-module problem, the
approach used by the PS algorithm, and the basic ideas used in the proof of the
performance bound. Section 3 gives the complete description of SPLIT and PS. Section
4 proves the performance bounds for both SPLIT and PS.

2. Challenges presented by the two-module problem. This section discusses where
the difficulties lie in finding a routing for the two-module problem, the general approach
of PS, and the proof techniques used in obtaining the performance bound.

We begin by describing the channels available for routing. The region available
for routing may be thought of as a figure eight around the modules, which are denoted
by MT and MB. For our two-module problem, the figure eight may be divided into
labeled (finite or semi-infinite) rectangular channels by extending either the horizontal
or vertical sides of the modules, as shown in Fig. 2. Note that the two divisions give

MT TLI MT [iR
IR

(b)

FIG. 2. Channels around Mr and MB.

TWO MODULE ROUTING PROBLEM 165

us overlapping labelled channels; both divisions into channels will be useful. In the
figure, T, B, L, R, and S stand for top, bottom, left, right, and street, respectively.
EXT-T, EXT-S, and EXT-B stand for "extensions" ofchannels T, S, and B, respectively.

Finding a routing for the two-module problem has two distinct but interrelated
aspects: channel assignment and channel routing. Channel assignment is the determina-
tion of a set of channels to be crossed by the wire for each net, without determining
the specific tracks or columns to be traversed within each channel. Once the set of
nets crossing or entering each channel has been determined by channel assignment,
channel routing is the determination of the exact path (specific tracks and columns)
each wire is to follow within the channel.

Issues in channel assignment. Ideally, we would like to assign channels to nets as
in some perimeter-optimal routing. For some nets, channel assignment is easy. For
example, if a net has both terminals in channel T, it should be routed with a wire
entirely within channel T. There may be optimal routings in which the wire goes all
the way around Mr and/or MB. However, for any such routing, there is another
optimal routing with the wire entirely within channel T. This observation holds because
a wire crossing the entire horizontal extent of channels S or B must use an entire
track, while a wire going directly between the terminals in channel T can do no worse
than to use an entire track.

Unfortunately, for some nets, optimal channel assignment cannot be done for
each net independently of other nets. For example, compare Figs. 3a and 3b. The nets
with terminals labeled A and B on the top and bottom of Mr must be routed in
opposite directions in Fig. 3a but in the same direction (to the left) in Fig. 3b to achieve
an optimal routing. Which channel assignment leads to an optimal routing depends
on what nets are available to share tracks. This example illustrates the difficulties in
channel assignment inherent even in routing around a single rectangular module.
LaPaugh’s algorithm [9] for an optimal solution for this problem runs in time O(/13),
where n is the number of nets, and is very complicated. More recently, Gonzalez and
Lee [7] found an O(n log n) time algorithm for the same problem.

(al (b)

FiG. 3. Two examples of optimal channel assignment.

The approach in PS is to use simple heuristics for channel assignment, rather than
to attempt to find an optimal assignment. Depending on the location of the terminals,
each net is routed either along the shortest path between the terminals, or in a direction
that will allow a segment of its path to share a track or column with a segment of
another net of the same type.

Issues in channel routing. Once channel assignment has been done, individual
channels must be routed. Note that channels S and (equivalently) EXT-S can have
terminals on both the top and bottom edges, while other channels have terminals only
on one side. Channel routing is easy in the latter case but can be difficult in the former
case.

If a channel has terminals only on one side, the n nets with terminals in the
channel can be routed optimally in O(n log n) time by a simple interval coloring
algorithm [6]. Consider a horizontal channel and a set of two-terminal nets with both
terminals on the bottom edge of the channel. Each net is routed using exactly one jog

166 BRENDA S. BAKER

(horizontal wire segment) connecting vertical segments attached to its terminals. Thus,
the horizontal interval traversed by the net is simply the interval between its terminals.
Nets are assigned tracks (colors) as follows. The nets are processed in order ofincreasing
leftmost endpoint. Each net is assigned to the first track in which it can be placed
without overlapping the interval of any net already in the track. This algorithm uses
a number of tracks that is equal to the channel density, which is the maximum number
of nets whose intervals include any single column. Since any routing must use at least
this many tracks, the interval coloring routing is optimal.

Now, consider a horizontal channel that has terminals on both its top and bottom
edges, as in Fig. 4. If no two terminals lie in the same column, interval coloring can
still be used to produce an optimal routing. When columns can contain two terminals,
routing is more difficult. Suppose a terminal of net/’/2 lies above a terminal of net nl
in the same column. Since two vertical wire segments cannot overlap in the reserved
two-layer model, the jog of nl with one end in this column must lie below the jog of
n2 with one end in this column. These constraints may be described by a constraint
graph. The constraint graph is a directed graph in which the nodes are the nets, and
an arc is directed from node nl to node n2 if and only if a terminal of net nl lies directly
below a terminal of net n2 in the same column. The constraint graph of the routing
problem of Fig. 4 is given in Fig. 5.

FIG. 4. A channel routing problem containing a cycle.

FIG. 5. Constraint graph for the nets of Fig. 4.

If the constraint graph contains no cycles, then the nets can be routed with a
single jog each, by Deutsch’s algorithm [4], for example. However, such a routing may
not be optimal; in fact, there are examples for which such a routing requires n tracks
while an optimal routing requires only on the order of x/ tracks [2].

A cycle in the constraint graph prevents routing every net with at most one jog
(see Fig. 4, for example). Since every node has degree two, distinct cycles in the
constraint graph must be disjoint. A cycle may be handled by using a dogleg (vertical
wire segment connecting two horizontal segments) for the net corresponding to one
node in the cycle, as in Fig. 4. Note that the dogleg may be forced to lie in a column
outside the region between the modules, if there are no free columns within this region.

TWO MODULE ROUTING PROBLEM 167

Thus, we must regard the channel available for routing as extending beyond the left
and right sides of the modules (i.e. the extended street rather than just the street). It
is possible to get by with a single extra column by choosing one net from each cycle
and giving it a dogleg in this column [8]; however, in this solution no nets in cycles
can share tracks, and if every net is in a cycle, the routing will require n + c tracks,
where n is the number of nets and c is the number of cycles.

Our approach is to find a compromise between sharing of tracks and use of extra
columns for doglegs that requires at most d +6 extra columns and at most (n + d)/2 +4
tracks, where d is the channel density and n is the number of nets. Since an optimal
routing uses at least d tracks and the channel has at least n columns, the algorithm
produces a routing whose perimeter is at most a constant plus 23- that of an optimal
routing.

Proof techniques. Part of the value of this work lies in showing that some rather
simple prooftechniques can be developed into an analysis of PS giving a tight worst-case
performance bound. Let P be an instance of the two-module routing problem, PS (P)
the routing obtained by PS, and OPT (P) a routing of P that is optimal with respect
to the perimeter measure. Obtaining a worst-case performance bound requires analyzing
both PS (P) and OPT (P). A key idea in the proof is that it is possible to derive lower
bounds on the number of tracks and columns that OPT (P) must use for a net without
knowing precisely how the net is routed. A simple example of such an analysis was
given above (in the discussion of channel assignment) for nets with both terminals in
channel T. In the proof, lower bounds are derived for OPT (P) based on three ideas:

(a) Certain nets require whole tracks or columns within some channel no matter
how they are routed. For example, a net with one terminal in channel L and one
terminal in channel R needs to get its wire from one side to the other within T, S, or
B. The number of such nets within all such channels gives a lower bound on the sum
of the channel widths.

(b) PS (P) is only worse than OPT (P) insofar as some nets are routed differently
in the two routings. For each channel, the nets can be divided into two classes according
to whether they are routed through the same part of the channel in both routings.
Since certain nets in PS (P) are routed the shortest way, the nets routed differently in
OPT (P) may be forced to use extra tracks or columns. For example, a net with both
terminals in channel T is always routed by PS with a wire that has one horizontal
segment extending between the terminals, contributing at most one to the width of the
bounding box and at most two to the perimeter. If the wire for the same net in OPT (P)
does not cover the interval between the terminals, it must go almost all the way around
one or both modules.

(c) To formalize how certain routings use more tracks and columns than others,
we assign weights to wires. Given a routing, let each wire accumulate a weight of 1/2
for each time it crosses each dashed line in Fig. 6, and a weight of 1/2 for each terminal
in channels L, R, and S. Assign a weight of 0 to other wire segments and to other
terminals. A single track can contain at most two horizontal wire segments of weight
1/2 in channels T or B, or two terminals of weight 1/2 in channels L or R. Similarly, a
single column can contain at most two vertical segments of weight 1/2 in channels L or
R, or two terminals of weight 1/2 in channel S. Consequently, the perimeter of OPT (P)
is at least twice the sum of the weights of all the wires and terminals in OPT (P). Since
the actual routing of OPT (P) is not available, a lower bound on the weight of each
wire is deduced from the locations of its terminals. For example, a wire with both
terminals in channel T has a weight of zero if it is routed straight across from one
terminal to the other. On the other hand, if it is routed so that it does not cover all of

168 BRENDA S. BAKER

FIG. 6. A wire accumulates weight 1/2 for each crossing of a dashed line.

this interval, it goes around one or both modules; in the process, it crosses at least
two vertical lines and at least two horizontal lines for a total weight of at least two.

Developing the above ideas into a tight worst case performance bound requires
a large amount of case analysis and algebraic manipulation. The details of the analysis
are quite complicated, partly due to the large number of types of nets.

3. The algorithm. In this section we describe the two-module routing algorithm
PS. PS calls a procedure PAIRUP for routing nets around a single rectangle, as well
as the channel-routing algorithm SPLIT. We begin by describing PAIRUP and SPLIT.

PAIRUP. Let M be a rectangular module. Let N be a set of nets, each of which
has one terminal on the top of M and the other on the bottom. The choice in channel
assignment for each net is whether to route it around the module to the left or to the
right. The goal is to assign directions (and hence channels) that allow the following
channel routing phase to arrange for nets to share tracks, as in Fig. 7.

Fit3. 7. Applying PAIRUP around Ma.

Number the terminals on each edge from left to right in increasing order. Define

net (T, i) to be the net in N containing the ith top terminal, for 1<_-i <-]NI. Define

net (B, i) similarly for bottom terminals. For a net n, let bottom (n) be the number of

n’s bottom terminal.

procedure PAIRUP (N)
begin
constant left 0, right- 1;
var alt: boolean;
for all nets n {N}, let direction (n) be undefined;
alt left;

TWO MODULE ROUTING PROBLEM 169

while :In N such that direction (n) is undefined
begin
let be the number of the leftmost top terminal such that

direction (net T, t)) is undefined;
if for every b, bottom (net T, < b <= NI,

direction (net (B, b)) is defined
then begin
direction (net(T, t)) alt;
alt not (alt);
end

else
begin
direction net T, t)) left;
for some b > bottom (net (T, t)) such that

direction (net (B, b)) is undefined
direction net (B, b)) right;

end
end

end

In the case in which N is the only set of nets to be routed, the channel assignment
produced by PAIRUP can be extended to a routing in which all jogs are paired in
tracks except for possibly two jogs. In particular, jogs may be paired as follows (see
Fig. 7). Pairs of nets that are assigned opposite directions together in the loop of
PAIRUP can share tracks for both their top and bottom jogs. Nets that are assigned
a direction that is the current value of alt form a sequence in which the top jog of an
odd net in the sequence can be paired with the top jog of the next even net, and the
bottom jog of an even net in the sequence can be paired with the bottom jog of the
next odd net. Thus, all but possibly two jogs are paired.

PAIRUP may be implemented by using linked lists for terminals on the top and
bottom not assigned directions, or by using variables to keep track of the leftmost
unassigned top terminal and rightmost unassigned bottom terminal. Except for con-
structing linked lists or tables for net and bottom, which might require O(n log n) time
for sorting, PAIRUP runs in linear time.

PAIRUP and the associated channel routing solve a subproblem of the problem
studied by LaPaugh [9] and Gonzalez and Lee [7]. Their problem is more general in
allowing terminals to lie on any side. The PAIRUP approach comes within one track
of optimal for the subproblem, since n nets must use at least n tracks for 2n jogs.
Fig. 8 shows that the algorithm can in fact be one worse than optimal. PAIRUP is
simpler than the algorithms of [7], [9].

(a) (b)

Fit3.8. An example on which PAIRUP does not produce an optimal routing. (a) A routing produced by

PAIRUP. (b) An optimal routing.

170 BRENDA S. BAKER

SPLIT. SPLIT routes all nets with both terminals in the same column by running
a vertical wire within this column. In the following, we therefore ignore such nets and
columns and consider only a set N of nets whose top and bottom terminals lie in
different columns.

Recall from 2 that the difficulty in channel routing arises from constraints between
nets whose terminals lie in the same column. The SPLIT algorithm splits the channel
at some column and breaks all constraints between the nets to the left of the column
and the nets to the right of the column by using doglegs for nets crossing this column.
Consequently, the nets to the left of the column can be routed independently of the
nets to the right of the column.

Let c be the number of columns in the modules bordering the channels. Number
the columns of the modules from left to right. For i, 1 =< -< c, define S(i) to be the set
of nets with one terminal in columns 1 through and one terminal in columns i+ 1
through c, st(i) to be the set of nets with both terminals in columns 1 through i, and
sR(i) to be the set of nets with both terminals in columns i+ 1 through c. It is easy
to verify that for some r, 1 <-r<= c, St(r) contains exactly

net and SR(r) contains exactly

2

nets. SPLIT breaks the constraints between nets in St(r) and SR(r) by using doglegs
for nets in S(r). Nets in St(r) and nets in SR(r) are then routed independently using
the same set of tracks.

The organization of the routing is shown in Fig. 9. First, all nets in S(r) with both
terminals on top are routed with a single jog in the tracks immediately below the top
of the channel, one track per net. Let T denote the set of these tracks. Below T, all
nets in S(r) with both terminals on the bottom are routed with a single jog, one track
per net. Let T2 denote the set of these tracks. Between T1 and T2 is an imaginary
rectangle (outlined in dashes in Fig. 9) that will contain the jogs of wires in St(r) and
SR(r). The nets in S(r) with one terminal on top and one on the bottom will be routed
with wires containing doglegs and running around this rectangle. The doglegs will lie
to the left or right of all columns with terminals. To decide on the direction for each
dogleg, PAIRUP will be applied to these nets. Note that for PAIRUP, it does not
matter that the terminals are not located on the rectangle itself; only the horizontal
positions of the terminals are needed. After PAIRUP has determined the direction of
each dogleg, the jogs of these nets may be paired in tracks as described in 2. The
paired jogs will be laid out between T1 and T2 such that all top jogs lie above the

T

FOR sL(r),sR(r
L

FIG. 9. Routing the nets in S(r).

TWO MODULE ROUTING PROBLEM 171

imaginary rectangle and all bottom jogs lie below it (as shown in Fig. 9). Let T3 denote
the set of tracks used for the top jogs and T4 the set of tracks used for the bottom jogs.

The nets in SL(r) and SR(r) will be routed in tracks lying in the rectangle between
T3 and T4. By placing the jogs for these nets in the region between T3 and T4, all
constraints between nets of S(r) and those of SI(r) and SR(r) are automatically
satisfied. At most IS(r)[+ 1 tracks are used for S(r).

The nets in SL(r) and Sn(r) are routed independently and symmetrically. We will
describe only the routing of SR(r). If there are no cycles in the subgraph of the
constraint graph induced by SR(r), then each net can be routed in a separate track
with a single horizontal jog as long as the tracks are ordered so as to satisfy any
constraints. However, if there are constraint cycles, it is necessary to break the cycles
by using additional outside doglegs.

Recall that distinct cycles are disjoint. Let Y be a set of nets which includes
exactly one net from each cycle in the subgraph induced by SR(r). Each column
contains at most one terminal belonging to a net in Y. Each net in Y will be routed
using an outside dogleg. The doglegs to the left of the terminals will lie in a single
column, while the doglegs to the right of the terminals will lie in one of three columns
c, c2, and c3 to the right of all the terminals. For the left column, we pick the leftmost
column containing a terminal of a net y in Y. Let Cy deno.te this column. Net y will
be routed using a dogleg in column 3. Its top jog lies in the track immediately below
T3 and its bottom jog lies in the track immediately above T4.

PAIRUP is applied to Y-{y} to assign a direction to each dogleg, and the jogs
are paired in tracks as described in 2. Recall that PAIRUP may assign some pairs
of nets opposite directions so that the top jogs may occupy the same track and the
bottom jogs may occupy the same track. These pairs of nets are laid out as suggested
by Fig. 10, with successive pairs occupying successively lower tracks, and all doglegs
in column cy or el. Recall that the remaining nets form a sequence in which the top
(bottom) jog of an odd (even) net is paired with the top (bottom) jog of the next even
(odd) net, with the bottom jog of the first net and the top jog of the last net unpaired.

ct c3

FIG. |0. Paired nets breaking cycles in SPLIT.

These nets are laid out as suggested by Fig. 11. First, all of the odd nets in the sequence,
i.e. the nets with doglegs toward the left, are laid out in successively lower tracks. Then
all of the even nets, i.e. the nets with doglegs toward the right, are laid out so that
their jogs are in the same tracks as the jogs of the odd nets that they have been paired
with. The doglegs toward the right must alternate between column c and column c2.

172 BRENDA S. BAKER

FIG. 11. Laying out a sequence of cycle-breaking nets.

The remaining nets of SR(r)- Y are laid out using one jog and one track each.
In particular, the jogs of nets belonging to a cycle must be placed in tracks lying
between the top and bottom jogs of the net of Y of the same cycle (see Fig. 12).
Moreover, all of the tracks for jogs of SR(r)- Y must be ordered so as to satisfy the
acyclic constraints between them.

Cy

FIG. 12. Adding the remaining nets to a pair of cycles.

SPLIT can be implemented to run in O(n log n) time. In fact, aside from sorting
the terminals, it can be implemented to run in linear time.

PS. Since PS treats nets in different ways according to the location of their
terminals, we begin by categorizing nets (see Fig. 13). Recall that Fig. 2 defined some
labelled channels around the modules. A net is a straight net if both terminals lie in
channel X, for X one of L, R, T, B, or S. It is a corner net if one terminal lies in
channel L or R and the other lies in channel T, S, or B. It is a cross net if one terminal
lies in channel TL and the other in channel BR, or if one terminal lies in channel BL
and the other in channel TR. Finally, it is an opposite net if one terminal lies in channel
TL and the other in channel TR, or if one terminal lies in channel BL and the other
in channel BR, or if the terminals lie in two of channels T, S, and B. Note that these
categories of nets are pairwise disjoint and that every net is either a straight, corner,
cross, or opposite net. A straight net is also a street net if its terminals both line in
channel S.

TWO MODULE ROUTING PROBLEM 173

(a) (b) (c) (d)

FIG. 13. Examples of each class of local nets. (a) Straight nets. (b) Corner nets. (c) Cross nets. (d)
Opposite nets.

The PS algorithm has five stages:
(a) Channel assignment, to be described subsequently.
(b) Channel routing for channels T and B, done via interval coloring. Recall that

channels T and B are bounded on the left and right by vertical lines passing through
the sides of the modules. For the application of interval coloring, the interval assigned
to a net is the minimal horizontal interval including its terminals and/or points of
entry into the channel at the sides. (The corners to the right and left of channels T
and B cannot be routed until the sides have also been routed.)

(c) Tentative channel routing for (i) the union of channels TL and BL (excluding
the region between them) and (ii) the union of channels TR and BR (excluding the
region between them), done via interval coloring. The region between each pair of
channels is ignored at this point because the nets passing from these channels into
channel S have not yet been assigned to tracks. For the application of interval coloring,
the interval assigned to a net is the union of the minimal vertical intervals including
its terminals and/or points of entry for channels TL and BL or TR and BR.

(d) Channel routing for channel EXT-S (to be described subsequently), where
wires entering EXT-S from above or below (from channels TL, TR, BL, or BR) are
treated as if they have terminals at their entry points.

(e) Final channel routing for L and R, done via interval coloring. The interval
for a net is the minimal vertical interval including the terminals and/or points of entry
into the channel. Note that the routing of channels S, T and B has fixed the tracks
on which nets enter channels L and R from them.

Since interval coloring was described in 2, it is only necessary to elaborate on
(a) and (d). After that, an example of a PS routing is given and the running time of
PS is analyzed.

Channel assignment. Channel assignment is straightforward for all nets except
opposite nets. In particular, a street net remains within channel EXT-S. A straight net
other than a street net remains within whichever one of channels L, R, T, or B contains
its terminals. A corner net is assigned the channels crossed by a shortest wire connecting
its terminals and satisfying the Manhattan reserved-layer constraints. A cross net is
assigned channel EXT-S and the channels containing its terminals, namely TL and
BR or BL and TR. Examples of routings based on these channel assignments are given
in Fig. 13(a)-(c).

Groups of opposite nets with terminals on the same sides of modules are treated
together in channel assignment. Thus, there are seven groups, according to whether
the terminals are: (i-ii) on the left and right sides of the same module, (iii-iv) on the
top and bottom of the same module, (v) on the top of Mr and the bottom of MB, (vi)
on the top of the two modules, or (vii) on the bottom of the two modules.

Channel assignment for opposite nets is determined by applying PAIRUP to each
of the seven groups separately. For groups (v)-(vii), where the terminals are on two
different modules, PAIRUP is applied as if the terminals are on opposite sides of a

174 BRENDA S. BAKER

single module, but in the same order. For these groups, "top" and "bottom" terminals
are determined in the obvious way for PAIRUP. For the other groups, "top" and
"bottom" are chosen to reduce the additive constant in the performance bound. In
particular, PAIRUP is applied to groups (i) and (ii) as if the "right" side lies in channel
S, and to groups (iii) and (iv) as if the "top" lies in channel S.

Channel routingfor channel EXT-S. Channel routing is done by a slightly modified
version EXSPLIT of SPLIT. EXSPLIT produces somewhat better routings for the
situation in PS, where some "terminals" in channel EXT-S are actually wires entering
channel EXT-S from above or below.

SPLIT may be applied directly to channel EXT-S if the wires entering EXT-S
from above or below are treated like terminals. However, certain peculiarities can
arise, such as a wire with an exit point at the right end of EXT-S having a dogleg at
the left end of EXT-S. To avoid such peculiarities (without necessarily improving the
perimeter), we consider an algorithm for an extended channel routing problem as
follows. A net may have zero, one, or two terminals in S and two, one, or zero points
of exit from EXT-S into channels TR, TL, BR, and BL. An exit point is specified as
being on either the top or bottom of the channel and as being either to the left of the
modules or the right of the modules. However, the column in which the exit point lies
is not fixed otherwise. Nets in S(r) with at least one exit point and a terminal or exit
point on both the top and bottom of the channel are routed separately from other nets
in S(r) and excluded from the set to which PAIRUP is applied. To avoid making the
perimeter larger, we need only make sure that each such net is routed using at most
one extra exterior column and one track. But this can be done since one exit point for
the net can be moved to a new exterior column, and the net routed with a single jog
in a track lying within the region allowed for T2 or T4, depending on the (at most one)
constraint remaining for the net. The modified version of SPLIT, which we call
EXSPLIT, produces a routing that uses at most d/2 / n/2 / 4 tracks and d / c+ c/+
cR/6 columns, where c is the number of columns in the modules, n is the number
of nets, and d is the density relative to an initial assignment of exit points to cL and
cR left and right exterior columns, respectively.

Discussion of PS. PS can be implemented to run in O(n log n) time, where n is
the number of nets. In fact, O(n log n) time is needed only for sorting the input (the
terminals) and the rest of the algorithm runs in linear time.

An example of a PS routing is given in Fig. 14. The use of doglegs for every net
crossing the middle of the street is not very appealing. Unfortunately, the problem of

ml L_

FIG. 14. A PS routing.

TWO MODULE ROUTING PROBLEM 175

handling the general case of cycles and "chains" of constraints is difficult. By eye it
is easily seen that several tracks and columns could be saved in this example. Two
obvious improvements would be to move doglegs to the empty columns in the street
and to let jogs share tracks if they do not overlap and are not involved in constraints.
However, these improvements would not improve the worst case example given in the
next section for PS.

4. The lerformanee bounds for PS and SPLIT. In this section, we prove the
performance bounds for the two-module routing algorithm PS and for the channel
routing algorithm SPLIT.

For any routing R, let IRI be the half-perimeter of R, i.e. the number of tracks
and columns in the bounding box around R. In the case of channel routing, the modules
may be ignored, and the bounding box drawn around the wires in the channel. For
an instance/9 of a routing problem and an algorithm A, let A(P) be the routing of P
produced by A, and let OPT(P) be a perimeter-optimal routing of P. With these
definitions, we can state the following theorem.

THEOREM 1. For any instance P ofthe channel routing problemfor two-terminal nets,

ISPLIT(P)I <-- IOPT(P)I + 10,

using the half-perimeter measure. Moreover, the bound is tight in the sense that the
multiplicative constant cannot be made smaller.

Proof. We assume the definitions given in the description of SPLIT. First, we
prove the upper bound of . The routing of Y requires three extra columns in addition
to those of the modules. At most YI tracks are needed for Y-{y}, and two tracks are
needed for y. SR(r) Y requires ISR(r) YI tracks. Thus, SR(r) requires a total of at
most three extra columns and IS(r)l/2 tracks. Similarly, SL(r) requires at most
[SL(r)+2I tracks. Note that tracks can be shared between Sic(r) and SR(r), and

IS(r)l <=lSR(r)l [lNl-lS(r)l]
Adding in the (at most) IS(r)l extra columns and IS(r)l/ 1 tracks used for S(r), we
see that SPLIT uses a total of at most IS(r)l +6 extra columns and

[INI-IS(r)I]+IS(r)I+3<-[INI+IS(r)I]+322
tracks. Since the number of columns in the modules is c and the channel density is at
least IS(r)l, an optimal routing uses at least c+lS(r)l columns and tracks. Since c => N,
we have

ISPLIT (P)I 10< c + lS(r)l / 1/21NI < INI +lS(r)[< 3_
IOPT (P)I c/lS(r)[INl+lS(r)l

For tightness, consider the following routing problem P, illustrated in Fig. 15. Let n
be an even positive integer. For 1 =< i-<_ n, there is a net with the top terminal in column
n + and the bottom terminal in column 2n + on Ln, and another net with the bottom
terminal in column and the top terminal in column 3n + i. For 1 <=i <- n/2, there are
nets with terminals in columns 2i- and 2i on LT-, columns 2n + 2i- 1 and 2n + 2i on
LT-, columns n + 2i- 1 and n + 2i on Ln, and columns 3n + 2i- 1 and 3n + 2i on La.
An optimal routing, depicted in Fig. 15a for n =4, requires 4n columns and 2n +2
tracks. A SPLIT routing, such as the one in Fig. 15b, requires 6n columns and 3n
tracks. Thus, for sufficiently large n, the ratio of ISPLIT (P)I and IOPT (P)I comes
arbitrarily close to

176 BRENDA S. BAKER

(a) (b)

FIG. 15. A worst-case example for SPLIT. (a) An optimal routing. (b) A routing done by SPLIT.

Now, we begin the proof of the main result of the paper: for any two-module
routing problem P,

PS (P)I =< 11OPT (P)I + 24.

Since the proof is complicated, it will be helpful to develop some notation and prove
some lemmas. The reader may like to (re)read the overview of the proof ideas given
in 2 before continuing.

Recall that the type (cross, straight, etc.) of a net is determined by the location
of its terminals. The set of nets with one terminal on side U of module Mx and the
other terminal on side V of module My will be denoted by NAME (X, U, Y, V),
where NAME is STRAIGHT, CROSS, CORN (corner), or OPP (opposite), according
to the type of net that has terminals in these positions. For example, STRAIGHT
T, L, B, L) is the set of straight nets with one terminal on the left side of Mr and the

other on the left side of Ms, and OPP T, B, B, B) is the set of opposite nets with one
terminal on the bottom of Mr and the other on the bottom of Ms. Note that NAME
is actually redundant since it can be deduced from the location of the terminals; it is
given for readability. Also, note that for any NAME, NAME(X, U, Y, V)=
NAME (Y, V, X, U).

For s {L, R, T, B}, define g to be the opposite of s, e.g., L instead of R or T
instead of B.

Define the interval covered by a wire in channel X to be the horizontal interval
between its leftmost and rightmost points in X if X is a "horizontal" channel (T, B,
S, or the extensions of these channels), or the vertical interval between its topmost
and bottommost points in X if X is a "vertical" channel (TL, TR, BL, BR, L, or R).

Given the PS routing, define the natural interval of a net within a channel to be
the interval between its terminals if both terminals lie in the channel, and the interval
covered by the net otherwise. In PS (P) street nets cover at least their natural intervals
in channel S; other nets cover exactly their natural intervals.

In OPT (P), a net may have one of a number of possible routings. For example,
for a net in CORN (T, T, B, R), the wire may run from the terminal on top of MT right
and down, or it may run left, down, between the modules, and down, or it may run
left, down, below B, and up. Recall that PS routes such a wire right and down. (In
the above descriptions, we ignore the initial and final segments of the wire that connect
it to the terminals.) In order to deal with the possible routings in OPT (P), we compare
the intervals covered by wires in OPT (P) with their natural intervals according to the
PS channel assignment. For any set N of nets and any channel X, define SAMEx (N)

TWO MODULE ROUTING PROBLEM 177

to be the set of nets n in N such that the natural interval of n in channel X is a subset
of the interval covered by n’s wire in channel X in OPT (P). Define DIFFx (N)=
N SAMEx (N).

A net is local to channel X if it is a corner, straight, or cross net and in PS (P)
some part of its wire lies in channel X. The only nets that are never local nets are
opposite nets. The set of nets local to channel X is denoted by LOCAL (X). For
example, LOCAL (TR) is the union of the following sets:

CROSS (B, L, T, R), CORN T, T, B, R), STRAIGHT T, R, Y, R),

CORN (T, R, Y, Y), CORN (T, R, Y, Y), where r { T, B}.

Note that it is possible for a net local to a channel not to have a terminal in the channel,
as in the case of CORN (T, T, B, R) in this example.

Recall that for any routing, the width of a channel must be wide enough to
accommodate the maximum number of overlapping intervals of wires passing through
the channel. (This number is at least the channel density.) For any channel X, define

LAPSAMEx to be the maximum number of overlapping intervals of the wires in

SAMEx (LOCAL(X)) in OPT(P). This quantity is of interest since the width of
channel X in both OPT (P) and PS (P) must be at least LAPSAMEx.

For any channel X in a routing A(P), where A is PS or OPT, define
TRACKS (A, X) to be the number of nonempty tracks in this channel in A(P) and
COL (A, X) to be the number of nonempty columns in this channel in A(P).

Lower bounds on IOPT (P)I. The heart of the proof lies in deriving lower bounds
on IOPT (P)I in a form that allows an easy comparison with PS (P). We use two
different techniques in deriving these lower bounds. One involves simply counting how
many nets must use different tracks or columns within single channels, and the other
involves assigning a weight to each net to reflect how many nets of various types can
share certain tracks or columns.

LEMMA 1. The following is a lower bound on the number of tracks in the horizontal
channels of OPT (P)"

Y ITRACKS (OPT, X)l
X T,B,S}

_-> LAPSAMEx/ [DIFF (LOCAL(X))]
X{T,B,S} X{ T,B,S}

+ Z IOPP(X, L, X, R) I.
X{T,B}

Proofi Each net in DIFFx (LOCAL (X)), X { T, B, S}, or OPP (X, L, X, R), X
{ T, B}, covers all of channel T, B or S in OPT (P). For nets in OPP (X, L, X, R), this
follows from the location of the terminals. In the case of the DIFF expressions, a wire
must run the long way around a module to connect the terminals if it cannot cover
the wire’s natural interval in channel X.

In addition, LAPSAMEx tracks are needed in channel X, for X
LEMMA 2. The following are two lower bounds on the number of columns in the

vertical channels of OPT (P):

(a) E ICOL (OPT, X)
Xa{L,R}

X TL, TR,BL,BR
LAPSAMEx 4-IOPP T, T, B,

+1/2 E JOPP (X, T, X, B) 1+1/2 E IOPP T, X, B, X)
X{T,B} Xe{T,B}

178 BRENDA S. BAKER

(b) E ICOL (OPT, X)I
X{L,R}

E LAPSAMEx + E [DIFFx (LOCAL (X))l
X TL, TR,BL,BR} X TL, TR,BL,BR

+ IOPP T, T, B, B)I + IOPP T, T, T, B)I + [OPP T, T, B, T)I.

Proof (a) For Y { T, B} and X 6 {L, R}, define Zyx to be the number of nets in
OPP Y, T, Y, B) U OPP T, Y, B, Y) t.J OPP T, T, B, B) that cover the entire channel
YX in OPT (P). Since

COL (OPT, R) _-> max {ZBR + LAPSAMEBR, ZTR 31- LAPSAMETR},

we have

ICOL (OPT, R)I -> 1/2LAPSAMETR +1/2LAPSAMEnR +1/2ZTR +1/2ZnR.
Similarly,

ICOL (OPT, L)I >= 1/2LAPSAMETL+1/2LAPSAMEBL q-1/2ZTL --ZBL.
Now,

Z zx >- 21OPP (T, T, B, B)I + Y IOPP (X, T, X,
X TL, TR,BL,BR} X{T,B}

+ Y IOPP (T, X, B,
X{T,B}

since every such opposite net must go on one side or the other of one or both modules.
Combining these facts gives formula (a).

(b) We count the number of nets in OPT (P) that use the entire channel TL or
TR plus the number of nets using overlapping intervals in these channels. Every
opposite net with a terminal on the top of MT uses either the entire channel TL or
the entire channel TR. Consider a net n in DIFF (LOCAL (X)), X { TL, TR}. Because
n is in LOCAL (X), n must be a corner net, straight net, or cross net. Because of the
direction assigned to each such net in PS (P), its presence in DIFF (LOCAL (X))
means that it must be routed around the module and through the entire upper channel
on the far side. For example, if n is a corner net, with one terminal in X and one
terminal on MB, it is routed down through X in PS (P), and therefore in OPT (P) it
is routed up, over the top, and down the other side. Recall that LAPSAMEx is the
maximum number of overlapping intervals in SAMEx (LOCAL (X)). Therefore, LAP-
SAMEx does not count any of the nets discussed above, and the intervals contributing
to LAPSAMEx occupy columns distinct from those used for the nets above.

For the next lower bound, we assign a weight to each net in OPT (P) such that
OPT (P) is at least the total weight of all the nets. The weight of a net will be the sum
of two weights assigned to its wire and a weight assigned to its terminals.

First, define the weighting functions on wires as follows. A wire accumulates
weight for crossing certain horizontal and vertical lines (see Fig. 6). It accumulates a
weight of 1/2 for each crossing of the line x LEFT or x RIGHT above TOP (T) or
below BOTTOM (B). For any net n, Wv(n) is the total weight accumulated by its wire
in OPT (P) by crossing the above vertical lines. A wire also accumulates a weight of
1/2 for each crossing of the line y BOTTOM (T) or y TOP (B) to the left of LEFT
or to the right of RIGHT. For any net n, WH(n) is the total weight accumulated by
its wire in OPT (P) by crossing the above horizontal lines. Let WH and Wv be the
sum of WH (n) and Wv(n), respectively, over all nets n. It is easy to see that the number

TWO MODULE ROUTING PROBLEM 179

of tracks in channels T and B plus the number of columns in channels L and R is at
least WH plus Wv.

Define a weighting function on terminals as follows. A terminal has a weight of
1/2 if it lies on the sides of the street or on the left or right side of either module. Terminals
on the top of Mr or on the bottom of MB have weight 0. Let Wr(n) be the sum of
the weights of the terminals of net n. Let Wr be the sum of the weights of all terminals.
It is easy to see that the number of columns between LEFT and RIGHT plus the
number of tracks in Mr and MB is at least Wr.

PROPOSITION. [OPT (P)[-> H + IS’v+ r+ [TRACKS (OPT, S)[.
The real key to the proof of the main theorem is in calculating a lower bound on

the weight of each net. For each net n, define W(n) to be the sum of Ws(n), Wv(n),
and Wr(n). Tables 1-4 give minimum values of W(n) for various classes of nets n.

The values in the table are calculated by considering all possible ways of routing
nets in OPT(P). In general, different weights are calculated for a net in LOCAL (X),
where X is a channel, according to whether its wire is in SAMEx (LOCAL (X)) or

DIFFx (LOCAL (X)); which set the wire is in is represented in the table by an "s"
for SAME and a "d" for "DIFF". For example, consider a straight net n with both
terminals in channel TR. No matter how n’s wire is routed in OPT (P), Wr(n)- 1. If
n’s wire in OPT (P) is in SAMErR (LOCAL (TR)), then WH(n) and Wv(n) may both
be zero; thanks to Wr(n), the total weight is at least 1. However, if n’s wire in OPT (P)
is in DIFFrn (LOCAL (TR)), then no matter how the wire is routed, it must go nearly
all the way around at least one component, forcing it to have Wv(n) _-> 1 and Wr(n) >- 1;
adding in Wr(n), the total weight is at least 3.

From the tables of lower bounds given above for the weights of various types of
nets, we obtain the following lower bound on IOPT (P)I. The lower bound looks
peculiar, since the weights assigned to various classes of nets include assorted fractions.

TABLE
Minimum weightsfor straight nets, where "s" and "d" standfor "same" and "diff",

respectively.

(a) Straight nets with both terminals in channel S, T, B, XL, or XR, where X E T, B}.

Restrictions
on Z

T/B

XL/XR/S
XL/XR/S

SAME/DIFF in
channel Z

Weight

WT WV WH W

0 0
0

0

0 0
2

0
3

(b) Straight nets with one terminal in channel TX and the other in

channel BX, where X L, R}.

SAME/DIFF in
channels

TX BX

S

s d
d d

Weight

WT WV WH W

11 11 111 :

180 BRENDA S. BAKER

TABLE 2
Minimum weights for corner nets.

(a) Corner nets with one terminal in a horizontal channel X, X T, B, S}, and the
other in an adjacent vertical channel ZY, Y {L, R}, Z T, B}, where Z X, if

Xe{T,B).

Restrictions
on X

S
S
S

T/B
T/B
T/B

SAME/DIFF in
channels

ZY

S

s/d d
d
S S

s/d d
d s

Weight

WT Wv Wv W

0 .5 1.5
.5 2.5
.5 2.5

.5 .5 0

.5 .5 2

.5 .5 2

(b) Corner nets with one terminal in a horizontal channel X, X T, B}, and the other
in a nonadjacent vertical channel Y, Y L, R}. Note that in PS P), the wire also

passes through channel XY.

SAME/DIFF in channels

X XY XY

s/d
s/d

s/d
s/d

Weight

WT WV WH W

.5 115 3

TABLE 3
Minimum weights for cross nets, with one terminal in channel XL, and the other
in channel XR, X T, B}. Note that in PS P), a cross net wire passes through

S in addition to the channels containing the terminals.

SAME/DIFF in channels

S XL XR

S

s/d
S

d

S

s/d
d
d

Weight

W Wv WH W

2
3
4

TABLE 4
Minimum weightsfor opposite nets. Terminals are in the indicated
channels, whereX T, B}. ForXL, XR, the parentheses indicate
two possible assignments of weights, depending on whether the

wire passes through S.

Channels

XL, XR
S, T/B
T,e

Weight

1(0)I
WH W

0(1)
.5

2
1.5
2

TWO MODULE ROUTING PROBLEM 181

In fact, there is a good deal of flexibility in what fractions are assigned to various
classes to make the total come out right. The particular fractions used in the lemma
are chosen because they are easily compared to the upper bounds on IPS (P)I obtained
later on.

LEMMA 3.

IOPT (P)I >- Y [SAMEx (LOCAL (X))[+LAPSAMEs
Xe{S,TR, TL,BR,BL}

+ E IDIFFx (LOCAL (X))
X{S,TR, TL,BR,BL}

+ 2 Y IOPP (X, L, X, R)I / 2IOPP T, T, B, B)I
X{T,B}

35 35+ Z IOPP (X, T, X, B)I +r E IOPP (T, X, B, X)l.
X{T,B} X{T,B}

Proof. Much of the following analysis deals with nets local to S. For convenience,
we define SCORNERS to be the set of corner nets with one terminal on a side of the
street, and SNETS to be the set of straight nets with both terminals in channel S.

By the proposition, we can derive a lower bound on IOPT (P)I from the weights
of the nets plus the number of tracks in S.

At least

1/2 E]OPP (X, T, X, B)] +1/2 E]OPP T, X, B, X)]
X{T,B} X{T,B}

+1/2ISAMEs (SCORNERS)l+1/2 Y ISAMEs (CROSS (X, L, , R))I

tracks are needed in S by OPT (P) to get these wires into S from the sides. Also, at
least LAPSAMEs tracks are needed in the street for the nets local to the street.
Therefore, $ has at least max (t, LAPSAMEs) tracks in OPT (P).

Now, we examine the weights of the various nets. Cross nets, straight nets, and
corner nets may be local to more than one channel, as indicated in Tables 1-3. By
distributing the minimum weights for these nets across the expressions for various
channels in the following formula, as described below, we obtain the following lower
bound on the total weight of nets in OPT (P).

ff’H + ff’V + ff’T => Y ISAMEx (LOCAL (X))I
X TR, TL,BR,BL}

+ E [DIFFx (LOCAL (X))[
X{TR,TL,BR,BL}

+ISAMEs (LOCAL (S))I

+IDIFFs (LOCAL (S))I +1/2ISAMEs (SNETS)I
+8[SCORNERS[+8 E [CROSS (X, L, .., U)[

X{T, }

+2 y IOPP(X,L,X,R)I/21OPP(T, T,B,B)I
X{T,}

+ Y IOPP (X, T, X, B) t_J OPP (T, X, B,
X{T,n)

To see how to prove this formula correct, consider a net n in SCORNERS, with
terminals in channels S and BR. This net is in either SAMEs (LOCAL (S)) or DIFFs
(LOCAL(S)) and in either SAMEnR (LOCAL(BR)) or DIFFnR (LOCAL

182 BRENDA S. BAKER

(BR)). Suppose it is in SAMEs (LOCAL (S)) and SAMEnR (LOCAL (BR)). In the
formula, n accounts for a weight of 1/2++8, these being the weights applied to
SAMEs (LOCAL (S)), SAMEBR (LOCAL (BR)), and SCORNERS, respectively. The
total, is less than the minimum weight of 1.5 for n obtained from Table 2. Similarly,
if n is in DIFFs (LOCAL (S)) and DIFFaR (LOCAL (BR)), it accounts for a weight
of ++8, which is less than n’s minimum weight of 2.5 obtained from Table 2. It
is straightforward but tedious to verify for each net that no matter how it is routed in
OPT (P), the weight that it accounts for in the above lower bound is at most the weight
given in the table for that routing.

Combining the above formulas, using the definition of t, and using the fact that
LOCAL (S) consists of cross nets and nets in SNETS and SCORNERS, we get the
following lower bound on IOPT (P)I.

IOPT (P)I->- 95- 2 ISAMEx (LOCAL (X))I
X TR, TL,BR,BL}_
1 y IDIFFx (LOCAL (X))[
X{TR,TL,BR,BL}

+2 E IOPP(Y,L, Y,R)I+21OPP(T T, B, B)
Ye{T,B[

+IDIFF (LOCAL (S))I-ISAMEs (SCORNERS)I
35- E ISAME (CROSS (X, L,

X{T,B}

+ ISAMEs (LOCAL (S))I + 3t +max {LAPSAMEs, t}.

Let x=LAPSAMEs and n =]SAMEs (LOCAL (S))I. Note that x<=n. We claim
that

For if --< x then

o[n +3t+max {x, t}] >= 1/2n +1/2x +t.

1/2n +1/2x+t-<1/2n +1/2x+(x+ n)+ (-)t
=(n+x+3t)

=[n +3t+max {x, t}].

On the other hand, if x < then

1/2n +x+t <_--1/2n + (n +ot)+t

=(n+4t)

=o[n +3tq-max {x, t}].

It is interesting to note that it is only the o in the above formula that ultimately leads
to the exact upper bound of 19 in the main theorem.

Using our claim, we can substitute (1/2n+1/2x+t) for n+3t+max {x, t} in the
above lower bound to obtain

IOPT (P)I->- E ISAMEx (LOCAL(X))[
X TR, TL,BR,BL}

i- o y IDIFFx (LOCAL (X))
X. TR, TL,BR,BL}

+2 y IOPP(Y,L, Y,R)I/21OPP(T, T,B,B)I
Y(T.8I

TWO MODULE ROUTING PROBLEM 183

+[DIFFs (LOCAL (S))[-ISAMEs (SCORNERS)[
35- Y [SAMEs (CROSS (X, L, X, e))[

Xe{T,B}

/ISAMEs (LOCAL (S))l /t+aPSaMZs.
Substituting the definition of for in the last formula gives the lower bound of the
lemma.

Analysis of PS. It remains to analyze how many tracks and columns can be used
by PS.

LEMMA 4.

E TRACKS (PS, X) 1/2LAPSAMEs+ E LAPSAMEx
Xe(T,B) X{T,B}

+1/21SAMEs (LOCAL (S))I

+ Y IDIFFx LOCAL (X))I
X{S,T,U)

+]OPP(T, T,B,B)i+ Y IOPP(X,L,X,R)I
Xe{T,B}

+ Y (IOPP(X, T,X,B)l+IOPP(T,X,B,X)I)+11.
Xe{T,B}

Proof. The wires in channels T, B, and S in PS (P) belong either to local nets or
to opposite nets. For X e {T, B}, the maximum overlap of the. nets in LOCAL(X) is
at most

LAPSAMEx + IDIFFx (LOCAL (X)) I.
When PAIRUP is applied to m nets, the side defined as "top" uses [m/2] tracks while
the "bottom" uses [(m+ 1)/2] tracks; the "left" uses [m/2] columns and the "right"
uses Ira/2] columns. For X e { T, B}, recall that PAIRUPis applied to OPP (X, T, X, B),
OPP (T, X, B, X), OPP (T, T, B, B), and OPP (X, L, X, R) such that the "top" is the
street, and to OPP (X, L, X, R) such that the "right" side is the street. Therefore, a
maximum of

1/2IOPP (X, T, X, B)I +1/21OPP T, X, B,

+1/2IOPP (T, T, B, B)I+ [1/2IOPP (X, L,X, R)lq+3

of these nets may overlap in channel X, X { T, B}. Thus, for X { T, B},

TRACKS (PS, X) _-< LAPSAMEx + IDIFFx (LOCAL (X))

+1/2]OPP (X, T, X, B)I +1/2]OPP T, X, B, X)]

+1/2IOPP T, T, B, B)I + [1/21OPP (X, L, X, R)I] + 3.

Now, we calculate the number of tracks used in the street in PS (P). Recall that
for a street with m nets and density d, EXSPLIT uses at most m/2+ d/2+4 tracks.
In this case, d represents the channel density in PS (P) before applying EXSPLIT.
We have

d _-< Y’, (1/2lOPP (X, T, X, B)] +1/2]OPP (T, X, B, X)[)
X{T,B}

/ t lopp x, L, X, R)I] /LAPSAME
X{T,B}

+ [DIFFs (LOCAL (S))l +2.

184 BRENDA S. BAKER

Recall that nets routed from channel TR to BR or from channel TL to BL go
straight across the extended street in PS (P) and are not routed by EXSPLIT. Hence,
the number m of nets routed by EXSPLIT is at most

[LOCAL (S)[
+ Y ([1/2IOPP(X,L,X,R)IJ+IOPP(X, T,X,B)I+IOPP(T,X,B,X)J).
X(T,B}

From these facts, we obtain the following bound on the number of tracks in S.

TRACKS (PS, S) _-< 1/2LAPSAMEs + 1/21SAMEs (LOCAL (S))I

+IDIFFs (LOCAL (S))l+ Y [1/21OPP (X, L, X, R)JJ
X(T,B}

+ Y (JOPP (X, T, X, B) + JOPP T, X, B, X)l) + 5.
X(T,B)

Combining the above formulas yields the lemma.
THEOREM 2. For any routing problem P,

IPS (P)]-<- [OPT (P)] + 24.

Moreover, this bound is tight in the sense that the multiplicative factor cannot be made
smaller no matter what the value is for the additive constant.

Proof. Note that

IPS (P)I-[OPT (P)I TRACKS (PS, X)- TRACKS (OPT, X)
X(T,B,S} X(T,B,S}

+ Y COL (PS, X)- Y COL (OPT, X)
Xa{L,R} X{L,R}

since in addition to the tracks and columns appearing in this formula there are exactly
RIGHT-LEFT columns and TOP(T)-BOTTOM(T)+TOP(B)-BOTTOM(B)
tracks in both PS (P) and OPT (P). We will calculate upper bounds on

E TRACKS (PS, X)- Y TRACKS (OPT, X)
X(T,B,S) X(T,B,S}

and

Y. COL (PS, X)- E COL (OPT, X)
X{L,R} X(L,R}

and show that their sum is at most IOPT (P)I + 24. The theorem follows.
Combining Lemma 4 and Lemma 1, we have

(1)

E TRACKS (PS, X)- E TRACKS (OPT, X)
X(T,S,B) X(T,S,B}

=< 1/2ISAMEs(LOCAL
+1/4 (]OPP (X, T, X, B)I + IOPP (T, X, B, X)l)

X{T,B}

+ IOPP T, T, B, B)I- 1/2LAPSAMEs + 11.

Obtaining the desired bound on columns is more complicated. Recall that
EXSPLIT uses at most d +6 columns in addition to the columns initially containing
exit points for nets. For X { T, B} and T {L, R}, let exg be the number of nonempty
columns in channel XY. Since interval coloring is applied to channels TL and BL and
to TR and BR to decide the initial assignment of exit points to columns in step (4),
the number of columns initially containing exit points is at most max {erx, ezx}, for

TWO MODULE ROUTING PROBLEM 185

Z COL (PS, X) =<
x{,}

X {L, R}. Using the upper bound on d from the proof of Lemma 4, we have

Y max {erx, eBx}+LAPSAMEs+IDIFFs (LOCAL (S))I
X{L,R}

(2) IOPP(T,X,B,X)I+1/2 E]OPP (X, T, X, B)[+1/2 Z
X{T,B} X(T,B}

+1/2 Y IOPP(X,L,X,R)I+8.
X{T,B}

Note that for X e { TR, TL, BR, BL},

(3)

ex _-< LAPSAMEx + [DIFFx (LOCAL (X))

+ [1/2(IOPP (X, L,X, R)I+ 1)]+ [1/2lOPP (T, T, B,

+ [1/2lOPP (X, T, X, B)I] + [1/2lOPP (T, X, B, X)l
We consider two cases according to whether or not the maximum of eft and

and the maximum of eTR and eBR are achieved in the bottom channel on one side and
the top on the other or both in the top (bottom) channels.)

Case 1. The maxima of eTx and eBx are achieved in the bottom channel on one
side and the top in the other.

Without loss of generality, we may assume that the maxima occur in the top
right and bottom left channels. Substituting the bound on ex, X { TR, BL}, of formula
(3) into formula (2), we have

E COL (PS, X) =<
Xa{L,R}

E
X{TR,BL}

+ Z
X{T,B}

LAPSAMEx + Y IDIFFx (LOCAL (X))[
Xe{TR,BL}

IOPP(X,L,X,R)I+[OPP(T, T,B,B)[

+ Y IOPP T, X, B, X)l + X IOPP (X, T, X,
Xa{T,B} X{T,B}

(4)

+ LAPSAMEs + IDIFFs (LOCAL (S))I + 13.

Using Lemma 2a, we obtain

Y COL (PS, X)- Y. COL (OPT, X)
XIL,n} XIL,n}

_-< 1/2 Y LAPSAMEx + Y IDIFFx (LOCAL (X))I
X{L,R} X{TR,BL}

+ X IOPP (X, L, X, R)I + Y 1/2IOPP (T, X, B,
X{T,B} X{T,B}

+ X 1/2[OPP (X, T, X, B)I + LAPSAMEs
X{T,B}

+ IDIFFs (LOCAL (S))l + 13.

Combining inequalities (1) and (4), we have

IPS (P)I- IOPT (P)I <=1/2 Y LAPSAMEx + Y
X TR,BL} X TR,BL}

+ E [OPP(X, L, X, R)I
X(T,B}

IDIFFx (LOCAL (X))

+lOPP (T, T, B, B)I +IDIFFs (LOCAL
+1/4 Y]OPP (X, T, X, B) UOPP(T,X,B,

X{T,B}

+1/21SAMEs (LOCAL (S))I +1/2LAPSAMEs + 24.

186 BRENDA S. BAKER

Comparing this formula with Lemma 3, we see that

IPS (P)I-IOPT (P)I < olOPT (P)I + 24.

Case 2. The maxima of eTx and ex are both in the top side channels or both
in the bottom side channels.

Without loss of generality, we may assume that the maxima are in the top channels
on both sides. Using formulas (2) and (3), we have

COL (PS, X) _-< Y. LAPSAMEx + OlFFx (LOCAL (X))
X L,R} X(TR, TL} X{TR,TL}

+ , [OPP(X,L,X,R)I+IOPP(T T,B,B)]
X{T,B}

+[OPP T, T, T, B) +[OPP T, T, B, T)[

+1/2]OPP (T, B, B, B)]+1/2IOPP (B, T, B,B)[

+ LAPSAMEs + IDIFFs (LOCAL (S))l + 13.

Using Lemma 2b, we see that

E COL (PS, X)- E COL (OPT, X)
X{L,R} X{L,R}

(5) <- E [OPP(X,L,X,R)I+1/2 Y]OPP(T,X,B,X)[
X{T,B} X(T, B}

+1/2 Y. [OPP(X, T,X,B)]+LAPSAMEs+lDIFFs(LOCAL(S))[+13.
X(T,}

Combining inequalities (1) and (5), we have

]PS(P)I-]OPT(P)]_-<1/4 [OPP(X, T,X,B)]/1/4]OPP(T, T,B, T)]
X(T,B} X{T,B}

+[OPP(T, T,B,B)[+ , [OPP(X,L,X,R)[
X(T, B}

+ IDIFFs (LOCAL (S))[+1/2ISAMEs (LOCAL (S))[

+1/2LAPSAMEs + 24.

Comparing this formula with Lemma 3, we see that

IPS (P)]-IOPT (P)I < 0]OPT (P)] + 24.

Finally, we show that the bound is tight, in the sense that the factor of 19
r cannot

be made smaller. For any positive integer n, the routing problem P contains nets as
follows. (See Fig. 16.) Each module contains 4n columns. Number the columns of the
modules from left to right. For 1 <_- -< n and 3 n / 1 _-< _-< 4n, a terminal in column on
the top of MT is to be connected to a terminal in column on the top of M. Similarly,
for 1 _-< i-< n and 3n + 1 _<-i-< 4n, a terminal in column on the bottom of MT is to be
connected to a terminal in column on the bottom of Ma. For 1 _-< _-< n, terminals in
columns n + and 3n- i+ 1 on the top of MT are to be connected and terminals in
columns n+i and 3n-i/ on the top of M are to be connected. For 1_-< i-< n, a
terminal in column n / on the bottom of MT is to be connected to a terminal in
column 2n + on the top of M. For 1 _-< i-< n- 1, a terminal in column n + + 1 on
the top of Ma is to be connected to a terminal in column 2n / on the bottom of MT.
Finally, a terminal in column 3n on the bottom of MT is to be connected to a terminal
in column n + 1 on the top of M. An optimal routing will use at most 4n + 2 tracks

TWO MODULE ROUTING PROBLEM 187

(a)

11 IIIIIlllllll ’e

(b)
FIG. 16. A worst-case example for PS. (a) An optimal routing. (b) The PS routing.

and 2n+2 columns in addition to those intersecting the modules. (See Fig. 16a.)
However, PS may use as many as 2n tracks above Mr, 2n tracks below MB, 5n +2
tracks between the modules, and 3n columns on each side of the modules (see Fig.
16b). Since there are no terminals on the sides of the modules, we may allow their
height to be a constant k independent of n. Adding up the above and the 4n columns
of the modules, we have

IPS(P)I >19n+2+k
]OPT (P)I- 10n + 4+ k

Therefore, the constant factor of 19 cannot be made smaller.

5. Conclusions. The main contribution of this paper lies in showing that there is
19an algorithm whose worst-case performance is asymptotically at most r times that of

an optimal routing with respect to the perimeter measure. It is hoped that this work
will stimulate interest in developing better general algorithms whose worst-case perfor-
mance can be proved to be bounded relative to optimal. Most previous work has been
directed at solving restricted problems or at finding heuristics that sometimes do very
badly even though they usually perform well.

A second contribution of the paper lies in showing that some simple proof ideas
can be used to produce lower bounds on the size of an optimal routing that are good
enough to lead to a tight analysis of the performance of PS. These techniques may be
useful in analyzing the worst-case performance of other algorithms. They may also be
useful in evaluating routings by calculating an estimate of the size of an optimal routing
for comparison.

A natural variation of the two-module problem studied here is the subcase in
which every net has a terminal on each module. The worst-case performance of PS is
probably better than 19 in this case, but has not been analyzed.

It would be interesting to analyze how much of the 19
r factor is due to channel

routing. A better channel routing algorithm could probably improve the worst-case
performance substantially. Baker, Bhatt, and Leighton 1] have developed an approxi-
mation algorithm for channel routing that routes a channel in a width that is within
a constant times the optimal width. The constant is quite large, in fact greater than
50. However, for the perimeter measure and two-terminal nets, this approximation
algorithm probably has better asymptotic performance than PS. It would be interesting
to analyze the performance of the PS algorithm with this approximation algorithm
substituted for SPLIT.

188 BRENDA S. BAKER

The techniques of this paper can be extended to multiterminal nets. The techniques
for calculating lower bounds on the size of an optimal routing, in particular, can be
extended in a straightforward manner to multiterminal nets at the expense of more
case analysis. It is also clear that an algorithm can be produced whose worst-case
performance is asymptotically at most a constant times optimal.

It would be interesting to find an algorithm for the two-module problem whose
worst-case performance is at most a constant times optimal for the area measure. The
area measure does not allow the same kind of tradeoit between tracks and columns
that was exploited in the proof for PS. It would also be interesting to obtain bounds
for the average performance of PS or other algorithms.

Acknowledgment. The author would like to thank A. V. Aho and T. G. Szymanski
for their helpful comments on an earlier draft of this paper.

REFERENCES

[1] B. S. BAKER, S. N. BHATT AND F. T. LEIGHTON, An approximation algorithm for Manhattan routing,
Proc. 15th Annual Symposium on Theory of Computing, Boston, MA, April, 1983, pp. 477-486.

[2] D.J. BROWN AND R. L. RIVEST, New lower boundsfor channel width, in VLSI Systems and Computa-
tions, H. T. Kung, Bob Sproull and Guy Steele, eds., Computer Science Press, Rockville, MD,
1981, pp 178-185.

[3] M. S. CHANDRASEKHAR AND M. A. BREUER, Optimum placement oftwo rectangular blocks, Technical
Report, Dept. Electrical Engineering, Univ. Southern California, Los Angeles, CA 90007.

[4] D. N. DEUTSCH, A dogleg channel router, in Proc. 13th Design Autmation Conference, IEEE, 1976,
pp. 425-433.

[5] D. DOLEV, K. KARPLUS, A. STRONG AND J. ULLMAN, Optimal wiring between rectangles, in Proc.
13th Annual Symposium on Theory of Computing, Milwaukee, WI, May, 1981, pp. 312-317.

[6] F. GAVRIL, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and
maximum independent set of a chordal graph, this Journal, (1972), pp. 180-187.

[7] T. F. GONZALEZ AND S.-L. LEE, An optimal algorithm for optimal routing around a rectangle, Proc.
Twentieth Annual Allerton Conference on Communication, Control, and Computing, Allerton,
IL, 1982, pp. 636-645.

[8] Z. KAWAMOTO AND Y. KAJITANI, The minimum width routing ofa 2-row 2-layer polycell layout, Proc.
16th Design Automation Conference, 1979, pp. 290-296.

[9] A. S. LAPAUGH, A polynomial time algorithm for optimal routing around a rectangle, Proc. of 21st
Annual Symposium on Foundations of Computer Science, Syracuse, NY, Oct., 1980, pp. 282-293.

[10] R. Y. PINTER, Optimal routing in rectilinear channels, in VLSI Systems and Computations, H. T. Kung,
Bob Sproull and Guy Steele, eds., Computer Science Press, Rockville, MD, 1981, pp. 160-177.

[11] R. L. RIVEST, A. E. BARATZ AND G. MILLER, Provably good channel routing algorithms, in VLSI
Systems and Computations, H. T. Kung, Bob Sproull and Guy Steele, eds., Computer Science
Press, Rockville, MD, 1981, pp. 153-159.

12] A. SIEGEL AND D. DOLEV, The separation for general single-layer wiring barriers, in VLSI Systems and
Computations, H. T. Kung, Bob Sproull and Guy Steele, eds., Computer Science Press, Rockville,
MD, 1981, pp. 143-152.

[13] T. G. SZYMANSKI AND M. YANNAKAKIS, personal communication, 1982.
[14] M. TOMPA, An optimal solution to a wire-routing problem, in Proc. of 12th Annual Symposium on

Theory of Computing, Los Angeles, CA, April, 1980, pp. 161-176.

SIAM J. COMPUT.
Vol. 15, No. February 1986

1986 Society for Industrial and Applied Mathematics

013

ALPHABETIC MINIMAX TREES OF DEGREE AT MOST t*

D. COPPERSMITHf, M. M. KLAWE AND N. J. PIPPENGER;

Abstract. Problems in circuit fan-out reduction motivate the study of constructing various types of
weighted trees that are optimal with respect to maximum weighted path length. An upper bound on the
maximum weighted path length and an efficient construction algorithm will be presented for trees of degree
at most t, along with their implications for circuit fan-out reduction.

Key words, optimal weighted tree, minimax tree, t-ary tree, fanout reduction, logical circuits

In this paper we consider the problem of constructing, for any list w1,. W of
integers, a tree T with maximum degree at most (where _-> 2 is a fixed integer) and
leaves vl, , vn in left to right order such that fT(wl,’", w,) maxl=<i=<, (li+ w) is
minimized, where l denotes the length of the path in T from the root to the leaf v.
We will call the minimum value f(w,..., w,)=minTfr(w,..., w,) the minimax
weighted path length.

This work was motivated by the results of Kirkpatrick and Klawe [2] dealing with
the analogous problem of constructing t-ary trees, that is, trees in which the degree
of every internal vertex is exactly t. As in [2], we obtain a linear algorithm for the case
of integer weights and prove a tight upper bound on f(wl,’", w,) in terms of
w,. ., w,. Like those in [2], these results can be applied to obtain a circuit fan-out
reduction algorithm that preserves size and depth to within constant multiplicative
factors without increasing the number ofedge crossings. Our relaxation ofthe constraint
on the degrees of internal vertices in the tree results in a smaller multiplicative factor
for depth, but a larger multiplicative factor for size. This relaxation also causes some
of the proofs to be easier than those in [2]; indeed the ideas in this paper inspired
simplifications of both the algorithm and the proof of the upper bound in [2].
Kirkpatrick and Klawe show that an O(n log n) algorithm for real weights can be
obtained from their linear integral weight algorithm, and that the upper bound also
applies to the case of real weights. The same methods could be applied to our results
to yield analogous results for the case of real weights.

If the leaves of a tree are weighted, we can extend the weighting to the internal
vertices of the tree by defining the weight of an internal vertex to be one plus the
maximum of the weights of its sons. With this extension, if the leaves Vl," , v, have
weights Wl," ", w,, then the weight of the root is exactly fr(w,..., w,). This yields
an equivalent formulation of our problem as that of constructing a tree with maximum
degree at most with leaf weights Wl, , w, in left to right order such that the.weight
of the root is minimized. The next lemma gives three modifications which can be made
to a list of weights without increasing the minimax weighted path length.

LEMMA 1. IfWl," ", Wn is a list of weights, then none ofthefollowing modifications
increase the minimax weighted path length. Define Wo w,+l

(a) If n> 1 and w_-<min (Wi_l, W+l) for some with l <- <- n, then replace w by
min (W,_l, W,+l).

(b) If min (wi, wi++l)_-> 1 +max (wi+l, , wi+) for some s <- and with 0 <- <-

n-s, then replace the s weights W+l," , w+ by the single weight 1
max (wi+, ", wi+).

* Received by the editors May 2, 1983, and in revised form May 21, 1984.
t IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598.
$ IBM Research Laboratory, San Jose, California 95193.

189

190 D. COPPERSMITH, M. M. KLAWE AND N. J. PIPPENGER

(C) Ifw Wi/ Wi+t_ < Wi+ 1 for some with 1 <= <-_ n + 1, then replace
the weights wi, , w i+t-1 by the single weight 1 + w i+t-1.

Proof. In each case the proof consists of indicating how an optimal tree for the
original list of weights can be altered to obtain a tree for the modified list in such a
way that the weight of the root is not increased. Let T be a tree that is optimal for
w,..., wn. In case (a), vi must have /Ji--1, Vi-t-1 or one of their ancestors as a brother,
so that increasing the weight of v cannot increase the weight of its father, and hence
cannot increase the weight of the root. In case (b), choose a vertex x in T such that
all the leaves in the subtree rooted at x are in the set {v+,. ., v+s} and such that
the distance from x to the root is minimal. Note that x must have v, v+s+ or one of
their ancestors as a brother. Thus replacing the subtree rooted at x by a single vertex
with weight 1 + max (w+, , wi+) and removing any leaves in {/)i+1, Vi+s} that
are outside the subtree rooted at x cannot increase the weight of the root. Finally, in
case (c), there are two possibilities. The first is that the brothers of v+,_ are precisely
{v+j, .., vi/,_2} for some j with 0_<j_< t-2. In this case the change corresponds to
replacing the weights of vi+j, , vi+t- by the weight of their father which has weight
1 + w+t_, and removing the other leaves v, , vi+-l. In the second possibility v/,_l

has as a brother v+,, an ancestor of vi+,, or an ancestor of vi+ for some j with
0_<-j<= t-2. Thus removing the leaves vi+ for 0=<j=< t-2 and increasing wi+,_ by 1
does not increase the weight of the root. [3

We now sketch an algorithm that, given a list w,..., w, of integer weights,
constructs an optimal tree. First add dummy weights w0 w,+ to each end of the
list. At any stage of execution there will be a list of weights of vertices that have not
yet been assigned fathers and a pointer dividing the list into two parts, the left sublist
and the right sublist. The algorithm will operate so that the left sublist always forms
a nonincreasing sequence from left to right. We call a weight K in the left sublist a
step weight if K is strictly larger than the weight on its right or if K is the rightmost
weight in the left sublist. Initially the pointer is placed so that it points between Wo
and w. We now describe the main procedure of the algorithm. Suppose the weights
lying immediately to the left and right of the pointer are L and R respectively. If
L-> R, then the algorithm simply moves the pointer past R. Otherwise, let K be the
rightmost step weight such that either K => R or there are at least weights lying strictly
between K and R in the list.

First suppose that ,there are at least weights between K and R. If at least two
of these weights are step weights, find the leftmost such step weight, say K’, remove
all weights lying between K’ and R and insert a new weight equal to K’ between K’
and the pointer. (We rely here on (b) followed by (a) in Lemma 1 and on the fact ,that
all weights are integers.) If L is the only step weight, remove the rightmost weights
to the left of the pointer and insert a new weight equal to L+ 1 to the right of the
pointer. (We rely here on (c) in Lemma 1.) Now suppose that there are less than
weights between K and R, and hence that K => R. Remove all weights between K and
R and insert a new weight equal to R to the left of the pointer. (We rely again on (b)
followed by (a) in Lemma 1.) Note that after applying this procedure the weights to
the left of the pointer still form a nonincreasing sequence.

The algorithm operates by repeating this procedure until exactly three weights are
left in the list. As the a0 weights are never removed, the final list is of the form o, w,. Interpreting modifications of types (b) and (c) in the obvious manner of making
the new weight the weight of the father of the vertices whose weights were removed
from the list, it is clear that this algorithm constructs an optimal tree and that the
minimax weighted path length is w.

ALPHABETIC MINIMAX TREES OF DEGREE AT MOST 191

To implement the algorithm efficiently, it is only necessary to maintain the position
of the pointer and (in a doubly-linked list) the step weights and their positions in the
left sublist. In any execution of the main procedure, all but the leftmost of the step
weights examined will no longer be step weights at the end of the procedure. From
this and by examining the other operations in the procedure it is easy to see that the
running time of the algorithm is at most linear in the total number of vertices in the
tree (which is at most 2n- 1), with a coefficient that is indep.endent of t.

We now prove an upper bound on the minimax weighted path length for the case
of integer weights.

LEMMA 2. If Wl, Wn are integers, then

f(wl, w) < l + logt 2 + logt (l<__.<=, t(wi))
Proofi For W the list of weights wl,..., w,, define g(W)= l<=i<__n_l max(w’’w’+).

Then it is easy to verify that if W’ is any list obtained by modifying W according to
(a), (b) or (c) of Lemma 1, then g(W’)_-< g(W). Suppose w is the weight of the root
of the tree constructed by our algorithm and suppose the weights of the sons of the
root are Xl,’’ ", xs. Let X be the list Xl,’’ ", xs. By iterating the observation above,
g(X) <= g(W). Combining this with the obvious inequalities <-_ tg(X) and g(W) <
2 Yl<=i<= t(w’) and taking logarithms completes the proof. D

Remark 3. The corresponding upper bound in [2] for t-ary trees is 2+
logt (l<=i<=n t(w)).

We now describe the application to circuit fan-out reduction in more detail, in
order to compare the effect of using various tree constructions. Suppose G is an ayli
directed graph with fan-in bounded by s. In 1], an algorithm is given that constructs
a new graph G’ with fan-out at most t, by replacing each vertex of O that has fan-out
greater than with a tree connecting that vertex to its sons. By choosing trees that
minimize the increase in depth while having degrees bounded by t, it can be proved
that Size (G’) _-< (1 + (s 1)/(t 1)) Size (G) + (q 1)/(t 1) and Depth (G’) <_-

(1 + logt s) Depth (G) +log, q, where q is the number of outputs of G. Unfortunately,
however, using trees that minimize the increase in depth will generally increase the
number of edge crossings.

In [2] it is observed that using alphabetic minimax trees avoids the increase in
edge crossings in exchange for a poorer bound on the depth of the new graph. Thus,
although the size bound remains the same, the depth bound becomes Depth (G’)<
(2 + log, s) Depth (G) + logt q. Finally, using the trees described in this paper also avoids
the increase in edge crossings with a better depth bound than that of [2] but a poorer
size bound. More precisely, if our algorithm is used, the bounds become Depth (G’) _-<

(l+log,(2s))Depth(G)+logtq and Size(G’)<-sSize(G)+q-1. We will see,
however, that the size bound can be improved to Size (G’) -<_ (1 + (s 1)/(t 1) +
(s+l)(t-2)/3(t-1))Size(G)+(q+l)/(t-1)+(q+l)(t-2)/3(t-1), by adding an

extra phase to our algorithm to reduce the size of the optimal tree.
Although our algorithm constructs an optimal tree, it does not necessarily construct

the optimal tree with the smallest number of vertices. In the worst case, which occurs
for sequences of the form 2j- 1, 2j- 3,. , 3, 1, 2, 4,. , 2j- 2, 2j, our tree has n- 1
internal vertices, although there is an optimal tree with [(n 1)/(1) internal vertices.
Although we have been unable to find a linear algorithm which produces the smallest
optimal tree, by applying a simple linear "compaction" algorithm to our optimal tree
we obtain a tree in which the number of internal vertices is at most L(n- 1)/(t- 1)+

192 D. COPPERSMITH, M. M. KLAWE AND N. J. PIPPENGER

(t-2)(n + 1)/3(t-1)J. We will also give an example showing that there are sequences
for which the smallest optimal tree has this many internal vertices.

A leaflet is defined to be an internal vertex that has only leaves as sons and has
degree less than t. The object of the compaction algorithm is to produce a tree satisfying
the following three conditions.

(1) Each internal vertex either has degree or is a leaflet.
(2) No two adjacent leaves are the sons of different leaflets.
(3) Each leaflet has degree at least 2.

It is not hard to design a linear algorithm that accomplishes this. Condition (1) can
be met by a phase that processes the vertices in preorder (or any other order that visits
each vertex before its sons) and raises the degree of nonleaflet internal vertices by
making grandsons into sons. Condition (2) can be met by a phase that, whenever two
"offending" adjacent leaves are located, moves sons from the leaflet with smaller weight
to the leaflet with larger weight until either the first leaflet has degree 1 and can be
collapsed (i.e. replaced by its son), or the second has degree and is no longer a
leaflet. Finally, condition (3) can be met by collapsing leaflets with only one son.

We shall show that any tree satisfying the three conditions above has at most
[(n- 1)/(t- 1)+(t-2)(n+ 1)/3(t- 1) internal vertices.

LEMMA 4. If T is tree with n leaves satisfying conditions (1), (2) and (3), then
has at most [(n- 1)/(t- 1)+(t-2)(n+ 1)/3(t- 1)J internal vertices.

Proof. Let k be the number of leaflets and let p be the number of leaves that a
sons of leaflets. Obviously, p>-2k, by condition (3). Thus the number of internal
vertices is at most k + (n- k-1)/(t- 1), since if we remove all leaves that are sons of
leaflets from T, the remaining tree is a t-ary tree with n -p + k leaves and so its number
of internal vertices is exactly (n-p+k-1)/(t-1). Finally, it is easy to see that
k<-(n+ 1)/3, by conditions (2) and (3), which yields the stated bound.

We conclude our paper with examples which show that even after compaction
our optimal tree is not necessarily the smallest optimal tree, and also that there are
lists of weights for which the number of internal vertices in the smallest optimal tree
attains the bound in the preceding lemma. Let W(n) be the list wl,’’ ", wn, where
wi 1 for 0 mod 3 and wi 0 otherwise. For n 9 and 3, the balanced ternary
tree is optimal and has only four internal vertices. Our algorithm, however, begins by
pairing the three pairs of 0 weights, and it can easily be checked that no matter how
the compaction algorithm is implemented, the resulting compacted tree will have five
internal vertices. On the other hand, if n [3tk/2] for some k 1 and 3, then there
is only one optimal tree for W(n), and it has (n-1)/(t-1)/(t-2)(n+ 1)/3(t-l)J
internal vertices.

REFERENCES

[1] H. J. HOOVER, M. M. KLAWE AND N. J. PIPPENGER, Bounding fan-out in logical networks, J. Assoc.
Comput. Mach., 31 (1984), pp. 13-18.

[2] D. G. KIRKPATRICK AND M. M. KLAWE, Alphabetic minimax trees, this Journal, 14 (1985), pp.
514-526.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1985 Society for Industrial and Applied Mathematics

ON SHORTEST PATHS IN POLYHEDRAL SPACES*

MICHA SHARIRft AND AMIR SCHORR"

Abstract. We consider the problem of computing the shortest path between two points in two- or

three-dimensional space bounded by polyhedral surfaces. In the 2-D case the problem is easily solved in

time O(n log n). In the general 3-D case the problem is quite hard to solve, and is not even discrete; we

present a doubly-exponential procedure for solving the discrete subproblem of determining the sequence
of boundary edges through which the shortest path passes. Finally we consider a favorable special case of
the 3-D shortest path problem, namely that of finding the shortest path between two points along the surface
of a convex polyhedron, and solve it in time O(n log n).

Key words. Euclidean shortest paths, convex polyhedron, computational geometry

1. Introduction. The problem of finding the shortest path between two points in
Euclidean space bounded by a finite collection of polyhedral obstacles is a special
case of the more general problem of planning optimal collision-free paths for a given
robot system (here we treat the robot as a single moving point).

In two-dimensional space the problem is easy to solve, because the shortest path
between two given points must be a polygonal line whose vertices are corners of the
given polygonal obstacles, so that the problem can be immediately reduced to a discrete
graph searching, and can be solved in time O(n2 log n), where n is the number of
obstacle corners. This two-dimensional problem has been considered by Lozano-Perez
and Wesley [LW], and later also by Lee and Preparata [LP]. In some special cases,
considerably more efficient algorithms exist. For example, if the free space within
which the shortest path is sought is the interior of a simple polygon, then the shortest
path can be found in time O(n log n) [LP], [Ch]. As another example, if all the barriers
are straight segments parallel to each other, then the problem can again be solved in
time O(n log n) [LP] (a similar favorable case, but with a somewhat different solution,
is discussed below). Another favorable case is noted by Tompa [To], where the obstacles
are all convex and aligned in a certain manner along a straight line.

In three-dimensional space the problem becomes much harder. In this case the
shortest path between two given points can also be shown to be a polygonal line, but
all we can say about its vertices is that they lie on edges of the given polyhedral
obstacles. Thus the problem is by no means discrete. Even if one knew the sequence
of obstacle edges through which the desired shortest path passes, the calculation of
the points of contact of the path with these edges requires solution of high-degree
algebraic equations, which must be accomplished either by numerical approximate
methods, or by precise, but very inefficient, symbolic algebraic calculations. Even the
calculation of the sequence of obstacle edges through which the shortest path passes
seems to be very difficult, and we do not know of better than doubly-exponential-time
algorithms for this subproblem. Papadimitriou [Pa] has recently presented an
approximating algorithm for the general three-dimensional polyhedral shortest path
problem, which runs in pseudo polynomial time.

* Received by the editors December 19, 1983, and in revised form November 3, 1984. A preliminary
version of this paper (Copyright 1984, Association for Computing Machinery, Inc.) appeared in Proceedings
of the Sixteenth ACM Symposium on the Theory of Computing, Washington, DC, 1984, pp. 144-153.

" School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel.
$ The work of this author has been supported in part by a grant from the U.S.-Israeli Binational Science

Foundation.

193

194 MICHA SHARIR AND AMIR SCHORR

However, in certain special cases the 3-D problem is not so hard to solve. We
will consider the case of finding the shortest path between two points along the surface
of a convex polyhedron, a problem that has been suggested originally by H. E. Dudeney
as a mathematical puzzle in 1903 (see [Ga, p. 36]; in his original formulation a spider
has to crawl along the surface of a cube to reach a fly in the shortest possible manner).
We present an O(n log n) algorithm for this problem, which exploits the special
structure of "geodesic" paths along the surface of a convex polyhedron. Our technique
has later been extended by O’Rourke, Suri and Booth [OSB] to find shortest paths
along the surface of a nonconvex polyhedron, and also been improved by Mount [Mo].

The paper is organized as follows. Section 2 presents a straightforward solution
to the 2-D problem; 3 discusses the general 3-D problem, develops the relevant
theory, and presents a doubly-exponential algorithm for solving the problem. Finally,
4 analyzes the problem of shortest paths along a convex polyhedron and an algorithm

for solving this problem is presented in 5.

2. The two-dimensional case. If one assumes that the solid obstacles are all
orthogonal prisms whose heights are all parallel to, say, the z-axis, and are enclosed
between a floor and a ceiling, and if the two points X, Y, between which an optimal
path is sought, are assumed both to have the same height, then the 3-D case of our
problem may be reduced to the 2-D case, since then the optimal path will lie entirely
in a horizontal plane containing X and Y, and the given solid obstacles will intersect
this plane in a collection of polygonal obstacles. Let us therefore assume that V is a
closed two-dimensional region bounded by a collection of polygonal walls and other
polygonal obstacles, and let X, Y be two points in V. The 2-D shortest path problem
is then to find a (Euclidean) shortest path between X and Y which is wholly contained
in V. This problem, and several special cases of it, has already been considered by
several other people ([LW], [LP], [Ch], [To]). The general approach used below has
been suggested by Lozano-Perez and Wesley [LW], but without any explicit analysis
of its complexity. Most of the other relevant work has involved special cases of the
problem, where more efficient solutions than the one presented below exist. To simplify
the following discussion, we assume that each corner of the boundary of V is incident
to just two edges (although the method described below will also apply in cases where
this assumption does not hold). It is easily seen that the shortest route from X to Y
which is wholly contained in V is a polygonal path connecting X to Y whose
intermediate corners are all vertices of the polygonal walls and obstacles bounding V.
Furthermore, a vertex p will follow another vertex q in such a route only if p and q
are visible from each other (in V), i.e. only if the straight segment joining p and q lies
wholly in V. See Fig. 2.1 for illustration of the concepts just discussed.

Thus, to solve the 2-D version of our problem, we first construct a visibility graph
VG, whose nodes are X, Y, and the vertices of the boundary of V, and each of whose
edges connects a pair of vertices visible from each other, and has length equal to the
distance between these vertices. Then we search through VG to find the shortest path
in VG from X to Y. This yields a polynomial-time discrete algorithm which can be
implemented to run in time O(n2 log n). For the sake of completeness, we sketch here
such a straightforward implementation.

Let N denote the set containing X, Y, and all the vertices of the boundary of V
(bd (V) for short). For each u N, we will find all points in N visible from u by using
the following algorithm which is based upon a "plane-sweeping" technique similar to
those used in [Sh], [NP]. Specifically, for each orientation 0 let lo denote a ray
extending from u at orientation 0. Let M(0) denote the list of all edges in bd (V)

SHORTEST PATHS IN POLYHEDRAL SPACES 195

FIG. 2.1. The shortest path problem in 2-D polygonal space.

whose interior intersects l, sorted in increasing distance of these intersections from u.
We maintain M(O) as a 2-3 tree, and can easily compute an initial value of M for
some starting orientation 0o in time O(n log n).

We next rotate the ray in clockwise direction about u, and update the value of
M(0) each time crosses an orientation 0 at which M changes, either due to addition
of new edges into M or deletion of edges from M, or both. It is clear that such changes
can occur only at orientations 0 of at which passes through another corner in N.
We thus iterate through these critical orientations in clockwise order (including also
the orientations of the rays connecting u to X, Y). Let Op be such an orientation at
which passes through p N. Then M will change at Op so that the edges incident to
p and presently in M are deleted from M, and the other edges incident to p are inserted
into M. However, if the ray passes simultaneously through several points p N, then
we have to remove from M all edges incident to any of these corners, and to add to
M all other such incident edges, except for edges which lie on l, which are ignored
in this updating process.

At each such orientation Op we also check whether the first edge in M has changed.
If it did, then that corner p on incident to this edge is visible from u, and we update
VG by adding to it the edge (u, p). Otherwise none of these p’s is visible from u. If p
is X or Y, then it will be visible from u if and only if it precedes along the first edge
in M.

Iterating in this manner through all critical orientations Op, we find all points in
N visible from u in time O(n log n). Hence, if we repeat this procedure for each u N,
we can construct the visible graph VG in time O(n2 log n).

Having constructed the visibility graph, we can then search through it to find the
shortest path in VG connecting X and Y, using Dijkstra’s algorithm (see e.g. [AHU]),
which will run in time O(n2).

Improving the efficiency of the algorithm. We next discuss an alternative approach
to the 2-D shortest path problem which leads in some special cases to more efficient
algorithms. We begin by the following observation.

DEFINITION. For each point Z V, let 7r(Z) denote a shortest path from X to Z
through V.

LEMMA 2.1. Let Z1, Z2 V. Then either r(Z) and 7r(Z2) do not intersect each other
or, if they do intersect at some last point Z, then Z must be a corner in bd (V), and the
lengths of the initial portions of both paths between X and Z are equal.

196 MICHA SHARIR AND AMIR SCHORR

Proof. If "/]’(Z1) and r(Z2) meet at a point Z, then the lengths of their initial
portions up to Z must be equal, or else we could replace the longer such initial portion
by the shorter one, and so shorten the length of one of these paths. The same argument
also implies that Z must be a corner, because otherwise, after replacing one initial
portion by the other one, we would obtain a shortest path to one of the points Z1, Z2
which is polygonal and has a corner at an interior point of V, contradicting the basic
properties of such shortest paths noted above. Q.E.D.

We can use this observation to obtain an O(n log n) algorithm for finding the
shortest path in the following special case (which is similar to the second special case
considered in [LP]): Suppose that the boundary of V consists of k vertical lines,
denoted ll, , lk, each of which contains several point apertures through which one
can cross from one side of the line to the other. The passage is blocked however at
all other points on these barriers. Suppose further that X lies to the left of all these
barriers and that Y lies to the right of all of them. Note that the shortest path from
X to Y through V must pass through exactly one aperture at each of the lines 11, lk"
Hence it can be found in O(n2) time, using a standard dynamic programming approach.
However, using Lemma 2.1, we can improve this procedure as follows (a similar
divide-and-conquer approach has been used by Reif [Re] for a different problem
involving lanar networks): Suppose that the barrier/ has nj apertures, j 1,..., k
(so that =1 nj n). We will process the barriers from left to right. For each barrier
/ we will compute for each aperture Z/ the length d(Z) of the shortest path from
X to Z through V, and also the aperture p(Z) lj_l through which the shortest path
passes just before reaching Z. For each Z ll we put d(Z)= [XZ[and p(Z)= X.

Suppose that these maps have already been computed for all apertures lying on
lj_l. Let Z be the median of all apertures along /. We compute d(Z) and p(Z) by
trying to pass the path zr(Z) through each of the apertures in/_ (as in the standard
dynamic programming approach). Let W- p(Z), and assume that W is the ruth highest
point along/_. Since, by Lemma 2.1, shortest paths can be assumed not to cross each
other, it follows that we can partition the problem into two subproblems: First find
the shortest paths leading to the highest half of the apertures along /, using only the
highest m apertures along /-1 as possible predecessors along such paths, and then
repeat this procedure for the lowest half of the apertures on /, using this time only
the lowest r/j_ --m / 1 apertures along /_ as possible predecessors.

Repeating this procedure recursively, it is easily seen that it will find (correctly)
the shortest paths to all apertures on/ in time O((n_ + n) log n). Hence if we iterate
in this manner through all barriers /, we obtain an O(n log n) algorithm for finding
the desired shortest path from X to Y.

The special case just considered has led to a favorable algorithm because of the
regular structure of shortest paths in this case. Other special cases have been considered
in [LP], [Ch], [To]. In the general case shortest paths may behave less regularly,
although they still do not intersect each other. In fact, it is easily seen that, for a given
starting point X, the set A containing all the corners of bd (V) and X, can be arranged
in a tree T with X as the root, such that each corner u is the son of a point v if the
last straight segment on zr(u) is ,u. Moreover, for each u A let F(u) denote the set
of all points y V for which the last segment on r(y) is uy. Note that F(u) is nonempty
only if the angle within V between the last segment ,u on r(u) and one of the edges
e of bd (V) incident to u is greater than 180 degrees. In this case F(u) is contained
in the wedge formed between e and the straight ray continuing vu past u. It is also
easy to show, by techniques similar to those used to analyze Voronoi diagrams (cf.

SHORTEST PATHS IN POLYHEDRAL SPACES 197

[Sh], [FAV]) that the boundary arcs between adjacent regions F(u) are all straight or
hyperbolic arcs, and that there are at most O(n) such arcs.

In summary, the collection of shortest paths within V from some fixed starting
point X can be characterized by a combinatorial structure whose size is O(n), and it
therefore seems likely that faster than quadratic algorithms for its construction should
exist. There exist some other special cases where this is indeed the case. For example,
if V is the interior of a simple polygon, then shortest paths within V can be computed
in time O(n log n) (cf. [LP], [Ch]); another favorable case has been noted by Tompa
[To] in connection with wire routing problems in VLSI. However, for general polygonal
regions V the problem of computing shortest paths within V in faster than O(n2 log n)
time is still open.

3. The three-dimensional case. The situation becomes much more complicated
when we pass to the 3-dimensional version of the problem. Here it is easy to check
that the shortest path from X to Y consists of a polygonal path whose vertices (except
for X and Y) lie on some of the edges of bd (V). The problem therefore is not
immediately seen to be discrete, since there seems to be a continuum of potential paths
to be considered. We will see, however, that the problem can be discretized, and
develop an algorithm for finding the shortest path which runs in doubly exponential
time in the number of wall edges.

We will find it useful to regard the wall edges as open segments, so that the wall
corners are disjoint from the edges. The collection of wall edges and corners will
sometimes be referred to as "wall objects".

We will first consider the following subproblem: Given a sequence (:, , :n)
of wall objects, find the shortest path r from X to Y constrained to pass through
each of the objects :1, , :n in this order, assuming that no other constraint is being
imposed on the path. Let r consist of the segments ro," ", r.

LEMMA 3.1. For each i= 1,..., n, if i is a wall edge (rather than a wall corner)
then the angles that ri_ and ri subtend at are equal.

Proof This is well known, but to see this take the two planes formed by ri-1 and
: and by r and :, and "unfold" them about :i so as to make them coincident, with
r-i and 7" lying on different sides of :. Since r is the shortest possible, the two
segments r_ and r must be collinear in this common plane, and the angles which
they form with : must therefore be equal. Q.E.D.

Let us temporarily assume that all wall objects :,..., : are segments, rather
than points. An initial attempt to exploit Lemma 3.1 in finding the required shortest
path r, is to determine the point Z of contact of r with :. This point determines the
angle at which ro meets :1, which must be equal to the angle at which rl leaves :.
Knowing this angle, we can determine the point(s) Z2 at which r will intersect :,
and continue to proceed in this manner through all segments in . A correct choice
for Z1 is one in which the final angle at which r must leave : from their point of
contact Zn, is equal to the angle subtended at :n by Z Y.

However, this approach is problematical in the sense that each time we try to
extend the path r from a point Zi on : to :i+l, there can exist two points Z, Z’ on
this edge for which the two angles subtended at :i by the segments ZiZ and ZiZ’ are
both equal to the angle subtended at : by r-l. Thus, even if we fix the first point of
contact Z, the number of paths that may arise in the way described above may be
exponential in n. To. overcome this difficulty, we will make use of the following
observation.

198 MICHA SHARIR AND AMIR SCHORR

LEMMA 3.2. Let /1, 12 be two lines in 3-space, let A, B be two distinct points on ll,
and let C, D be two points on 12. Let the angle between the vectors and resp.
between A--- and ff-) be a resp. fl). Similarly, let the angle between the vector C and
A--- resp. between -C and --) be / resp.). Then a > fl implies that 3’ (see Fig.
3.1).

FIG. 3.1

Proofi First note that under these conditions we must have C D (and thus in
particular y and 8 are well defined), for otherwise a would be an interior angle in
the triangle ABC which is larger than the exterior angle/3, which is impossible. Put
AB u, AC x, BD y. Then CD u +y- x. Since a >/3 we have

x.u y.u

Ixl- lyl
To prove /> we need to show that

x" (u/y-x) y" (u+y-x)

By the first inequality, it suffices to show that

x. (y-x)

Ixl
y" (y-x)

or that

or

which is immediate, since a #/3. Q.E.D.
Remark. The assertion in the preceding lemma can be extended to the case A B

(so that a and/3 are undefined). If C D then we always have 3/> 8 since 3/is an
exterior angle and 8 is another interior angle in the triangle ACD.

LEMMA 3.3. The shortest path 7r from X to Y which passes through the sequence of
lines 1," ", , in this order is unique. (Note that we assume here that 1," ", , are

full lines, or, alternatively that 7r passes through interior points of,. ., ,.)
Proof Suppose that there exist two shortest paths 7r, 7r’ from X to Y through the

lines :1,""", :,. Apply Lemma 3.2 for each of the (skew) quadrangles whose edges
are :i, i+1, 71"i, "r/’, 0," ", n, where 7r (resp. cry) is the ith segment along 7r (resp. zr’)
(see Fig. 3.2).

SHORTEST PATHS IN POLYHEDRAL SPACES 199

7

Pi i

FIG. 3.2

Lemma 3.1 implies that ai+l yi and i+1--" i for each i=O,..., n- 1. The first
divergence of 7r and r’ (i.e. the first j for which 7rj and 7r have the same starting point
but different endpoints) forms a triangle, and we therefore have yj > 8j. Thus, inductive
applications of Lemma 3.2 imply that ai > fli for each i=j+ 1,..., n. In particular,
a, >/3,, which is impossible since 7r, and 7r’ meet at Y, forming a second triangle
(which might degenerate to a single segment), a contradiction which proves the
lemma. Q.E.D.

Lemma 3.3 can be strengthened as follows: Call a path 7r from X to Y which
passes through the lines 1, n geodesic (or locally shortest) if, for each 1, , n,
the path r enters and leaves s at equal angles. It is easily checked that every path
whose length is a local extremum (as a function of its points of contact with SOl, , s,)
is geodesic. It is plain that Lemma 3.3 remains true if one assumes that the paths in
question are only geodesic. Hence we have

COROLLARY 3.4. There exists a unique geodesic path 7r from X to Y which passes
through a given sequence of lines , ,.

In other words, the length of the path (as a function of the contact points) has
one global minimum, and no other local extrema. Thus, if we continue to assume that
Sl, so, are full lines, then we can use two different techniques for the calculation
of the contact points of the required shortest path with these lines. The first technique
uses approximate numerical methods for finding the required minimum. For example,
we can initially pass a path r through an arbitrary sequence of points, one on each
of the given lines. Then, iteratively, improve the path by replacing each contact point
at which the incoming and outgoing angles are not equal by another point on the same
line at which these angles become equal (without changing the other contact points).
An explicit formula for finding the new point of contact can be readily obtained, using
elementary vector techniques. (The problem involved here is, given two points a and
b outside a given line l, to find a point x on such that both vectors x-a and I-x
form the same angle with I. We leave it to the reader to verify that this condition can
be expressed by an equation which is quadratic in the coordinates of each of the points
a, I and x, and whose overall degree is 4.) Each such iterative step shortens the length
of the path, and the sequence of paths thus obtained will converge to a path of locally
extremal length, and hence to the desired shortest path, in virtue of Corollary 3.4.

If we wish to avoid numerical analysis, and insist on obtaining a precise solution
using only symbolic calculations, then we can write down a system of n quartic
equations in the n positions of the contact points of the path with the given lines, each
such equation corresponding to one of the constraints given by Lemma 3.1, namely
that at each line s the incoming and outgoing angles subtended by the shortest path
be equal. This system can then be solved by elimination techniques (cf. [Wa]), leading
to a single polynomial equation p(xl)= 0 in, say, the position Xl of the first point of
contact. By Corollary 3.4, this equation will have a unique real solution which can
then be rationally approximated to any desired degree of accuracy.

200 MICHA SHARIR AND AMIR SCHORR

Note however that the resulting polynomial p(x) will in general be of degree
which is doubly exponential in n, because each elimination step computes resultants
of polynomials, and thus results in polynomials of one less variable but of degree
which is roughly the square of the degree of the previous polynomials, and because
n- 1 such elimination steps are required to eliminate all but one of the n variables in
question. This indicates that the problem of computing the points of contacts (and
thus also the length) of a geodesic path with a sequence of line segments is probably
intractable. To be more precise, suppose that we have two candidate sequences j and
q of lines, and we wish to determine whether the geodesic path passing through is
longer than the geodesic path passing through 1- This can be solved precisely by
standard methods involving symbolic calculations (as reviewed e.g. in [SS]; see also
below), but these methods, which use space decomposition techniques closely related
to the elimination method just noted, would also require doubly exponential time. We
have not been able to prove that this problem is intractable. However, it is well-known
that testing similar properties of real roots of a system of low degree polynomial
equations in n variables (or even determining whether such roots exist) is NP-complete
(this is shown e.g. by direct reduction from 3-SAT).

Another technical problem that should be noted is that if 1, 7 are only
segments and not full lines, the global minimum may be attained at points lying outside
those segments. In this case it is clear that the shortest path 7r from X to Y constrained
to pass through these segments in order will have to pass through some endpoints of
these segments, at which it will generally form unequal incoming and outgoing angles.
If this is the case, and if the endpoints through which 7r must pass are known, then
the path-finding problem reduces to a collection of subproblems, each of which calls
for the computation of the shortest path between some pair of points, which is
constrained to pass through a specified sequence of lines. The solution of each such
subproblem can be obtained by the methods outlined above.

Since in general the shortest path from X to Y will be a concatenation of subpaths,
each connecting a pair of points (each of which is either X, Y, or a nonconvex wall
corner) and constrained to pass through a sequence of wall edges, we will consider
the path-finding problem as essentially solved (up to numerical or symbolic calculations
of the sort discussed above) if we can specify the sequence of wall edges and corners
through which the desired shortest path must pass. In this setting the problem is
reduced to a purely combinatorial one, which we will refer to as the combinatorial
shortest path problem. It is noteworthy that this combinatorial problem is at least
solvable in finite time.

PROPOSITION 3.5. The combinatorial shortest path problem is solvable in doubly
exponential time by precise, symbolic calculations. If one is allowed to use numerical
analysis techniques, then the problem can be solved in O(n") steps, each step consisting

offinding a shortest path constrained to pass through some sequence of wall edges and
Ol’tlel"S.

Proof. Note first that it suffices to consider only a finite number of possible
sequences of wall edges and corners through which the shortest path from X to Y
can pass, because the shortest path will not pass twice through the same wall corner
or edge. This makes it plain that the number of such sequences that need be considered
is at most O(n"). For each pair of such sequences , q, apply the procedure outlined
above which uses symbolic computations, to find whether the shortest path constrained
to pass through the elements of is shorter than the path constrained to pass through
the elements of 1. The sequence for which the length of the corresponding path is
smallest is then the solution to our combinatorial problem. Note that the basic step

SHORTEST PATHS IN POLYHEDRAL SPACES 201

that this method employs is comparison between two algebraic numbers, each of which
is specified in terms of the unique real roots rl, , rk of some system of k polynomials
in k variables, for some k<= n (these roots are the points of contact of one of the
shortest paths with the wall edges through which it is constrained to pass). Such a
comparison can be performed in precise terms using Collins’ cylindrical algebraic
decomposition technique for analyzing semi-algebraic sets defined by a system of p
polynomial equalities and inequalities in k variables, having maximum degree rn ([Co];
see also [SS]). Collins’ technique runs in O((mp)3k) time. In our case each polynomial
equation is quartic, and p, k-< n. It follows that the overall cost of the combinatorial
shortest path problem is doubly exponential in n. When numerical methods are allowed
in the evaluation of each of the shortest paths constrained to pass through some
sequence of wall edges and corners, the problem can plainly be solved in O(nn) such
numerical evaluations. Q.E.D.

It is currently an open problem whether faster procedures than the straightforward
one just sketched exist for solving the combinatorial shortest path problem.

4. Shortest paths along a convex polyhedron. In this section we analyze the problem
of calculating the shortest path between two points along the surface of a convex
polyhedron in 3-space. This special case is favorable because of various properties of
geodesic paths along a convex polyhedron. These properties will be analyzed in this
section; an algorithm for the calculation of such shortest paths will be presented in
the following section.

Let K be a given convex polyhedron, and let S denote its boundary. Let X and
Y be two points on S. The problem that we consider is to calculate the shortest path
from X to Y constrained to lie along $. It will be more convenient to consider a
somewhat more general problem, namelymgiven a point X on S, we wish to preprocess
K so that later, for any desired destination point Y on S, the shortest path from X
to Y can be easily and quickly calculated. To simplify the foregoing analysis we will
assume, without real loss of generality, that the representation of K is nondegenerate,
in the sense that no two faces of K are coplanar. (Otherwise, we can repeatedly
combine pairs of adjacent coplanar faces into single faces, until the above property
holds for K.) Let n be the number of vertices of K, so that K has also O(n) edges
and faces.

DEFINITION. (a) A point Z S is called a ridge point if there exist at least two
shortest paths from X to Z along S (cf. Fig. 4.1.) We denote by R the set of all ridge
points in S.

(b) For each point Z S-R, let 7r(Z) denote the unique shortest path from X
to Z along S.

FIG. 4.1. Ridge points along a convex polyhedron.

202 MICHA SHARIR AND AMIR SCHORR

We will first consider the following subproblem: Let Z S, and suppose that the
sequence (:1, "’, ,) of edges of K through which or(Z) passes has already been
found (we will shortly see in Lemma 4.1 that 7r(Z) cannot cross a vertex of K, so that
it meets each of the edges :1," ", :, in an interior point of that edge). Then we wish
to find the points of contact between 7r(Z) and each of the edges :i. In the general
three-dimensional case treated in the previous section, the solution of this subproblem
had been rather complicated, and involved solution of high-degree algebraic equations,
mainly because any two adjacent edges i_1 and : in could be skew to one another.
However, in the special case which concerns us here this cannot happen, thereby
making the problem immediately solvable as follows.

Let 7r consist of the segments 7to, , 7r,. Recall that Lemma 3.1 implies that for
each i= 1,..., n, the angles that 7ri_ and 7r subtend at : are equal. This suggests
the following simple algorithm for the calculation of the points of contact. Since we
know the sequence of edges through which 7r(Z) passes, we also know the correspond-
ing sequence fo, fl,"" ,f, of faces of K through which 7r(Z) passes, where the face

f contains the two edges : and :i/1, for 1, , n 1, and where fo contains X and
:1 and f, contains so, and Z.

We then unfold the collection of faces fo," ",f, so as to make them all lie in the
same plane L. This is done iteratively. That is, initially we place fo in L, letting X
coincide with the origin. Suppose that we have already unfolded and placed in L all
faces up to f-1. We then unfold f about sci until it becomes coplanar with f_ (but
lies on the other side of s). In practice, we compute for each face f the displacement
ai and orientation 0 defining its position in L relative to some standard and fixed
plane representation of this face. We can then compute from a, and 0, the position
of Z in L. The required path r(Z), unfolded to L, is then simply the straight segment
XZ. The points of intersection of this segment with the unfolded edges a,. , , are
then readily determined, and can be easily transformed back to the original polyhedron.
For further reference, let us call this process as the planar unfolding of K relative to

sc, , so,; we also refer to the pair (a,, 0,) as the position off, in that planar unfolding.
(See also Alexandrov [AI] for an analysis of the unfolded planar structure of K; the
above observations have also been made by Franklin et al. [FAV], [FA] although they
have not developed them into a polynomial-time algorithm)

Hence, as in the general 3-D case, the main problem which needs to be solved is
that ofcalculating the sequence :1, ",:, ofedges through which the path 7r(Y) passes.

To this end, we will partition S into at most n vertex-free connected regions,
called peels, such that the interiors of these regions do not contain any ridge point,
and such that for each such region p, the path r(Z) to any Z p is wholly contained
in p. Since p is vertex-free, the sequence of edges through which 7r(Z) passes will be
easy to calculate, as will be shown below.

To obtain this partitioning, we begin with analysis of several properties of ridge
points.

LEMMA 4.1. A shortest path 7r(Z) cannot pass through a vertex of K.
Proof (We are indebted to R. Pollack for suggesting this simplified proof.) Suppose

the contrary, and let U be a vertex of K lying on a shortest path 7r(Z) from X to
some Z S. Suppose first that K is incident to exactly three faces of K. Let A and B
be two points on r(Z) lying on the two straight subsegments of 7r(Z) adjacent to U,
with A lying before U and B after U along that path. Let fA, fn be the faces containing
A and B respectively, and let f be the third face of K containing U. Instead of the
planar unfolding of K in which 7r(Z) is a straight segment (call this the "straight"
unfolding of r(Z)), we construct another unfolding as follows. First unfold faces of

SHORTEST PATHS IN POLYHEDRAL SPACES 203

K into the plane as in the planar unfolding of zr(Z), until U is reached. Then, instead
of unfolding fB past fa (as is done in the straight unfolding of 7r(Z)), unfold first f
past fa along their common edge, and then unfold fB past f along their common edge;
then continue to unfold as in the remainder of the straight unfolding of r(Z) (see
Fig. 4.2).

fB
fB

FIG. 4.2. Proof of Lemma 4.1.

In this new unfolding the path 7r(Z) appears as a broken line at U, and it is easily
seen that 7r(Z) can be shortcut near U, yielding a shorter path which is also contained
within this new unfolding. This contradiction establishes the lemma. Essentially the
same argument also applies in case U is incident to more than three faces. Q.E.D.

LEMMA 4.2. A shortest path 7r(Z) cannot pass through a ridge point.
Proof Suppose that 7r(Z) does pass through a ridge point W. Then the initial

portion 7rl of zr(Z) up to W is one of several shortest paths from X to W. Let 7r2 be
another such shortest path, and without loss of generality assume that rl and r2 are
transversal to one another at W (this will be the case if we choose W to be the first
ridge point along 7r(Z), which is always well defined, because the set of ridge points
along r(Z) is closed, as can be easily verified). Let 7r’ denote the path obtained by
replacing zrl by 7r2 in zr(Z); note that 7r’ is also a shortest path to Z. However, if W
is interior to some face of K, then zr’ cannot be a shortest path to W, since it bends
at an interior point of a face of K. On the other hand, if W lies on an edge of K, then
7r’ cannot be a shortest path to W since it forms unequal angles with the edge containing
W (note that W cannot be a vertex by Lemma 4.1). Q.E.D.

LEMMA 4.3. The set R ofridge points is the union offinitely many straight segments.
Proof With any point Z of R we can associate the face of K containing Z, and

the two sequences of edges of K through which the two shortest paths from X to Z
pass. Since there are only finitely many values that each of these three parameters can
assume (because a shortest path to a point cannot pass through an edge of K more
than once), it suffices to show that the locus of all ridge points Z lying on a fixed face
of K, for which the two shortest paths from X to Z pass through two fixed sequences
of edges of K, is a straight segment.

Therefore let f be a fixed face of K, and let = (sc, sen), ’1] (TI1, Tim be
two fixed sequences of edges of K, such that any two adjacent edges in either sequence
lie on a common face, and such that SOl and Ti bound the face containing X, while n
and Tim bound f. Assume that there exists at least one point Z R having these values
as its associated parameters. Let (a, 0), (an, 0,) be the positions of f in the planar
unfoldings of K relative to the two sequences and 1 respectively, where a and a,
both give the position of Z in the corresponding planar unfolding. Let We R be
another point having the same parameters as Z, and write ZW=w in the standard
Cartesian representation off. Then we have (where Re (resp. R,) denotes the rotation

204 MICHA SHARIR AND AMIR SCHORR

of the plane by the angle 0e (resp. 0n)):

which states the equality of the lengths of the two shortest paths from X to W,
constrained to pass respectively through the sequences and 1 of edges of K. Squaring
out the above equation, and using the fact that IR ,,I- IR.wl. and that lael- lal, we
obtain

a. Rw an Rnw
which is the equation of a straight line passing through Z. Q.E.D.

Remarks. (1) The preceding equation is nondegenerate provided that aR anRn.
But if these two quantities were equal, then the two corresponding shortest paths to
W would be such that their terminal segments along f coincide. This however implies
that these two paths pass through another ridge point (e.g. any interior point of these
coincident segments), which is impossible, by Lemma 4.2.

(2) The equation defining the ridge segment given above can be rewritten as

aR anRn) w 0

and thus be given the following geometric interpretation:
Perform the two planar unfoldings relative to and 1- First rotate each unfolding

in clockwise direction by the respective angle 0e, On (note that these rotations cause
the final face f in each of the unfoldings to have the same orientation as the standard
representation off). Next translate (without rotating) the two resulting copies off so
that they both coincide with the standard representation of f. Note that this will have
moved the starting point X to the planar positions Xe aeRe and Xn anRn respec-
tively. Then the required ridge segment (in the standard representation off) is contained
in the perpendicular bisector to the segment XeXn (see Fig. 4.3).

FIG. 4.3. Construction of ridge segments.

(3) This construction of ridge segments makes it clear that if Z lies on a ridge
segment e defined by two edge sequences and 1 and Z is not a vertex of K, then
for points W lying on the line containing e in a sufficiently small neighborhood of Z
the following properties hold: There exist two geodesic (but not necessarily shortest)
paths to W having equal lengths and passing respectively through the sequences and
1; moreover the starting orientation ofeach ofthese paths is a monotone and continuous
function of W. (Note that these geodesics will be shortest paths for W lying on at
least one side of Z.)

SHORTEST PATHS IN POLYHEDRAL SPACES 205

To continue our analysis of the structure of R, we first introduce the following
notation.

DEFINITION. (a) For each planar orientation 0 define a polygonal path p p(0)
from X along S as follows: p starts at X in the direction of 0 (relative to the standard
representation of the face fo containing X). Whenever p reaches an edge e of K it
bends over it to the adjacent face so that the two segments of p adjacent to e form
with it equal angles (as in Lemma 3.1). p will terminate as soon as it reaches a vertex
of K.

(b) For each orientation 0 and each Z p(O) we define p(O, Z) to be the initial
portion of p(0) between X and Z.

With some exceptions noted below, we will consider the path p(0) to terminate
after the first time it reaches either a vertex of K or a ridge point. (Note that this must
occur for each 0, because otherwise either the length of p would increase without
bound, while p still being the shortest path to any of its points, which is plainly
impossible, or else p would reach X again, in which case it is clear that. p contains a
ridge point.) Let r(O) denote the endpoint of p(O).

LEMMA 4.4. (a) Let Z, be a sequence ofpoints on $ converging to some Z 5; as
n oo. For each n >- let 7rn be a shortest path from X to Zn, and suppose that the paths
r,, converge in the Hausdorff topology of sets to a path zr. Then 7r is a shortest path to Z.

(b) The function r(O) is continuous.

Proof (a) Suppose the contrary, and let 7r’ be a path from X to Z which is
shorter than 7r. Since the length of 7r is the limit of the lengths of the paths r,, it
follows that if n is sufficiently large, by appending to 7r’ a short path connecting Z to
Z,, we can obtain a path to Z, which is shorter than 7r,, a contradiction.

(b) Let 0, 0, and suppose that Zn r(0n) converges to some point Z, and that
for each n the point r(0n) is a ridge point (if the latter property cannot be achieved,
then from a certain n on, r(On) is a vertex, which implies that the sequence 0n is
constant too, in which case there is nothing to prove). It follows that for each n there
exists another orientation bn such that r(0n) r(bn) Zn. Passing to subsequences if
necessary, we can assume that bn converge to some b, and that the paths p(0n, Z,)
converge to p(0, Z) and similarly the paths p(bn, Zn) converge to p(b, Z). Let n, tin
be the two sequences of edges of K through which the two paths p(0n, Zn) and p(bn, Zn)
pass. Passing again to a subsequence if necessary, we can assume that the sequences
scn and r/n are both constant (necessarily distinct from one another). Two cases can
arise:

(i) If 0 tk then by (a) the two distinct paths p(O, Z) and p(b, Z) are shortest
paths to Z, so that Z is a ridge point, and r(O)= Z, because p(O, Z) does not pass
through a vertex of K or a ridge point (other than Z).

(ii) If 0 b then Z must be a vertex of K. Indeed, if this were not the case, then
(by Lemma 4.1) there would exist a sufficiently small neighborhood U of p(O, Z)
which contains no vertex of K. But then for n sufficiently large the two paths p(0n, Zn),
p(b,, Zn) would be wholly contained in U, and thus will cross the same sequence of
edges of K, contrary to assumption. The same argument as in (i) above now irfiplies
that Z r(0).

This proves part (b) of the lemma. Q.E.D.
COROLLARY. The set R* consisting of all vertices ofK and ridge points is a closed

connected set.

Proof It suffices to show that the map r defined above is onto R*, for then R*
will be the continuous image of the unit circle of starting orientations 0. To show that
r is onto, let Z R*, and let 7r(Z) be one of the shortest paths to ;Z. Then, arguing as

206 MICHA SHARIR AND AMIR SCHORR

in the preceding proof, Z r(0), where 0 is the starting orientation of 7r(Z) (as follows
from Lemmas 4.1 and 4.2 and from the definition of r). Q.E.D.

In view of Lemma 4.3, the set R* can be regarded as a graph whose edges are
(portions of) the straight segments yielded by the proof of Lemma 4.3. The vertices
of this graph are either vertices of K, or points at which such a segment intersects an
edge of K, or points at which two such segments intersect. The degree of each vertex
u of R* is defined to be the number of edges of R* incident to u. More information
on the structure of the vertices of R is obtained from the following lemmas.

LEMMA 4.5. (a) Each vertex of R* having degree is a vertex of K.
(b) Each vertex of R* having degree 2 is an intersection of R with the interior of

some edge of K.
(c) R* does not contain any closed path.
Proof. (a) Suppose that Z is a vertex of R* of degree 1 which is not a vertex of

K. Then Z must be a ridge point. Suppose first that there are exactly two shortest
paths 7r and 7r’ reaching Z. By Lemma 4.3 Z lies on a segment e which is determined
by the two sequences , 1 of edges of K through which 7r and 7r’ respectively pass.
If Z is an endpoint of e (and of no other ridge segment) then for each point W on
the line containing e lying near Z on the other side of e there must exist a unique
shortest path 7r(W) to W. However, this path passes through a sequence of edges
of K which is distinct from both and l. For suppose that r(W) passes through the
sequence ; then by definition of e there would exist another path from X to W having
the same length as 7r(W) and passing through the sequence 1 of edges (cf. Remark
(3) following Lemma 4.3). Hence, letting WZ along this line, we would obtain a
third shortest path to Z passing through the sequence , contrary to assumption. This
argument can be generalized to the case in which more than two shortest paths reach
Z, thus proving (a).

(b) Suppose the contrary, and let Z R be an interior point of some face f of
K, which is a common endpoint of exactly two ridge segments el and e2. Let i, r/i be
two distinct pairs of sequences of edges of K which define ei, 1, 2. Suppose for
definiteness that sel, r/l :2. Then there are at least three shortest paths reaching Z
and passing respectively through the sequences :1, :2 and r/1 (see Fig. 4.4). Consider
the perpendicular bisector to the segment XeX2 as in the ridge construction procedure
described above, is distinct from the lines containing e and e2, it passes through Z,
and contains no ridge point in a small neighborhood of Z, except Z itself. Thus for
each W near Z there exists a unique shortest path 7r(W) passing through a sequence
st(W) of edges of K which is distinct from :i, r/i, 1, 2, as can be seen from Remark
(3) following Lemma 4.3. But then, using arguments similar to those used in the
preceding paragraph, we obtain a contradiction which concludes the proof of (b).

FIG. 4.4. Illustrating the proof that ridge segments cannot "bend" at a point interior to a face.

SHORTEST PATHS IN POLYHEDRAL SPACES 207

(C) Suppose the contrary, and let C be a simple closed path in R*. By the Jordan
curve theorem, C divides S into two disjoint regions $1, $2, so that one of them, say
$1 contains X. Let Z be an arbitrary point in $2. Then the shortest path 7r(Z) from
X to Z will have to intersect C, which contradicts either Lemma 4.1 or Lemma
4.2. Q.E.D.

COROLLARY. R* is a tree having (some of) the vertices of K as leaves.
Proof Immediate by the preceding lemma.
Suppose that we have managed to construct R*. We can then use it for calculating

shortest paths from X to arbitrary points Y S as follows: Define Q to be the union
of R with the shortest paths from X to every vertex of K. Q partitions $ into disjoint
connected regions (which we call peels), the interiors of which do not contain any
vertex or ridge point. Let p be one of these peels. Using arguments similar to the
preceding ones, we can show that the (unique) shortest path r(Z) to any interior point
Z of p is wholly contained in p. Also, there exists an open interval I I(p) of
orientations such that p=op(O, r(O)), and such that for each 0/, the endpoint
r(O) does not reach a vertex. Moreover, the two end orientations 01 and 02 of I are
such that both p(01) and p(02) terminate at a vertex of K (otherwise I and p could
be increased with all the other properties of p still valid). Finally, the intervals I(p)
are pairwise disjoint, and the union of their closures cover the whole angular space
[0,2].

Let Jp denote the set of edges of K which intersect p. It follows that the edges Jp
can be ordered by their adjacency in p. That is, we say that e precede e’ in Jp if there
exists a shortest path in p passing first through e and later through e’. To see that this
order is well defined, and to gain more insight into the structure of peels, we have the
following lemmas.

LEMMA 4.6. Suppose that a peel p is unfolded into the plane by unfolding each of
the geodesic paths p(O) in p into the rayfrom X at orientation O. Then the resulting image
ofp is convex.

Proof Let P be the unfolded image of p. P is plainly contained in the angular
sector consisting of rays at orientations 0 (01, 02) and is star shaped with respect to
X. Hence if P is not convex there must exist a concave corner Z on its boundary but
not on either of the two rays 0 01 or 0 02. Hence Z is a ridge point. Let the two
(ridge) edges meeting at Z be el and e2, and let be the line containing el. Then points
W near Z but on the other side of el will be inside P, so that the shortest path to
such a W is unique, is contained in p, and passes through the same sequence of edges
as the path which reaches Z from within p. But then Remark (3) following the
construction of ridge segments given above implies that there also exists another
geodesic path to W whose length is equal to the length of the geodesic path to W
through p. This contradiction proves the assertion. Q.E.D.

LEMMA 4.7. Let p be a peel and letf be a face ofK such that p fqf# f. Then there
exists a unique sequence of edges of K such that for each Z p Of the shortest path
7r(Z) to Z passes through the sequence .

Proof Suppose the contrary, and let Z1, Z2 be two points in p fqf for which the
sequences , 1 of edges of K through which the paths zr(Z1), 7r(Z2) respectively pass
are distinct. By Lemma 4.6 the segment Z1Z2 is contained in p fqf, and by continuity
there would have to exist a ridge point Z ZIZ2 (hence in p), a contradiction which
proves our claim. Q.E.D.

Hence each peel p defines at most O(n) distinct sequences of edges of K, one
for each face of K which p intersects, such that the shortest path to any Z p passes
through one of these sequences. These sequences can be arranged in an auxiliary tree

208 MICHA SHARIR AND AMIR SCHORR

associated with p so that is an ancestor of q in this tree if and only if j is a prefix
of 1. Given a peel p, it is straightforward to compute all these sequences, and we omit
details of this easy construction.

These observations lead to the following proposition.
PROPOSITION 4.8. (a) There are n peels.
(b) There are O(n2) edges in R*.
Proof. (a) Immediate from the preceding considerations.
(b) We will show that each face of K contains O(n) segments of R*. Let f be a

face of K, and let :1,..., denote the collection of all sequences of edges of K
traversed by shortest paths from X to points on f. Each such sequence corresponds
to a unique peel, so that, by Lemma 4.7, t-<_ n. For each such sequence i let (a,, 0,)
be the parameters describing the position of f in the planar unfolding corresponding
to the sequence s’, and let Xe, ae,Ro, denote the planar position of the point X when
this unfolding is moved so that f coincides with its standard planar representation.

In a manner quite similar to the analysis of Voronoi diagrams [Sh] we can define
the dual graph of R* Of to consist of the points X, as its nodes, such that X and

XeJ are connected by an edge if the two sequences i and :J define an edge of R* f-)f.
As in [Sh], one can show that this dual graph is planar by embedding it into the plane
as follows. Map each node X, to its plane position, and map each edge (Xe,, XCJ) to
the union of two segments connecting respectively X,, X to a point on the common
edge of R* f)f which these two sequences define. Since this graph is planar, and since
Lemma 4.5(b) implies that it has no multiple edges, it follows that it has at most O(n)
edges, thus proving (b). (A similar connection between the partitioning of S by the
set of ridge points and Voronoi diagrams is also noted in [FAV].) Q.E.D.

Remark. The slicing of the surface $ of K into peels has the following geometric
implication. If we apply the planar unfolding procedure to all the peels, from the same
planar position of X, we obtain a planar layout which we denote as U(K) which has
the following properties:

(1) No two unfolded peels overlap in the plane (except at points lying on an
unfolded geodesic path connecting X to a vertex of K). Indeed, if Z is a point in
one peel and Z2 is a point in another, then the segments XZ and XZ2 have different
orientations, unless the exceptional condition noted above holds.

(2) U(K) is star shaped with respect to X.
(3) If V(K) is another planar unfolding of the whole surface of K having

properties (1) and (2), then the smallest disc about X containing U(K) has radius
smaller than or equal to that of the corresponding such disc containing V(K).

The partitioning of S into peels by Q enables us to find the shortest path from X
to any Y S in the following simple manner:

(a) Find the peel p containing Y. For simplicity assume that Y is an interior
point of p.

(b) Find the sequence : of edges in Jp through which 7r(Y) passes.
(c) Apply the planar unfolding procedure relative to :, as described above, to

obtain the required shortest path r(Y).
Concerning the complexity of the path-finding procedure just outlined, assume

that the face fof K containing Y is specified too. Each such f is partitioned by Q
into at most O(n) subregions. It is then straightforward to locate in time O(n) the
subregion of f containing Y, and thus the peel p containing Y (for example, pass a
straight line through Y and compute its intersections with Q f)f, from which the region
containing Y can be readily calculated). Given p, we obtain : in O(n) time from the
precalculated associated tree, and the planar unfolding procedure can then be applied
to : also in time O(n).

SHORTEST PATHS IN POLYHEDRAL SPACES 209

COROLLARY. After preprocessing, the shortest pathfrom afixed point X to any point
Y S can be computed in time O(n), using a data-structure whose size is O(n2).

The main problem that we still face is that of computing Q. This will be done in
the following section.

5. The peels construction algorithm. In this section we present an algorithm for
partitioning the surface of K into peels, which runs in time O(n log n). The algorithm
constructs a tree T, called the slice tree as follows. Let us define a slice tr in terms of
two "starting orientations" 01 < 02 and a "terminal face"f, which are assumed to have
the following properties:

(i) Each of p(01) and p(02) reaches a vertex of K either before reaching f or
on f itself.

(ii) For each 0 (01, 02) the path p(O) reaches f and does not meet a vertex
before its first exit from f.

(iii) For each 0 (01, 02) let Zo p(O) be the point at which this path leaves f (for
the first time); then all the points Zo lie on the same edge of f (which we call the
terminal edge of tr).

The corresponding slice, denoted as tr(01, 02,f) is defined to be the union of all
paths p(O, Zo), for 0 (01, 02). Note that the set of points at which geodesic paths in
tr(O1, 02,f) enter f is also a subsegment of some edge of f. Note also that all the
geodesic paths p(O, Zo) in this slice pass through the same sequence of edges of K,
and that if tr is unfolded into the plane along this sequence of edges, its image is a

triangle bounded by the two rays emerging from the origin (X) at orientations 01 and

02 and by the terminal edge of tr (cf. Fig. 5.1).

FIG. 5.1. Planar layout of a slice.

A slice is roughly meant to correspond to some portion of a peel, which is
"encoded" implicitly by the range of starting orientations and the terminal face f. The
correspondence is such that for each "true" slice tr tr(01, 02, f) the sequence of edges
that it meets is one of the sequences associated with some peel p (in the manner
described in the preceding section), and the range (01, 02) is contained in the corre-
sponding range I(p). Note that the above definition does not ensure that the geodesics
p(0) withintr for 0 (01, 02) are actually shortest paths. However, the algorithm to be
described below will make sure that each slice tr that it will construct will correspond
to some peel p in the manner just described, so that at least one geodesic path passing
through the sequence of edges defined by tr is indeed a shortest path.

The slice tree that our algorithm will construct is defined as follows. Each node
of T except for its root is a slice. The root is a dummy slice and its sons are the slices
o’(Oi, Oi+,fo), i= 1,. ", s, where fo is the initial face of K containing X and where
0,..., 0s are the orientations of the segments connecting X to the vertices of fo,

210 MICHA SHARIR AND AMIR SCI-IORR

ordered in angular order about X. Let 0-= o’(01, 02,f) be a node of T. Its sons are
obtained by extending 0" one face past f Specifically, let e be the terminal edge of 0",

i.e. the edge off containing all the terminal points Zo for 0 (01, 02), and let f’ be the
face of K adjacent to f at e. If the geodesic paths in 0" have already passed through
f’ (before reachingf) then 0" is called a terminal slice, and remains a leaf of T. Otherwise
we extend all paths p(O) for 0 (01, 02) into f’, and let z denote the set of points at
which these paths leave f’. Plainly 7. is a connected portion of the boundary of f’ and
thus is a union of portions 7"1, Tq of edges of f’ (actually each z for 1 <j < q is a
full edge). For each 1-<j < q let qj (01, 0_) denote the orientation of the geodesic
path in 0" which reaches the vertex at which 7.j and 7.+1 meet. Put also qo 01 and
qq 02. Then slices that are candidates for the sons of 0" in T are the slices 0"(qi_l, qi, f’),
i=l,...,q (seeFig. 5.2).

FIG. 5.2. Extending a slice past an edge.

The problem with extending the tree in this somewhat uncontrolled manner is
that this might cause us to add to the tree slices for which the sequences of edges of
K which they define may be such that no shortest path passes through it. Note that
the number of true slices (i.e. slices for which there exists at least one shortest path
passing through the sequence of edges which they define) is O(n2), in virtue of
Proposition 4.8, but that we have no obvious way to estimate the total number of
possible "false" slices that might be introduced by the construction in the preceding
paragraph.

We therefore design our algorithm so that it always adds only true slices to the
tree T. More specifically, the algorithm will maintain the following two invariants:

(a) The tree constructed by the algorithm contains only true slices (in the above
sense).

(b) With each slice 0" 0"(01, 02,f) we associate a terminal portion 0"y which is a
polygonal subregion of 0" f3f The terminal portions of slices in the tree will be pairwise
disjoint and each terminal slice portion will contain the set of all points Z in f for
which the shortest path to Z within 0" is shorter than that any path to Z contained
with one of the slices present in T.

To maintain the invariant (b), the algorithm will have to store in the tree that it
constructs additional information concerning the terminal portion of each slice. Ter-
minal slice portions that are proper subsets of their corresponding slice portions 0" fqf
can arise due to the overlapping of such a 0"f with other slices already present in
the tree (and reaching the same terminal face). This implies that as the tree is being
constructed, these trimmed portions may be trimmed again and again as new slices
are added to the tree until they reach their final value at the end of the algorithm. We
will show below that proper assembly of the terminal portions of the slices in the final
tree gives us all the peels that we seek.

SHORTEST PATHS IN POLYHEDRAL SPACES 211

Each iteration step of the algorithm adds a new slice to the tree. Let Tk denote
the slice-tree after the kth iteration of the algorithm. For each starting orientation 0
let Zo denote the farthest point on p(0) such that p(O, Zo) is wholly contained within
a slice of Tk. Define the front F(Tk) of Tk to be the set of all points Zo which lie on
edges of K. Let W(Tk) denote a point Zo F(Tk) for which the length of p(O, Zo) is
smallest, and let m(Tk) denote this smallest length.

Initially, as defined above, To consists of all the slices contained in the face fo
containing X, all being children of a common dummy root.

At the (k + 1)st step, the algorithm picks Zo W(Tk), and obtains the slice tr in
Tk containing Zo. Suppose for the moment that Zo lies in just one such slice. Let f be
the terminal face of tr, let e be the edge of K containing Zo, and let f’ be the other
face of K adjacent to f at e.

Let Uo denote the farthest point along p(0) f’ (lying on another edge off’), and
let tr’ be the slice which extends tr past e and which contains p(O, Uo) (again we
suppose for the moment that only one such slice exists). Then we have the next lemma.

LEMMA 5.1. tY’ is a true slice, in the sense that there exists at least one shortest path
passing through the sequence of edges which tr’ defines.

Proof. What we have to show is the existence of a starting orientation 0’ within
the range of starting orientations of tr’ and a point U p(O’)f’ for which p(0’, U)
is a shortest path to U. We take 0’ to be 0, and U to be a point in p(0)f’ sufficiently
near Zo. Suppose to the contrary that p(0, U) is not one of the shortest paths to U.
Let tO be the starting orientation of the shortest path to U. Two cases can arise:

(i) The point U belongs to some slice in Tk. But if this is the case for all points
U sufficiently close to Zo, then Zo must be a ridge point and lie on the boundary of
more than one slice in Tk, contrary to assumption.

(ii) Hence U does not belong to any slice in Tk, so that p(tp) must reach the front
F(Tk) at some point V before reaching U. But then the length of p(,, V) is at least
that of p(0, Z), so that if U is chosen sufficiently near Zo the path p(, U) cannot be
a shortest path to U. (To show this note that the additional length of p(0) between
Zo and U will be strictly smaller than the length of p(O) between V and U if one
chooses U sufficiently near Zo, for otherwise an impossible situation as in case (i)
above would occur.) This proves the lemma. Q.E.D.

The cases in which Zo belongs to two slices in Tk, or in which there are two slices
which extend tr and contain p(O, Uo) deserves a slightly modified treatment. It can be
shown that, except for some rare cases which can be detected by a purely local analysis
of the structure of geodesic paths near Zo, one can extend either of the slices containing
Zo in the first case, or use any of the extended slices obtained in the second case, and
Lemma 5.1 will still hold for this extended new slice, although its proof will have to
be somewhat modified.

The algorithm will then add the slice tr’ as a son of tr to the slice tree, thus
maintaining property (a). To maintain (b) the algorithm will have to trim the terminal
portion of tr’ to keep it disjoint from the terminal portions of other slices reaching the
same face, and possibly also trim these other terminal portions.

To understand how such a trimming is to be done, suppose first that we are given
just two slices, both reaching the same terminal face f and overlapping one another
on f. Then the following basic procedure is applicable.

Slice trimming procedure. Let O" --O’(01, O,f), tr2=cr(02, O,f) be two slices with
the same terminal face f. Apply the planar unfolding procedure to or, tr’ to obtain
planar triangular layouts of these two slices. Move these two layouts in the plane so
that the two copies of the face f in these layouts coincide with the standard plane

212 MICHA SHARIR AND AMIR SCHORR

representation of f Let X,, X be the positions of the point X in these two new
layouts, and let be the perpendicular bisector of X,,,X,,2. Let f12 (resp. f21) denote the
portion of f lying on the X-side (resp. the X,,:-side) of/. We then replace 0-1 f’lf
(resp. 0-2tqf) by 0-1fqf-0-1(q0-21qf21 (resp. 0-2fqf-0-11"q 0-1qf12). See Fig. 5.3.

FIG. 5.3. The slice trimming procedure.

In other words, for points Z which can be reached by two distinct geodesic paths,
lying in two different slices, the slice trimming procedure determines which of these
two paths is shorter, and removes the point Z from the other slice.

Let us consider in more detail the computational aspects of this procedure. As
the slice tree is being built, we can store with each slice 0- the position X of the point
X in the planar lyout of 0- in which f lies in its standard plane position (X will be
represented by quantities a, 0 as in the preceding section, which can be easily updated
as we extend 0- to an adjacent face).

Given two slices O" O’(01, 0, f) and O"2 O’(02, 0, f) meeting at the same terminal
face f, identify 0- with its specific planar unfolding used in the slice trimming procedure
above, j 1, 2. Then it is easily seen (cf. Fig. 5.3) that 0-1- 0-1 f’)0"2 Of21 is a bounded
polygonal region which is star shaped with respect to X, and which is bounded by
at most six segments, including the two rays emanating from X. We regard the
boundary of this region, excluding the two rays from X,, as the graph of a function
expressing the distance p from X as a function of the orientation 0 (01, 0) and
write it as p,;(0).

Now suppose that at a certain time during its construction, the tree T contains
slices 0"1," ", 0", all reaching the same terminal face f Then to enforce property (b),
the terminal portion of each 0"i will have to be replaced by u(0"i)I’q f, where

(.) ,(0",) 0",- U 0", r-10" r-lf,.
ji

Note that ,(0-) is a star-shaped region (with respect to X,) whose boundary, except
for the two rays emanating from X,, is represented by the function

p,(0) min p,;j(0), 0 s (0,, 0).
j#i

In other words, p, is the "lower envelope" of t-1 polygonal lines, each consisting
of at most four segments, as these lines are viewed from the point X,.

We claim that the following property holds.

SHORTEST PATHS IN POLYHEDRAL SPACES 213

LEMMA 5.2. If p, consists of ti segments, then t O(t).
Proof. To prove this claim, we proceed in a manner quite similar to the estimate

of the size of Voronoi diagrams used in [Sh]. That is, we define an undirected graph
G whose nodes are the points X,,, and in which an edge connects X, to Xj if the
trimmed portions of tr and trj have an edge in common, and if this edge is not contained
in any of the four rays emanating from X, and Xj. It is easy to show that G is a
planar graph by mapping each edge (X,, X) of G to the union of two segments
connecting X, and Xj to a point on the corresponding common edge. Moreover, the
graph G has no multiple edges, a fact which can be established as in the proof of
Lemma 4.5. It therefore follows by Euler’s formula that G has O(t) edges. Finally,
each of the edges obtained by the trimming process which is not recorded in G lies
on a ray bounding some slice try, and plainly there can be at most O(t) such edges.
These observations establish our claim. Q.E.D.

Now by the results of the preceding section, _<- n, since the total number of "true"
slices reaching the same face is at most n. This means that the total number of edges
separating trimmed terminal portions of slices within a given face is at most O(n)
during each stage of the algorithm. Moreover, as we add a new slice tr to the tree we
need to update the function p, for all slices o- reaching the same terminal face f as
tr. Suppose as before that p, consists of ti segments. Then its updated value due to
the appearance of tr can be computed in a straightforward manner using (,) in time
O(t), so that updating of all these functions can be accomplished in time O(n).
Moreover, each new edge added to any of these functions, and only such edges, will
also appear in the graph of the new function p,, and it is an easy matter to assemble
all these edges and thus obtain p in time O(n).

Remark. Lemma 4.6 implies that the final trimmed value of a slice is convex (when
properly unfolded). The procedure sketched above might however temporarily lead
to nonconvex trimmed slices. We do not know whether nonconvex intermediate slices
can actually be obtained.

We therefore conclude that one can maintain property (b) in time O(n) per each
step of the algorithm.

The algorithm also needs to update the values of W(Tk) and m(Tk) in view of
the addition of tr’ to the tree. Note that the new front of the tree is obtained from the
previous front by deletion of the "entering" segment of o-’, by addition of the terminal
edge of o-’, and by possibly shortening other edges of the front due to the trimming
procedure described above. Note that the deletion of the entering edge of tr’ will in
general have split (a portion of) the terminal edge of o- into two subsegments which
still belong to the front, and that similar splits or replacements of edges will result
from the trimming process. This suggests that we represent the front of the tree as a
union of subsegments of edges of K. For each segment e in the front we can easily
compute the point W(e) on e for which the geodesic path to W(e) through the slice
bounded by e is shorter than that to any other point on e, and also the length m(e)
of this path. We then maintain a priority queue containing all the relevant segments
e constituting the front, ordered by the value of m(e). At each addition of a new slice
o-’ to the tree we delete from the priority queue the terminal segment of the ancestor
r of tr’, add back the two subsegments of this segment still in the front, and add the
terminal edge of tr’. Since the trimming step can result in a new terminal slice portion
having no terminal edge, and since the terminal edges of existing slices may also be
trimmed by that procedure, the priority queue of front edges will have to be updated
in an appropriate manner. Since the incremental trimming procedure described above
will produce at each step 0nly O(n) slice-bounding segments, it follows that at most

214 MICHA SHARIR AND AMIR SCHORR

O(n) updates of the priority queue will be required at each stage. Once these updates
are performed, the updated values W(Tk) and m(Tk) are easily available and can be
retrieved in the next iteration of the algorithm.

The algorithm terminates when the priority queue representing the front of the
tree becomes empty, i.e. when the front itself becomes empty.

When this happens, we still need a final phase that will construct the peels of K
from the slice tree. To this end let r or(01, 02,f) be a leaf of T. The final trimmed
value of tr is defined as

(,)-= u o-n -(,’)

where tr’ ranges over all slices on the path in T to tr, and where r(tr’) denotes the
final trimmed terminal portion of tr’. That is, we collect all trimmed terminal portions
of slices lying along the path to tr in T, but restrict each such portion to the wedge
between the two starting orientations defining r.

Note that/x (r) need not be a full peel. In fact, a necessary and sufficient condition
for /z(tr) to be a peel is that the two bounding geodesics p(01) and p(02) are not
trimmed, and still reach vertices of K within (the closure of)/x(tr). If, say, p(01) has
been trimmed, let trl be the slice whose range of starting orientations is adjacent to
that of tr at 01. Then it is easy to see that the peel containing (tr) also contains
These observations make it clear that we can construct all peels by a depth-first traversal
of T, visiting sons of a slice in, say, counterclockwise order of their ranges of starting
orientations.

To estimate the time required by the algorithm we note that the maintenance of
property (b) is the costliest part of the algorithm, in which the updating of the priority
queue representing the front of T may require O(n log n) time for each step (the
trimming procedure itself requiring only O(n) time). Since the algorithm adds at most
O(n2) slices to the tree, it follows that the algorithm will run in time O(/13 log n).

The correctness of the algorithm follows from the following considerations. First
note that the peels as constructed by the algorithm are pairwise disjoint by construction.
We also claim that they cover the whole surface of K. To show this, it suffices to prove
that every true slice is constructed by the algorithm. Indeed, if this latter property is
known to hold, then for each point Z on the surface of K let p(O, Zo) be a shortest
path to Z. The sequence of edges and faces through which this path passes defines a
true slice tr which will appear in the final tree T. It is easy to verify that Z will belong
to the final trimmed terminal portion of

To see that all true slices are constructed by the algorithm, we note that once the
algorithm has added a slice to the tree with a nonempty terminal edge which connects
that slice to another true slice, then this edge will not be wholly deleted by the trimming
procedure, and eventually the following slice will also be picked up by the algorithm
and added to the tree. This implies in a straightforward inductive manner that all true
slices are added to the tree.

Hence the peels produced by the algorithm are pairwise disjoint and cover the
whole surface of K. It is now a simple matter to prove, arguing as in the proof of
Lemma 5.1, that each such peel is one of the peels defined in the preceding section,
and thus to conclude the proof of correctness of the algorithm.

In view of the discussion at the preceding section, we thus have the following
summary theorem.

THEOREM 5.2. Given a convex polyhedron K with n vertices and a point X on its

surface, one can preprocess K by a procedure which runs in O(n log n) time. This
procedure produces a data structure of size O(n2), with the aid of which one can find in
O(n) time the shortest path along the surface ofK from X to any other specified point.

SHORTEST PATHS IN POLYHEDRAL SPACES 215

Remark. It seems quite likely that the algorithm developed in this section is not
optimal, as it requires O(/I log n) time to construct a quadratic data structure (and
then search the structure in only linear time to find a shortest path). After the original
submission of this paper, Mount [Mo] has recently proposed an improved approach,
in which the data structure only maintains points of intersections of slices with the
edges of K (rather than with its faces, as done here). Thus his data structure is a
collection of disjoint intervals on the edges of K, rather than a collection of disjoint
polygons on the faces of K, making it much easier to maintain this structure, and
thereby reducing the running time to O(n2 log n).

Note added in proof. (1) Recently the running time of the 2-D shortest path
algorithm has been improved to O(n-) by Welzl and by Guibas, using more efficient
constructions of the visibility graph. (2) The running time of the slice-construction
algorithm in 5 can be reduced to O(/I3) using a new data structure, known as F-heap
and due to Fredman and Tarjan, to represent the priority queue needed there (this
however is pre-empted by Mount’s result mentioned above).

[AHU]

[A1]
[Ch]

[Co]

[FAV]

[FA]

[Ga]

[LP]

[LW]

[Mo]

[NP]

[OSB]

[Pa]

[Re]

[ss]

[Sh]
[To]
[Wa]

REFERENCES

A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

A. D. ALEXANDROV, Konvexe Polyeder (translated from Russian), Akademie-Verlag, Berlin, 1958.
B. CHAZELLE, A theorem on polygon cutting with applications, Proc. 23rd IEEE Symposium on

Foundations of Computer Science, 1982, pp. 339-349.
G. E. COLLINS, Quantifier elimination for real closed fields by cylindrical algebraic decomposition,

in Second GI Conference on Automata Theory and Formal Languages, Lecture Notes in
Computer Science 33, Springer-Verlag, Berlin, pp. 134-183.

W. R. FRANKLIN, V. AKMAN AND C. VERRILLI, Voronoi diagrams with barriers and on polyhedra,
Tech. Rept., Electrical, Computer and Systems Engineering Dept., Rensselaer Polytechnic
Institute, Troy, NY, November 1983.

W. R. FRANKLIN AND V. AKMAN, Minimalpaths between two points on/around convex polyhedra,
Tech. Rept., Electrical, Computer and Systems Engineering Dept., Rensselaer Polytechnic
Institute, Troy, NY, May 1984.

M. GARDNER, The 2nd Scientific American Book of Mathematical Puzzles and Diversions, Simon
and Schuster, New York, 1961.

D. T. LEE AND F. P. PREPARATA, Euclidean shortest paths in the presence of rectilinear barriers,
Networks, 14 (1984), pp. 393-410.

T. LOZANO-PEREZ AND M. A. WESLEY, An algorithm for planning collision-free paths among
polyhedral obstacles, Comm. ACM, 22 (1979), pp. 560-570.

D. M. MOUNT, On finding shortest paths on convex polyhedra, Tech. Rept., Computer Science
Dept., Univ. Maryland, College Park, October 1984.

J. NIEVERGELT AND F. P. PREPARATA, Plane sweeping algorithms for intersecting geometric
figures, Comm. ACM, 25 (1982), pp. 739-747.

J. O’ROURKE, S. SURI AND H. BOOTH, Shortest paths on polyhedral surfaces, extended abstract,
Dept. Electrical Engineering and Computer Science, Johns Hopkins Univ., Baltimore, Septem-
ber 1984.

C. H. PAPADIMITRIOU, An algorithm for shortest-path motion in three dimensions, manuscript,
Computer Science Dept., Stanford Univ., Stanford, CA, July 1984.

J. REIF, Minimum s-t cut of a planar undirected network in O(n log n) time, this Journal, 12
(1983), pp. 71-81.

J. T. SCHWARTZ AND M. SHARIR, On the piano movers’ problem: II. General techniques for
computing topological properties of real algebraic manifolds, Adv. Appl. Math., 4 (1983), pp.
298-351.

M. I. SHAMOS, Computational Geometry, Ph.D. Dissertation, Yale Univ., New Haven, CT, 1975.
M. ToMPA, An optimal solution to a wire routingproblem, J. Comp. Syst. Sci., 23 1981), pp. 127-150.
B. L. VAN DER WAERDEN, Algebra, 5th Edition, Springer-Verlag, Berlin, 1960.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics

AN EFFICIENT ALGORITHM FOR GENERATING LINEAR
TRANSFORMATIONS IN A SHUFFLE-EXCHANGE NETWORK*

T. ETZION’ AND A. LEMPEL"

Abstract. This paper presents an algorithm for generating all the permutations defined by linear
transformations on a shuffle-exchange network of 2 processors in 2n- passes. The proposed algorithm
generates any such permutation in O(n log n) elementary steps. The subclass ofbit-permutations is generated
in O(n) steps.

Key words, algorithm, complexity, linear transformations, permutations, shuffle-exchange network

1. Introduction. The shuffle-exchange (SE) network is an efficient tool for
implementing various types of parallel processes [2], [6]. The SE network is composed
of N=2 processors, where each processor is represented by a binary n-tuple
(Xl, x2," , xn). In the SHUFFLE-operation processor (xl, x2,. , x,) transfers infor-
mation to processor (x2,.. ",xn, xl). In the EXCHANGE-operation processors
(xl, x2, , x_l, 0) and (xl, x2," , xn_l, 1) may exchange information, independent
of other pairs of this form.

One SHUFFLE followed by one EXCHANGE is called a pass. Between the
SHUFFLE phase and the EXCHANGE phase of a pass there is a computational phase
during which the active pairs of the upcoming EXCHANGE are determined. Prior to
the first pass there is normally a preprocessing stage. The overall procedure consisting
of the preprocessing stage and all the passes is often referred to as the routing algorithm.

An important problem in this context is the design of efficient routing algorithms
that implement permutations in a SE network in a minimal number of passes. In
general, a transformation on a SE network associates with each processor a destination
processor for the purpose of information transfer. This paper deals with the realization
of nonsingular linear transformations, i.e., permutations for which each bit of the
destination processor is a linear combination of the bits of the origin processor. It is
well known ([3] and [4]) that such permutations can be realized in 2n- 1 passes, using
a routing algorithm of O(n2) steps.

In 2 we show how to realize these permutations in 2n- 1 passes, using a routing
algorithm of O(n log n) steps. In 3 we show that if the permutation is merely a bit
permutation, then only O(n) steps are required.

Following Linial and Tarsi [3], we employ the combinatorial model described
below.

DEFINITION 113]. A 0-1 matrix A, of order N m, N 2, rn-> n, is said to be
balanced if all the rows in any n consecutive columns of A are distinct.

DEFINITION 2. The standard matrix is an N n matrix D whose ith row is the
base-2 representation of i, 0_-< _-< N-1.

In terms of these definitions our problem can be stated as follows [3]: Given a
balanced N n matrix A find a (possibly empty) matrix X such that the matrix
[D’ X’ A] is balanced.

2. Realization of linear transformations. In this section we show how to realize
linear transformations on a SE network in 2n- 1 passes using a routing algorithm of
O(n log2 n) steps.

Received by the editors May 9, 1984, and in final form November 9, 1984.

" Computer Science Department, Technion, Israel Institute of Technology, Haifa, Israel.

216

TRANSFORMATIONS IN A SHUFFLE-EXCHANGE NETWORK 217

In the sequel all the arithmetic is over GF(2), all the vectors are column vectors
with n elements, I= [I(1)I(2) I(n)] denotes the identity matrix of order n, and T
denotes a nonsingular matrix of order n.

PROPOSITION 113]. Let A be a matrix of order N n. Then AT is balanced if and
only if A is.

DEFINITION 3. A matrix R of order n m, n-<_ m, is said to be n-regular if every
n consecutive columns of R are linearly independent.

It follows readily from Proposition 1 that if R is n-regular then DR is balanced.
In what follows we consider n-regular matrices of the form R [I Y’ T] and propose
a method of finding a suitable matrix Y of n- columns when given the matrix T.

Consider a n n binary matrix B=[B(1)B(2)... B(n)], where each column B(i)
has either one or two nonzero entries. B can be viewed as the incidence matrix of the
(undirected) graph G(B) defined as follows:

DEFINITION 4. G(B) has n+l vertices 0,1,...,n and n edges e(1),
e(2),..., e(n), where e(k) joins vertices i>0 and j>0 if B(k) has nonzero entries
in rows and j, and e(k) joins vertices i> 0 and 0 if B(k) is nonzero in row only.

LEMMA 115]. The vectors B(1), B(2), ., B(n) are linearly independent ifand only
if G(B is a tree.

LEMMA 2. Let B(1) B 2 , B n be linearly independent vectors. Then there
exists an integer k, 1 <-_ k <= n, and binary coefficients bj, 1 <-j <-_ n 1, such that

--1

(1) I(k)= B(n)+ , bjB(j).
j=l

Proof. The matrix B=[B(1)B(2)... B(n)] is nonsingular. Hence, there exists a

matrix Q Q(1)Q(2) Q(n)] such that BQ I. Since Q is nonsingular, there exists
at least one k such that the last entry of Q(k) equals 1. Q.E.D.

LEMMA 3. Let B(1), B(2),..., B(n) be linearly independent vectors and let k,
1 <-_ k <-_ n be an integer satisfying Lemma 2. Then B(0), B(1), B(2), , B(n 1 are

linearly independent, where

(2) B(O)=I(k)/ cB(j), cj{0, 1}.
j=l

Proof. Assume, the contrary, that B(0), B(1), B(2),..., B(n-1) are linearly
dependent. Then, since the last n- 1 vectors are linearly independent, there exist
1 _-<j _-< n 1, such that

n-1

(3) B(O)= djB(j).
j=l

From (1), (2), and (3), we obtain

n-1

B(n)= E (bj+cj+dj)B(j)
j=l

which contradicts the linear independence of the B(j), 1 <-j-< n. Q.E.D.
Based on Lemmas 1 and 3, we propose the following construction of Y=

[Y(1)Y(2)...Y(n-1)] such that [IiYIT] be n-regular for a given T=
[T(1)T(2)... T(n)].

Construction 1. Let Bo=T and let B,,=[Y(n-rn)... Y(n-1)T(1)...
T(n- rn)], 1 =< rn _-< n 1. Given B,,, 0 _-< rn < n 1, construct Y(n rn 1) as follows.

(i) If k n rn 1 satisfies Lemma 2, set Y(n rn- 1) l(n rn- 1).

218 T. ETZION AND A. LEMPEL

(ii) If k n m- 1 does not satisfy Lemma 2, find an integer q which does satisfy
Lemma 2 and set Y(n m 1 I(n m 1) + I(q).

LEMMA 4. The matrix [I(1) I(n) Y(1) Y(n 1) T(1). T(n)] obtained
via Construction 1 is n-regular.

Proof. The n-regularity of[Y(1) Y(n 1) T(1) T(n)] follows directly from
Lemma 3. To complete the proof, it suffices to show that [J(1) I(n) Y(1) Y(n-
1)] is n-regular. Let CI=I and let Cm [I(m) I(n)Y(1)... Y(m- 1)], 1 <m<-n.
We will show that linear independence among the columns of Cm, 1 <_-m < n implies
the same for C+I. Clearly, the columns of C1 are linearly independent. Suppose C,
m _-> 1, is nonsingular and consider C0,+1 [I(m + 1) I(n) Y(1) Y(m)]. By Con-
struction 1, either Y(m) I(m) or Y(m) I(m) + I(q) for some q # m. In the first
case it is clear that C,,+ is nonsingular. In the latter case noting that C, 1 -<_ r < n, has
at most two nonzero entries in every column, we can view C, as the incidence matrix
of the graph G(C,) according to Definition 4. By Lemma 1, since Cm is nonsingular
G(Cm) is a tree. G(Cm+I) is obtained from G(C) by deleting the edge (0, m)
(corresponding to the column I(m)) and inserting the edge (m, q) (corresponding to
the column I(m)+ I(q)). If G(Cm+I) contains a cycle then, since Y(1), .., Y(n- 1)
are linearly independent, the cycle must include the vertex 0. Since G(C) is a tree,
deleting the edge (0, m) from G(C,,) leaves a graph with no path between the vertices
0 and m. Hence, inserting the edge (m, q) cannot generate a cycle that contains the
vertex 0. Hence G(Cm+l) is a tree, and Cm+ is nonsingular. Q.E.D.

In order to find an integer k that satisfies Lemma 2, we need an efficient algorithm
to invert a matrix. To this end we use the algorithm proposed by Csanky [1] who
showed how to invert a matrix of order n, in O(log2 n) steps using a polynomial
number of processors. Csanky’s algorithm utilizes a model that has an arbitrary number
of identical processors with independent control and an arbitrarily large shared memory
with unrestricted access. In this model, each processor is capable of taking its operands
from the shared memory performing any one of the binary operations +,-, *,/ and
storing the result in memory in one step.

Based on Lemma 2, Csanky’s algorithm, and Construction 1, we propose a
procedure to realize linear transformations. In this procedure each processor has at
each stage the following information:

(1) An (n-1)-tuple U-(u(1),..., u(n-1)), where u(j)-k if r(j)=
I(j) + I(k) and u(j) 0 if Y(j) I(j).

(2) Two n-tuples, S and F- ST, whose initial values represent, respectively, the
ID of the said processor and that of the destination processor as defined by
the given linear transformation. In the SHUFFLE and the EXCHANGE
operations that follow each processor transfers its current S and F and receives
new values for S and F.

Procedure 1. Given the linear transformation defined by a nonsingular matrix
T=[T(1)T(2)... T(n)] let Bo=T and let B,,=[Y(n-m)... Y(n-1)T(1)...
T(n-m)]. Having computed B,=[Y(n-r)... Y(n-1)T(1)... T(n-r)], r>-O,
apply the Csanky algorithm to generate the inverse Q- Q(1)... Q(n)] of Br. If the
last entry of Q(n-1) equals 1, set Y(n-r-1)=I(n-r-1) and u(n-r-1)-O;
otherwise, find an integer k such that the last entry of Q(k) equals 1 and set Y(n- r-
1 I(n r 1 + I(k) and u n r 1 k. After u 1),. , u n 1 are generated they
are transferred to each of the N processors of the SE network. With reference to the
n-tuples S (s(1),. ., s(n)) and F (f(1),. ., f(n)), stored with each processor,
perform the following:

TRANSFORMATIONS IN A SHUFFLE-EXCHANGE NETWORK 219

s(0):=0;
fori:=lto n-1 do
begin
SHUFFLE;
if s(u(i)) 0 then EXCHANGE;

end;
SHUFFLE;
if s(n) rs f(1) then EXCHANGE;
fori:=lto n-1 do
begin
SHUFFLE;
iff(i+ 1) s(i)+ s(u(i)) then EXCHANGE;

end;

Note that SHUFFLE and EXCHANGE are executed in parallel by all the processors.
THEOREM 1. Procedure 1 realizes a linear transformation in 2n- 1 passes using a

routing algorithm, of O(n log2 n) steps.
Proof. In order to show that Procedure 1 realizes the linear transformation associ-

ated with the matrix T, it suffices to show that it implements the moves implied by the
balanced matrixDB=D[l’ Y(1)... Y(n-1)’T]=[D’DY(1)...DY(n-1)’DT].
That is, for a given processor S (s(1),. , s(n)) and its destination processor F
(f(1),... ,f(n)), the path in the SE network via which the transformation F ST is
implemented by Procedure 1 is given by the sequence of processors corresponding to
successive n-tuples from the row SB=s(1),...,s(n), (s(1)+s(u(1))), (s(2)+
s(u(2))), ., (s(n- 1)+ s(u(n- 1))), f(1), ,f(n). To this end, note that for each
row SB, Procedure 1 performs an EXCHANGE if and only if the leading bit of the
current processor differs from the last bit of the succeeding processor.

The claimed complexity of Procedure 1 is obtained as follows. The n-regular
matrix B [I’ Y(1)... Y(n- 1) IT] is generated by n- 1 applications of the Csanky
algorithm. Therefore, this part consists of O(n log2 n) steps. The (n-1)-tuple U
(u(1),..., u(n-1)) is transferred to each of the N processors of the SE network on
a bus in O(n) steps. The 2n- 1 passes correspond to last 2n- 1 columns of DB and
each pass is executed in constant time. Thus, the overall complexity of the procedure
is O(n log2 n). Q.E.D.

3. Realization of bit-permutations. In this section we show how to realize the
linear transformation associated with a permutation matrix T in O(n) steps.

DEFINITION 5. T T(1) T(2) T(n)] is called a permutation matrix if T(j)
I(p(j)),j- 1, 2,..., n, where p(1), p(2),..., p(n) is an arbitrary permutation on the
integers 1, 2,- .., n.

Based on Lemma 1, we propose the following construction of Y-
[Y(1) Y(2) Y(n 1)] such that [I’ Y’ T] is n-regular for a given permutation matrix
T=[I(p(1))I(p(2))... I(p(n))].

Construction 2. Let Bo=T and let Bm=[Y(n-m) Y(n-1)I(p(1))...
I(p(n- m))], 1 _-< m _-< n- 1. Along with the columns of Y we construct a sequence of
graphs Gi, 0-<_ _-< n 1. Go is the edgeless graph of n isolated vertices 1, 2, , n, and
given B, and Gin, 0<= m < n- 1, construct Y(n m- 1) and G,,+I as follows.

If the addition of edge (n- m- 1, p(n- m)) to G,, creates a cycle, set Y(n m
1) I(n m- 1) and G,+ G,,; otherwise, set Y(n m- 1) I(n m- 1)+ I(p(n-
m)) and obtain G,,+I by adding the edge (n m 1, p(n m)) to

220 T. ETZION AND A. LEMPEL

LEMMA 5. The matrix [I(1)...I(n)Y(1)... Y(n-1)I(p(1))...I(p(n))]
obtained via Construction 2 is n-regular.

Proof. First, observe that every column of the matrix B, 0-< r-< n 1, has at most
two nonzero entries and, thus, can be viewed as the incidence matrix of the graph
G(B) defined in 2. Note that G,, as defined by Construction 2, can be obtained
from G(B) by deleting from the latter the vertex 0 and all the edges incident with
this vertex. Note further that G(B+) is obtained from G(Bm) by:

(i) Deletion of edge (0, p(n m)).
(ii) Addition of either edge (0, n- m- 1), or edge (p(n- m), n- m- 1).
Assume that G(Bm), m _-> 0, is a tree. Then, operation (i) results in two pieces of

G(Bm), with no path between vertices 0 and P(n m). Hence, if at this stage connecting
vertex p(n-m) to vertex n-m-1 creates a cycle, it follows that operation (i) leaves
vertex n m 1 in the same piece with vertex p(n- m), namely with no path between
vertex 0 and vertex n-m- 1. Therefore, in this case, the graph G(B,,+I) obtained in
operation (ii) by adding the edge (0, n-m- 1) is a tree.

If, on the other hand, connecting vertex p(n-m) to vertex n-m-1, after
operation (i), does not create a cycle in the piece containing vertex p(n m), it certainly
does not create a cycle with vertex 0 and the resulting graph is again a tree.

Since G(Bo) is a tree it follows that G(Bm) is a tree for all 0-< m <-n- 1, which
implies that the matrix [Y(1) Y(n-1)I(p(1)) I(p(n))] is n-regular.

The n-regularity of the matrix [I(1)... I(n)Y(1)... Y(n-1)] follows in the
same manner as in the proof of Lemma 4. Q.E.D.

The reader can readily verify that the result of Construction 2 could be obtained
via Construction 1 through an appropriate choice of the parameter k of Lemma 2.

Construction 2 leads to Procedure 2, given below for realizing bit-permutations.
In this procedure, which is simpler than Procedure 1, each processor has at each stage
the following information:

(1) an (n 1)-tuple U (u (1),. ., u (n 1)) as in Procedure 1;
(2) an n-tuple S as in Procedure 1;
(3) the permutation P=(p(1),..., p(n)).

Procedure 2.
Part 1
for := 1 to n 1 do
begin

u(i):=p(i+l);
check (i) := false;

end;
check n := false;
for i:=l to n-1 do
begin

cycle := false;
current := i;
while ((cycle=false) and (current < n) and (check(current)=false)) do
begin

check (current) := true;
if u (current) then current := u (current)
else cycle := true;

end;
if cycle true then u (i) := 0;

end;

TRANSFORMATIONS IN A SHUFFLE-EXCHANGE NETWORK 221

Part 2
s(0):= 0;
fori:=lto n-1 do
begin
SHUFFLE;
if s(u(i)) 0 then EXCHANGE;

end;
SHUFFLE;
if s(n) s(p(1)) then EXCHANGE;
for := 1 to n 1 do
begin
SHUFFLE;
if s(p(i+ 1)) s(i)+s(u(i)) then EXCHANGE;

end;

THEOREM 2. Procedure 2 realizes a bit-permutation in 2n- 1 passes and O(n steps.
Proof. In Part 1 of Procedure 2 each processor computes the (n- 1)-tuple U-

(u(1), , u(n- 1). Initially u(n- m- 1) is set to p(n- m) which corresponds to
setting Y(n m- 1) to I(n- m- 1)+ I(p(n- m)). Then, u(n- m) is set to 0 if the
insertion of the edge (n-m- 1, p(n- m)) creates a cycle in the corresponding graph
G,. Part 2 of Procedure 2 is identical to Procedure 1, with s(p(i)) substituting forf(i).

The claimed complexity of Procedure 2 is obtained as follows. Part 1 consists of
O(n) steps since the variables check(i), 1 <-i <- n, insure that for each i, the variable
current takes the value at most once in the while loop. As in Procedure 1, each of
the 2n-1 passes is executed in constant time. Thus, the overall complexity of the
procedure is O(n). Q.E.D.

Acknowledgment. The authors wish to thank Yossi Shiloach for presenting the
problem and for many helpful discussions.

REFERENCES

[1] L. CSANKY, Fast parallel matrix inversion algorithms, this Journal, 4 (1976), pp. 618-623.
[2] D. n. LAWRIE, Access and alignment ofdata in an array processor, IEEE Trans. Comput., C-25 (1976),

pp. 55-65.
[3] N. LINIAL AND M. TARSI, Efficient generation of permutations with the shuffle exchange networks,

submitted for publication.
[4] M. PEASE, The indirect binary n-cube microprocessor, IEEE Trans. Comput., C-26 (1977), pp. 122-131.
[5] S. SESHU AND M. B. REED, Linear Graphs and Electrical Networks, Addison-Wesley, Reading, MA, 1961.
[6] H. S. STONE, Parallel processing with the perfect shuffle, IEEE Trans. Comput., C-20 (1971), pp. 153-161.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

(C) 1986 Society for Industrial and Applied Mathematics

VARIABLE SIZED BIN PACKING*

D. K. FRIESEN" AND M. A. LANGSTON$

Abstract. In the classical bin packing problem one seeks to pack a list of pieces in the minimum space
using unit capacity bins. This paper addresses the more general problem in which a fixed collection of bin
sizes is allowed. Three efficient approximation algorithms are described and analyzed. They guarantee
asymptotic worst-case performance bounds of 2, 3/2 and 4/3.

Key words, bin packing, approximation algorithms, worst-case analysis

1. Introduction. Consider a finite collection of bin sizes and an inexhaustible
supply of bins of each size. The problem we investigate is that of packing a list of
pieces into bins so as to minimize the total space used in the packing. If the cost of a
bin is proportional to its size, then our objective corresponds to minimizing the total
cost of the packing. This problem arises in a variety of interpretations from computer
storage allocation to stock cutting.

This variable sized bin packing problem is NP-hard, reducing to the classical bin
packing problem when only one bin size is permitted. Hence we focus our efforts on
efficient approximation algorithms to ensure near-optimal packings. We seek to estab-
lish an algorithm’s worst-case performance bound, which is a ceiling on the ratio of
the space used in that algorithm’s packing of a given list to the minimum space required
for any packing of the same list. Of course the problem could be solved exactly, given
enough time. An attractive scheme is described in [GG] which uses a cutting stock
interpretation, linear programming techniques and repeated applications of an
algorithm for solving the knapsack problem (also NP-hard).

The classical bin packing problem and many of its variations are of fundamental
importance, reflected in the impressive amount of research reported (see [CGJ] for an
updated survey). Yet only a few results have appeared concerning this more general
problem in which bins need not be of a single given size (see for example [FL1], [FL2]
or [La]). In particular, it is known from [FL2] that if the user is allowed to choose
any single bin size, then any packing algorithm can be employed iteratively to yield a
worst-case performance bound arbitrarily close to its bound for the classical problem.

The problem we consider herein appears to be substantially more difficult and
our results are more modest. In {} 3, we present two procedures and show that they
guarantee tight worst-case performance ratios of 2 and 3/2. Our main result is a proof
that a slightly more complex algorithm we name FFDLS, to be described and analyzed
in 4, has a worst-case performance ratio of 4/3. Moreover, this bound is tight.

2. The model. Let k denote the number of distinct bin sizes available. A list of
pieces is specified by L {p, P2, , Pn}. Assume that bin and piece sizes are normal-
ized so that the largest bin has size 1 (and hence the largest piece must have a size no
greater than 1). We let B (B1, B2," ", B) denote the ordered set of bins used by a
heuristic H. That is, B1 is the first bin to receive a piece, B2 is the next bin to receive
a piece, and so on. In the same fashion we let B*= (B*, B2*,"’, B’m) denote the
ordered set of bins used by some optimal procedure OPT. In, l(In,*l) denotes the number
of pieces assigned to the ith bin by the heuristic (optimal) packing.

* Received by the editors October 18, 1983, and in revised form December 1, 1984.

f Computer Science Department, Texas A & M University, College Station, Texas 77843.
Computer Science Department, Washington State University, Pullman, Washington 99164. This

author’s research was partially supported by the National Science Foundation under grant ECS-8403859.

222

VARIABLE SIZED BIN PACKING 223

We let s(pi) denote the size of the ith piece. Similarly we use s to represent bin
sizes and a function c to specify the total contents of a bin (clearly c(Bi)<-s(B)).
Since we seek a bound on the space required by an algorithm, we define H(L)=-
i=l s(Bi) and OPT(L)-== s(B*). We will establish results of the form H(L) <-
R. OPT (L)+ C where R and C are the asymptotic worst-case performance ratio and
the additive constant, respectively.

3. The algorithms NFL and FFDLR. Guaranteeing a bound of 2 is very easy.
Consider the simple heuristic NFL (for Next Fit using Largest bins only) which packs
a bin of size 1 until a piece will not fit, and then starts packing a new bin of size 1.
NFL is clearly of time complexity O(n), linear in the number of pieces which must
be packed.

THEOREM 1. NFL (L) < 2 OPT (L)+ 1 for any list L.
Proof. For 1 < i<l, c(B)+c(B+l)> 1 Therefore t c(Bi)>(l-1)/2 andi----1

NFL(L)=(I-1)+I<2 c(B,)+l=2 c(B*)+l_-<2 s(B*)+l
i=1 i=1 i=1

2 OPT (L) + 1. l-I

Letting e denote an arbitrary small positive real value, any instance consisting of
pieces of size 1 /2 + e and bins of sizes 1 and 1 /2 + e demonstrates that 2 is an asymptotic
lower bound as well for NFL’s performance.

The major stumbling block to achieving improved performance appears to be the
need to repack into smaller bins (the interested reader should have no difficulty devising
examples to illustrate that initially packing smaller bins does not help). Moreover,
algorithms known to be superior to Next Fit for the classical model (see descriptions
in [CGJ], [JDUGG] or [Jo]) also fail unless allowed to repack bins. Hence we consider
FFDLR (for First Fit Decreasing using Largest bins, at end Repack to smallest possible
bins). A formal description follows:

FFDLR: procedure
begin

sort and reindex L so that S(pl) >- $(P2) >--" => s(pn)
for i-1 to n do
pack p into the first bin of size 1 that has room for it
end

for i-lto ldo
repack contents of B into the smallest possible empty bin
end

end.

FFDLR is of time complexity O(n log n / log k), comparing favorably with NFL.
We now demonstrate that its modest increase in run-time is well worth the effort.

THEOREM 2. FFDLR (L) < (3/2) OPT(L)+ 1 for any list L.
Proof. The proof is by contradiction. Assume that there exists a set of bin sizes

and a list L of pieces such that FFDLR (L)_-> (3/2) OPT(L)+ 1. Let B and B* be the
set of bins used by FFDLR and an optimal algorithm, respectively. Note that any
wasted space in Bt can be absorbed in the additive constant. Let denote the largest
index less than such that c(B)< (2/3)s(B). Clearly such an exists. Then 1/2<
c(n,) <2/3. Also, In, 1, else its second piece has size less than 1/3, c(B) > (2/3)s(B)
for all j < i, and the theorem holds with the additive constant absorbing any wasted
space in Bi and B, since c(B)+ c(B)> 1.

224 D. K. FRIESEN AND M. A. LANGSTON

We conclude that there is no bin size in [c(Bi), 3/4] and that each Bj, j -< i, contains
a piece whose size is at least c(Bi) and which cannot be packed in a bin of size 1 with
any item from Bj,, j’> i. Therefore

FFDLR(L)<-i+(3/2) 2 c(B)+1<(3/2) (3/4)i+ c(B) +1
j=i+l j=i+l

-<(3/2) OPT (L)+ 1.

To illustrate that this asymptotic bound of 3/2 is tight, consider any instance
consisting of an even number of pieces of size 1!3 + e and bins of sizes and 1/3 + e.

4. The FFDLS algorithm. Since the single repacking step at the end of FFDLR
does not ensure less than 50% wasted space, we consider dynamically shifting bin
contents as the packing is constructed. Focusing our attention on a 4/3 performance
bound, we design FFDLS (for First Fit Decreasing using Largest bins, but Shifting as
necessary). Formally we have:

FFDLS: procedure
begin

sort and reindex L so that s(pl) >= s(p2) >=" >= s(p,,)
for 1 to n do
pack p into the first bin B of size 1 that has room for it
if B contains a piece whose size exceeds 1/3

then shift, if possible, the contents of Bj to the smallest empty bin B, that
will hold them where c(B) >= (3/4)s(B,)

end
foril toldo

repack contents of B into the smallest possible empty bin
end

end.

FFDLS is of time complexity O(n log n+ n log k). Note that shifting is not
performed for bins containing only small pieces (i.e., pieces of size at most 1/3).
Roughly speaking this is because such a bin, unless it is B, must be filled sufficiently
over 3/4 to "balance" bins filled to less than 3/4. To illustrate, suppose we shift anyway
and pack 12K pieces, 6K of size .365 and 6K of size .271, using bin sizes 1, .636 and
.361. The heuristic requires a space of 3K(1)+6K(.361), while the optimal packing
needs only 6K(.636). (FFDLS would not construct an optimal packing either, but
would require a space of only 3K (1) + 2K (1), wasting less than 33% .)

FFDLS, as described, does not attempt to pack a piece into any "small bin" that
is already 3/4 full. That is, first fit packing is done only in bins of size 1. In practice
we can allow a first fit packing over all partially filled bins, although this modification
can have no effect on the worst-case ratio (it cannot make it worse and does not
improve the example mentioned at the end of this section).

We now prove that FFDLS guarantees packings whose asymptotic space require-
ments never exceed 4/3 the optimal. The major part of the proof relies on "weighting
function" arguments (the interested reader is referred to [Co] for an exposition of this
technique).

THEOREM 3. FFDLS (L) < (4/3) OPT (L)+3 for any list L.
Proof The proof is by contradiction. Suppose the existence of a set of bin sizes

and a list L of pieces such that FFDLS (L)_-> (4/3)OPT (L)+3. Let B and B* be the
set of bins used by FFDLS and an optimal algorithm, respectively. Without loss of

VARIABLE SIZED BIN PACKING 225

generality, assume this instance is minimal. That is, k is the minimum number of
distinct bin sizes for which the statement of the theorem fails to hold and, for this k,
n is the minimum number of pieces needed for a counterexample. Let the pieces be
indexed such that s(pl) --> s(p2) >-" >- s(pn).

We first show that only pieces of size greater than 1/6 need be considered. Suppose
s(pn) <- 1/6. Let Bi denote the FFDLS bin containing Pn. Clearly # l, else for 1 -<_j < l,
c(Bj) >- (3/4)s(Bj), since either FFDLS shifted the contents to Bj where this property.
holds or c(Bj) > 5/6, implying that OPT (L) > (3/4)(FFDLS (L)- 1). From this and
the fact p, was initially packed in a bin of size 1 we conclude that c(Bi)-s(p,)> 1/2.
Bi must contain a piece whose size exceeds 1/3, else not only does it hold that, for
1 <-_j < i, c(B) >- (3/4)s(B), but also that, for _-<j < l, B contains at least three pieces
and thus c(B) > 3/4 again implying that OPT (L)> (3/4)(FFDLS (L)- 1). Since n is
the minimum number of pieces required for a counterexample, it must be that p, affects
the packing. Hence there is some bin size b such that (c(B)-s(p,))+s(pn)>b>
(4/3)(c(B,)-s(p)) and we derive s(p)> 1/6.

We define piece types as follows: Pi is of type X1 if s(p)> 1/2, of type X2 if
1/2>-_s(p)> 1/3, of type Y otherwise. We call a bin B "short" if c(B)<(3/4)s(B).
Clearly such a bin exists. A bin can be short only under very special conditions. If a
short bin, B, contains an X1 piece, a, then B can contain at most one additional piece,
b, where 1/6<s(b)<3/4-s(a)<(1-s(a))/2. Such a piece b implies that s(a)<
3/4-s(b)<2/3. Thus b must be the only Y piece available for B, since any larger
piece would have been used instead of b and any piece no larger would have been
packed with a and b. If a short bin, B, contains an X2 piece as its largest piece, then
either B contains two X pieces and nothing else or there are no more X pieces
available for B. Except for Bl, a short bin’s largest piece cannot be of type Y. We thus
allow for four "exceptional bins":

1) the last bin which contains one X1 piece and one Y piece if there are no Y
pieces remaining;

2) the last bin of size greater than 8/9 which contains exactly two X pieces;
3) the bin which contains one X piece and one Y piece;
4) B.

Note that at most three of these can exist in the same packing, and we can use the
additive constant to absorb their wasted space. A nonexceptional short bin must contain
either a single X piece or exactly two X2 pieces. The last nonexceptional short bin
will be denoted by BIN in the remainder of the proof.

We divide the analysis into two cases, based on IBINI. For each case we will
construct a weighting function w on L. A piece’s weight will depend on its type and
its placement in the FFDLS packing. A bin’s weight is simply the total weight of all
its pieces. By the proper definition of w we will show that

(3/4) s(B,)-3 _-< E w(B,)= E w(B*) <- E s(B*i).
i=1 i=1 i=1 i=1

Case I. IBIN[2. For this case we claim s(p,)> 1/5. Suppose otherwise. Let Bi
denote the FFDLS bin containing p,. For l<-j<i, c(B)>-(3/4)s(Bj), since either
FFDLS shifted the contents to B where this property holds or c(B)> 4/5. Thus i< I.
Also c(B,)- s(p,,) > 3/5, else for <j <_- either IB[1 or c(B) > (3/4)s(Bj) indicating,
since IBINI 2, that only Bi- BIN and Ii can be short, which is impossible. There is
at least one B, i<=j < l, such that c(B)< (3/4)s(B)<-_3/4 and hence B must contain
a piece whose size exceeds 1/3. Minimality dictates that p, affect the packing. Thus

226 D. K. FRIESEN AND M. A. LANGSTON

there is some bin size b satisfying (c(B,)-s(pn))+s(pn)>b>(4/3)(c(Bi)-s(pn))
which implies s(pn)> 1/5.

We next show that every nonexceptional short bin contains two X2 pieces. The
only other possibility is a Bi containing only one piece, z, of type X1. The size of BIN’s
second piece exceeds 1/4, though it is less than 3/8, since BIN must be packed after
Bi. Hence B is not short unless s(z)> 5/8. But if this is the case, we can construct a
smaller counterexample as follows. Delete z from L. If the bin B in the optimal
packing which had contained z has no other piece, halt. Otherwise delete v, the
remaining piece of B (it can have only one such piece since 5/8+2/5 > 1) and z’,
the X1 piece packed with it in the FFDLS packing (z’ must have been packed before
z since FFDLS left z alone in B though v would have fit). Now examine the optimal
bin which had contained z’ and so on. This procedure halts in a finite number of steps.
L has been shortened. Both packings have lost the same number of bins. Every optimal
bin deleted has size> (4/3)(5/8)> 3/4. Hence we still have a counterexample.

The function w is defined in Table 1. "Exceptional pieces" (that is, pieces from
exceptional bins) have a weight of zero. Some of the restrictions deserve comment. If
B contains an X piece and a Y piece, then the size of the X piece exceeds 5/8 since
BIN contains two X2 pieces, one having size less than 3/8. For this same reason, B
cannot contain an X1 piece and two Y pieces. If Bi contains three Y pieces, then the
size of each piece exceeds 1/4, since otherwise BIN cannot be short. This observation
also rules out the possibility of Bi containing four Y pieces. Should B contain one

X2 piece and two Y pieces, we treat it as if all three pieces were of type Y. Note that
for any nonexceptional bin B, w(B) (3/4)s(Bi). Also, any piece Pi from a nonexcep-
tional bin satisfies w(p)<= s(pi), unless p is an X2 piece of weight greater than 1/3.

Therefore the proof of Case I reduces to showing that even if such an X_ piece
is in B* w(B* <= s(B*).

TABLE
The function w for Case I.

Piece weights
Contents of Bi (times s(Bi)) Restrictions

X 3/4 s(X) > (3/4)s(B,)
X, X2 1/2, 1/4 s(X) > 1/2, s(X2)> 1/3
X, Y 5/8, 1/8 s(X) > 5/8, s(Y) > 1/5
X 3/4 s(X2) >- (3/4)s(B,)
X2, X 3/8, 3/8 s(X) > 1/3
X2, X2, Y 5/16,5/16,1/8 s(X2) > 1/3, s(Y)> 1/5
Y, Y, Y 1/4 s(Y) > 1/4

Suppose IB*I 1. Let p denote the single piece of B*. FFDLS could not have
packed p as the first piece in a bin, else w(B*) <- 3/8 < 4/9 < (4/3)s(p) < s(B*) since
p was not shifted. Let Bj be the last short bin containing two X2 pieces (such a bin
must exist and is exceptional), p could not have been packed in a bin preceding Bj,
else every X2 piece available for Bj would have been shifted into a bin of size at most
s(B*). Neither can p have been packed in a bin following B, else such a bin is short
contradicting the definition of B or has size less than c(B)<3/4 and w(p)<
(3/8)(3/4)< 1/3 <s(p). The only remaining possibility is that p comes from Bj in
which case w(p) 0.

VARIABLE SIZED BIN PACKING 227

Suppose IBm*[2. Suppose the second piece was not shifted into a smaller bin by
FFDLS. If this piece is an X1 piece, then s(B*)> 5/6 and the contents of the initial
FFDLS bin containing the problem X2 piece would have been repacked into a bin of
size no larger than s(B*). Therefore, w(B*) -< 1/2 + (3/8)s(B*) < s(B*). If the second
piece of B* is another X2 piece, then it must be that s(B*)<3/4. But this means that
one of the X2 pieces was packed with an X1 piece, else the smaller X2 piece would
have been shifted or been exceptional. Thus w(B*)=<3/8+ 1/4 <2/3 < s(B*). Hence
it can only be that this piece is of type Y. It is packed by FFDLS into a bin containing
only Y pieces, else w(B*)=<3/8+ 1/8 < 1/3+ 1/5<s(B*). Since the problem X2 piece
is not exceptional, 2s(X2)+ s(Y) > 1. Thus

w(B*) <_-3/8 + 1/4 < (3/8)(2s(X2)+ s(Y))+ 1/4

<s(B*)-(1/4)s(X2)-(5/8)s(Y)+ 1/4

< s(B*)-(1/4)s(X2)-(5/8)(1 2s(X2)) + 1/4

s(B*)+ s(X2)-3/8 < s(B*).

Suppose the second piece of B* was shifted when packed in Bj by FFDLS. This
piece can only be of type X or X, since a nonexceptional Y piece is not shifted if
packed only with other Y pieces, and otherwise fills a bin so that there is no distinction
between a shift and the repack step. Suppose the piece is of type X. s(this X piece) <
2/3 and thus s(Bj)<8/9.2s(X)> $(Bj), else w(B*)=< w(X1)+(3/8)(8/9)<s(B*). But
now we use the fact that s(X2)< (3/8)s(B*) and find that

w(B* <= (3/4)s(Bj)+(3/8)s(B*
< (3/2)s(X)+(3/8)s(B*)

< (3/4)s(B*)+ (3/8)s(B*)< s(B*).

Suppose the second piece is of type X2. The shifted piece is larger than the other, else,
since the other cannot be shifted, either w(B*) <= (3/4)(3/8)+ 3/8 <2/3 < s(B*) or the
other piece is exceptional, s(B*)>8/9, else w(B*)<-w(X)+(3/8)s(B*)-<
s(X2)+ 1/3<s(B*). Even so, w(B*)=< w(X2)+(3/8)s(B*)<=7/8<8/9<s(B*).

Suppose In,*l- 3. If s(B*) =<3/4, then it must contain two Y pieces, each of weight
at most 1/8 and w(B*)=<3/8+2/8<l/3+2/5<s(B*). Thus s(B*)>(4/3)c(BIN)>
8/9, else BIN is not short. B* cannot contain an X1 nor three X2 pieces. If it contains
two Y pieces, w(B*) -<3/8 + 1/2 < 8/9 < s(B*). The only remaining possibility is that
it contains two X2 pieces and a Y piece, w(Y)> 1/8, else w(B*)<=7/8<8/9<s(B*).
Thus the Y piece was available when the X2 pieces were packed and w(Y) -< (1/4)s(B*).
The smaller X2 piece must have been shifted, since otherwise the Y piece would fit
implying w(B* -< (3/8)s(B*)+ 5/16+(1/4)s(B* < s(B*). It must have been shifted
alone, else w(B*)-<2(3/8)s(B*)+(1/4)s(B*)=s(B*). In fact, it must have
been shifted into a bin whose size exceeds 4/9, else w(B*) -<
(3/8)s(B*)+(3/4)(4/9)+(1/4)s(B*)<s(B*). But this means that the larger piece of
BIN, which has size less than 5/12 <4/9 but was not shifted, must be even smaller
than the smaller X2 piece of B*. Hence the available Y piece would have fit with the
two X2 pieces in BIN, which is impossible.

Suppose IB*I 4. It must contain three Y pieces, only one of which may have a
weight as large as 1/4. Hence w(B*)-<3/8+l/4+2(1/8)<l/3+3(1/5)<s(B*).

Case II. [BIN[1. We first show that there is no FFDLS bin containing a Y piece
without an X piece. Suppose otherwise. Then such a bin cannot precede BIN and

228 19. K. FRIESEN AND M. A. LANGSTON

c(BIN)> 2/3. Hence we can employ the fact that s(p,)> 1/6 and find a smaller
counterexample using the construction described in the previous case.

The function w is defined in Table 2. Exceptional pieces are again assigned weight
zero. Some of the entries deserve attention. If an FFDLS bin contains an X piece
and two Y pieces, it is the smaller Y piece which receives weight zero. Each piece
from a bin Bi with two X2 pieces has size-> (3/8)s(Bi) except for the second X2 piece
assigned to an exceptional bin. Note that w(Bi)= (3/4)s(Bi) if B is not exceptional.
Also, w(p)<= s(pi) unless p is an X1 piece of weight> 1/2.

TABLE 2
The function w for Case II.

Piece weights
Contents of B (times s(Bi)) Restrictions

X1 3/4 s(X,) > 1/2
X,, X 1/2, 1/4 s(X1) > 1/2, s(X2) > 1/3
X,, Y 3/4,0 s(X,) >- 2/3, s(Y)> 1/6

2/3, 1/12 s(X,)<2/3, s(Y)> 1/6
X,, Y, Y 2/3,1/12,0 s(X,)<2/3, s(Y)> 1/6
X2 3/4 s(X2) >- (3/4)s(B,)
X2, X2 3/8, 3/8 s(X2)>-(3/8)s(B,)

The proof of Case II thus reduces to showing that even if such an X piece is in
B*, w(B* <- s(B*). We first dispose of the possibility that B* contains an X_ piece.
Suppose such is the case. Let Bj represent the FFDLS bin containing the X piece. Bj
cannot contain a second piece as large as the X2 piece, else we can discard a bin from
each packing by deleting the pieces of Bj and moving the X2 piece, if it remains, from
B* to the position in the optimal packing formerly occupied by the second piece of
B, contradicting minimality since s(B*)> 5/6>3/4. Nor can B contain a second
piece smaller than the X2 piece, else FFDLS has packed the X2 piece with an earlier
X piece whereby our construction again illustrates the violation of minimality. We
conclude that FFDLS packs the X piece alone in B, though the X2 piece is available
and would fit. Hence w(X)-< s(X), since the X piece must have been-shifted.

Suppose IB*I 1. Then clearly minimality requires that FFDLS pack the X piece
with another piece. If s(the X piece) >- 2/3, then w(B* <- 3/4 < (4/3)(2/3) <=
(4/3)s(X)<s(B*) since the X piece was not shifted alone. If s(X)<2/3, then
similarly w(B* <=2/3 (4/3)(1/2) < (4/3)s(X) < s(B*).

Suppose In,*l 2. s(X,)<2/3, else w(B*)<-_3/4+ 1/12=2/3+ 1/6<s(B*). Let B
denote the FFDLS bin containing the X piece. IBjI>I, else w(B*)<=
(3/4)s(Bj)+ 1/12<=(3/4)s(B*)+ 1/12 < s(B*). Let a and b denote the second largest
pieces of Bj and B* respectively. It must be that a > b, else either [BI 2 and w(B*) <=
(2/3)s(n*,)/l/12<s(n*,) or Inl-3 and, lest the X and a be shifted to a bin no
larger than s(B*), w(B*)<-_2/3+ l/12<(4/3)(2/3)<(4/3)(s(X)+s(a))<s(B*).
Suppose b is packed in B,, j’-<j. Then either b is the third piece of B, or B, contains
an item whose size exceeds 2/3 since a was not used instead. Thus w(B*) <= 2/3 < s(B*).
Suppose b is packed in Bj,, j <j’. Let B denote the optimal bin containing the X
piece from B,. w(B)<=(2/3)s(B*)+2(1/12) since the first two pieces of Bj, would
have been shifted to a bin no larger than s(B*). This also implies that w(b)<=
(1/12)s(B*). Furthermore, 2/3<s(B), else the X piece of B, would have been

VARIABLE SIZED BIN PACKING 229

shifted alone. The weights of these two bins now balance, since

w(B*)+ w(B)<=2/3+(1/12)s(B*)+(2/3)s(B*)+ 1/6

< s(B)+ (3/4)s(B*)+ 1/6 < s(B) + s(B*).

Note that B is used to balance its weight with that of B* only, since there is but one
Y piece in Bj,.

Suppose IB,*I 3. Then s(X)<2/3. FFDLS cannot pack the X piece by itself,
else w(B*)<-_(3/4)s(B*)+2/12<s(B*). Thus w(B*)<=2/3+2/12 1/2+2/6<
s(B*). F1

The careful reader may suspect that the additive constant is really very pessimistic.
We believe that a more detailed analysis will reduce it to 1.

To demonstrate the tightness of the 4/3 asymptotic ratio, choose any packing
instance with an even number of pieces of size 1/2 and bins of size 1 and 2/3.

5. Directions for future research. Worst-case results are especially useful here
since any attempt at establishing analytical average-case figures will be doubly depen-
dent on the input considered (one probability distribution for bin sizes and a second,
possibly distinct, distribution for piece sizes). Nonetheless, we remark that average-case
analysis is an active field of research (see for example [OMW]) and techniques may
be brought to bear on this problem. It is possible that FFDLR surpasses FFDLS in
this respect since FFDLS was constructed solely to establish the 4/3 bound.

A natural research goal is to devise an algorithm whose worst-case ratio is less
than 4/3. Some heuristic designed along the line of FFDLS may well succeed. We
have found packing the largest bins first to be an attractive approach, thus providing
at least a partial answer to a question posed in [La].

Variable sized bins could be permitted in other bin packing models such as
multidimensional packing [BCR], dual packing [AJKL] or on-line packing [Br] (note
that NFL is on-line with respect to both bins and pieces). From a more theoretical
standpoint, the problem may even allow an "approximation scheme" (see for example
[KK]).

REFERENCES

[AJKL]

[BCR]

[Br]

[CGJ]

[Co]

S. F. ASSMANN, D. S. JOHNSON, D. J. KLEITMAN AND J. Y-T. LEUNG, On a dual version of
the one-dimensional bin packing problem, J. Algorithms, to appear.

B. S. BAKER, E. G. COFFMAN, JR. AND R. L. RIVEST, Orthogonal packings in two dimensions,
this Journal, 9 (1980), pp. 846-855.

D. J. BROWN, A lower bound for on-line one-dimensional bin packing algorithms, CSL Tech Rpt
R-864 (1979), Univ. Illinois, Urbana, IL.

E. G. COFFMAN, JR., M. R. GAREY AND O. S. JOHNSON, Approximation algorithms for
bin-packing--an updated survey, to appear.

E. G. COFFMAN, JR., An introduction to proof techniques for packing and sequencing algorithms,
in Deterministic and Stochastic Scheduling, M. A. H. Dempster, et al., eds., Reidel Publishing
Co., Amsterdam, 1982, pp. 245-270.

[FL1] D.K. FRIESEN AND M. A. LANGSTON, Boundsfor MULTIFIT scheduling on uniform processors,
this Journal, 12 (1983), pp. 60-70.

[FL2] A storage-size selection problem, Inform. Proc. Letters, 18 (1984), pp. 295-296.
[GG] P.C. GILMORE AND R. E. GORMORY, A linear programming approach to the cutting stock

problem, Operation Res., 9 (1961), pp. 849-859.
[JDUGG] D.S. JOHNSON, A. DEMERS, J. O. ULLMAN, M. R. GAREY AND R. L. GRAHAM, Worst-case

performance bounds for simple one-dimensional packing algorithms, this Journal, 3 (1974),
pp. 299-325.

[Jo] D.S. JOHNSON, Fast algorithms for bin packing, J. Comput. Syst. Sci., 8 (1974), pp. 272-314.

230 D.K. FRIESEN AND M. A. LANGSTON

[KK]

[La]

[OMW]

N. KARMARKAR AND R. M. KARP, An efficient approximation scheme for the one-dimensional
bin packing problem, Proc. 23rd Annual Symposium on Foundations of Computer Science,
IEEE Computer Society, 1982.

M. A. LANGSTON, Performance of heuristics for a computer resource allocation problem, SIAM
J. Alg. Disc. Meth., 5 (1984), pp. 154-161.

H. L. ONG, M. J. MAGAZINE AND T. S. WEE, Probabilistic analysis of bin packing heuristics,
Operations Res., 32 (1984), pp. 983-998.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics

LOGARITHMIC DEPTH CIRCUITS FOR ALGEBRAIC FUNCTIONS*

JOHN H. REIF

Abstract. This paper describes circuits for computation of a large class of algebraic functions on

polynomials, power series, and integers, for which, it has been a long standing open problem to compute
in depth less than fl(log n)2.

Algebraic circuits assume unit cost for elemental addition and multiplication. This paper describes
O(log n) depth algebraic circuits which given as input the coefficients of n degree polynomials (over an
appropriate ring), compute the product of n1) polynomials, the symmetric functions, as well as division
and interpolation of real polynomials. Also described are O(log n) depth algebraic circuits which are given
as input the first n coefficients of a power series (over an appropriate ring) compute the product of n)

power series, as well as division, reciprocal and reversion of real power series.
Furthermore this paper describes boolean circuits of depth O(log n(log log n)) which, given n-bit binary

numbers, compute the product of n numbers and integer division. As corollaries, we get boolean circuits
of the same depth for evaluating, within accuracy 2-", polynomials, power series, and elementary functions
such as (fixed) powers, roots, exponentiations, logarithm, sine and cosine.

All these circuits have constant indegree, polynomial size, and may be uniformly constructed by a

deterministic Turing machine with space O(log n).

Key words, algebraic computation, circuit depth, parallel computation, integer division, powering

1. Introduction. Much research is now done on parallel algorithms, although in
fact at this time most current computers contain only a single processor. However,
these computers do use parallel circuits to implement the most basic and often repeated
operations, such as the arithmetic operations" addition, subtraction, multiplication and
division. These operations are generally applied to integers with an n bit binary
representation, and to floating point reals with relative accuracy 2-n. Other frequently
used repeated operations, which certainly would merit special purpose circuits, are
the elementary functions such as sine, cosine, arctangent, exponentation, logarithm,
square roots, and fixed powers. For practical reasons we require circuits of constant
indegree which can be uniformly constructed within O(log n) deterministic space (and
thus deterministic polynomial time).

The depth of a circuit is the time for its parallel execution. What is the minimum
depth of boolean circuits for these arithmetic operations and elementary functions?

For integer addition, Ofman [62], Krapchenko [67] and Ladner and Fischer, [80]
give boolean circuits of depth O(log n) and size O(n). Subtraction circuits with the
same asymptotic depth and size can easily be gotten from these addition circuits. Also
Reif [83] has recently given linear size, constant indegree boolean circuits of depth
O(log log n) for addition and subtraction of random numbers with error probability
at most n -c.

For integer multiplication, Ofman [62] and Wallace [64] give boolean circuits of
depth O(log n), and Sch6nhage and Strassen [71] also achieve depth O(log n) with
simultaneous size O(n(log n) log log n).

The problem of computing division or the elementary functions in better then
depth fl(log n)2 has been open for at least 17 years since S. Cook’s Ph.D. thesis (Cook
[66]) (also see Borodin and Munro [75], and Savage [76]). Wallace [64] first gave a

* Received by the editors, May 5, 1983, and in final revised form October 11, 1984. This work was
supported in part by the National Science Foundation under grant NSF-MCS82-00269 and the Office of
Naval Research under contract N00014-80-C-0647.

f Aiken Computation Laboratory, Division of Applied Sciences, Harvard University, Cambridge,
Massachusetts 02138.

231

232 JOHN H. REIF

division circuit with depth l)(log n)2. Subsequently, Anderson et al. [67] gave a division
circuit of the same depth which was implemented by them on the IBM/360 Model 91
Floating-Point Execution Unit. Knuth [81] and Aho, Hopcroft and Ullman [74]
described a division circuit attributed to Steve Cook of depth (log n)2 and size
O(n log n log log n). The best known boolean circuit depth for the elementary functions
was l)(log n)2 (Brent [76], Kung [76]). Many of the above mentioned boolean circuits
of depth (log n)2 for division and elementary functions use a second order Newton
iteration with l)(log n) steps, each requiring an n-bit integer multiplication with
l)(log n) depth. Alternatively, a reduction is often made to the problem of computing
the ruth power of a n-bit integer modulo 2 + 1 for m O(n). This can be computed
by l)(log n) steps of repeated squaring, where each square computation requires
l)(log n) depth.

By new techniques we achieve depth less than (log n)2. An essential technique in
the construction of our circuits is the use of convolutions, which can be computed in
boolean depth O(log n) by the fast Fourier transforms. This technique was first
introduced by Schfnhage and Strassen [71] for the multiplication of two integers. Our
innovation was to generalize the convolution technique to products of more than two
terms.

Section 2 introduces the appropriate mathematical groundwork for the generalized
polynomial convolution techniques which we utilize. Also in 2 we give O(log n)
depth algebraic circuits for various polynomial and power series operations. These
algebraic circuits are interesting in the theoretical context of parallel algebraic computa-
tion, where arithmetic operations are assumed to be of unit cost.

The last part of this paper is concerned with the possibly more practical construc-
tion of boolean circuits, which originally motivated this work. In 3 we give uniform
boolean circuits of nearly logarithmic depth for the problem computing the product
of n (1) integers modulo (2 + 1). In an earlier version of this paper (Reif [83]) we
proved our boolean circuits had depth O(log n(loglog n)). This draft includes an
improvement to our construction due to Beame, Cook, and Hoover [84a, b] which
reduces the depth by a factor of log log n to O(log n(loglog n)) and gives simul-
taneously polynomial size. These results imply uniform boolean circuits of depth
O(log n(log log n)) for the problems of division and computing elementary functions,
among others.

This also implies sequential space complexity upper bounds for these and related
problems. In particular, Borodin [77] proved that if a functionf is computed in uniform
boolean circuit depth D(n)-_> log n, then f can be computed by a deterministic Turing
machine with space D(n). Thus for example, division, the elementary functions and
the first n bits of 7r can be computed by deterministic space O(log n(log log n)).

2. Circuits for polynomial and power series computations. Our basic techniques
are best understood first in the simpler context of polynomials and power series. In
fact, this context is interesting in itself. We might envision a special purpose computer
designed for algebraic computation. Its data are (coefficients of) polynomials and
power series. The arithmetic operations including division of polynomials and power
series are elementary operations of our "algebraic computer." Also, frequently applied
operations are the composition of power series, revision of a power series, computation
of elementary functions applied to power series, and interpolation of polynomials. We
give in this section circuits of depth O(log n) for all these polynomial and power series
operations, where each gate of the circuits computes an addition, multiplication, or a
division of two elements of the domain.

LOGARITHMIC DEPTH CIRCUITS FOR ALGEBRAIC FUNCTIONS 233

2.0. Circuit definitions. A circuit aN over a commutative ring (9, +, ", 0, 1)
is an acyclic labeled digraph, with

(i) a list of N distinguished input nodes that have no entering edges;
(ii) constant nodes with indegree 0 and labeled with constants in 9;
(iii) internal nodes with indegree two and labelled with the symbols in {"+", ". "};
(iv) a list of N’ distinguished output nodes.
Given an assignment of the input nodes from domain 9, the value of the circuit

at the output nodes is gotten by evaluation of the gates in topological order. The circuit
aN thus defines a mapping from @N to N,. A circuit aN over a field is similarly
defined, except the internal nodes can also compute division. Since division may yield
an undefined value, a circuit over a field defines in general a partial mapping of inputs
to outputs.

Let [x] be the polynomials over commutative ring . Let [[x]] be the power
series over .

Letfbe a partial function of (the coefficients of) m polynomials pl(x)," ", p,,,(x)
in [x] of degree n 1. A circuit aN for f has N mn inputs, namely the list of N
coefficients in of the given polynomials. The output nodes of aN give the list of
coefficients of f(p(x),..., pro(x)). If on the other hand f is a function of rn power
series p(x),..., pro(X) in [[x]] each with n given low order coefficients, then the
circuit aN for f also has N nm inputs, and the outputs nodes of CN only give some
prescribed finite number of the coefficients of (the possibly infinite) power series
f(pl(X), ,pro(X)).

The depth of circuit CN is the length of its longest path. A partial function f over
polynomials or power series in has simultaneous depth O(D(N)) and size O(S(N))
if there exists an infinite family of circuits c,. , aN, and constants c, c2 => 1 such
that VN -> 1, CN has depth not more than cD(N) and size not more than c_S(N)
and given N input coefficients of the input polynomial or power series, cN computes
f within the prescribed number of coefficients.

Let c1, c2," be a family of circuits over (9, +,., 0, 1) where N is countable.
Fix some enumeration c, c),. of the constants in 9. We assume each circuit cN is
encoded by a binary string where the binary representation of is used to represent
each constant symbol c labeling a node in cN. (Thus, for example, the Nth root of
unity, if it exists, might be represented by a binary string of length log N.) The circuit
family c, , CN, is uniform in the sense of Borodin [77] ifthere exists a logarithmic
space deterministic Turing machine which given any N > 0 in unary outputs for the
binary encoding of aN. All the circuits considered in this paper are uniform in this sense.

2.1. The discrete Fourier transform. Fix a commutative ring (9, +,., 0, 1). We
assume to is a principle Nth root of unity in and that N has a multiplicative inverse.
(For example, e2’/-/N is a principle Nth root of unity in the complex numbers.)
Given a vector a , the Discrete Fourier Transform is

DFTN (a) Aa

where Aij to
ij for 0_-< i,j < N. Then A- exists (Aho, Hopcroft and Ullman [74, p.

253]), where A=(1/N)to-i. The inverse Discrete Fourier Transform is DFT
(a) A-la and obviously satisfies DFT (DFTN (a)) a(Note" given a vector a
where n < N, DFTN (a) we be defined to be DFTN(a where a+ is the vector of
length N derived by concatenating a with N-n zeros.) Cooley and Tukey [65] gave
the Fast Fourier Transform for which

234 JOHN H. REIF

THEOREM 2.1. DFTv and DFTv over have simultaneous depth O(log N) and
size O(N log N).

Note: the assumption of the nth root of unity is not really essential to our
techniques, since in general, our techniques will be applicable whenever a O(log n)
depth circuit exist for the Discrete Fourier Transform. For example, Theorem 2.1
obviously applies to the complex numbers, and since the field operations over complex
numbers can be simulated over the reals with only a factor of two depth increase,
Theorem 2.1 also applies to the reals.

2.2. Products of polynomials. Suppose we are given m vectors a for i=
1,..., m. Each vector a=(a,o,’", a,,_) r gives the coefficients of a n-1 degree

n--1polynomial A(x)==o aax in Yt[x]. Let N nm. We wish to compute the product
polynomial B(x)= Y-k=OV-1 bkX k, where B(x)= [I= Ai(x). (Note that we have bk 0 for
N-m+l<-k<-N-1.)

In the special case m 2 and N 2n, the convolution vector b (bo, , bv_) r

a(R)a2 gives the coefficients of B(x). By the Convolution Theorem:

a(R)a2 DFT (DFTn (a) DFTn (a2)) where denotes pairwise product.

Hence the well-known result:
THEOREM 2.2. The product of two polynomials in [x] of degree n- 1 has simul-

taneous depth O(log n) and size O(n log n).
In the case of general m _-> 2, we wish to compute the coefficient vector

b (bo,..’, bc_)r=al(R) .(R)a,,,.

By repeated application of the Convolution Theorem we get
LEMMA 2.1. b DFTv (DFT (al) DFTr (a,,)).
First in parallel for i=l,..., m compute f=DFTu (a), where f=

(f,o,""" ,f,-). Next we compute in parallel for j= 10,..., N-1 the elementary
products F=I]i=afa. Finally, we compute DFT ((Fo,’’’, Fu_)r). Since the com-
putation of DFT, DFT and the required products F, each have depth O(log.N),
we have:

THEOREM 2.3. The product of m polynomials in [x] of degree n-1 has depth
O(log (nm)).

Note that in contrast, the naive method of repeated producting by Theorem 2.2
has depth (log(m)log(n)). Also note that since Theorem 2.1 applies to the real
polynomials so do Theorems 2.2 and 2.3.

2.3. Modular products of polynomials. Let B(x) I]= a(x) be the product poly-
nomial considered in the previous section. Here we consider the computation of the

n--1modular product D(x) i=o dixi where D(x) =- B(x) mod (x + 1).
m-1 rb for 0," n 1LEMMA 2.2. The coefficients of D(x) are di=Y’,r=o (-1) nr+i

Proof
N-1 m-1 N-1

B(x)= _, bxj= 2 2 bnr+ixnr+i
j=0 r=0 i=0

m--1

(-1)rb ,r+ix mod (x +1)
r=0

since (-1)r x,r mod (x" + 1).
We assume to is a principal nth root of unity in and n has a multiplicative

inverse. We also assume there exists an q6 such that 02=to and q"=-l. Let

LOGARITHMIC DEPTH CIRCUITS FOR ALGEBRAIC FUNCTIONS 235

i ai,o, tai, l, d.ln-l a Ti,n-1) The negatively wrapped convolution of al,..., a, is

=(do, Odl,"’,

LEMMA 2.3. DFT (DFT, (1)""" DFT ()).
’,) whereoof For i= 1,... m let DFT. (8)= (g,o, gi,n-1

n--1

g,,k E a,
j=0

for k=0, ,n- 1. Let

0Nj,"’,jm

Now let DFT, () (e, e,_l)r’ Then for k 0,..., n- 1 we get

--1

e= E dhhkh
h=0

n-1 m-1

E E 6(-1)rbr+h by Lemma 2.2
h=0 r=0

n-1 m-1

L E Ow(-1) E H ai,.
h=0 r=0 Ojl,.",jm<n i=1

nr+h=i

But if we substitute h (=j)-nr into the above expansion, we get

ohkh(--1)r
since "= (-1) and "= 1. Hence e ek.

The above Lemmas 2.2, 2.3 and Theorem 2.1 imply"
THEORE 2.4. e modularproduct (A(x) A(x)) mod (x" + 1) ofpolynomials

Al(X), ", A(x) in [x] ofdegree n- 1 has simultaneous depth O(log (nm)) and size

O(nm log (nm)). e modular power A(x) mod (x + 1) of a single polynomial A(x)
of degree n-1 has simultaneous depth O(log (nm)) and size O(n log (nm)).

2.4. Elementa functions of power series. An immediate consequence of Theorem
2.3 is

COROLLARY 2.1. e composition oftwo power series in [[x]] has depth O(log n).
The elementary functions exp (x), log (x), sin (x), cos (x), arctan (x), and square

root (x), etc. all have known Taylor series expansions convergent over given inteals.
Thus by Corollary 2.1 we have

COROLLARY 2.2. e elementary functions on [[x]] have depth O(log n).
For some given x, , xs s it is frequently useful in algebraic computations

to determine the polynomial H ,=1 (y x,) E=o (-1)p whose coecients p
<:<...< x x are the elementary symmetric functions. It was pointed out to us
by Les Valiant that Theorem 2.3 immediately implies

COROLLARY 2.3. e elementary symmetric functions in [[x]] have depth
O(log N).

n-12.5. Division, interpolation and reversion. Let A(z)==o az’ be a real power
series where ao 1. The reciprocal of A(z) is the power series I(z)==o rz such
that A(z). I(z)= 1. I(z) has the infinite series expansion

I()= E (1-A(z))’.
i=0

236 JOHN H. REIF

We wish to compute the first n coefficients of I(z). Since I(z)=
i=o (1-A(z)) + O(zn), we have by Theorem 2.3"

COROLLARY 2.4. The first n terms of the reciprocal of a real power series and the
division of two real power series can be computed in depth O(log n).

An alternative method using the lemma below results in a circuit of depth O(log n)
with smaller circuit size.

LEMMA 2.4. If
[log(n+l)]-I

(z)= [I (1 + (1-A(z))2’

i=0

then I(z)- (z)= O(zn+l).
Proof. Let B(z)= 1-A(z). Then

1- (1-A(z)) , where =20g+l)l. So
A(z)(z) (1 B(z)) (z) 1 B(z)

I(z)-(z) (1 A(z))" O(z")= O(z"+). t
A(z)

COROLLARY 2.5. Given real polynomials a(x), b(x) of degree at most n, we can
compute in depth O(logn) the unique polynomials q(x), r(x) such that a(x)-
q(x)b(x)+ r(x) and degree (r(x))<degree (b(x)).

Proof (Also, see Knuth [81].) Let hi-degree (a(x)) and n2= degree (b(x)). The
computation is trivial unless nl >- n2 -> 1. Then

where

A(z) Q(z)B(z)+ z"-"+’R(z)

A(z)=z"a(), B(z)= z"b ()
and

Thus to compute the coefficients of q(x), r(x) we compute the first nl n2 + 1 coefficients
of A(z)/B(z)= Q(z)+ o(z",-"2+l), then compute the power series A(z)-B(z)Q(z)=
z",-"’+R(z), and finally output the coefficients of Q(z), R(z). I-i

COROLLARY 2.6. Interpolation of a real polynomial has depth O(log n).
Proof. Suppose we are given real polynomials p(x),. , p,, (x) each of degree

n 1, and real polynomials q(x),. ., qm(X) where degree (qi(x)) < degree (pi(x)) for
i=l n. LetP(x)= =1 p(x). The Chinese Remainder Theorem states that there
is a unique polynomial Q(x) of degree less than that of P(x) such that Q(x)=
q(x) mod p(x) for i= 1,..., m, coprimality of the pi assumed.

The Lagrangian interpolation formula gives

Q(x) =- E qi(x)ri(x)si(x) mod P(x)
i=0

where s,(x)= P(x)/pi(x) and r(x) is the multiplicative inverse of s(x)mod p(x).
Theorem 2.2 and Corollary 2.5 imply that preconditioned Chinese remaindering,

with the r(x),..., r,,(x) also given, has depth O(log n).
However, in the special case pi(x) x- a for 1, , m, where the ai are distinct

then each r(x)- 1/s(x) can be computed in parallel by Theorem 3.3 and Corollary

LOGARITHMIC DEPTH CIRCUITS FOR ALGEBRAIC FUNCTIONS 237

2.5 in depth O(log n). In this case the qi(x)- bi are constants, since they must have
degree less than the pi(x).

Further note that in this case Q(x) is the unique polynomial such that Q(a) bi
for 1,..., m. Thus we have proved Corollary 2.6. 13

We now show that Theorem 2.3 and Corollary 2.4 imply:
COROLLARY 2.7. The reversion of a real power series has depth O(log n).
Proof Let A(x) ,=o ax be a real power series where ao=O and a 1. The

reversion of A(x) is the power series R(z)=,k=o rkZ
k where z= A(x) iff x= R(z).

Note that ro 0 and r 1. For the kth coefficient, we first compute

1
B(x)

A(x)k
,=o
y b,+x

and then apply Lagrange’s reversion formula (Lagrange, 1768]) rk bk-1/k for k _-> 2.
Thus Theorem 3.3 implies Corollary 2.7. 13

3. Integer.computations.
3.0. Boolean circuits. We consider computations over integers given as n bit binary

numbers, and reals over [0, 1] given within accuracy 2-". Our computational model
in this section is the boolean circuit, defined as usual. The ith input node of a, takes
the ith bit of the encoding of the input integer or real. Each gate of a, computes a
boolean operation v, ^, or 7. Each output node provides a bit of the encoding of the
computed integer or real. (In the case of reals with floating point representation, we
only provide the input and output bits up to some finite prescribed accuracy.)

3.1. The DFT over an integer ring. We assume n and to are positive powers of
two. Let p to,/2+ 1 and let Zp be the ring of integers modulo p.

PROPOSITION 3.1. In 7/p, to is a principal nth root ofunity and n has a multiplicative
inverse modulo p.

Proposition 3.1 implies that DFT, and DFT are well defined.
The fast Fourier transform computation of Cooley and Tukey [65] yields an

arithmetic circuit a, of depth O(log n) and size O(n log n) computing DFT, wb.ose
elements require:

(i) addition of two [log (p)]-bit integers.
(ii) multiplication of a [log (p)]-bit integer by a power of to.

We wish to expand a, into a boolean circuit. Since to is a power of two, the
multiplications can be implemented by the appropriate bit shifts (i.e., the gate connec-
tions are shifted by the appropriate amount). The additions can be implemented by
Carry-Save Add circuitry of Ofman [62] and Wallace [64] (also see Savage [76])
yielding a boolean circuit of depth O(log (n log p)) and size O(n log p log (n log p)).
Thus we have

THEOREM 3.1. DFT, and DFT- over the ring Zp have simultaneous boolean depth
O(log (n log p)) O(log n) and size O(n log p log (n log p)).

3.2. Products of integers. Sch6nhage, Strassen [71] have shown:
THEOREM 3.2. The product of two N-bit integers has simultaneous boolean depth

O(log N) and size O(N log N log log N).
We now prove that for N a power of two, the modulo 2N + 1 product of m integers,

each of N-bits has boolean depth O(log (Nm) log log N). (Note that the naive method
of repeated squaring by Theorem 3.2 results in a boolean circuit of depth
[(log (m)log N).) We begin with a key lemma which reduces the number of bits of
the integers to be produced.

238 JOHN H. REIF

LEMMA 3.1. (DFT reduction). For N a power of two, mN sufficiently large, and
any m < N1/2 the product modulo (2N + 1) ofm integers each N bits long can be computed
in O(log mN) additional boolean depth and mN)o(1 additional gates after computing
n= O(mN)1/2 products modulo (2"+ 1) each of m integers each n bits long.

Proof Let a,..., a,, be a list of N-bit numbers. We wish to compute b=

I-I, ai mod (2N / 1).
(1) Since N 2 for some integer u, we can block each N-bit ai into n (n a power

of 2) chunks ai,o, ’, ai,,_l of h Nn bits each so that

n--1

ai aia2hj

j=0

where 0_-< aa < 2h. Define the associated polynomial

n--1

Ai(x) Z ai,jxj
j=o

and observe a A(2).
(2) We intend to take DFT, with to 4, q 2 and p to

"/ + 1 2" + 1. Associate
with each ai a coefficient vector i defined by

d, (a,,o, a,,, ., qt"-la ,,_a) r.
(3) Compute in parallel

OFT, (,)= ,---- (gw,""", g,,,-1)r.
(4) Compute product

e =- I-I g,k mod p.
i=l

(5) Compute

DFT’ ((eo,""’, e,-,)r) =/-= (bo, b,,..., 0"-’b,_,) r

to obtain the coefficients of the product polynomial

n--1

B(x)= 2 bjxj
j=O

where by Lemma 2.3, b B(2h).
(6) Evaluate B(2h) to get b.

Since q is a power of two, we can easily extract each b from q/-b by bit shifting.
By Theorem 3.1, the DFT, and DFT computations have depth O(log n). Thus all
of these computations have depth O(log N+ log h + log n) O(log raN) except poss-
ibly computing the e modular product in step (4). Note that we can use the identity
2"x--(2"+ l-x) rood 2"+ 1 to simplify the computation of e to the product of at
most m numbers, each of n bits. Thus the depth D(m, N) ofthe resulting circuit satisfies

D(m, N)= D(m, N)+ O(log raN).

The reduction is correct if n is a power of two and furthermore the coefficients
of B(x) are small, that is if Ib] < p/2. Applying Proposition 3.2, we can ensure Ibl < 2"-
by having N >_-16, m <-N1/ and choosing n to be the largest power of 2 less than
16 (raN)/.

PoPosrro 3.2. For each j =0,..., n-1, the magnitude of the coefficients of
B(x) is given by Ib, <22mh++lgn).

LOGARITHMIC DEPTH CIRCUITS FOR ALGEBRAIC FUNCTIONS 239

Proof. Let f(i) be the maximum magnitude of any coefficient of a polynomial
resulting from a product of 2 of the Aj(x) polynomials taken mod (x"+ 1). Clearly
f(0) -< 2h andf(i) <= 2nf(1)2 for > 0. The general solution ofthe recurrence Si+l cS
is S=c2’-1S’. Setting So--2h and c=2n, we have f(i) <-- (2n)2’-122’h <--

2 h2i+2i-l+(2i+l)lgn. Hence,

f([log rn]) _-< s2"h+l)-l+2"-l)g" <_- 22m(h+l+lg n), [-]

The key idea of the Theorem 3.3 is that when m > N/8, the. a are grouped into
blocks of size <m and the product circuit is applied to these smaller blocks, thus
reducing m relative to N. When m <= N1/8 our DFT reduction of Lemma 3.1 is applied
to decrease N relative to m. In our original construction (Reif [83]) we required
O(log log N) applications of Lemma 3.1 to accomplish this decrease of N. Beame,
Cook, and Hoover [84a] suggested an improvement which requires only a constant
number of applications of our DFT reduction to appropriately reduce N. We give this
improved version below, with their kind permission.

THEOREM 3.3. For N a power of two, the product of rn N-bitintegers mod 2v + 1
has boolean depth O(log (rn) log log N+log (N)) and size (rnN).

Proof Given a list of N-bit integers a1,"’, a,, we compute the product
I-I = a mod (2 + 1). Let the boolean depth and size required to compute this product
be D(m, N) and S(m, N) respectively. Let t(x) be the largest power of two less than
x. Using this notation, Lemma 3.1 leads to the following recurrences

(i) D(m, N) <- D(m, t((mN)3/5))+ O(log mN),

S(m, N)<=(mN)3/S(m, t((mN)3/5))+(mN)).

(Note: slightly tighter recurrences can be obtained from Lemma 3.1, but this does
not significantly affect the asymptotic analysis.)

Reduction of m" When m > N1/8 group the m input integers into blocks of size at
most IN/8] and compute the products for each block. Then compute the product of
all the [m/N1/] blocks. To avoid worrying about the ceiling function in describing
the number of integers in each of these products, first perform a single multiplication
of two integers mod 2s + 1 to reduce this number by one. Thus,

(ii) D(m, N) <- D(N/, N) + D NI/,N + O(log mN),

S(m, N) < S(N/, N) + SN/8

Continuing this process recursively results in an N/8-ary tree of multiplication nodes;
so the desired product may be computed using sub-circuits which compute products
of only N1/8 integers. This tree has depth of at most [8 log m/log N] and certainly
has fewer than m nodes. It follows that

(iii) D(m, N) <_- [8 log m] D(N1/8, N) + O(log mN),
/ log N |

S(m, N) <= mS(N/8 N) + mN)

It is now possible to consider the problem for m <-_ N/8. The solution for arbitrary m
clearly follows from this solution via a single application of reduction (ii). The method
of attack is to use reductions (i) and (ii) alternatively to reduce the problem to a
smaller one of the same type.

240 JOHN H. REIF

and

Reduction of N" Apply the DFT reduction (i) twice and then reduction (ii). Thus

(iv) D(N/8, N) - D(S1/8, t(S/2)) / O(log N)

<-2D((N1/2) 1/8, t(sl/2))/ O(log N)

S(N1/8, N) <- NS/4S(N/8, t(N/2))/ N
<_ Na/ES((N1/2)/8 t(N1/))/N

So for sufficier.tly large N and some fixed c, d

(v) D(N/, N) <- 2D((N/2)/, t(N/2)) / c log N,

S(N/, N) <_ Na/ES((N/:)/, t(S/))/ Sd.

The original problem of size N has been reduced to problems of size N/2. These
reductions must be applied log log N times until the problems are of constant size.
Analysing (v) carefully by expanding out terms, we get

(vi) D(N/, N)<-c log N/ 2c log N/2+ 22c log N1/4/

+ 2log logN C log N2-g logN,

S(N1/8, N) -- Nd / N3/2+d / N3/2+3/2(1/2)+d /"

/ N3/2+3/2(1/2)+’’’+3/2(2-1glgs)+d

where the last term in each expression is the cost of the depth log N in constant size
problems. These last terms are bounded by O(log n) and N3+d, respectively. Summing
the log log N terms in each expression of (vi) we get

(vii) D(N/8, N) (c + 1) log N log log N,

S(N/8, N) <- N3/d log log N.

Substituting (vii) into (iii), we get

(viii) D(m, N) - O(log (m) log log N+log raN),

S(m, N)=(mN)1,

and the theorem is proven. D

3.3. Multiprecision evaluation of polynomials and power series. Let p(x) be a real
polynomial or a real power series with n- 1 given rational coefficients of magnitude
2n. We wish to evaluate p(x) at a floating point real Xo within accuracy o(2-n).
Theorem 3.3 implies

COROLLARY 3.1. The evaluation ofp(x) at a given Xo to accuracy o(2-) has boolean
depth O(log n(log log n)) and size/I O(1).

The elementary functions exp (x), log (x), sin (x), cos (x), arctan (x), square
root (x), etc. have Taylor series expansions convergent within accuracy o(2-) over
fixed intervals.

COROLLARY 3.2. The evaluation ofan elementaryfunction over a fixed interval with
a Taylor series expansion convergent to accuracy o(2-) has boolean depth O(log n(log-
log n and size n o(1).

COROLLARY .3. The elementary symmetricfunctions (see 2.4) over the reals have
boolean depth O(log n(log log n)) and size n.

LOGARITHMIC DEPTH CIRCUITS FOR, ALGEBRAIC FUNCTIONS 241

3.4. Reciprocals and division of integers. Let a be an integer within bounds 2n-1 _-<

a < 2". Then a has a binary representation i--0 ai2 where a,_l 1. The reciprocal of
a is 2-("-l)r, where r= Y=o r2-. We wish to compute the first n bits ro," ", r,_l. For
this, we can use the product form of Anderson et al. [67] and Savage [76, p. 256].

LEMMA 3.3. If
[log(n+l)-I= I-I (1 + (1-2-"a)2’

i=0

then Ir- [o(2-").
By Theorem 3.3 and the above lemma,
COROLLARY 3.4. The reciprocal can be computed within accuracy o(2-") by a boolean

circuit of depth O(log n(log log n)) and size nl).
COROLLARY 3.5. Given integers a, b with binary respresentation containing n bits,

we can compute in boolean depth O(log n(log log n)) the division quotient q and remader
r integers such that a qb + r and 0 <- r < b.

Further work and open problems. A subsequent paper of Beame, Cook, and Hoover
[84b] gives O(log n) depth boolean circuits for taking the product of n integers and
integer division. These circuits are nonuniform, in the sense of Borodin [77] since their
construction requires more than logarithmic space.

It remains an open problem to find a uniform circuit of O(log n) depth for integer
division.

Also, the circuit depth complexity of the following problems remain open: given
integers a, b, p such that 0 < a, b < p < 2n,

(1) compute ab mod p;
(2) compute the greatest common divisor of a and b;
(3) compute the multiplicative inverse of a, for a relatively prime to p.
The obvious circuits for these problems have I(n log n) depth. If we use our

improved techniques for integer products described in this paper, this depth bound is
reduced by a factor of O((log log n)/log n).

NC circuits (see Cook [81]) are uniform boolean circuits of constant degree, n o1)

size and (log n) depth. RNC circuits are NC circuits with, in addition, a source of
truly random bits. We conjecture that no RNC circuits exist for the above problems
(1)-(3). Reif and Tygar [84] show that this conjecture for problem (3) would have an
interesting surprising consequence, namely an efficient method for parallel pseudo
random number generation. In particular, they give for any e > 0 and c -> 1 a NC circuit
of depth O(log n loglog n) for generating nC pseudo random bits from only n truly
random bits. They show these pseudo random bits cannot be distinguished from truly
random bits by any RNC circuit, assuming there is no RNC circuit for problem (3)
for infinitely many n.

Acknowledgments. I am grateful to F. Bragdon who first taught me to divide and
encouraged me to experiment with faster methods for long division.

The division algorithm of S. A. Cook’s Ph.D. thesis stimulated this research
L. Valiant gave some useful criticism of preliminary attempts to develop my .integer
division circuit.

I would like to thank the referees for their useful comments which significantly
improved the presentation of this paper.

Also, we would like to thank P. W. Beame, S. A. Cook, and H. J. Hoover for
permission to describe their improvement to our boolean circuit for integer product.

242 JOHN H. REIF

REFERENCES

A. V. AHO, J. E. HOPCROF’r AND J. O. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

S. F. ANDERSON, J. G. EARLE, R. E. GOLDSCHMIDT AND D. M. POWERS, The IBM system 360 Model
91: floating point multiplication unit, IBM J. Res. Dev., 11 (1967), pp. 34-53.

P. W. BLAME, S. A. COOK AND H. J. HOOVER, personal communication, February, 1984. [84a].
,Small depth circuits ofintegerproducts, powers, and division, 25th Annual Symposium on Foundations

of Computer Science, Singer Island, FL, 1984, pp. 1-11. [84b].
A. BORODIN, J. VON ZUR GATHEN AND J. HOPCROFT, Fast parallel matrix and GCD computations, 23rd

Annual Symposium on Foundations of Computer Sciences, Chicago, IL, 1982, pp. 65-71.
A. BORODIN, On relating time and space to size and depth, this Journal, 6 (1977), pp. 733-744.
A. BORODIN AND I. MUNRO, The Computation Complexity ofAlgebraic and Numeric Problems, American

Elsevier, New York, 1975, pp. 77-147.
R. P. BRENT, Fast multiple-precision evaluation ofelementaryfunctions, J. Assoc. Comput. Mach., 23 (1976),

pp. 242-251.
S. A. CooK, Ph.D.. thesis, Harvard Univ., Cambridge, MA, 1966.

Towards a complexity theory of synchronous parallel computation, Extrait de l’enseignement
math6matique, T XXVII, fase 1-2, 1981.

.L W. COOLEY AND .L TUKEY, An algorithm for the machine calculation of complex Fourier series, Math.
Comp., 19 (1965), pp. 297-301.

A. N. KRAPCHENKO, Asymptotic estimation of addition time of a parallel adder, Mat. Zametki, 9 (1967),
pp. 35-40; Syst. Theory Res., 19 (1970), pp. 105-122.

D. E. KNtrH, The Art ofComputer Programming: Vol. II, Seminumerical Algorithms, 2nd edition, Addison-
Wesley, Reading, MA, 1981.

H. T. KLNG, New algorithms and lower bounds for the parallel evaluation of certain rational expressions and
recurrences, J. Assoc. Comput. Math., 23 (1976), pp. 252-261.

R. E. LADNER AND M. J. FISCHER, Parallel prefix computation, J. Assoc. Comput. Math., 27 (1980), pp.
831-838.

LAGRANGE, M6moires Acad. Royale des Sciences et Belles-Lettres de Berlin, 24 (1768), pp. 251-326.
J. D. LIPSON, Chinese remainder and interpolation algorithms, Proc. 2nd Symposium on Symbolic and

Algebraic Manipulation, Association for Computing Machinery, New York, 1971, pp. 372-391.
Y. OFMAN, O/1 the algorithmic complexity of discrete functions, Dokl. Akad. Nauk SSSR, 195 (1962), pp.

48-51; Sov. Phys. Dokl., 7 (1963), pp. 589-591.
J. POLLARD, The fast Fourier transform in a finite field, Math. Comp., 25 (1963), pp. 365-374.
J. H. REIF, Probabilistic parallel prefix computation, TR-08-83, Aiken Computation Laboratory, Harvard

Univ., Cambridge, MA, 1983.
, Logarithmic depth circuits for algebraic functions, 24th Annual Symposium on Foundations of

Computer Science, Tucson, AZ, 1983, pp. 138-145.
.L H. REIF AND .L D. TYGAR, Efficient parallelpseudo-random number generation, TR-07-84, Aiken Computa-

tion Laboratory, Harvard Univ., Cambridge, MA, 1984.
J. E. SAVA(E, The Complexity of Computing, John Wiley, New York, 1976, pp. 237-260.
A. SCHNHAtE AND V. STRASSEN, Schnelle Multiplikation grosset Zahlen, Computing, 7 (1971), pp.

281-292.
C. S. WALLACE, A suggestion for a fast multiplier, IEEE Trans. Electronic Computing, EC-13 (1964), pp.

14-17.
S. WINOGRAD, On the time to perform multiplication, J. Assoc. Comput. Mach., 14 (1967), pp. 793-802.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS*

STANLEY CABAY" AND DONG-KOO CHOI

Abstract. Two companion algorithms are developed for constructing Pad6 fractions along an off-
diagonal path of the Pad6 table for a function -A(z)/ B(z), where A(z) and B(z) are formal power series
over a field.

One of the algorithms computes the first n Pad6 fractions along the off-diagonal in time O(n2). When
A(z) and B(z) are finite power series (i.e., polynomials), it is shown that the algorithm is equivalent to
Euclid’s extended algorithm for computing greatest common divisors.

The other algorithm, a generalization of the first, proceeds along the off-diagonal in quadratic steps,
and is of complexity O(n log n). When A(z) and B(z) are polynomials, the second algorithm becomes a

fast Euclid’s extended algorithm for computing greatest common divisors. The algorithm is of the same
complexity as other fast greatest common divisor methods, but its iterative nature provides a practical
advantage during implementation.

The algorithms may also be used for computing Pad6 fractions along an anti-diagonal path of the Pad6
table. The fast algorithm is of the same complexity as other fast algorithms for anti-diagonal computations.
However, it has the advantage of being able to determine easily any specific Pad6 fraction along the
anti-diagonal.

Key words. Pad6 approximants, power series, algebraic manipulation, greatest common divisor,
Euclidean algorithm

1. Introduction. The Pad6 table of a formal power series

(1.1) A(z)= , aiz’
i=0

is a doubly infinite array of rational functions

1.2 Um(z) E.’ u,z______
v.,.(z) Y,=o

determined in such a manner that the Maclaurin expansion of U,,,,,(z)/Vm,,(z) agrees
with A(z) as far as possible. The power series A(z) is said to be normal if, for each
pair (m, n), this agreement is exact through the power zm+". The foundation for the
development of Pad6 theory was laid by Cauchy 1821 in his famous "Cour d’Analyse".
Later, Frobenius (1881) developed the basic algorithmic aspects of the theory, and
Pad6 [15] treated in detail certain abnormal cases.

Since Pad6’s time, Pad6 tables have become a classical tool of analysis. Their
analytical properties have been studied in great depth and are surveyed, for example,
by Gragg [11] and by Baker [2]. Traditionally, it is assumed that the coefficients in
(1.1) and (1.2) lie in the field of complex numbers, and that the power series and the
rational functions are to be evaluated at certain points in the complex plane.

Although the results obtained in this paper are likely to have an impact in an
analytical (or numerical) setting, the effects of this impact are not examined. The issues
addressed are strictly algebraic ones; that is, no consideration is given to the goodness
of the approximation of (1.2) to (1.1). Instead, the objective is to provide an effective
tool to algebraically manipulate rational functions as truncated power series (for which
the cost of operations is relatively cheap), and to transform back to rational form on
request. It is assumed that the coefficients lie in an arbitrary field.

* Received by the editors March 1, 1984, and in final form November 28, 1984.

" Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2H1.
; Department of Computer Science, University of North Dakota, Grand Forks, North Dakota 58201.

243

244 S. CABAY AND D.-K. CHOI

Various relationships are known to exist between neighboring elements in the
Pad6 table. These relationships have been used to derive numerous O(n2) methods
for computing a sequence of elements in the Pad6 table. A survey and comparison of
these methods are given in Brezinski [5], Claessens [8] and Wynn [19]. All these
methods have a major flaw; they may fail in the abnormal case. In 3, a new relationship
between elements lying along an off-diagonal path in the Pad6 table is derived. This
leads to yet another O(n2) method; however, the new method succeeds in the abnormal
case. Furthermore, if the coefficient field has an appropriate nth root of unity (which
permits fast multiplication and division of polynomials), the asymptotic complexity
of the algorithm becomes O(n log n).

The new algorithm can be applied to the quotient of two power series. Then, in
particular, it can be applied to the quotient of two finite power series (i.e. the quotient
of two polynomials). In 4, it is shown that if all elements along a specific off-diagonal
of the Pad6 table are computed, then the new algorithm is equivalent to Euclid’s
extended algorithm for computing greatest common divisors. Furthermore, if fast
polynomial operations can be performed, the new algorithm can compute the greatest
common divisor oftwo polynomials in O(n log2 n) arithmetic operations. The algorithm
has three advantages over the other fast methods (Moenck [14], Aho et al. [1], and
Brent et al. [4]) for computing greatest common divisors. It is basically an iterative
algorithm rather than a recursive one, and consequently, significant cost savings can
result during implementation. Secondly, it produces intermediate polynomial remainder
sequences as a by-product, which is a valuable feature for some applications. Finally,
various details about the nature of its behavior are easier to comprehend.

The algorithm can be applied to the quotient of the reciprocals of two truncated
power series (polynomials). It is shown in 4.3 that this yields successive elements
along an anti-diagonal path of the Pad6 table.

2. Preliminary discussion. The class P of formal power series over a field F consists
of expressions of the form

A(z) Y. a,z
i=0

with coefficients ai F. We denote the units of P by

U= A(z)= aiz aoe0, A(z)eP
i=0

Associated with each such unit is a set of rational functions defined as follows:
DEFINITION. Let A(z)e U, and let m and n be nonnegative integers. The rational

form

(2.1)
U,,,(z) Uo+ uz +... + u,,,z
V,,,,(z) Vo+ vz +. + v,z"

is called a Paddform of type (m, n) for A(z) if

(2.2) (a) Vm,,(Z) O, and

(2.3) (b) A(z) V,,,,(z)- U,,,,(z)= O(Zm+"+l).

The (algebraic) O-symbol indicates that the right side is a power series beginning with
the power z"+"+k+l, 0 -< k_-<; k=+ means that A(z). V,,,,,(z)-U,,,(z) 0.

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 245

THEOREM 2.1 (Frobenius). Paddforms of type (m, n)for A(z) U always exist.

Proof. See Gragg 11], for example, l-1

However, Pad6 forms are not unique (see Gragg 11], for example). To overcome
this drawback, we introduce

DEFINITION. The rational function y,..(z) Sm.(Z)/T,.,(z), where T,,(z) 0 is
the scaled Pad6 fraction of type (m, n) for A(z) if

(2.4) (I) min {m-O(S,,), n-O(T,,)}=O,

(2.5) (II) GCD (S,.,, T,,) za., for some integer h,, _--> 0, and

(2.6) (III) A(z) T,.(z)- S,,(z) O(zm+"+I).
THEOREM 2.2. Scaled Padd fractions exist, and are unique up to a multiplicative

constant.

Proof. From Theorem 2.1, there exist U,,(z) and V,,.(z) such that

O(Um,)<-m,O(V,.,)<-n, and

A(z) V,.. (z)- U.,. (z)= O(z’*"*’).

Let D(z) GCD U,.., V..), and

P.,,,(z)=U,,,,,(z)/D(z),

Q,.. (z) V...(z)/D(z).

(2.7)

(2.8)

Define

(2.9)

(2.10)

where

Then

and

and similarly

S.(z) zo. P.(z),

T,..(z) z.. Q...(z),

Am. =min {m-O(P...), n-o(Q,..)}.

GCD (S,.., T...)= za.,-,

O(S,..) Am. + O(Pm.) <- rn -O(P,..) + O(P,.) <-_ m,

O(T...)<=n.

Moreover, because A,... =min {m-O(P,..), n-o(Qm.)}, either O(Smn) m, or 0(T...)
n, or both. Finally, property III of scaled Pad6 fractions is satisfied since

A(z) T...(z) S,..(z) z*.{A(z) V...(z) U...(z)}/ D(z) O(z’+"+’),

where 0(D) _<- A,...
To show uniqueness, let S-.(z)/’...(z) be another scaled Pad6 fraction of type

(m, n) for A(z). Then

T...(z)(a(z) ...(z) S-.(z)) O(z"+"+’),

,..(z)(A(z) T,.. (z)- S,..(z))= O(z"+"+l).

10(p) denotes the degree of the polynomial p(z).

246 S. CABAY AND D.-K. CHOI

Thus,

s.(z) ..(z)- s-.(z) T..(z) O(z’+"+’).
Since O(S..) + O(T..) -< m + n, and O(S..) + O(T..) _-< m + n, it follows that

S.c.(z) Tm.(z)- S.c.(z) T.(z) =0;

that is,

s.(z) s.(z)
r..(z) T.(z)

Therefore, from conditions I and II. S.c.(z)- S..(z) and T..(z)= T..(z). [-]

Traditionally, a Pad fraction of type (m, n) for A(z) (see Gragg [11]) is obtained
by determining the cofactors of any given Pad form of type (m, n). In terms of a
scaled Pad fraction, the Pad fraction P,.(z)/Q..(z) of type (m,n) for A(z) so
computed is defined as

Pm.(z) z-Xm"S.(z), O.(z) z-" T.(z).

Thus, Pad6 fractions also exist, and are unique up to multiplicative constant; however,
they may no longer satisfy the order condition (2.3) or (2.6). For purposes of subsequent
algorithm development and analysis, scaled Pad6 fractions have a tremendous advan-
tage over the other definitions.

3. Computation of off-diagonal scaled Pad fractions.
3.1. Preliminary results. The scaled Pad6 fractions can be arranged in a doubly

infinite array as follows"
DEFINITION. The collection of all scaled Pad6 fractions oftype (m, n) for A(z) U,

given by

(3.1) r(A)

is called the (extended) scaled Pad table2 for A(z). The modifier extended denotes
the inclusion of the first row and column in the table which are defined as follows:

Sm,_I(Z)=--Z and T.,,_l(Z)=O form>--l, and

S_l,.(z)=O and T_,.(z)=-z" for n->_O.

For computational purposes, define the N-truncated, scaled Pad6 table for A(z)
to be

(3.2) r(A)

Note that the (extended) scaled Pad6 table corresponds to the usual definition of the Pad6 table given,
for example, in Gragg [11] with the exception that the scaling factor z in (2.5) does not appear.

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 247

Let rn and n be nonnegative integers such that n > N. The next few results are concerned
with the construction of the scaled Pad6 fraction y,,,(z), given that FN(A) already
exists. Without loss of generality, assume that m >= n (otherwise, the same arguments
can be applied to 1/A(z)e U). Let

(3.3) M= N+(m-n).

Then, (m, n) and (M, N) both lie along the (m n)th off-diagonal path of the scaled
Pad6 table F(A) (see Fig. 3.1).

M’ N

FIG. 3.1.

For the scaled Pad6 fraction of type (M, N) for A(z), (2.6) becomes

(3.4) A(z). TMN(z)-SMN(z)= zM+N+’,,+IR (z)

where/zMn -> 0, and RI(0) 0 if/z,v < oo. Let

(3.5) za’’ GCD (SUN, Tuv).

To construct ’]/mn(Z), two separate cases, /xuN >- (n N) and /xMn < (n N), arise.
These two cases are considered separately in Theorem 3.1 and Theorem 3.4.

THEOREM 3.1. If lzN >= (n-- N) in (3.4), then the scaled Padd fraction /m,(Z)
S,,,(z)/ T,,(z) is given by

(3.6) S..(z)= z"-"S,,(z),

(3.7) r..(z)= z"-r(z).

Proof Clearly from relation (3.3),

O(S,,, n N+ O(Ss <- n + M N m.

Similarly, 0(Tin, <= n. Furthermore, it is clear that min {m 0(S,,,), n 0(T,,, } 0 since

248 S. CABAY AND D.-K. CHOI

min {M-O(SMN), N-O(TIN)}=O. Using the fact that (n- N) <-/zts,

A(z) T,,,(z) S,,,(z) z"-N (A(z) TtN(z) SIu(z))

z"-(z’+++(z))

z"++"-,+’R, (z)

O(zrn+n+l).

Finally, GCD (S,,,, T,,,) z
Consequently, y,,,(z)= S,,,(z)/T,,,(z) given by (3.6) and (3.7) is the scaled Pad6

fraction of type (m, n) for A(z).
For the case/xu < (n- N), let

(3.8) M* M-A- 1,

(3.9) N* N-At 1

(see Fig. 3.1). Clearly, the scaled fraction y.i,c.(z) for A(z) satisfies

(3.10) A(z) TM.u.(z)- S.l.(z) zt*+U*+lRo(z),

where Ro(0) 0. In addition, by Theorem 2.2 and by the definition of M* and N*, it
follows that

(3.11) s,(z)/ 7",,(z) s.,.(z)/ 7".,.(z).

From the two unit power series, Rl(z) and Ro(z) given by (3.4) and (3.10),
respectively, construct the unique power series

(3.12) A(z) Ro(z)/ R,(z).

Associated with A(z) U, let

(3.13)

(3.14) fi n N-/zt 1.

Now assume that the fi-truncated scaled Pad6 table, F(A), for A(z) has been construc-
ted as well. That is, assume that the r, r) scaled Pad6 fraction, /a,n(z) Sa,(z)/Ta,n(z),
such that

(3.15) ,(z) ()-s-() O(z+"+’)

is available.
The scaled Pad fractions yMu(Z), yM.u*(Z) and /mn(z) provide sufficient informa-

tion to obtain directly a Pad6 form oftype (m, n) for A(z). This Pad6 form is constructed
in Lemma 3.2 below. It is shown, later in Theorem 3.4, that this form is also the scaled
Pad6 fraction of type (m, n) for A(z).

LEMMA 3.2. Let tx4rv < (n- N) in (3.4), and let

(3.16) S,,, (z) z-’NSt(z),(z)- zS.l.(z) a,(z),

(3.17) T,.(z) z-a’TMN(z)a,n(z)- zT.N.(z) ’,,(z),

where a h + txtu + 2. Then S,,, (z)/ T,,, (z) is a Padform of type m, n for A(z).

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 249

Proof.
O(S,,,,,) max {O(z-a’’SSa), O(z"S.t.

=< max {-AMN +M+ tfi, a + M* + /}

max {-AMN +M+ (n N+ AN),
(AMN +/z4N + 2)+ (M-huv- 1)+(n- N-/xtv- 1)}

max {m, m}

m.

Similarly, O(T,,) n. Moreover, the fact that Ss(z)/T(z), S..(z)/T.s.(z)
and Sma(z)/Tm(z) are the scaled Pad6 fractions yields immediately that

min {m-O(Sm,), n-O(T)}=O.

Fuhermore, from (3.4), (3.10), (3.12) and (3.15), it follows that

A(z) T.(z)- S.(z) A(z){z-XTu(z)mn(z)- zr.u.(z) mn(z)}
-{z-s()g.(z) zS..(z)

z-Xgm.(z){a(z) TuN(z)- Suu(z)}

zT,(z){a(z) T..(z)- S..(z)}

-g.(z){R,(z)z++..+’}- z.(z){Ro(z)z*+*+’}

-R,(z)z++-+’{.(z)Ro(z)/R,(z)-
_(z)z++.-+O(z+,+)

O(z+U+--+++"+)
O(z

In order that S./Tin. in (3.16) and (3.17) be a scaled Pad0 fraction of type (m, n),
it remains to show that GCD (S., T.) zx. for some m.. With this intent, consider
again the (,)th entry of Fn(A), and let

(3.8) m*=

(3.9) a*=

where

(3.20)

The scaled Pad6 fraction ..n.(z) for A(z) satisfies

(3.) .,.-
and, in addition,

(3.22) S’n(z) S,.n.(z)_
T,(z) T,..(z)

R(z)= OE(Zk) means that R(z) is a power series whose first nonzero coefficient is the coefficient of
z k, exactly.

250 S. CABAY AND D.-K. CHOI

LEMMA 3.3. Let

(3.23) Sr....(z) Z-’’StN(Z)**(Z)- zS*N*(Z) a,**(Z),

(3.24) T,,,...(z) z-a-T(z)a,.,.(z)- z’T.u.(z) ,.,.(z)

where a ’MN + IZlVtN + 2. Then y,....(z) S,,,...(z)/ T.,...(z) is a Pad. form of type
(m*, n*) for a(z), where

(3.25) m* m],n 1,

(3.26) n* n ,n 1.

Proof The proof is identical to the proof of Lemma 3.2. [3

THEOREM 3.4. Let IlN < n- N) in (3.4), and let

%..(z)=S.,.(z)/T,..(z)

be defined by (3.16) and (3.17). Then 3/,.. (z) is a scaled Padd fraction of type (m, n)
for a(z).

Proof Let

G,..(z) GCD (S,,,., T.,.).

We first show that 0(G,..)-<_],n, where ,n is given by (3.20). Suppose that 0(G,,,.)>
mn, and proceed by contradiction. Let

U.,...(z) z("-x,-’S.,.(z)/ O.(z),
V.,...(z) z")-x’"- T.,.(z)/G,..(z),

where m* and n* are given by (3.25) and (3.26). Then 0(U,,,...) -<_ m*, O(V,....) -<_ n*, and

a(z) gm.n.(Z Um*n*(Z z"")-x"-’{a(z) T,,,.(z) S,,,.(z)}/ G,,,.(z)

O(z(-X,-)+(’+"+))
O(z*+-*+x,+).

Thus, U,..+..(z)/V,....(z) is a Pad6 form of type (m*, n*) for A(z).
But Sm...(z)/T,,,...(z), given by Lemma 3.3, is also a Pad form of type (m*, n*).

Then,

S,,,...(z)/ T.,...(z) U,....(z)/ V,....(z) S,,,.(z)/ T,..(z),

or, equivalently,

(3.27) S,....(z)T,..(z)-S,,,.(z)T.,...(z)=O.

Replacing S,,,.(z)/T,..(z) and S,..../ T.,. .. in (3.27) by the expanded forms (3.16),
(3.17), (3.23) and (3.24), it follows that

z z {S , z T, ,. z S, ,. z T,(z)}

{Sa.,(z) T,.,.(z)- S,.,.(z) T,.,.(z)} 0.

Thus, either Su(z)/Tu(z)=S.u.(z)/T.u.(z), or S,,(z)/T,,(z)=S,.,.(z)/
T,n(z), which contradicts (3.11) and (3.22).

Thus, 0(G,..) _-< ,,. But,

zx" GCD (qm.,]P,.),
which implies that zx. divides both S.(z) and T.(z) in (3.16) and (3.17). That is,

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 251

Zx" divides G,,,.(z), and consequently

G,..(z):zx".
Thus, S.,.(z)/T,..(z) given in Lemma 3.2 is not only a Pad6 form of type (m, n) for
A(z), but also the scaled Pad6 fraction of type (m, n) for A(z), where

GCD (S,..,

and ,.,. ran.
THEOREM 3.5. Let IzIN < (n-N) in (3.4) and let ym.(Z)= S,..(z)/ T,..(z) be the

scaled Padd fraction of type (m, n) for A(z). If
(3.28) m* m X,.. 1

and

(3.29) n* n Am. 1,

where

(3.30) zx"- GCD (S,,,., Tmn),

then the scaled Padfraction of type (m*, n*) for A(z) is y.,...(z) S.,...(z)/ T.,...(z),
where S.,...(z) and Tm...(z) are given by (3.23) and (3.24).

Proof The theorem follows using arguments identical to those of proof ofTheorem
3.4, and using the results of Lemma 3.3.

A simple example for the off-diagonal computation is presented.
Example. Let A(z) 1 + Z

4 " Z %" Z9 %" Z 10 %" 2z5 +. . This example constructs the
scaled Pad fraction Y7,6(z)= $7,6(z)/T7,6(z) of type (7, 6) for A(z). Since m-n 1,
the construction proceeds along the 1st off-diagonal path of the scaled Pad6 table F(A).

Assume that I’3(A) is already available, from which it can be determined that the
scaled Pad6 fraction 4,3(Z) of type (M, N)= (4, 3) is given by

$4,3(Z) 1 Z %" Z2- Z %" Z4
(3.31) 4,3(Z) 4,3ii l__Z%"Z2__Z3.

From (3.4), the residual for $4,3(z)/Ta,3(z) is given by

(3.32) A(z) Ta.3(z)- S,,3(z) R(z)z4+3+,

where Rl(z) -1 + z- z + 2Z %""

Consequently, (3.32) yields that t.4,3 --0. Since/-/,4.3 < n N, Theorem 3.4 is appli-
cable. Observe that

z’’ z= GCD ($4,3, T4,3),

and consequently the predecessor of 3/4,3(Z) along the first off-diagonal path is
Yt*N*(Z) T3,_(Z). Therefore, y3,2(z) is contained in I’3(A), and is found to be

S,(z) z

The residual for $3.2(z)/T3.2(z) is given from

(3.33) a(z) T3,2(z) $3,2(z)= Ro(z)z3+2+’,

where Ro(z) 1 + z + z + Z
6 %""

252 s. CABAY AND D.-K. CHOI

The two residuals Rl(z) and Ro(z) give the residual power series A(z) U, where

(3.34) ,(z) Ro(z)/R(z)=-1-2z-2z2-2z
Using (3.13) and (3.14),

rh n N+ AtN 3,

fi n N-/XMN 1 2,

and in order to apply Theorem 3.4, it is therefore required to obtain the scaled Pad6
fraction 3,2(z) of type (3,2) and its predecessor for/(z). Assuming that 1-’3(is
available, from it can be determined that

S-,(z) -z- z
(3.35) 3,_(z) ’3,2(z) z- z2

Similarly, the predecessor of /3,2(z) along the first off-diagonal path of I-’3(A) is given
by /l.o(Z) Sl,o(z)/ Tl.o(Z) (--1-- 2z)/1.

Now by applying the formulae (3.16) and (3.17), the (7,6) entry of F(A) is
computed by

S7,6(Z) 1 Z "" Z2
Z -1" Z4) (-- Z Z2) Z (Z2) Z

TT,6(Z)=(1--Zq-Z2--Z3) (--z--Z2)--Z(Z2). (Z--Z2),

where a ,4,3 +/2,4,3 -[- 2 2. Thus,

(3.36) 3’7,6(z) $7,6(z)/TT,6(z) z(- 1 z4)/z(- 1 + zS).

Note that ,o(Z) is not used for computing ’)/7,6(Z). It is used instead in formulae (3.23)
and (3.24) for computing the predecessor of 3/7,6(Z). Since

zAmn-- ,ffh---" ,1= GCD (S-3,,
it is known that the predecessor is /5,4(z), which is determined by (3.23) and (3.24)
to be

//5,4(Z S5,4(Z (--1 Z "[- Z2- Z3--2Z5)
Ts,4(z) (-1 z -b z:- z d- z4)

[]

3.2. Fast off-diagonal algorithm for a single power series.
3.2.1. The algorithm. The algorithm given in this section constructs the scaled

Pad6 fraction 3’,,, of type (m, n) for A(z) in a quadratic fashion, The iteration assumes
the existence of

(3.37) ylVtrq z SN Z / Tz z),

where M N+ (m-n), and where for notational convenience we set

(3.38) S= Srv(z)

and

(3.39) T Tz,c(z).

Also assumed to exist is the predecessor

(3.40) yzvt..(z) S.N.(z)/ T.v.(z)

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 253

of ylVtv(z) on the (m- n)th off-diagonal path of F(A), where

M* M-hm 1,

N* N hm 1

and
za’ =GCD (Sm, T4v).

Again for notational convenience, we set

(3.41) So=SM..(z)

and

(3.42) To TM.N.(z).

To advance the solution from N to N+ s (that is, to construct y+s,N+s(z)), where
s is the step size, the algorithm first computes/z such that

AT1- S1 rood zt+v+zs+’N+l zI+v+’,,’,+lR,
where

z’’ GCD (S, T1)

and RI(0) 0 ifM < 2s + AMv.
If /ZMN-->--S, then y+s,N+(z) is constructed trivially by means of Theorem 3.1.

Otherwise, Theorems 3.4 and 3.5 are applied.

ALGORITHM 1" OFFDIAG
INPUT: A, m, n, where

(1) rn and n are nonnegative integers with rn >= n, and
(2) A is a unit power series. (Note that only A mod z"+"+ is required.)

OUTPUT: [S So] where
T 70’

(1) S1/T1 is the scaled Pad6 fraction of type (m, n) for A, and
(2) So/To is the scaled Pad6 fraction of type (m-A.,.- 1, n-Am.- 1) for A,

given that

zxm" GCD (S, T1).

Step 1: 4 Initialization 4
i<--1
M-(m-n)
N-O

T To 1 0

Step 2: 4# Calculation of step-size 4
ii+l
s min {2i- N, n N}

Step 3: 4 Termination criterion 4
If s 0 then exit

Step 4: : Calculation of scaling factor for $1/T
Determine A4/v such that zx’ =GCD (S, T)

254 s. CABAY AND D.-K. CHOI

Step 5: # Computation of residual for ya Sl/T1 :[

Compute /zMN and R such that
(AT- S) mod ZM+N+2s+AMN+I z+s++R,

where RI(0) 0 ifs < 2s +hs
Step 6: # Identification of Cases #

ifs s
then # Case of Theorem 3.1 #

go to step 12
else Case of Theorem 3.4 and 3.5
go to step 7

Se 7 Calculation of degrees for residual scaled Pad fractions
s+h
s-s-1

Step 8: # Computation of residual for y.s.(z) So To #
Compute Ro such that

(A. To- So) mod z+s++-2 z+S--Ro,
where Ro(0) 0

Ste 9: # Computation of residual power series #
Ro/Rmod z+"+1

Step 10: # Computation of residual scaled Pad6 fractions #

Ne 11; Advancement of scaled Pad fraction computation

0

T T, 0 ,
Step 12: Calculation of degrees of $1/T

NN+s
MM+s
go to step 2

3.2.2. Proof of algorithm validity. Let 3,(A(z) be the scaled Pad6 fraction of type
(m, n) for A(z), where m-> n _>--1. As in (3.2), define

(3.43) F(A) {,/(z)[m n, N n - -1}

to be the N-truncated Pad6 table for A(z), with the additional provision that m _>-n.
Also, define

(3.44) D,m {Fre(A) for all A U}

for N=0, 1, .
The proof proceeds by induction on 12, for i= 0, 1, 2,. .. Clearly the algorithm

is correct for flo. It is shown that if the algorithm is correct for IN, then it is also

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 255

correct for IIN+L, where

j" 1 if N 0,
(3.45) L=

N if N=2 i>0.

Let A(z) U be an arbitrary unit power series. It is shown that the algorithm correctly
computes 3,)(z), where m -> n and -1 =< n _-< N + L, given that it is correct for IIN.

If-l<=n<=N, then y,,)(Z)FN(A)I’IN, and by the inductive hypothesis the
algorithm computes it correctly.

If N < n <- N + L, let M N+ (m n). By the inductive hypothesis, the algorithm
(usinglog2 N iterations) correctly computes ,)(z) (a) .,-(a)_ Z,z)/.,() r(A) a.
and its predecessor -(A)rM**(Z). It remains to show that one more iteration correctly

.(A)gives)’m, (Z) and its predecessor y<ma.),,.(Z).
,(a_) ,’r,(a_)Let s n N be given by step 2 of the algorithm and let zx’N GCD bM, IN,

be given by step 4. Then step 5 yields /XN-->0 and a polynomial Rl(Z) such that

(3.46) (A(z) T(A) g)) mod.MN(Z) (A) zM+N+2S+AMN+I RI(z)zM+N+N+IMN\

where/n 0, and RI(0) 0 if/un <2s+ AMn. Then two cases arise.
If/ns, then by Theorem 3.1, step 5 correctly yields /(z). Furthermore,

from (3.6) and (3.7),

zx-. GCD (ST.)(z), T(,.a2(z))= zx’’+.
Consequently, the predecessor of y.)(z) is given by

(3.47)

since

and

and

(A) ’Z)"-- (MA*)N*(Z),

m* m h,,,- 1 M-h 1 M*

n* n- h,.- 1 N- hun- 1 N*.

If/zn < s, then step 7 gives

The polynomial Rl(z), computed in step 5, therefore satisfies RI(0) 0 and is of degree
r + ft. In addition, step 8 produces a polynomial Ro(z) of degree r + fi such that
Ro(0) # 0. Consequently, enough terms are available in Rl(Z) and Ro(z) to compute,
in step 9, the residual unit power series (z)mod za’//l defined by (3.12). By the
inductive hypothesis, step 10 therefore correctly computes y)(z) FN(,) IN and
its predecessor. It now follows by Theorems 3.4 and 3.5 that step 11 correctly computes
/A(z) and its predecessor.

3.2.3. Cost analysis. Let C(m, n) be the cost of computing the scaled Pad6 fraction
oftype (m, n) and its predecessor for an arbitrary power series A(z) U using Algorithm
1. For the sake of simplicity, assume 0 <= n <= m <- 2n. The case that m > 2n is considered
later. In this section, asymptotic estimates of C(m, n) are derived by counting the
number of operations (additions, subtractions, multiplications and divisions in F)
performed by the algorithm. A detailed cost analysis and an implementation of the

256 s. CABAY AND D.-K. CHOI

algorithm are described by Verheijen [18], who compares Algorithm 1 with other
algorithms for calculating Pad6 fractions.

When obtaining the asymptotic cost estimates, it is assumed that the algorithm
makes use of fast methods for polynomial and power series arithmetic. Using fast
Fourier transforms, two polynomials with coefficients in the field F and of degree M
and N, respectively, can be multiplicated in O((M / N)log (M + N)) operations in
F. Using Newton’s method and fast multiplication of polynomials, the first N terms
of the quotient of two power series in U can be obtained in O(N log N) operations
in F. These and other fast methods for polynomial and power series arithmetic are
described, for example, in Aho et al. [1] and in Lipson [12].

Let k [log hi. Then it is easy to verify that the algorithm terminates after k
iterations, and that after the execution of step 2 of iteration

(3.48) s ={
Consequently, during iteration i,

1, =0,
2i-1 0<i<k,
n-2- i=k.

(3.49) N={0, i=0,
2-, otherwise,

and

(3.50) M=N+(m-n).

Assume that during iteration i, the scaled Pad6 fraction S/T of type (M, N) and its
predecessor So/To are available.

The first nontrivial step requires the computation of the residual R(z) in step 5.
Let

M

(3.51) AI(Z)-- ajz
j=o

and

N+2S+AMN--1
(3.52) A2(z)

j=0

With IMN given by step 4, it is known that

(3.53)
ATe- S mod zM+N+2s+AMN+I A1T + zM+IA2T1 S mod zM+N+2s+AMN+I

--o(zM+N+I).
Since AT and S are both of degree at most M+ N, then/x4v and R(z) can

be obtained directly from z/A:T. The product A2(z-X,NT) is a polynomial of at
most degree 2N + 2s- 1 < 4N. Thus, using fast polynomial multiplication, step 5 can
be executed in O(N log N) operations.

If it is determined as a result of step 5 that /zv => s, then step 6 is performed
trivially and the iteration is complete. Otherwise, the algorithm continues in step 8
with the calculation of the residual Ro of the predecessor scaled Pad6 fraction So/To.
Making the same observations as in step 4, it follows that Ro can be obtained from
the product of A To, where

N+ ff’ + fi A --1

(3.54) A a_,lN+.z
j=0

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 257

and To is a polynomial of degree at most N- htN 1. Since the degree of the product
is bounded by 2N++ fi--2AtN--2 < 4N, step 8 can be executed in O(N log N)
operations.

The computation of the residual power series/(z) mod z’//1 in step 9 requires
the computation of the first r + 2s +h-/x 1 -<_ 3N terms of the quotient of
Ro/R1. Again, this may be performed in O(N log N) operations.

In step 10, the recursive call of Algorithm 1, in order to compute the scaled Pad6
fraction of type (r,) for A(z), requires C(r, a) operations by assumption. For later
purposes, it is important to observe that 0 _-< _-< N and that _-< r _-< 2N.

The final nontrivial step requires eight polynomial multiplications to obtain the
scaled Pad6 fraction of type (M + s, N+ s) and its predecessor for A(z). Since M _-<2N,
each of the polynomial products are of degree at most M+ s < 3 N. Consequently, step
8 can be executed in O(N log N) operations.

It is an easy matter to show that

(3.55) C(ml, nl)_-< C(m2, n2),

whenever ml--< m2 and nl--< n2. The total cost of the ith iteration is then bounded by

C(r, fi)+ c(2N) log (2N)<= C(2N, N)+ c(2N) log (2N)
(3.56)

<__ C(2 2i-l) + ci2

operations, for an appropriate constant c. Consequently, we have
THEOREM 3.6. Given that 0 <- n <-_ m <= 2n, Algorithm 1 can compute the scaled Pad.

fraction of type (m, n) for A(z)U in time O(n log2 n).
Proof. Consider the recurrence relation

k

C(2k+l 2k) E [C(2’ 2i-1) d- ci2’] k > 1
i=1

where c is a positive constant. Then

k-1

c(2k+l, 2k) [C(2i, 2i-1)d-ci2i]h-c(2k, 2k-1)d-ck2k
i=1

=2c(2k, 2k-1)+ck2k.

With n 2k, results on recurrence relations (see Bentley et al. [3]) then yield

C(2n, n)= n[C(2,1)+c
i=1 i] n[C(2’ l)+ck(k+ l)/E]= O(n lg2 n)"

The theorem now follows, since from (3.56) for m and n satisfying 0_-< n =< m-< 2n

k

C(m, n) < [C(2’,2’-1)+ci2’]. l-]
i=1

LEMMA 3.7. Let m > n, and let A(z) U. Determine an integer 5 >- 1 such that

(3.57)

where

A(z) Al(Z) + z"-n+A(z),

(3.58) AI(Z’ A(z) mod z

and A2(O) 0 if < o. If 6 <- n, let S,,n_(z)/ T,.n_(z) be the scaled Pad. fraction of
type (n, n-g) for 1/A2(z). Then the scaled Paddfraction S,,,(z)/T,,,(z) of type (m, n)

258 s. CABAY AND D.-K. CHOI

for A(z) is given by

z"-"+T.,._(z)
(3.59) s.(z)

A,(z)z"
ifS <-n,
otherwise,

(3.60) T,,,,(z)
fS,,,_(z) if n
z" otherwise.

Proof See Choi [7].
THEOREM 3.8. For arbitrary rn >= n, Algorithm 1 can compute the scaled Paddfraction

of type (m, n) for A(z) U in time O(m log m)+O(n log2 n).
Proof If 6 > n in (3.57), the result is trivial.
If 6 -< n, computation of the first 2n + 1 terms of 1/A2(z) requires O(n log n)

operations. Using (3.55),

C(n,n-8)<-C(n,n),

and consequently by Theorem 3.6, it follows that the cost of computing the scaled
Pad6 fraction S,,,_(z)/T,,,_(z) for 1/A2(z) is bounded by O(n logz n) operations.
Finally, the cost of computing S,,,(z) in equation (3.59) is O(m log m) operations, l-I

3.3. Fast off-diagonal algorithm for a quotient power series. Let A(z), B(z) be unit
power series and let

(3.61) C(z) -A(z)/ B(z)

be the quotient power series. Given the nonnegative integers rn-> n, then Algorithm 1
OFFDIAG can be used to compute the scaled Pad6 fractions Sm,,(z)/Tm,(Z) of type
(m, n) for C (z). As a result,

(3.62) A(z) T.,,,(z)+ B(z)S.,.(z) o(zm+n+l).

Before applying the algorithm, the quotient

(3.63) C(z) mod z"+"+ -A(z)/B(z) mod z"+"+

must be calculated. However, this division need be computed modulo z"-"+1, only,
by modifying Algorithm 1 as follows:

ALGORrrHM 2: OFFDIAG
INPUT: A, B, m, n, where

(1) m and n are nonnegative integers with m >= n, and
(2) A, B are unit power series. (Note that only A mod z"/"+1 and B mod z

are required.)

OUTPUT: IS, Sol where
T 70’

(1) S/T is the scaled Pad6 fraction of type (m, n) for -A/B, and
(2) So/To is the predecessor scaled Pad6 fraction of type (m h.,. 1, n h,..

1) for -A/B, given that

z’’" GCD (S, T1).

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 259

Step 1: 4# Initialization
i<--1
M<-(m-n)
N<-O

[] [-A/B mod zSO
<._

T1 To 1

Step 2: 4# Calculation of step-size 4#

i-i+l
s - min {2i- N, n N}

Step 3: 4# Termination criterion
If s 0 then exit

Step 4: 4# Calculation of scaling factor for S/T 4#

Determine AMN such that
zMN GCD (S1, T1)

Step 5: 4# Computation of residual for yMN(Z) S1/TI 4#

Compute/zs and R1 such that
(AT1 + BS1) mod ZM+N+2s+AMN+I-- zM+N+M+IR1,

where R(0) 0 if/z < 2s +h4

Step 6: 4# Identification of Cases 4#

if/x > s
then 4# Case of Theorem 3.1 4#

rl T1 To
go to step 11

else # Case of Theorem 3.4 and 3.5 #
go to step 7

Step 7: # Calculation of degrees for residual scaled Pad6 fractions

s+h
s--I

Step 8: 4# Computation of residual for yM.N.(Z) So/To 4#

Compute Ro such that
(A. To+ B. So) mod z++’+a-2x,N Roz+s-2x,-I

where Ro(0) 0

Step 9: 4# Computation of residual scaled Pad6 fractions

x o <- OFFDIAG (Ro, R1, r,)

Step 10: 4# Advancement of scaled Pad6 fraction computation

I slrl S] I S1rl STI I Z-AMNO zAMN+OIMN+21I1

260 S. CABAY AND D.-K. CHOI

Step 11: Calculation of degrees of S/T
M-M+s
N-N+s
go to step 2

Algorithm 2 is a generalization of Algorithm 1, since it can be used to produce
scaled Pad fractions for a single power series A(z) simply by setting B(z)=-1. It
differs from Algorithm 1 in that the division

(3.64) A(z) =-Ro(z)/RI(Z) mod z"a+n+l

in step 9 of Algorithm 1 is avoided. Instead, the division is delayed (i.e., immediately
subsequent to, rather than prior to, the recursive call of OFFDIAG) until the initiali-
zation

(3.65) $1 =-A(z)/B(z) mod zm-n+l

in step 1 of Algorithm 2.
There are also various sign changes introduced in steps 1, 5, 8 and 10. These

account for the fact that the algorithm deals with the power series -A(z)/B(z) rather
than A(z)/B(z). This notational change simplifies the development of subsequent
results.

For implementation purposes, Algorithm 2 can result in considerable savings in
cost. Practically, fast division is significantly slower than fast multiplication, by an
asymptotic constant of approximately 7 (see Verheijen [18]). For example, if
-A(z)/B(z) is normal, then tfi-t+ 1 2 and the division in step 1 of Algorithm 2
becomes trivial. However, the asymptotic cost of Algorithm 2 remains the same as the
asymptotic cost of Algorithm 1 given in 3.2.3.

The proof of the correctness of Algorithm 2 is nearly identical to the proof of
correctness of Algorithm 1, and therefore it is not given.

3.4. Classical off-diagonal algorithm for a quotient power series. Let S1/T1 be the
scaled Pad6 fraction of type (M, N) for -A(z)/B(z) such that

z*,N GCD ($1, TI) 1.

That is, AMN 0. Then

A. TI+B" S zM+N+#saN+IR1,

where RI(O 0 if/MN <. Thus, (zkS1)/(zkT1) is the scaled Pad6 fraction of type
(M + k, N + k) for -A(z)/B(z) whenever 0 =< k =</zsaN. If/x < o, the next distinct
Pad6 fraction for -A(z)/B(z) along the (M-N)th off-diagonal path is of type
(M + s, N + s), where

s =/x,,, + 1.

By so selecting the step-size s, Algorithm 2 may be used to compute all Pad6
fractions along the (M-N)th off-diagonal path. With this choice of s, step 7 in
Algorithm 2 gives

r =/x4v + 1,

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 261

Consequently, the recursive call of OFFDIAG in step 9 of Algorithm 2 reduces to

l 0
<’-

1

and step 10 then yields

[S1 S] <...[Sl’gl-ZtzMN+2" SO zMN.

T, To r, g, + z,+ To z T,

Since GCD ($1, T1) 1, it follows from the proof of Theorem 3.4 that

GCD (S,. ;, + z’+2 So, rl" /, + ZMN+2 To)= 1.

Thus, the above computations can be repeated for the scaled Pad6 fraction of type
(M+s,N+s).

The full details are provided in Algorithm 3, below. To simplify the presentation
of subsequent results, at the ith iteration, the scaled Pad6 fractions $1/TI of type
(M, N) is denoted by Si/T and its predecessor So/To by Si_/T_I. In addition, the
residual power series R1 and Ro are denoted by R and R_, respectively.

ALGORITHM 3: OFFDIAG
INPUT: A, B, m, n, where

(1) m and n are nonnegative integers with rn _-> n, and
(2) A and B are unit power series. (Note that only A modzm+"+ and

B mod zm+"+ are required.)

[S’+ S] whereOUTPUT:
T+I T/

(1) Si+/T+ is the scaled Pad6 fraction of type (m, n) for -A/B, and
(2) S/T is the scaled Pad6 fraction oftype (rn Am. 1, n Z,.. 1) for -A/B,

given that

zx- GCD (Si+I, T/+I),

Step 1: #Initialization:
i-I
m- (rn n)
NO

Ti+ T 1 0

Step 2: = Termination criterion #
If N=n

then exit
else + 1

Step 3: Computation of residual for YMN S/T 4
Compute MN and Ri such that

(A" T/+ B" Si) mod Z
M+N+2lxMN+3 zM+N+tZMN+IRi,

where R(0) 0 if/ZM < 2(n- N).

Step 4: Calculation of step-size
s <-- min {/zta + 1, n N}

262 s. CABAY AND D.-K. CHOI

Step 5: # Identification of Cases #
if]dbMN S

then # Case of Theorem 3.1 #

go to step 8
else # Case of Theorem 3.4 and 3.5 #
go to step 6

Step 6: # Computation of residual for YM*N*(Z) S-l/T-I #
Compute R-I such that

(A" T/-1 + B" Si_l) mod zt+N+’’N+I zM+N-1Ri_I,
where Ri_l(0) 0

Step 7: # Advancement of scaled Pad6 fraction computation

T/+ T - T T/_J 0 z’’N+2 1

Step 8: # Calculation of degrees of S+1/T+I ::
NN+s
MM+s
go to step 2

In the case that B(z) -1 and m n, Algorithm 3 is precisely the algorithm given
by Cabay and Kao [6] for computing diagonal Pad6 fractions for a single power series.
Their O(n-) algorithm (since steps 3 and 6 require only +2 terms of product
polynomials, and since one of the multipliers in step 7 is a polynomial of degree
tzs + 1, for small /xm, no advantage can be gained from using fast methods for
polynomial arithmetic) is shown to be faster than other O(n2) algorithms for computing
diagonal Pad6 fractions, such as those of Rissanen [16] and Trench [17].

The more interesting observation about Algorithm 3 is made in the next section,
however. It is shown that, when the given quotient power series is a rational function,
Algorithm 3 along one specific off-diagonal path corresponds exactly to Euclid’s
extended algorithm for computing the greatest common divisor of the numerator and
denominator ofthe given rational function. In this sense, Algorithm 3 is a generalization
of Euclid’s extended algorithm. It is for this reason that we choose to call Algorithm
3 classical.

4. Greatest common divisor computations of polynomials.
4.1. Introduction. In this section, Algorithm 2 and Algorithm 3 are examined when

they are applied to -A(z)/B(z), where A(z) and B(z) are polynomials of degrees rn
and n respectively. In addition, it is assumed that A(0)# 0 and B(0)# 0.

To permit the analysis, we need the following
DEFINITION. The reciprocal of a polynomial

(4.1) P(z) Po+P z +. +
of at most degree n is defined to be

(4.2) Pn(z)=poz"+plz"-l+. .+p,,=z"P(z-1).

The name originates from the fact that the zeros of P(z) are the reciprocals of those
of P(z) if POP,, O.

ALGEBRAIC COMPUTATIONS OF SCALED PADl FRACTIONS 263

Clearly

(4.3) [PR(z)]R P(z);

that is, the operation of forming the reciprocal polynomial is involutary. Also

[P(z). O’S(z),(4.4)

and

(4.5) [zP(z)]R=P(z).
Let A(z) be a unit power series. The first n + 1 terms of A(z) are denoted by

(4.6) A,(z) a,zi= A(z) mod zn+l.
i=0

The reciprocal Ae,(z) of An(z) is then given by

(4.7) a(z) a,,_iZ i.
i=0

4.2. Euclid’s extended algorithm.
THEOREM 4.1. Algorithm 3 applied to -A(z)/B(z), where A(z) and B(z) are

polynomials of degree m and n, respectively, is equivalent to Euclid’s extended algorithm
for computing the greatest common divisor of AR(z) and BR(z).

Proof For completeness in presentation, assume that modulo operations are not
performed in steps 3 and 6 of Algorithm 3. Thus,

(4.8) A" Ti + B" S zM+NWIMN-F1Ri,

(4.9) A" T_, + B" Si-, zM+N-’Ri-,,

where Ri(z) and Ri_,(z) are polynomials of degrees n-N-lxMu-1 and n-N,
respectively.4 By taking reciprocals of (4.8) and (4.9), it follows that

a" T," + n". S,"(4.10)

and

(4.11)

Let

(4.12) Qi+I(Z)-- Ri_l(Z)/Ri(z) mod z

be a polynomial of degree ftMu + I. Then

(4.13) Ri_l(Z Qi+l(Z) Ri(z zt4N+2/(z),
for some polynomial R(z) of degree n-N-p-2. Taking reciprocals of (4.13), it
follows that

(4.14) R_,(z)- Q,(z) R(z) e(z).
That is, Ql(Z) and Ke(z) are the quotient and remainder, respectively, on division
of R_,(z) by R(z).

With Qi+l(Z) defined by (4.12), step 7 of Algorithm 3 yields

(4.15) +, Lz,+ -,-Q,+," z"
4 By convention, a polynomial of negative degree is the zero polynomial.

264 s. CABAY AND D.-K. CHOI

which on taking reciprocals becomes

(4.16) [Si+ Si] [S_-Q’S S]T,+I T]*-TiR_I--OiR+I’TiR T"
Looking ahead one iteration, we obtain

__AR R BRRI T/ / SI
(4.17) AR" [TR_I--QR/I TR]+ BR. [sR_--QR/ SR]

RR_I QI RR.
Thus, /R(z)--RR/(Z)in (4.14).

Summarizing, let Q be the quotient on division of RR_ by RR. Then
RR/- RR_I- Q. RR,

(4.18) R sR,s,+,
r+, r_, O+," r,

which are the fundamental relations describing Euclid’s extended algorithm.
To complete the proof, it remains to show that the initial conditions for Euclid’s

extended algorithm are satisfied. Initialization in step 1 of Algorithm 3 yields

To T-1 1 0

where, as in (4.12), QoR is the quotient on division of AR by BR. Steps 3 and 6 with
0 then become

(4.20) A. + B. (-Qo)= z"-"+" +’Ro
and

(4.21) A. 0+ B. z"-"-l zm-"-IR_.

Taking reciprocals of (4.19), (4.20) and (4.21), it follows that

RR_ BR, s_R 1, T_R1-" 0,
(4.22)

RoR=AR Q BR, S -QoR, T I.

COROLLARY 4.2. At the ith iteration of Algorithm 3, let S/ T be the scaled Padd
fraction of type (M, N) for -A/B, such that

A" Ti + B" S zM+N+tuN+IRi.

R,-I" Si-z"’’+2R," Si_, (-1)’. A,

(4.23) R,-I" T-z"’’+-R," T_I=(-1) ’+1. B,

S,_,. T S," T-I (-1)’+lzM+N-’.
Furthermore, the algorithm terminates for some k, where k < n. On termination,
Sk+I/Tk+ is the scaled Padd fraction of type (m, n) for -A/B such that

(4.24) A. Tk+ + B. Sk+l O.

Then,

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 265

In addition,

(4.25)

where

and

A" Tk + B" Sk zm+n-2hmn-l Rk,

zh.,- GCD (Sk+l, Tk+l)

Rk- GCD (A, B).

Proof. From Euclid’s extended algorithm (4.18) with initial conditions (4.22), it
follows that (see, for example, McEliece and Shearer [13])

RR_I SR-RR" sR_I (--1)’. AR,
(4.26) RR_I TR-gR. TR_I (--1) ’+1. BR,

s/R_I r/R- S/R. T/R_I (_1) ,+1.

By using the correspondence established in Theorem 4.1 and taking reciprocals,
equations (4.26) result in equations (4.23).

Furthermore, Euclid’s extended algorithm terminates for some k < n when

(4.27) AR" r+l + BR. S+1 R+I 0

and

(4.28) AR. T+
where h =0(R), O(S+I)m-A, O(T+,)<=n-h, O(S)<m-h and O(T)<n-h.

Taking reciprocals of (4.28) with respect to z"+"--1 results in

A Tk + B. Sk zm+"-2h-1 Rk,

where Rk(O)# O. Thus, Sk/Tk is the scaled Pad6 fraction of type (m- h- 1, n- h- 1)
for -A/B. Taking reciprocals of (4.27) with respect to z’+" gives

(4.29) A. Tk+l + B. Sk+I ----0,

where O(Sk+I) <---- m and 0(Tk+I) ----< n. Thus, Sk+I/Tk+I is the scaled Pad6 fraction of type
(m, n) such that

(4.30) GCD (Sk+I, Tk+I)- Z.
Thus h

As a consequence of Corollary 4.2. Algorithm 3 computes co-multipliers Sk and
Tk, only, such that

(4.31) AR. T+ BR. S R GCD (A, B).

The remainder R ff is available only if the multiplications in steps 3 and 6 are performed
without the modulo operation.

4.3. Fast GCD computations.
THEOREM 4.3. Algorithm 2 applied to -A(z)/B(z), where A(z) and B(z) are

polynomials of degree m and n, respectively, returns the scaled Padd fraction S1/ T1 of
type m, n) such that

(4.32) AR TR1 + BR $1R 0

266 s. CABAY AND D.-K. CHOI

and its predecessor So/To of type rn h,,,, 1, n h,,,, 1 such that

aR. ToR+BR.SoR=RoR,(4.33)

where

and

z’’’" GCD (Sl, T1)

Ro GCD (A, B).

Proof. Since scaled Pad6 fractions are unique, the result is an immediate con-
sequence of Corollary 4.2.

The greatest common divisor Ro is not explicitly computed by Algorithm 2.
However, 0(Ro) A,, <- n. Using fast multiplication, it can therefore be determined in
O(n log n). As a consequence of this and Theorem 3.8, we have

THEOREM 4.4. Algorithm 2 can compute the greatest common divisor, the cofactors
and the comultipliers of two polynomials of degrees rn and n, where m >= n, in time

O(m log m) + O(n log2 n).
Thus, Algorithm 2 for GCD computations is basically of the same asymptotic

complexity as the fast algorithms of Moenck [14], Aho et al. [1] and Brent et al. [4],
which are of complexity O((m + n) log- m + n)). However, Algorithm 2 has the advan-
tage of being partly iterative (approximately half as many recursive calls are used in
comparison with the other fast methods). This can result in significant cost savings in
an implementation environment (Verheijen [18]).

4.4. Antidiagonal computations. Let

(4.34) A(z)= E aiz’
i=0

be a unit power series, and let

d

(4.35) A(z) Y’. aa_,z’, d >- O,
i=0

be the reciprocal of the first d + 1 terms of A(z). In this section, we examine the
intermediate results obtained by Algorithm 25 while computing the scaled Pad6 fraction
of type (n, n), 2n -< d, for the two polynomials 1 + zAl(z) and BR(z) --1.

At the ith iteration of Algorithm 2, the scaled Pad6 fraction SNN(Z)/TIu(z) of
type (N, N) for-{l+zA(z)}/BR(z) and its predecessor S..(z)/T.N.(z) are
determined such that

(4.36) {1 + zA(z)} T(z)- Sr(z) zN+’+lRl(Z),

(4.37) {1 + zAff(z)} T,u,(z)- Su.u.(z) z2N*+’Ro(z),
where

N* N ArvN 1

and

z’’’ GCD SNN TNN),

It is assumed that no truncation of polynomial operations takes place.

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 267

By taking reciprocals of (4.36) and (4.37), it follows that

Aa(z) TN(z)-R(z)= zd+I{SqN(Z) TqN(Z)}

Aa(z) T.N.(z)- U(z)= Zd+lf Rou.u.(z)-T.u.(z)}
(4.38)

(4.39)

where

(4.40)

and

(4.41)

O(R) d N- lzuN

O(R) d- N*.

THEOREM 4.5. Let M d N and M* d N*. Then the scaled Pad fractions
of type (M, N) and (M*, N*) for A(z) are R(z)/TN(z) and R(z)/T.i.(z),
respectively.

Proof From (4.38), (4.39), (4.40) and (4.41), clearly the degree and order condi-
tions for scaled Pad6 fractions are satisfied. To complete the proof, let

G(z) GCD TqN, R).
Then, from (4.38), G(z) must divide not only TN but za+lSN(Z), as well. Since
OCD (SNN, TN)= 1, it follows that

O(z) z

for some A -> 0. Thus, R(z)/T(z) is a scaled Pad fraction oftype (M, N). Similarly,
RoR(z)/T..(z) is a scaled Pad fraction of type (M*, N*). [q

Observe that

(4.42) M+N=d

and

(4.43) M* + N* d.

The scaled Pad6 fractions RR(z)/Tvlv(Z) and R(z)/TV.N.(Z) both lie along the ath
anti-diagonal path of the scaled PadO table I’(A), where

DEFINITION (see, for example, Brent et al. [4]). The dth anti-diagonal path of
the scaled Pad6 table I’(A) for a unit power series A(z) is defined to the set of all
scaled PadO fractions of type (i, j), where

(4.44) +j d.

But, by Theorem 4.5, the scaled PadO fraction RR(z)/Tv(z) and its predecessor
I(z)/ Tu.u.(z), along the dth anti-diagonal path, are obtained by applying Euclid’s
extended algorithm to the reciprocals of 1 + zA(z) and B(z)=-l, that is, to the
polynomials Aa(z)+ za+ and -za+. However,

(4.45) GCD (Aa(z)+ za+, -za+) =GCD (Aa(z), -za+).

This is precisely the result given by McEliece et al. [13]; namely, Euclid’s extended
algorithm applied to Aa(z) and -za+ yields all the Pad fractions along the dth
anti-diagonal path of the Pad table for A(z). Equivalently, by Theorem 4.5, the same
Pad6 fractions can be obtained by applying Algorithm 3 to the two polynomials
1 + zA(z) and B(z)=-1, and then taking reciprocals of the results.

In addition, by Theorem 4.5, Algorithm 2 can be used to compute any specific
scaled Pad6 fraction R1R(z)/Tvv(z) of type (M, N), where M+ N d, along the dth

268 s. CABAY AND D.-K. CHOI

anti-diagonal path for A(z). This requires O(N log2 N) arithmetic operations to
compute, by Algorithm 2, the scaled Pad6 fraction Svl(Z)/TvN(Z) of type (N, N) for
1 + zA(z), plus an additional O((d- N) log (d N)) operations to determine Rl(Z)
which satisfies (4.36). This asymptotic cost is the same as the cost of the fast algorithm
of Brent et al. [4] for computing the greatest common divisor of Ad(Z) and -zd/l.
However, their PRSDC algorithm can compute a specific Pad6 fraction along the dth
anti-diagonal only with significantly more complications.

5. Conclusions. Central to the classical theory of Pad6 approximants of power
series are the concepts of the Pad6 form, which always exists but may not be unique,
and the Pad6 fraction, which is unique but in a certain sense may not exist. The
fundamental definition introduced in this paper is the scaled Pad6 fraction which exists
uniquely. It is shown that scaled Pad6 fractions satisfy a three-term relationship between
elements along an off-diagonal path of the scaled Pad6 table. This relationship circum-
vents the problems of the degenerate case--i.e., the problems which plague other
relationships such as those upon which the e-algorithm and the qd-algorithm are based.

The three-term relationship is used to develop an O(n:z) algorithm (Algorithm 3)
which computes along an off-diagonal path, a finite sequence of successive scaled Pad6
fractions for the quotient of two power series. In the case that the power series is
normal, Algorithm 3 is identical to the one described by Brezinski [5]. In the case that
computations progress along the diagonal, Algorithm 3 becomes that of Cabay and
Kao [6]. Furthermore, it is shown that if the two power series are finite (i.e., poly-
nomials), then Algorithm 3 with computations along one specific off-diagonal path is
exactly equivalent to Euclid’s extended algorithm for computing the greatest common
divisor of two polynomials. However, other off-diagonal paths can be used to compute
greatest common divisors, and it remains a subject for future research to determine
the optimal one.

By doubling the step size at each iteration, the three-term relationship gives rise
to an O(n log2 n) algorithm (Algorithm 1 or Algorithm 2). The cost complexity assumes
the existence of fast methods for polynomial arithmetic. The decision to double the
step-size (rather than to triple it, for example) is not accidental. We believe that this
choice is optimal (within the constraints placed by fast polynomial arithmetic methods),
but a formal proof remains to be obtained.

When applied to polynomials, Algorithm 2 at each iteration routinely produces
intermediate polynomial remainder sequences. For this reason, and because Algorithm
2 is simply a fast version of Algorithm 3, Algorithm 2 is truly a fast Euclid’s extended
algorithm. The PGCD, HGCD and EMGCD algorithms of Moenck [14], of Aho et
al. [1], and of Brent et al. [4], respectively, also compute greatest common divisors
with the same cost complexity, but these methods are simply GCD methods. They do
not produce intermediate polynomial remainder sequences. In addition, the artificial
splitting of polynomials used by these methods to achieve their speed makes them
difficult to understand. Finally, these methods are totally recursive, which makes them
more costly to implement than Algorithm 2 which is semi-iterative.

For computing scaled Pad6 fractions for a power series, Brent et al. [4] have
shown that the EMGCD algorithm can be modified, with substantial extra detail, to
compute entries along an anti-diagonal path of the Pad6 table. We have shown that
Algorithm 2 and Algorithm 3 can also be used to compute such entries, routinely.
From a practical point of view, however, it seems to us that computations along an
anti-diagonal path are not as natural as they are along an off-diagonal path. If the
choice of the anti-diagonal path is incorrect, computations must be restarted. For

ALGEBRAIC COMPUTATIONS OF SCALED PADI FRACTIONS 269

off-diagonal computations, n need not be known a priori, and from an application
point of view, this may be one of the most important contributions of this paper.

It is not clear at this time whether or not the fast method, Algorithm 2, is useful
in a practical environment. Initial experiments performed by Verheijen [18] indicate
that the fast method, Algorithm 2, outperforms the classical one, Algorithm 3, only
when n is greater than approximately 1600. However, as for the fast methods for
polynomial multiplication, a hybrid ofAlgorithm 2 and Algorithm 3 should significantly
lower this cross-over point. This remains a subject for future research.

An effective implementation of an off-diagonal algorithm should prove to be a
substantial tool in the design of a symbolic and algebraic system. A single routine serves

(1) to obtain rational approximants of power series,
(2) to convert rational functions from their power series representation,
(3) to compute greatest common divisors of polynomials, and
(4) to solve Hankel and Toeplitz systems of equations.
The scope of this paper includes those power series with coefficients over a field,

only.. This restriction is relevant whenever division is required by the off-diagonal
algorithms. By choosing to perform pseudo-division, rather than division, the
algorithms can be modified so that they are applicable to power series over a Euclidean
domain, rather than a field. As for Euclid’s extended algorithm, the modified algorithms
shall experience exponential growth of coefficients. It is a subject for future research
to determine if methods similar to those of Collins [9] can be used to keep the growth
linear; and if so, would the resulting algorithm compare favorably with the method
proposed by Geddes [10]. Other plausible methods for extending the results to
Euclidean domains, and which need to be investigated, include the Chinese Remainder
and Hensel algorithms (see Yun [20]).

The extension of results to Euclidean domains includes as a special case the
multivariate power series. It is of interest to determine how this extension would
compare with current methods for solving block Hankel systems, and for constructing
Pad6 approximants for multivariate power series. This remains a subject for future
research.

As a final suggestion for future research, the stability of the algorithms for the
numerical computation of scaled Pad6 fractions requires investigation. Some very
preliminary results are encouraging.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] G. A. BAKER, JR, Essentials ofPad Approximants, Academic Press, New York, 1975.
[3] J. BENTLEY, D. HANKEN AND J. SAXE, A general methodfor solving divide-and-conquer recurrences,

ACM SIGACT NEWS, 3 (1980), pp. 33-44.
[4] R. BRENT, F. G. GUSTAVSON AND D. Y. Y. YUN, Fast solution of Toeplitz systems of equations and

computation of Padd approximants, J. Algorithms, (1980), pp. 259-295.
[5] C. BREZINSKI, Computation of Padd approximants and continued fractions, J. Comp. Appl. Math., 2

(1976), pp. 113-123.
[6] S. CABAY AND T. T. C. KAO, The diagonal Pad. table and the triangular decomposition of Hankel

matrices, Tech. Rept. TR83-10, Dept. Computing Science, Univ. Alberta, Edmonton, 1983.
[7] D. K. CHOI, Algebraic computations ofscaled Paddfractions, Ph.D. dissertation, Univ. Alberta, Edmon-

ton, 1984.
[8] G. CLAESSENS, A new look at the Padd table and the different methods for computing its elements, J.

Comp. Appl. Math., (1975), pp. 141-152.
[9] G. E. COLLINS, Subresultants and reduced polynomial remainder sequences, J. Assoc. Comput. Mach.,

14 (1967), pp. 128-142.

270 s. CABAY AND D.-K. CHOI

[10] K. O. GEDDES, Symbolic computation of Padd approximants, ACM Trans. Math. Software, 5 (1979),
pp. 218-233.

11] W. B. GRAGG, The Padd table and its relation to certain algorithms of numerical analysis, SIAM Rev.,
14 (1972), pp. 1-61.

[12] J. D. LIPSON, Elements ofAlgebra and Algebraic Computing, Addison-Wesley, Reading, MA, 1981-.
[13] R. J. MCELIECE AND J. B. SHEARER, A property of Euclid’s algorithm and an application to Padd

approximation, SIAM J. Appl. Math., 34 (1978), pp. 611-617.
[14] R. MOENCK, Studies in fast algebraic algorithms, Tech. Rep. TR-57, Computer Science Dept., Univ.

Toronto, Toronto, Ontario, 1973.
15] H. PAOli, Sur la reprdsentation approche d’ unefonction par des fractions rationelles, Thesis, Ann Ecole

Nor., 9 (1982), pp. 1-93, supplement.
16] J. RISSANEN, Solution of linear equations with Hankel and Toeplitz matrices, Numer. Math., 22 (1974),

pp. 361-366.
[17] W. F. TRENCH, An algorithm for the inversion offinite Toeplitz matrices, J. Soc. Ind. Appl. Math., 12

(1964), pp. 515-522.
[18] A. VERHEIJEN, Evaluation of diagonal Padd algorithms, M.Sc. thesis, Univ. Alberta, Edmonton, 1983.
19] P. WYNN, The rational approximation offunction which areformally defined by a power series expansion,

Math. Comp., 14 (1960), pp. 147-186.
[20] D.Y.Y. YUN, The Hensel lemma in algebraic manipulation, Univ. Massachusetts, Amherst, Mac TR-138,

1974.

SIAM J. COMPUT.
Voi. 15, No. 1, February 1986

(C) 1986 Society for Industrial and Applied Mathematics
019

CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS
WITH APPLICATIONS*

H. EDELSBRUNNER# AND E. WELZL

Abstract. For H a set of lines in the Euclidean plane, A(H) denotes the induced dissection, called the
arrangement of H. We define the notion of a belt in A(H), which is bounded by a subset of the edges in
A(H), and describe two algorithms for constructing belts. All this is motivated by applications to a host of
seemingly unrelated problems including a type of range search and finding the minimum area triangle with
the vertices taken from some finite set of points.

Key words, computational geometry, arrangements of lines, plane-sweep, maintenance of convex hulls,
efficient algorithms, halfplanar range search

1. Introduction. The systematic study of algorithms for low-dimensional geometric
problems started with the doctoral dissertation of Shamos IS] around 1975. Since then,
this area of research experienced a steady increase in activity which can be explained
by the host of theoretically interesting problems in the field and also by the relevance
of the developed results to more practically oriented branches in computer science.

This paper is concerned with several seemingly unrelated problems dealing with
finite sets of points in the Euclidean plane. The problems are discussed in 4.1
through 4.5. All solutions rely heavily on the more basic developments of 2 and 3.
Section 2 introduces the concept of a dual plane which hosts a line for each point in
the original space. Such a set of lines cuts the (dual) plane into convex regions, edges,
and vertices which express certain convexity properties of the (original) point-set fairly
explicitly. The set of lines also turns out to favour the development of algorithmic
solutions for the (original) problems, once the correspondences between both settings
are reasonably understood. Section 3 presents two algorithms for constructing belts,
a fundamental concept defined for sets of lines in 2.

We explicate one problem to illustrate the general character of our results: Let $

be a set of n points in the plane. The halfplanar range search problem requires a data
structure for S such that the number of points which lie in a later specified query
halfplane can be determined efficiently. All known solutions either take a lot of space
(O(n2) space suffices to achieve O(log n) time for answering a query [EKM]) or
suboptimal time (with O(n) space, the currently best solutions answers a query in
O(/10"695) time [EW2]). Recent arguments of Fredman IF] also support the thesis that
halfplanar range search is inherently more complex than classical orthogonal range
search (see Bentley and Friedman [BF] for an early survey of solutions for the latter).
Motivated by these results, we relax the problem and ask for rough ideas of the number
of points in a query halfplane rather than for the exact answer. Sections 4.1 and 4.2
offer families of solutions which realize varying degrees of accuracy. Most striking,
Theorem 4.6 shows the existence of a constant space structure which discriminates
between halfplanes that contain less than one third and more than two thirds of all
points.

2. Geometric preliminaries. This section introduces the geometric concepts and
facts which are needed in the forthcoming discussions. The primary concern are
so-called k-sets of planar point-sets and their appearance under a dualizing geometric
transform.

* Received by the editors October 4, 1982, and in revised form October 29, 1984.

" Institutes for Information Processing, Technical University of Graz, A-8010 Graz, Austria.

271

272 l-l. EDELSBRUNNER AND E. WELZL

Let S denote a set of n points in the plane, for some positive integer n. We call
a subset S’ of S a k-set of S, for 0 k- n, if it contains k points and there exists a
halfplane which intersects S in S’. Let fk(S) denote the number of k-sets realized by
S and let fk(n) denote the maximum of fk(S), for all sets S of n points in the plane.
Then fo(n) fn (n) 1 and obviously fk(n) fn-k (n), for 0 k n. Bounds on the
asymptotic behaviour of fk(n), for 1--k n-1, are developed in Erds, Lovasz,
Simmons, and Straus [ELSS] and in Edelsbrunner and Welzl [EW1]:

PROPOSITION 2.1. Let k and n denote two positive integers with k <- n/2J. Then
f(n) and f,_k(n) are in (n log (k/ 1)) and in O(nkl/2).

It is often the case that geometric problems formulated for point-sets are more
conveniently solved in dual space, which can, e.g., be obtained by application of the
following geometric transform T which was also used in Brown [Br] to solve geometric
problems different from ours.

(1) A point P=(Px, Py) is mapped into the line T(p) whose points (x, y) satisfy
y pxx + py, and

(2) a nonvertical line L whose points (x, y) satisfy y- Lxx / Ly is mapped into
the point T(L)=(-Lx, Ly) (see Fig. 2-1).

v

ST"

FIG. 2.1. T applied to three points and a line.

A set S of points is transformed into a set T(S) of nonvertical lines. The nice
property of T is the maintenance of the relative position between a point and a line.
Let p (p, py) be a point and L: y Lxx + Ly a nonvertical line. Let Yo Lpx + Ly.
Then we say that p lies below, on, or above L depending on whether py Yo, Py- Yo,
or py Yo. We also say that L lies above p, contains/, or lies below p in these cases.

Observation 2.2. Let p denote a point and L a nonvertical line in the plane. Then
p lies below (or above) L if and only if T(p) lies below (or above) T(L).

This effect can be observed in Fig. 2.1 where P2 is the only point below L and
T(p) is the only line below T(L).

The set H T(S) of lines induces a dissection of the plane called the arrangement
A(H) ofH. A(H) consists of vertices (intersections of lines), edges (maximal connected
subsets of the lines which contain no vertex), and regions (maximal connected subsets
of the plane which contain no edge or vertex). For convenience, we say that two
parallel lines intersect in a vertex at infinity. Also for convenience, we define the notions
of complete edges and regions: A complete edge of A(H) is a bounded edge, an
unbounded edge on a line that has a parallel line in H, or the union of two unbounded
edges both supported by the same line which has no parallel line in H. A complete

CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS 273

region of A(H) is a bounded region, an unbounded region enclosed between two
parallel lines, or the union of two unbounded regions R and R2 such that any line
in H separates R from R2. Notice the similarity of these notions to the concepts of
edges and regions in the projective plane. There exists an important correspondence
between the k-sets of S and the complete regions of A(H):

Observation 2.3. Let S’ be some k-set of S. Then there exists a complete region
R in A(H) such that a line L separates S’ from S-S’ if and only if T(L) lies in R.

For each point p in the plane let b(p), o(p), and a(p) denote the number of
lines in H which lie below p, contain p, and lie above p, respectively. Evidently,
b(p)+ o(p)+ a(p) n (n the cardinality of H), for each point p. We define the k-belt
of H, for 0=<k_-< In/2], as the set of points p in the plane such that b(p)+o(p)>=k
and a(p)+ o(p)>= k (see Fig. 2.2). The 0-belt is the whole plane, and the k-belt, for
k-> 1, is bounded below and above by an unbounded polygonal chain, respectively.
These polygonal chains are monotone in x, that is, any one of them intersects each
vertical line in exactly one point. For k=(n+ 1)/2, the two boundaries of the k-belt
coincide. Obviously, the k’-belt is contained in the k"-belt if 0-< k"<k’<= In/2].

FIG. 2.2. The 3-belt for 8 lines.

Let p (Px, Py) be an arbitrary point in the plane and let B be the k-belt of H,
for some integer k. Let Yb and Ya denote the y-coordinates of the intersections of the
vertical line through p and the lower and upper boundary of B, respectively. We say
that p lies below, in, or above B if py < Yb, Yb <- Py <- Ya, or Ya < Py is true, respectively.

In the following sections, a k-belt will be represented by the sequences of edges
of its boundaries. Let bk(H) denote the number of complete edges bounding the k-belt
of H, and let bk(n) denote the maximum of bk(H), for all sets H of n lines in the
plane. The strong relationship between the k-sets of S and the complete regions of
A(H) imply that bk(n) and bn-k(n) are in O(fk-l(n)q-fk(n)) and therefore in
O(n log (k / 1)) and in O(nk/2). The interested reader is invited to verify the following:

LEMMA 2.4. Let S denote a set of n points in the plane with no three collinear, and
define H T(S). Then

bo(H) =0,

b,(H) =f(S),

bk(H)=fk_,(S)+fk(S), for 2<=k<= [(n-1)/2].

274 H. EDELSBRUNNER AND E. WELZL

In 4 of this paper, so-called simplified belts of sets of lines are used to decrease
the space requirements needed for solving halfplanar range estimation problems. These
simplified belts are obtained from ordinary belts by replacing sequences of complete
edges by single complete edges. To this end, let B denote the k-belt of a set H of
n >= 2 lines and 1 <-k <-In/2]. For convenience, we assume that no three lines of H
are concurrent, that is, no three intersect in a common vertex. The unrestricted case
will be discussed later. We call a vertex of the lower and upper boundary of B a lower
and an upper vertex, respectively. Note that two parallel lines define a vertex at infinity
which is defined a lower vertex. If a vertex belongs to both boundaries then it is
considered as two vertices, one of each kind. We assign the numbers 0, 1, , bk(H) 1
to the bk(H) vertices of B such that i<j if is a lower and j an upper vertex, and
vertex is to left of the vertical line through vertex j, otherwise (see Fig. 2.3).

12

15

18

FIG. 2.3. 3-simplified 3-belt for 8 lines.

Let m be a positive integer with m<-2[n/2]-2k+l and m<-_bk(H)-l. The
former restriction on m guarantees that the m-simplified belt is going to be bounded
by two noncrossing polygonal chains (see Lemma 2.6). The latter restriction implies
that the m-simplified belt will avoid over-simplification. The complete edges of the
boundaries of the m-simplified k-belt connect the vertices 0 and m, m and 2m,. , rm
and 0, with r= [(bk(H)-l)/mJ. A complete edge which connects two lower or two
upper vertices is the line segment which has the two vertices as endpoints. A complete
edge connecting a lower and/n upper vertex consists of two rays on the line through
the two vertices which emanate from the two vertices such that they do not overlap.
The m-simplified k-belt is the set of points in between the lower and upper boundary
including the boundary points. The reason for the introduction of simplified belts is
the smaller number of vertices and edges they consist of as compared to ordinary belts.

Observation 2.5. Let S denote a set of n points in the plane such that no three
are collinear. Then the m-simplified k-belt of H= T(S), for 1-<_k_-< In/2], l<m<
2[n/2]-2k+ 1, and m <- bk(H)-l, has at most [bk(H)/m] vertices.

The nice property of simplified k-belts is the fact that they are reasonable approxi-
mations of ordinary k-belts.

LEMMA 2.6. Let S be a set of n points in the plane such that no three are collinear,
and define H=T(S). Then the m-simplified k-belt, for l<-m<=2[n/2]-2k+l and
m <-_ bk(H)-1, contains the (k+ [m/2J)-belt and is contained in the max {0, k-
m/2J }-belt of H.

CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS 275

Proof. Consider an arbitrary complete edge e of the m-simplified k-belt which
we call M; see Fig. 2.4. Let L denote a line in H which properly intersects e, that is,
it does not support e. It is readily seen that at least one complete edge of the k-belt
of H which is supported by L is in the sequence of complete edges replaced by e (see
Fig. 2-4). (Note that this is true only because no three lines intersect in a common
point.) Consequently, at most m- 2 lines of H properly intersect e.

FIG. 2.4. Simplification with m 8.

From the correspondence between the k-sets of S and the complete regions of
A(H) (see Observations 2.2 and 2.3) and the definition of k-belts we know that the
regions which share an edge with the k-belt correspond to (k 1)-sets or k-sets. W.l.o.g.
let the regions above the considered sequence of edges correspond to (k-1)-sets.
Those regions above the latter regions which share edges with them correspond to
(k-2)-sets, etc., etc. Let k’ be minimal such that there is a complete region R which
corresponds to a k’-set and R intersects e or lies between e and the sequence of edges
replaced by e. Since e properly intersects only m-2 lines, we have k’>-k [m/2J.
(The details of the verification of this fact are left to the interested reader.) This implies
the second part of Lemma 2.6 while the analogous reasoning implies the first part.
This completes the argument.

As an immediate consequence of Lemma 2.6, the m-simplified k-belt intersects
each vertical line in a single and nonempty interval provided k + [m/2J <= In/2] which
is equivalent to m <=2[n/2]-2k+ 1. Thus, we can extend the below-in-above relation
defined for points and ordinary belts to points and simplified belts without ambiguity.

Let us now return to the general case of a point-set S which may contain an
arbitrary number of points on a single line. Difficulties arise when a belt of H T(S)
is simplified which contains a vertex common to more than two lines. If the sim-
plification is carried out as described then Lemma 2.6 need not be true. This can be
remedied by taking care that a new complete edge properly intersects at most m-2
lines of H. A simple way to .achieve this is to consider a vertex v which is common to
i>= 2 lines as a sequence of min {m- 1, i-2} degenerate edges and one more vertex.
This invalidates the definition given for simplified belts, and Lemma 2.6 is true again.
Observation 2.5 is no longer true in the strength it is stated. Nevertheless we have"

Observation 2.7. Let S denote an arbitrary set of n points in the plane. Then the
m-simplified k-belt of H= T(S), with l<_-k<_- In/2] and l<=m<-2[n/2]-2k+ 1, con-
tains at most [bk(n)/m] complete edges.

Although there may be new complete edges which replace less than m old ones,
the number is compensated by the loss of edges caused by the concurrency of lines.

276 H. EDELSBRUNNER AND E. WELZL

3. Constructing belts. Let S be a set of n points in the plane. Throughout this
section, we will assume that n and k are positive integers such that k <= n/2]. We will
introduce two algorithms for constructing a belt of H T(S) which is represented by
two linear lists storing the lower and upper vertices ordered from left to right, respec-
tively. While the first algorithm is reasonably simple, the second is reasonably efficient.
In fact, no better algorithm is currently known except for the special case k 1. For
the time being, we assume that no two lines of H are parallel and that no three lines
are concurrent. The unrestricted case will be discussed later. W.l.o.g. only the construc-
tion of the lower boundary of a belt is described.

ALGORITHM TRIVIAL PLANE SWEEP:
Let V denote a vertical line sweeping from left to right. (Note that no line in H

is vertical, thus, each line intersects V in exactly one point.) V is associated with a
linear array D which maintains the sorted order of the lines w.r.t, their intersections
with V as V sweeps from left to right. Hence, at any moment, the kth line in D is
also the kth bottommost line at the current x-coordinate. With V we associate also a
priority queue Q which contains the x-coordinates of the anticipated intersections of
any two adjacent lines in D.

If V encounters the intersection of two lines Lb and La, with Lb below La to the
left of the intersection, then the following actions are taken: (1) Delete the topmost
element from Q, that is, the x-coordinate of the intersection. (2) Let L and L denote
the lines immediately below L and above L, respectively. If L and Lb, or L and
Laa intersect to the right of V then delete the x-coordinate of the respective intersection
from Q. (3) Reverse the order of Lb and L in D. (4) If Lb and Laa, or L and Lbb
intersect to the right of V, then insert the x-coordinates of those intersections into Q.
(5) If Lb or L is the kth line before the intersection is encountered, then the inter-
section point completes an edge of the k-belt which is reflected in the structure of the
k-belt.

Trivial modifications enable the algorithm to handle degeneracies like parallel
and concurrent lines. In the former case, intersection points in infinity are created. In
the latter case, the order of all lines which meet in a vertex encountered by V is
reversed in D.

LEMMA 3.1. Let H be a set of n nonvertical lines in the plane. Algorithm TRIVIAL
PLANE SWEEP constructs the k-belt ofH in O(n2 log n) time and O(n + bk(H)) space.

Proof There are at most () intersections to be handled with the data structures
D and Q. Each intersection of two lines requires O(log n) time, see Aho, Hopcroft,
and Ullman [AHU]. Common intersections of i> 2 lines require O(i log n) time which
is less than the amount that would be needed if all pairs of the lines intersect in
unique points. (Deletions from Q can be handled by maintaining a pointer from each
pair of adjacent lines in D for which an intersection is anticipated to the x-coordinate
of this intersection in Q.) The space required by D and Q is O(n) and the one for
the k-belt is O(bk(H)). This completes the argument.

It is worth noting that Algorithm TRIVIAL PLANE SWEEP can construct all
belts of H within the same asymptotic time bounds. The algorithm is also an interesting
general method for certain types of point problems if it neglects the construction of
belts and performs other actions instead. In fact, 4.5 demonstrates one such example.

For computing a single belt, a considerably more efficient method is obtained by
refining Algorithm TRIVIAL PLANE SWEEP: Instead of considering all () intersec-
tions, only those coinciding with vertices ofthe belt are processed. This is made possible
by maintaining the lines below and above the kth line in separate data structures of

CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS 277

a particular kind. For this algorithm we need the following result due to Overmars
and van Leeuwen [OvL1]:

PROPOSITION 3.2. The intersection of a set S of n halfplanes can be computed in
O(n log n) time and O(n space. This intersection can then be maintained with O(log2 n)
time per insertion and deletion such that the adjacent edges of a given edge are available
in constant time. All bounds state the requirements in the worst case and n denotes the
current number of halfplanes stored.

Again only the construction of the lower boundary of the belt is described, and
for the time being, we assume that no two lines are parallel and no three are concurrent.

ALGORITHM SOPHISTICATED PLANE SWEEP:
Let V denote a vertical line sweeping from left to right. At some moment in time

let L in H cause the kth bottommost intersection VL with V. The lines below VL are
interpreted as lower boundaries of halfplanes which are stored in a data structure HB.
The lines above V are interpreted as upper boundaries of halfplanes which are stored
in a similar data structure HA. nB and HA are instances of the data structure referred
to in Proposition 3.2.

The next intersection of L to the right of V is determined as follows: (1) The
halfplane bounded below by L is inserted into Hn. The adjacent edge in counterclock-
wise order ofthe edge caused by this halfplane (if it exists) gives the leftmost intersection
to the right of V of L with a line Ln below V (see Fig. 3.1, where no such edge exists).
(2) The halfplane bounded above by L is inserted into HA. The adjacent edge in
clockwise order of the edge caused by this halfplane (if it exists) gives the leftmost
intersection to the right of V of L with a line LA above V (see Fig. 3.1). (3) W.l.o.g.
let LA intersect L above Ln (as illustrated in Fig. 3.1). Then L is deleted from Hn and
LA is deleted from HA. (If neither LA nor LB exists, then L supports the rightmost
and unbounded edge of the lower boundary.) In addition, the new edge of the k-belt
created is reflected in the data structure of the k-belt, and LA is the new kth line.

/

/

FIG. 3.1. Constructing the 3-belt of 8 lines.

A short moment of reflection shows that for the correctness of the algorithm it
must be guaranteed that L contributes an edge to the intersection of halfplanes in Hn
and HA, respectively. In addition, this edge must intersect V at its current position.
We will argue that this is true for Ha as the case of HA is completely analogous.

278 H. EDELSBRUNNER AND E. WELZL

Let In denote the intersection of the halfplanes in Hn. Since the bounding lines
of those halfplanes are all below L at the current position of V, L has at least the
intersection with V in common with I. This point lies also on the boundary of the
halfplane which is bounded below by L. This implies what has to be guaranteed.

Similarly to Algorithm TRIVIAL PLANE SWEEP, degeneracies like parallel and
concurrent lines can be incorporated easily. While the former case is completely trivial,
the latter requires some care. It occurs when L intersects IB or IA in a vertex or both
in the same point. If L intersects lines in a single point, then up to i+3 insertions
and deletions have to be performed.

LEMMA 3.3. Algorithm SOPHISTICATED PLANE SWEEP constructs the k-belt
ofH in O(bk(n) log2 n) time and O(n+bk(H)) space.

Proof. At the far left, the line with the kth smallest slope is also the kth bottommost
line. This line L can be determined in O(n) time and the data structures H and HA
for the lines below and above L, respectively, can be constructed in O(n log n) time.
These activities require O(n) space.

Each intersection point of two lines on the boundaries of the k-belt can be
determined in O(log2 n) time and the structures Hn and HA can then be adjusted in
O(log2 n) time, see Proposition 3.2. A careful implementation processes a vertex
common to i> 1 lines in O(i log2 n) time. Note that this is less than the amount which
is required in the worst case if those lines define () intersection points. This implies
that O(bk(n) log2 n) time is spent for the computation and O(bk(H)) space is occupied
by the description of the k-belt. This completes the argument.

Both algorithms can easily be adapted to construct simplified belts instead of
ordinary ones. For computing the m-simplified k-belt, only each mth vertex of the
k-belt gives rise to a new edge to be created. Recall that a vertex common to => 2
lines is interpreted as min {m, i-1} vertices. This implies:

THEOREM 3.4. Let S denote a set of n points in the plane. Then there exists an
algorithm which constructs the m-simplified k-belt (the ordinary k-belt is the 1-simplified
k-belt) of H= T(S) in O(bk(n) log n) time and O(bk(n)/m) space.

The space bound is actually O(n+ bk(H)) for ordinary k-belts. The proof is an
immediate consequence of Lemma 3.3 and Observations 2.5 and 2.7.

This result is not optimal at least for k= 1 which is shown by the following
argument: Let L/ denote the open halfplane which is bounded below by the nonvertical
line L, and let L- denote the open halfplane which is bounded above by L. Then the
1-belt B of H can be written as

B=E2- ") L+- ") L-.
LH LH

Since the intersection of n halfplanes can be determined in O(n log n) time, see
Proposition 3.2, this gives also a method which computes B in O(n log n) time.

4. Applications. The methods presented in 3 have interesting applications to
seemingly unrelated problems. Algorithm TRIVIAL PLANE SWEEP yields a new
method for finding a minimum area triangle with the three vertices taken from some
given finite set. This is discussed in 4.5. Applications of k-belts to halfplanar range
estimation, finding so-called centerpoints, k-nearest neighbour search, and a problem
with points moving on a line are discussed in 4.1 through 4.4.

4.1. Halfplanar range estimation. This section describes the use of ordinary and
simplified belts for halfplanar range estimation. Representative for a variety of conceiv-
able variants, we define three of the most basic halfplanar range estimation problems
and show how to solve them.

CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS 279

Let S denote a set of n points in the plane and let k be some positive integer,
with k-< In/2]. The simplest halfplanar range estimation problem, termed simple
EP(k), reads as follows: Let h denote a query halfplane which contains A(h) points
of S. Decide whether 0 <_- A(h) < k, k -< A(h) _-< n k, or n k < A(h) _-< n.

THEOREM 4.1. Let S be a set of n points in the plane. There exists a data structure
which requires O(bk(n)) space and O(bk(n) log2 n) time for construction such that
O(log n) time suffices to answer a query of the simple EP(k), with k<= In/2].

Proof The asserted bounds can be achieved with the k-belt of H T(S) as will
be shown. The required amount of space and time for the construction follows
immediately from Theorem 3.4. Thus, let us consider a query of the simple EP(k).
W.l.o.g. let the query halfplane h be bounded above by the line L. Then

(1) h contains less than k points if and only if T(L) lies below the k-belt of H,
(2) h contains no less than k and no more than n- k points if and only if T(L)

is contained in the k-belt, and
(3) h contains more than n-k points if and only if T(L) lies above the k-belt

of H.
Which one of the three cases applies can be decided in O(log n) time by. binary

search since the two boundaries of the k-belt are monotone in x. This .completes the
argument.

Considerably more accurate answers can be obtained using several belts instead
of a single one. We define the uniform EP(e), with 0< e < 1, as follows: Let j
[[n/2]/[nJJ and let A(h) denote the number of points of S in the query halfplane
h. Determine an integer i, with -j<-i<-j, such that (j-i)[nJ <=A(h)<(j-i+ 1) [nJ
if i<0, j[nJ<-A(h)<=n-j[nJ if i=0, and n-(j-i+l)[nJ<A(h)<=
n-(j-i) In] if i> 0. This somewhat ugly definition of the problem has been chosen
since the most simple combination of belts is able to solve it. Similar but differently
defined halfplanar range estimation problems can be dealt with in more complicated
but essentially equivalent combinations of belts. For convenience, we define B:(H)=
’keK bk(H) for H= T(S) and K subset of {1,2,. ., In/2]}. Bib(n) is then defined
as the maximum of B:(H) for all sets S of n points.

THEOREM 4.2. Let S be a set of n points in the plane and write Hfor T(S). For the

uniform EP(e), with 0 < e < 1, there exists a data structure which requires O(B: n
space and O(B: (n) log2 n) time for construction, where K { n J, 2 n J,. ., j.[n },
such that a query can be answered in O(log n) time.

Before proceeding to the proof of this assertion let us comment on Br(n). No
reasonable upper bounds are known for these sums. The best bound follows from
Proposition 2.1 and claims that Br(n)is in O(n) and in o<lKIn /= , with IKI the
number of indices in K.

Proof of Theorem 4.2. The data structure used for the uniform EP(e) consists of
the k-belts of H, for k in K. Let h denote a query halfplane which is, say, bounded
above by the line L. In order to answer the query, we determine the largest i’ in
{0, 1,... ,j} such that T(L) is contained in the i[nJ-belt of H. Then the answer is
-j + i’ if i’ <j and T(L) lies below the (i’/ 1)[nJ-belt, and it is j-i’, otherwise.

Notice that binary search testing T(L) against the boundaries of the various belts
is no longer appropriate in order to achieve O(log n) query time. In the place of that
strategy we exploit a method due to Kirkpatrick [K]. Let D be a partition of the plane
with a total of DI regions, straight edges, and vertices. Kirkpatrick’s method permits
us to determine in O(log ID]) time the region of D that contains a query point. O(IDI)
space and O(IDI log IDI) time for construction is required. The assertion follows since
the collection of k-belts used induces a partition D of the plane with IDI O(Bl(n)).
This completes the argument.

280 H. EDELSBRUNNER AND E. WELZL

Before considering simplified belts for halfplanar range estimation we note that
k-belts of a line arrangement can be combined almost arbitrarily leading to all sorts
of answers reflecting the approximate number of points in the respective query half-
plane.

A serious drawback of ordinary belts is the superlinear space required in the worst
case. In particular, the combination of a large number of belts needs a rather large
amount of space. This drawback is bypassed by exploiting simplified belts as introduced
in2.

Let S denote a set of n points in the plane, define H T(S), let k denote an
integer with 1-<_k -< In and let m denote an integer with 2<-m<-_2[n/2]-2k+1
and m <= bk(H)- 1. Note that the simple EP(k) cannot be solved with the m-simplified
k-belt of H, if m > 1. We define the simple EP(k, m) as follows: Let h be a query
halfplane and let A(h) designate the number of points of S which are contained in h.
Decide whether O<-_A(h)<k+ [m/21, k- [m/2J <=A(h)<=n-k+ [m/2], or n-k-
[m/2J < A(h)<= n. Note that the three cases are not exclusive which implies that A(h)
does not uniquely determine the answer.

THEOREM 4.3. Let S be a set of n points in the plane and H T(S). For the simple
EP(k, m) with l<=k<-_ In/2], 2<=m<=2[n/2]-2k+l, and m<=bk(H)-I, there exists
a data structure which requires O(bk(n)/m) space and O(bk(n) log2 n) timefor construc-
tion such that O(log n) time suffices to answer a query.

Proof The bounds for the required space and time for construction are trivially
achieved by the m-simplified k-belt of H which we call M, see Observation 2.7 and
Theorem 3.4. By Lemma 2.6, M is contained in the max {0, k- [m/2J }-belt of H and
contains the (k+ [m/2J)-belt of H. Since k- [m/21 >-0 and k+ [m/2J _-< In/2] by
definition of m, a query with halfplane h bounded above by L can be answered by
deciding whether T(L) lies below, in, or above M. This can be done in O(log n) time
using binary search which completes the argument.

We say that a halfplanar range estimation problem has accuracy m if the overlap
between two different answers is at most m. E.g. the problem solved by the [nl/2]
simplified In/3] -belt M ofH has accuracy 2 [nl/2/2J. That is, M decides with accuracy
2[nl/2/2j whether there are less than [n/3J, from [n/3J to n- [n/3J, or more than
n- [n/3J of the points in the query halfplane. Due to Proposition 2.1 and Observation
2.7, M is known to require O(n) space.

As for ordinary belts, almost arbitrary combinations of simplified belts can be
used to obtain different solutions for different halfplanar range estimation problems.
For example, a relaxed version ofthe uniform EP(e) can be solved with n -simplified
belts yielding"

THEOREM 4.4. Let S be a set of n points in the plane and let e be a real number,
with 0<e < 1. Then there exists a data structure which requires O(nl-2bn/2(n)) space
and o(nl-b,,/2(n) log2 n) timeforconstruction such that O(log n) time suffices to answer
the uniform EP(e with accuracy In

4.2. Centerpoints. Let S be a set of n points in the plane. A point c not necessarily
in S is called a centerpoint of S if the two closed halfplanes of any line through c
contain both at least In/3 points. The existence of a centerpoint for every set S is a
consequence of Helly’s theorem [H]. In dual space, T(c) is a line such that for any
point p of T(c) there are respective at least In/3] lines of H T(S) which are not
below and not above p. So, T(c) is contained in the n/3 I-belt of H. The construction
of the region of all centerpoints of S thus might proceed as follows:

1. Construct the In/3 I-belt B of H.

CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS 281

2. Compute the intersection C of all closed halfplanes h defined as follows: Let
line L bound h, then T(L) is a vertex of B, and there are at most [n/3]-2 points
outside of h.

Theorem 3.4 and a method for constructing the intersection of m halfplanes in
O(m log m) time (Brown [Br]) imply

THEOREM 4.5. O(b,/3](n) log- n) time and O(bn/3](n)) space suffices to construct
the region of all centerpoints of a set of n points in the plane.

A line T(c) dual to a centerpoint c of S can be used for a surprisingly space
efficient solution of a weak halfplanar range estimation problem.

THEOREM 4.6. Let S be a set ofn points in the plane. There is a data structure which
takes constant space and O(bn/a](n) log2 n) time for its construction such that constant
time suffices to decide whether a given halfplane contains at most n-In/3 or at least
n/3 points of S.

We mention that developments following the ones reported in this paper lead to
new algorithms which compute a single centerpoint in O(n log4 n) time [CSY], [C].

4.3. k-nearest neighbours search. Let S denote a set of n points in the plane and
let k be some integer with 1 _-< k _-< n- 1. The k-nearest neighbours search problem [SH],
[L] requires the accommodation of S such that the k nearest to a later specified query
point can be determined efficiently. We consider the problem restricted to query points
in infinity which are better interpreted as directions. We assume that k is small compared
to n which are the only interesting cases.

Let B denote the k-belt of H- T(S). To each edge e of the lower boundary of
B we assign the list of lines below including the line which supports e. Similarly, to
each edge e of the upper boundary we assign the list of lines above including the line
which supports e. Note that two unbounded edges whose union is a complete edge
have assigned the same list which is now assigned to the complete edge. By construction,
two adjacent complete edges can have the same list of lines. In such a case both
complete edges are replaced by a single complete edge as described for simplified belts
in 2. The new complete edge has assigned the same list as the two complete edges
it replaces. Let B’ denote the modified belt which is obtained by repeatedly replacing
adjacent complete edges with identical lists of lines. (Note that Algorithm SOPHISTI-
CATED PLANE SWEEP can be used to construct B’ without creating B.)

A direction in the original space transforms under T into a vertical line. The query
is answered by binary search to identify the two complete edges of B’ which intersect
this vertical line. The k-nearest neighbours are those points whose corresponding lines
are assigned to one of the two complete edges determined.

Some amount of space can be saved, in particular for large k, via the following
method: Instead of assigning a list to each complete edge of B’, we assign a list only
to every kth of its complete edges. Let e denote a complete edge which has assigned
a list of lines. The complete edge f immediately to the right of e stores the lines that
must be deleted from, resp. inserted into, the list of e in order to obtain the one off.
In nondegenerate cases, f stores two lines. To cope with cases where f stores 2i> 2
lines, f is effectively treated like a sequence of complete edges. The analogous
information is stored for each of the next k-2 complete edges to the right of f. The
space required in the worst case is reduced by a factor k while the query time remains
the same by the following strategy: For a vertical query line q, the lower (or upper)
complete edge of B’ which intersects q is determined. Then the first complete edge to
the left of the latter is identified which has assigned a full list of lines. This list is
updated during the walk back to the originally determined complete edge. The lists

282 W. EDELSBRUNNER AND E. WELZL

are stored as doubly linked lists and the updates to be performed are indicated by
pointers to what has to be changed. A careful implementation of this method finally
implies:

THEOREM 4.7. Let S denote a set ofn points in the plane. There exists a data structure
which requires O(fk(S)) space and O(bk(n) log2 n) time for construction such that
O(log n + k) time suffices to report the k first points of S in a query direction.

4.4. Moving points on a line. Let S be a set of n moving points on a vertical line.
Each point p of S is specified by its location Po at time 0 and by its constant speed Ps
which is positive if p moves upwards and negative if p moves downwards. We say
that a point p is at position k at time if it is the kth point from above at this moment
t. Let Pk(S) denote the sequence of points at position k during the time interval from
minus infinity to plus infinity. This model of moving points is also considered by
Ottmann and Wood [OW] who examine the construction of P1(S), for example.

THEOREM 4.8. Let S be a set of n moving points on a line. Then there exists an
algorithm which computes Pk(S) in O(bk(n) log2 n) time and O(n +IPk(S)[) space, where
IPk(S)[denotes the length Of Pk(S).

Proof Each point p of S is transformed into a line by introducing time as second
coordinate with horizontal axis, say. Then the line corresponding to p intersects the
vertical coordinate axis at location Po and has slope ps. Thus, our problem transforms
to computing the upper boundary of the k-belt of the line arrangement obtained. The
assertion follows from Theorem 3.4 which completes the argument.

4.5. Minimum area triangle. Let S denote a set of n points in the plane, with
n >-3. A minimum area triangle of S is a triangle with minimum area whose vertices
are chosen from S. Dobkin and Munro [DM] were the first to come up with a nontrivial
solution that takes O(/12 log2 n) time and O(n2 log n) space. Their method is based on

Observation 4.9. Let TR denote a minimum area triangle of S with vertices p, q,
and r. Then r is a point in S ditterent from p and q which is nearest to the line through
p and q.

Observation 4.9 can be exploited for the determination of TR: for each line through
two points of S compute a nearest of the remaining points. Let us consider the scenario
in the dual space obtained by application of the transform T. The line through p and
q corresponds to the intersection v of T(p) and T(q) and r corresponds to a line
immediately below or above this intersection point, that is, r is hit first when v moves
upwards or downwards in the vertical direction. Note that the line immediately below
(or above) this intersection point is not unique if several lines intersect exactly
immediately below (or above) this point. A trivial modification of Algorithm TRIVIAL
PLANE SWEEP described in 3 yields:

THEOREM 4.10. Let S denote a set of n >-3 points in the plane. Then there exists an
algorithm which computes the minimum area triangle ofS in O(n log n) time and O(n
space.

We note that following our developments [CGL], [EOS] developed an O(n) time
and space algorithm for minimum area triangles which is based on the same geometric
observations as the algorithm above. The improvement in time is achieved by a new
method for constructing a complete arrangement.

5. Discussions and dynamization. The authors consider the introduction of k-belts
in arrangements of lines as the main contribution of this paper. This concept has
applications to several problems defined for lines or, in dual space, for points. Among
these applications are

(i) space efficient data structures for halfplanar range estimation in the plane,

CONSTRUCTING BELTS IN TWO-DIMENSIONAL ARRANGEMENTS 283

(ii) finding centerpoints in the plane,
(iii) determining k first points for query directions, and
(iv) computing the sequence of kth points of a dynamically changing set on a line.
All these applications rely on an efficient algorithm which computes a belt with

O(log: n) time per edge. A less efficient but more powerful method which constructs
belts in O(n: log n) time can also be used to find a triangle with minimum area whose
vertices are taken from a finite set of points in the plane.

All data structures presented for halfplanar range estimation are inherently static,
that is, there is no way to perform insertions of new points or deletions of points
efficiently. Data structures which accommodate those two operations are called dynamic.
There exists an extensive literature about general methods which convert static data
structures for so-called decomposable searching problems into dynamic ones, see e.g.
Bentley [B], Maurer and Ottmann [MO], and Overmars and van Leeuwen [OvL2]. A
searching problem is said to be decomposable if the answer for. any set S of objects
and any query objects q can be derived in constant time from the answers for $1 and
q, and for S: and q, respectively, for every partition of S into $1 and S:. It is easily
verified that the halfplanar range search problem is decomposable while the halfplanar
range estimation problems considered in 4.1 are not. Nevertheless, the general
dynamization methods can be applied to the data structures of 4.1. The strange effect
of those conversions is that the data structures as well as the problems are changed
in a meaningful way.

Representative for other and similar cases, let us consider the simple EP([n/3])
for a set S of n points in the plane. Let $1, S:,. ., S,,, be an arbitrary partition of S
into subsets of about n /: points each. Hence, m is also about n /:. Let ISil denote the
number of points in Si. Instead of the [n/3J -belt for T(S) we maintain an [ISil/3/-belt
for each subset Si. For details of the maintenance strategies of this collection of belts
we refer to Maurer and Ottmann [MO]. A point is inserted into (or deleted from) the
system by reconstructing only one belt which takes O(bk(n/m)log: n) time, with k
about n/:/3. A query is performed on each data structure which takes O(n /2 log n)
time. Let A(h) denote the exact number of points of S contained in h. The m answers
can be used to derive an interval of length about n/3 which contains A(h). This interval
can be derived from the m answers since the answer for S, with 1 =< -< m, decides for
about two thirds of the points in S whether or not they are contained in the query
halfplane.

Let us finally give a number of open problems which come naturally from the
investigations presented. (1) Give tighter bounds on fk(n), that is, improve Proposition
2.1. It is worthwhile to note that Erd6s, Lovasz, Simmons and Straus [ELSS] and
Edelsbrunner and Welzl JEW1] conjecture that the derived lower bounds are closer
to the truth than the upper bounds. (2) Section 4.1 has exploited collections of k-belts
as data structures. Let K be some fixed subset of {1,2,..., In/2]} and let Fr(n)
denote the maximum of YkI(fk(S) for all sets S of n points in the plane. Calculate
a lower and an upper bound for Fl((n). (3) Let a(S) denote the maximal number of
edges of an arbitrary x-monotone polygonal chain which is a subset of t_Jps T(p).
Let a(n) denote the maximum of a(S) for all sets S of n points in the plane. Note
that Proposition 2.1 implies that a(n) is in fl(n log n). Derive an upper bound for
a(n). (4) Can the construction of a k-belt of a set of n lines be accomplished in
O(bk(n) log n) time? (Compare Theorem 3.4.) (5) The data structure described in 4.3
has similarities with the order-k Voronoi diagram, see Shamos and Hoey [SH] or Lee
[L]. This diagram for a set $ of n planar points is a partition of the plane into convex
regions. Each region R is associated with a subset S’ of S which contains k points
such that an arbitrary point falls into R if and only if the points in S’ are nearer to p

284 H. EDELSBRUNNER AND E. WELZL

than the points in S-S’. Does there exist an algorithm which constructs the order-k
Voronoi diagram of S based on the method described in 4.3? It is tempting to
conjecture that such an algorithm can improve the algorithm due to Lee [L] which

constructs, successively, all order-/ Voronoi diagrams, for 1 <-i -< k. (6) At last, it is
also interesting to pose the same questions in a higher dimensional environment. Most
important: How many k-sets can be realized by a set of n points in three dimensions?

Note added in proof. It has been proved that FK(n) O(rt(keK k) ’/2) (E. Welzl,
More on k-sets offinite sets in the plane, Rep. 204, Inst. for Information Processing,
Technical Univ. Graz, Graz, Austria, 1985). Moreover, we observed that a(n) f(n2).

[AHU]

[B]
[BF]

[Br]

[CGL]

[c]

[csv]

[DM]
[EKM]

[LOS]

[EW1]

[EW2]

[ELSS]

[F]

[HI

[K]
[L]

[MO]

[ow]

[OvL1]

[OvL2]

IS]

[SH]

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis ofComputer Algorithms,
Addison-Wesley, Reading, MA, 1974.

J. L. BENTLEY, Decomposable searching problems, Inform. Process. Lett., 8 (1979), pp. 244-251.
J. L. BENTLEY AND J. H. FRIEDMAN, Data structuresfor range searching, ACM Comput. Surveys,

11 (1979), pp. 397-409.
K. Q. BROWN, Geometric transformsforfast geometric algorithms, Ph.D. thesis, Rep. CMU-CS-80-

101, Dept. Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA, 1980.
B. M. CHAZELLE, L. J. GUIBAS AND D. T. LEE, The power ofgeometric duality, Proc. 24th Annual
IEEE Symposium on Foundations of Computer Science, 1983, pp. 217-225.

R. COLE, Slowing down sorting networks to obtainfaster sorting algorithms, Rep. 117, Dept. Comput.
Sci., New York Univ., NY, 1984.

R. COLE, M. SHARIR AND C. K. YAP, On k-hulls and related problems, Proc. 16th Annual ACMS
Symposium on Theory of Computing 1984, pp. 154-166.

O. P. DOBKIN AND J. I. MUNRO, private communication.
H. EDELSBRUNNER, O. G. KIRKPATRICK AND H. A. MAURER, Polygonal intersection searching,

Inform. Process. Lett., 14 (1982), pp. 74-79.
H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL, Constructing arrangements of lines and

hyperplanes with applications, Proc. 24th Annual IEEE Symposium on Foundations of Computer
Sciences, 1983, pp. 83-91; this Journal, 15 (1986), to appear.

H. EDELSBRUNNER AND E. WELZL, On the number of line-separations ofa finite set in the plane,
J. Combin. Theory Ser. A, 38 (1985), pp. 15-29.

Halfplanar range search in linear space and 0(/*0"695) query time, Rep. Flll, Inst. for
Information Processing, Technical Univ. Graz, Graz, Austria, 1983.

P. ERD6S, L. LOVASZ, A. SIMMONS AND E. G. STRAUS, Dissection graphs ofplanar point sets,
in A Survey of Combinatorial Theory, J. N. Srivastava et al., eds., North-Holland, Amsterdam,
1973, pp. 139-149.

M. L. FREDMAN, The inherent complexity of dynamic data structures which accommodate range
queries, Proc. 21st Annual IEEE Symposium on Foundations of Computer Science, 1980, pp.
191-199.

E. HELLY, Ueber Mengen konvexer Koerper mit gemeinschaftlichen Punkten, Jber. deutsch. Math.
Verein., 32 (1923), pp. 175-176.

D. G. KIRKPATRICK, Optimal search in planar subdivisions, this Journal, 12 (1983), pp. 28-35.
D. T. LEE, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comput. C-31 (1982),

pp. 478-487.
H. A. MAURER AND TH. OTTMANN, Dynamic solutions of decomposable searching problems, in

Discrete Structures and Algorithms, U. Pape, ed., Carl Hanser, 1979, pp. 17-24.
TH. OTTMANN AND D. WOOD, Dynamical sets ofpoints, Rep. CS-82-56, Dept. Computer Science,

Univ. Waterloo, Waterloo, Ontario, Canada, 1982.
M. H. OVERMARS AND L. VAN LEEUWEN, Maintenance ofconfigurations in the plane, J. Comput.

System Sci., 23 (1981), pp. 166-204.
M. H. OVERMARS AND J. VAN LEEUWEN, Worst-case optimal insertion and deletionfor decompos-

able searching problems, Inform. Process. Lett., 12 (1981), pp. 168-173.
M. I. SHAMOS, Computational geometry, Ph.D. Thesis, Dept. Computer Science, Yale Univ., New
Haven, CT, 1978.

M. I. SHAMOS AND D. HOLY, Closest-point problems, Proc. 16th Annual IEEE Symposium on
Foundations of Computer Science, 1976, pp. 208-215.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
020

AVERAGE CASE COMPLETE PROBLEMS*

LEONID A. LEVINf

Abstract. Many interesting combinatorial problems were found to be NP-complete. Since there is little
hope to solve them fast in the worst case, researchers look for algorithms which are fast just "on average".
This matter is sensitive to the choice of a particular NP-complete problem and a probability distribution of
its instances. Some of these tasks were easy and some not. But one needs a way to distinguish the "difficult
on average" problems. Such negative results could not only save "positive" efforts but may also be used in
areas (like cryptography) where hardness of some problems is a frequent assumption. It is shown below
that the Tiling problem with uniform distribution of instances has no polynomial "on average" algorithm,
unless every NP-problem with every simple probability distribution has it. It is interesting to try to prove
similar statements for other NP-problems which resisted so far "average case" attacks.

Key words, complexity, algorithm, probability, completeness

Conventions. A random problem is a pair (ix, R), where R c {1, 2,... }2 is an
"instance-witness" (or input-output) relation, and/x" {1, 2, }[0, 1] is a probabil-
ity distribution function on inputs (i.e. Ix(x) is the probability of all instances not
exceeding x). Its density Ix’(x) Ix(x)-Ix(x- 1) is the probability of a particular input.
A problem is in NP, if both R and Ix are computable in time polynomial in length
Ixl- [log x] of input. A machine independent notion of a polynomial on average
problem (ix, R) assumes R(x)=lyR(x, y) to be computable in time polynomial in
where t(x)/Ixl is bounded by a constant on average i.e. ’(x)t(x)/Ixl <. Domination

IX---<IXl means ::lktx Ix’(x)/ix(x)<lxl k. A polynomial time algorithm f reduces a
problem (/zl, R1) to (f(Ix2), R2), if Ix1 < Ix2 (so, likely inputs of one problem are mapped
into likely inputs of the other) and R(x): R(f(x)). Here f(Ix) is the distribution of
outputs of f and maps x to Yy<y)_-<x Ix’(Y).

Reductions are closed under composition, and if A(x) is a fast on average algorithm
for (f(Ix2), R2) then A(f(x)) works at most polynomially slower for (Ix1, R). The
polynomials Ixl in domination and in reduction time may be replaced by a polynomial
on average tk(x) to get weak reducibility. The definitions can also be modified for a
more elegant "inverting" formulation of NP problems: to actually find y for which
x r(y).

DEFINITION. A random NP problem is complete, if every random NP problem is
reducible to it.

Example: Tiling. A tile is a square with a latin letter in every node. Tiles with
matching letters can be joined. An instance (u, v, s) of the Tiling problem, has a subset
u of tile types considered "legal", a string v 0 of O’s, and a string s of matching
legal tiles. The problem is to extend s to a square of n2 matching legal tiles. The joint
probability, of u, n and k =[s[< n is, say, O(n -3) and every tile in s is chosen
sequentially with equal probability for all "legal" tiles matching the previous one.

PROPOSITION. Tiling is an NP-complete random problem.
Proof. Padding makes (Ix1, R1) computable in time, say, Ixl. We first reduce

(Ix, R) (no matter how special Ix1 may be) to a problem with "almost uniform"
distribution. If Ix-> Ix then f(x)= x reduces (ix, R) to (IX, R). Thus, using Ix(x) :=

Ix(x)/2+ 1/2-1/2x, we get Ix(x)> 1/2x. Now, by a linear number of successive

* Received by the editors September 12, 1983, and in final revised form March 18, 1985. This work was
supported by the National Science Foundation under grants MCS-8104211 and MCS-8304498.

" Boston University, Boston, Massachusetts 02215, and Massachusetts Institute of Technology, Cam-
bridge, Massachusetts 02139.

285

286 LEONID A. LEVIN

roundings, Ix is replaced by a perfectly rounded Ix > Ix/4, which means that Ix(x) is
the shortest binary rational within (ix(x-I), Ix(x+l)). As all perfectly rounded
measures, Ix has integer m(x) Ix(x)/ix’(x) and log2 Ix’(x). Monotone Ix is computable
and invertible (by binary search) in polynomial time. And so is m since Ix(x)/m(x)=
Ix’(x) is a power of 2 and 1/2 < Ix(x)< 1. The resulting probability of z= m(x) is
Ix’(m-(z)) Ix’(x) Ix(x)/m(x)< 1/m(x)= 1/z. So, m(Ix) is "almost uniform".

Let p be the program for a universal Turing machine U with time bound
for which R(x,y)=U(OlXllpm(x),y). Let A’(O’ls)=O(n-3)/s for Isl<3n. Then
f(x)=OlXllpm(x) reduces (Ix, R) to (A,U), since A’(f(x))=A’(OlXllpm(x))
O(Ixl-3)/pm(x) 1/m(x) >- Ix’(x). Finally, (A, U) is reducible to the Tiling problem
in a standard way: the tiled square corresponds to the space-time history of the Turing
computation accepting U(w, y), where w is chosen randomly and y is guessed non-
deterministically. A Tile letter represents either the tape symbol and the direction (left
or right) to the head or the head state and the direction to the neighboring cell it
looks at.

COROLLARY. For any e < O, Tiling is polynomial on average iff it is polynomial with
probability 1- n (by the "padding" argument) and only if such are all NP random
problems.

Random NP problems look like "fair games" between suppliers of questions and
answers (if both are restricted to a polynomial-time probabilistic machine). So, their
average hardness seems to be a more balanced question than "P NP?".

Essential intuitive comments and an excellent survey of the area may be found
in [1]. The author is grateful to R. Rivest for encouragement and discussion, to
D. Johnson for valuable corrections and to U. Vazirani and Z. Galil for improvements
of the account.

REFERENCE

[1] DAVID S. JOHNSON, The NP-completeness column: An ongoing guide. J. Algorithms, 5 (1984), pp.
284-299.

SIAM J. COMPUT.
Vol. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
021

THE ULTIMATE PLANAR CONVEX HULL ALGORITHM?*

DAVID G. KIRKPATRICKf AND RAIMUND SEIDEL:

Abstract. We present a new planar convex hull algorithm with worst case time complexity O(n log H)
where n is the size of the input set and H is the size of the output set, i.e. the number of vertices found to
be on the hull. We also show that this algorithm is asymptotically worst case optimal on a rather realistic
model of computation even if the complexity of the problem is measured in terms of input as well as output
size. The algorithm relies on a variation of the divide-and-conquer paradigm which we call the "marriage-
before-conquest" principle and which appears to be interesting in its own right.

Key words, computational geometry, convex hull, divide-and-conquer, lower bounds

AMS(MOS) subject classifications. 68P10, 52-04, 52A10

1. Introduction. The convex hull of a finite point set S in the plane is the smallest
convex polygon containing the set. The vertices (corners) of this polygon must be
points of S. Thus in order to compute the convex hull of a set S it is necessary to find
those points of S which are vertices of the hull. For the purposes of constructing upper
bounds we define the convex hull problem, as the problem of constructing the ordered
sequence of points of S which constitute the sequences of vertices around the hull.

The convex hull problem was one ofthe first problems in the field of computational
geometry to have been studied from the point of view of computational complexity.
In fact, efficient algorithmic solutions were proposed even before the term "computa-
tional geometry" was coined. This, along with its very extensive analysis in recent
years, reflects both the theoretical and practical importance of the problem.

Of the convex hull algorithms proposed so far several have O(n log n) worst case
time bounds [4], [8], [14], [15], [17], where n is the size of the input point set. Shamos
[17] even argued that the O(n log n) time bound is worst case optimal. He observed
that a set S of n real numbers could be sorted by finding the convex hull of the planar
set S’ {(x, X2)IX E S}. But sorting, of course, has an l(n log n) lower bound on a wide
range of computational models. Yao [19] and on weaker computational models Avis
[21, van Emde Boas [7], and Preparata and Hong [15] proved the lq(n log n) bound
for a less demanding version of the convex hull problem: just the vertices of the convex
hull are to be identified, irrespective of their sequence.

In contrast to the results above, it is interesting to observe that algorithms exist
which solve the planar convex hull problem in O(nH) time, where H is the number
of vertices found to be on the hull [61, [9]. For small H, these algorithms seem to be
superior to the O(n log n) methods. (This, of course, does not contradict the previously
cited lower bound results, as H could be as large as n). It is notable, however, that
all of the lower bound arguments mentioned above are insensitive to H in that they
assume that some fixed fraction of the data points are vertices of the convex hull.

In this paper we present a convex hull algorithm with worst case time complexity
O(n log H). Thus its running time is not 0nly sensitive to both n and H, but it is also
worst case optimal in the traditional sense when the running time is measured as a
function of n only. However, we also show that our algorithm is asymptotically worst
case optimal even if the complexity of the problem is measured as a function of both
n and H.

* Received by the editors November 15, 1983, and in revised form August 15, 1984, This research was
supported by the Natural Sciences and Engineering Research Council of Canada, grant A3583.

" Department of Computer Science, University of British Columbia, Vancouver, B.C. V6T W5 Canada.
t Department of Computer Science, Cornell University, Ithaca, New York 14853.

287

288 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

Our algorithm is based on a variation of the divide-and-conquer paradigm that
appears to be interesting in its own right. Traditional divide-and-conquer algorithms
adhere to the following strategy: First break the problem into subproblems (divide),
then recursively solve the subproblems (conquer), and finally combine the subsolutions
to form the global solution (marry). Our algorithm reverses the last two steps. After
dividing the problem it first determines how the solutions of the subproblems will
combine (without actually computing them!) and then proceeds to solve the subprob-
lems recursively. We thus call this approach the "marriage-before-conquest" principle.
Its advantage lies in the fact that it allows to remove parts of the subproblems that
upon merging (or marrying) turn out to be redundant. Thus it reduces the sizes of the
subproblems that are to be solved recursively. We have recently been able to apply
the marriage-before-conquest principle also successfully to the maximal vector problem
[10]. It remains to be seen whether this principle has other applications.

Sections 2 and 3 of this paper describe our new algorithm. In 4 we show how
our algorithm can be randomized, and 5 deals with the lower bound aspects of the
convex hull problem. Throughout the paper, unless stated otherwise, we deal with sets
of points in the plane. For a point p, x(p) and y(p) denote its standard cartesian
coordinates. We will feel free to use loose but descriptive geometric terminology such
as "vertical line", "a point lies above a line", etc.

2. The main algorithm. In this section we show how the "marriage-before-
conquest" principle can be used for an improved convex hull algorithm. We construct
the convex hull in two pieces, the upper hull and the lower hull (see Fig. 2.1). It should
be clear that if the two chains forming the upper and lower hull are given, they can
be concatenated in constant time (at most two vertical edges may need to be inserted)
to yield the sequence of vertices around the hull. Also observe that an algorithm for
constructing the upper hull could easily be modified to constructthe lower hull also.
Therefore we concentrate at first on constructing an algorithm for finding the sequence
of vertices on the upper hull.

upper hull

lower hull

vertical edge

Exploiting the "marriage-before-conquest" principle, our convex hull algorithm
should do something like the following: First find a vertical line that divides the given
point set in two approximately equal sized parts. Next determine the "bridge" crossing
this line, i.e. the edge of the upper hull that intersects this line. Eliminate the points
that lie underneath the bridge, and finally apply the algorithm recursively to the two
sets of the remaining points on the left and right side of the vertical line.

The only difficult part in such an algorithm appears to be the construction of the
bridge. We show a linear time solution to this problem in 3.

The following PIDGIN-ALGOL routine presents our convex hull algorithm in
some detail. It takes as input a set S {Pl, , Pn} of n points in the plane and prints
the sequence of indices of the vertices on the upper hull of S. It uses the function
BRIDGE specified in 3, which given a set S c RE and a real a returns the indices to

ULTIMATE PLANAR CONVEX HULL ALGORITHM 289

the left and right endpoint of the edge of the, upper hull that intersects the vertical
line L {(x, y)lx a}.

ALGORITHM 2.1.
Procedure UPPER-HULL(S)
1. Initialization

Let rain and max be the indices of two points in S that form the left and right
endpoint of the upper hull of S respectively, i.e.

x(p,,,) -<_ x(p,) -<_ x(p,,ax) and

y(p,,,) _-> y(p,) if x(p,,,,) x(p,),

Y(P,,,ax)>--Y(P,) if x(p,.x) =x(p,) for i= 1,..., n.

If min max then print min and stop.
Let T := {p,,,,, P,,,x} U {p SIx(pmin < x(p) < X(Pmax)}.

2. CONNECT(min, max, T)
where CONNECT (k, m, S) is
begin

2.1 Find a real number a such that
x(p,)<-_a for [Isi/2] points in S and
x(p,)-> a for /IsI/2J points in S.

2.2 Find the "bridge" over the vertical line L {(x, y)lx a}, i.e.
(i,j) := BRIDGE (S, a).

2.32 Let Slyt := {p,} U {p Six(p) < x(p,)}.
Let S,ght := {p} [-J {P Six(p) > x(p)}.

2.4 If i= k then print (i)
else CONNECT (k, i, Sleft).

Ifj rn then print (j)
else CONNECT (j, m, Sre,ht).

end.

THEOREM 2.1. Algorithm UPPER-HULL correctly determines the sequence of
vertices on the upper hull of S in O(n) space and O(n log H) time, where H is the
number of edges on the upper hull of S.

Proof. If the upper hull of S consists of only one vertex (i.e. all of S lies on one
vertical line) then the algorithm is trivially correct and reports that vertex in linear
time in step 1.

Otherwise the correctness of the algorithm follows from an inductive argument.
A call CONNECT (k, m, $) discovers a previously unknown edge (p, p) on the upper
hull. If p turns out to be the leftmost vertex of the upper hull its index will be printed,
otherwise the recursive call CONNECT (k, i, Seyt) will cause the sequence of vertices
of the upper hull from Pk up to p to be printed. Similarly, if p is the rightmost vertex
of the upper hull its index will be printed, otherwise the call CONNECT (j, m, Srht)
will cause the portion of the upper hull from p up to p,, to be printed.

For the complexity bounds first observe that step 1 of the algorithm can easily be
implemented to run in linear time. Thus it remains to show that the procedure

In the case that two edges of the upper hull, (p, p) and (p, pk), intersect L, i.e. vertex p lies on L,
BRIDGE will return (j, k).

Stft contains p and the points of S to the left of the vertical line through p. M. McQueen from
McGill University has pointed out that Slft could be restricted to contain pk, p and all the points of S
above the straight line through Pk and p. Sash, can be restricted analogously.

290 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

CONNECT takes no more than O(n log Hu) time. Note that using the median finding
algorithm of Blum et al. 1, p. 99] and using our bridge finding algorithm of 3, steps
2.1 to 2.3 can be implemented to run in linear time. Thus the running time ofCONNECT
is determined by f([S[, H) where the function f must satisfy the recurrence relation

f(n,h)<{cn= { ()(+n)}
ifh=2,

cn + max f
n

ht f hr if h > 2,
hl+hr= h

where c is some positive constant and n >-h > 1.
We claim that f(n, h) O(n log h). To prove this we show that f(n, h) cn log h

satisfies the above recurrence relation. This is trivially true for the base case h 2. For
h > 2 note that

f(n,h) <cn+ max c logh+c loghr

cn +- cn max (log (hih)}.
hl+hr=h

Using elementary calculus it is easy to verify that the maximum is realized when
hi h hi2. Thus

f n, h) <= cn +- cn log cn + cn log

cn + cn log h cn cn log h.

The linear space bound is trivial. Q.E.D.
COROLLARY. The convex hull of a set of n points in the plane can be found in time

O(n log H) using O(n) space, where H is the number of vertices found to be on the hull

3. Finding the Iridge. We are given a set S of n points in the plane and a vertical

line L which has points of S to its left and right. We are to find the edge of the upper
hull of S that intersects L. If two edges intersect L, i.e. L contains a vertex v of the

upper hull, we want to identify the edge for which v is the left endpoint. Call this

edge the bridge and its endpoints bridge points (see Fig. 3.1). Let us define a supporting

FIG. 3.1

line of $ to be a nonvertical straight line which contains at least one point of S but
has no points of S above it. Obviously the bridge must be contained in some supporting
line. Call this line b and let Sb be the slope of b.

For our purposes, finding the bridge means identifying the two bridge points. One
possible way of achieving this is to successively eliminate points from S as candidates
for bridge points. For this purpose we pair up the points of S into In/21 couples. The

ULTIMATE PLANAR CONVEX HULL ALGORITHM 291

following two lemmas show how forming pairs of points facilitates the elimination of
candidates for bridge points.

LEMMA 3.1. Let p, q be a pair ofpoints of S. If x(p)=x(q) and y(p) > y(q) then
q cannot be a bridge point.

Proof. Trivial.
LEMMA 3.2. Let p, q be a pair of points of S with x(p)<x(q), and let Spq be the

slope of the straight line h through p and q.
(1) If Spq > Sb then p cannot be a bridge point.
(2) If Spq < Sb then q cannot be a bridge point.
Proof (for case (1); the proof for case (2) is symmetrical). Assume p was a bridge

point. By virtue of Spq > Sb and x(p)< x(q), q would lie above the bridge line b which
would contradict the fact that b is a supporting line of $ (see Fig. 3.2). Q.E.D.

FIG. 3.2

These two lemmas can be used to eliminate a bridgepoint candidate from every
one of the [n/2J pairs. However, it is not clear at first how a condition like Spq> Sb
can be tested without explicitly knowing Sb, the slope of b, and hence knowing the
bridge, which after all is the entity that we want to compute. The solution to this
problem is suggested by the following lemma.

LEMMA 3.3. Let h be the supporting line of S with slope Sh.
(1) Sh < Sb iff h contains only points of S that are strictly to the right of L.
(2) Sh Sb iff h contains a point of S that is strictly to the right of L and a point of

S that is to the left of or on L.
(3) Sh > Sb iff h contains only points of S that are to the left of or on L.
Proof. Trivial.
Thus to test whether Spq > Sb it suffices to find the supporting line h of S with

slope Spq and to determine whether h contains points of S to the right or to the left
of L. Of course, finding this supporting line h requires linear time which is clearly too
expensive to be done for every one of the In/2] pairs individually. However, this
problem can be overcome by judiciously choosing a slope Sh with the property that if
Sh > Sb then Spq > Sh (and hence Spq > Sb) for a large number of pairs p, q and, if Sh < Sb
then Spq < Sh (and hence Spq < Sb) for a large number of pairs p, q. A natural choice for
an Sh with this property is the median of the slopes of the lines defined by the [n/2J
pairs of points.

Now we are ready to give a more detailed PIDGIN-ALGOL description of our
bridge finding algorithm. The function BRIDGE(S, a) takes as parameters a set
S--{Pl,"" ", Pn} of n > 1 points and a real number a representing the vertical line
L= {(x, y)lx a}. It is assumed that the point P,,in in $ with minimum x-coordinate
is unique and that x(pmi,) <- a. Similarly, the point P,,ax in S with maximum x-coordinate
is assumed to be unique and with x(pmax)> a. BRIDGE (S, a) returns as its value a
pair (i,j), where p and pj are the left and right bridge point respectively.

292 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

ALGORITHM 3.1.
Function BRIDGE (S, a)
O. CANDIDATES :=
1. If IS1=2 then return ((i,j)), where S={p,,pj} and x(p,)<x(pj).
2. Choose [[S[/2] disjoint sets of size 2 from S.

If a point of S remains, then insert it into CANDIDATES.
Arrange each subset to be an ordered pair (Pi, P), such that x(pi)<-x(p).
Let PAIRS be the set of these ordered pairs.

3. Determine the slopes of the straight lines defined by the pairs.
In case the slope does not exist for some pair, apply Lemma 3.1, i.e."

For all (p, p) in PAIRS do
if x(p) x(p) then delete (p, pj) from PAIRS

if y(p) > y(p) then insert pi into CANDIDATES
else insert p into CANDIDATES

else let k(p,, p) := Y(P’)-Y(P)
x(p,) x(pj)"

4. Determine K, the median of {k(p, P)I(P, P) PAIRS}.
5. Let SMALL:= {(p,, p) PAIRS]k(p,, p) < K}.

Let EQUAL:= {(p,, pj) PAIRSIk(p,, p)- K}.
Let LARGE := {(p,, p) PAdRSIk(p,, p) > K}.

6. Find the set of points of S which lie on the supporting line h with slope K, i.e.:
Let MAX be the set of points p S, s.t. y(p)-K x(p) is maximum.
Let Pk be the point in MAX with minimum x-coordinate.
Let p,, be the point in MAX with maximum x-coordinate.

7. Determine if h contains the bridge, i.e."
if X(pk) <---- a and x(p,,) > a then return((k, m)).

8. h contains only points to the left of or on L:
if x(p,,) -<_ a then

for all (p, p) LARGE [_J EQUAL insert pj into CANDIDATES.
for all (pi, p) SMALL insert p and p into CANDIDATES.

9. h contains only points to the right of L:
if X(pk) > a then

for all (p, p) SMALL [.J EQUAL insert p into CANDIDATES.
for all (p, p) LARGE insert pi and pj into CANDIDATES.

10. return(BRIDGE (CANDIDATES, a)).

THEOREM 3.1. The function BRIDGE correctly determines the left and right bridge
point in O(n) worst case time and space.

Proof. The algorithm is trivially correct if S contains only two points. As long as
S contains more than two points, BRIDGE either finds the bridge in step 7 or discards
redundant points of S applying the rules of Lemmas 3.1 and 3.2 (steps 3, 8, 9) and
calls itself recursively with a smaller pointset.

Using the linear time median algorithm of Blum et al. [1, p. 99], the body of
BRIDGE without the recursive call can be executed in linear time and space. Further-
more, at least one quarter of the points of S are eliminated and not contained in
CANDIDATES. Thus the worst case time and space requirements for the algorithm

ULTIMATE PLANAR CONVEX HULL ALGORITHM 293

are bounded by

fO(1), n=2,

f(n)=lf(-) +O(n), n>2.

But it is well known that such a recursive function is O(n) [1, p. 64]. Q.E.D.
At this point we want to mention that our bridge finding algorithm was inspired

by the linear time two variable linear programming algorithms of M. Dyer [5] and N.
Megiddo [13]. A closer look even shows that the bridge problem can be formulated
as a linear programming problem. However, for the sake of simplicity and completeness
it seems worthwhile to spell out the bridge finding algorithm explicitly.

4. The expected time case. The divide-and-conquer algorithms in the two preceding
sections are not terribly complicated. At first sight it even seems possible to actually
implement these algorithms in some high level programming language in an hour’s
time, or so. However, one quickly discovers that the major obstacle to doing so is the
median find algorithm. Thus quite naturally the question arises whether it is possible
to do without it.

The median find algorithm is used in our algorithms to find a vertical line that
divides a given point set evenly. What happens if we follow the example of Quicksort
and choose a separating line at random? Ample experimental results have shown that
Quicksort is one of the fastest sorting algorithms and these results have been supported
by a careful theoretical analysis of the.algorithm 11], 16]. As it turns out the method
of choosing a separator at random can also be successfully applied to our algorithms,
thus changing the worst case time complexity to O(n2) but retaining the O(n log H)
expected case time complexity.

THEOREM 4.1. If step 2.1 in Algorithm 2.1 is replaced by

2.1. Let a x(pi), where pi is randomly chosen from S-{pm} such that the choice
of every point in S--{pm} is equally likely.

then the modified algorithm has O(n log Hu) expected case time complexity.
Proof The expected case running time of the modified algorithm can be bounded

by the function g that must satisfy the following relation:

g(n’h)<{bn if n ->_ h 2,

max {g(i,h)+g(n-i, hr)} ifn>=h>2,
hl+hr h

where b is some positive constant.
We claim that g(n, h)= O(n log h), i.e. there is positive real constant c, such that

for all n >- h >_- 2, g(n, h) <- cn log h.3 We prove our claim by induction.
The claim is trivially true for all n if h 2 and for all n-< 5 otherwise. Now we

want to show the claim for some n > 5 and h < n on the assumption that g(n’, h’)<-_
cn’ log h’ for all n’ < n and h’ < h. By definition of g and our inductive assumption we
thus have

1
g(n,h)<-bn+ max {ciloght+c(n-i) loghr}.

n 1 1=’1< hl+hr=h

In this proof we use w.l.o.g, the natural logarithm.

294 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

Using elementary calculus it is easy to show that for every the maximum is realized
when h= ih/n and hr=(n-i)h/n. Therefore

g(n,h)<=bn+
n-1 1_<. n

=bn+
2c h

/log i-
(n- 1) l<=i<n n

2c h 2c

=bn+(n 1,log) iq /logi.
n 1_-<,<. (n 1) l<_i<n

As E 1_-<,<,, log <= 1/2n 2 log n -1/4n 2 (see 1, p. 94]) and E 1=<,<,, 1/2n(n 1) we have

g(n, h) <= bn + cn log h cn log n +c
n c n2

n log n--
n-1 2n-1

c log n
<= bn n +cn+cn log h.

2 n-1

As log n/(n- 1)< 1/2 for all integers n > 5, there exists a real constant c > 0 such that
bn-1/2cn+cn(log n/(n-1))<O for all n> 5 and hence

g(n, h) <- cn log h. Q.E.D.

The median find algorithm is used on one more occasion in our algorithms: in
the bridge finding procedure. Again we can dispense with the median find algorithm
and use random choice instead. The worst case complexity of such a modified bridge
finding procedure is O(n2); however the expected case running time is still O(n).

THEOREM 4.2. If step 4 of Algorithm 3.1 is replaced by

4. Randomly choose an element (pi, Pj) from PAIRS such that the choice of every
element is equally likely, and let K := k(pi, pj),

then the modified algorithm has expected case time complexity O(n).
Proof. In the worst case no points are eliminated in step 3 of the modified function

BRIDGE, and all the slopes k(p, p;) generated in that step are distinct. By the random
choice of K, the cardinalities of SMALL and LARGE are uniformly distributed
between 0 and N-1, where N= tlsI/2J, the cardinality of PAIRS.

Assume pessimistically that whenever ISMALL[<- N/2, the supporting line h
contains only points to the right of L, and by step 9 only ISMALLI+ 1 points are
eliminated. Symmetrically, assume that if ILARGEI < N/2, h contains only points to
the left or on L, and step 8 is applied.

With these pessimistic assumptions the expected case running time of the modified
algorithm is bounded from above by the function f, where for some positive
constant b

bn

4f(n)
bn +- E

FI l<_i<_n/4

if n -<_ 2,

f(n-i) ifn >2.

It is an easy exercise in induction to show that f(n)= O(n). Q.E.D.

ULTIMATE PLANAR CONVEX HULL ALGORITHM 295

5. Lower bounds. The results of this section demonstrate that our O(n log H)
upper bound for the convex hull problem is the best possible on a quite general model
of computation. Specifically, we prove an (n log H) lower bound for this problem
on dth order algebraic decision trees, for any fixed d.

There exist at least four variants of the convex hull problem characterized by
increasingly stringent conditions on the form of the output. Let S {Pl," ", Pn} be a
set of points in RE, and let ext(S) denote the set of vertices of the convex hull of S.
The convex hull sequence problem asks for the elements of ext(S) in consecutive cyclic
order. The convex hull set problem asks for the elements of ext(S) in arbitrary order.
The convex hull multiset problem asks for a listing, in arbitrary order, of elements of
S that coincide with elements of ext(S). (This differs from the set problem only if S
is a multiset). Finally, the convex hull size problem asks for the cardinality of ext(S)
(i.e. H).

It should be clear that the algorithm outlined in 3 can be adapted to solve all
of these problem variants in worst case time O(n log H). Furthermore, since the
sequence variant is at least as hard as the set variant, which in turn is at least as hard
as the size variant, it will suffice to demonstrate a lower bound on the convex hull size
problem, preferably using input point sets with no multiplicities. In fact we establish
a lower bound on the even weaker convex hull size verification problem: given S and
H, confirm that [ext(S)]-H. We show that any dth order algebraic decision tree
algorithm for this verification problem must take l)(n log H) steps in t.he worst case,
even if it can be assumed that all input points are distinct.

We follow Steele and Yao [18] and Ben-Or [3] in adopting algebraic decision
trees as our model of computation. A dth order algebraic decision-tree algorithm
(hereafter a tree algorithm) T for testing membership in a set Wc R is a rooted tree
whose internal nodes are labelled by multivariate polynomials of degree at most d and
whose leaves are labelled either YES or NO. Each internal node has out-degree three;
the edges are labelled <, =, and > reflecting possible outcomes on comparison with
0. Every input R" determines a unique root to leaf path in T in the obvious way.
We say that T decides membership in W if, for every R", : leads to a YES leaf of
T if and only if W.

Yao [19] establishes an (n log n) worst case lower bound for the convex hull
set problem on algebraic decision trees of order two. This result is generalized by
Ben-Or [3], who demonstrates the same fl(n log n) lower bound for the convex hull
size problem on algebraic decision trees of any fixed order d. Ben-Or’s result is just
one of a number of applications of the following general theorem concerning tree
algorithms.

THEOREM 5.1 [3, Thm. 8]. Let Wc R" be any set and let T be any dth order
algebraic decision tree that solves the membership problem for W. If W has N disjoint
connected components, then T must have height (and hence worst case complexity)
l)(log N n).

We use the following generalization of the element distinctness problem [3] to
establish our lower bound. The multiset size verification problem asks to confirm, given
a multiset Z {zl,. ., z,} c R and an integer k, that Z has k distinct elements.

COROLLARY 5.1. The multiset size verification problem requires l)(n log k) steps in
the worst case, with any dth order decision algorithm.

Proof. It suffices to prove that the set

Mk ={(Zl,’’’, zn)Rnll{Zl, z}l= k}
has at least k! kn-k disjoint connected components.

296 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

Consider all tuples (Zl," ", Zn) with zl," ", Zk set to distinct integers between 1
and k, and Zk+I," ", Zn set to arbitrary integers in that range. There are k! kn-k such
tuples and each of them must lie in a different connected component of Mk. Q.E.D.

We are now prepared to demonstrate our lower bound.
THEOREM 5.2. The convex hull size verification problem requires (n log H) steps,

in the worst case, with any dth order decision tree algorithm.
Proof. We reduce the multiset size verification problem to the convex hull size

verification problem in the following obvious way: Let Z-(z,..., z} and k be an
instance of the multiset size verification problem. Define S-(Pl,’",P}C R2 by
Pi (zi, z). Then the set ext(S) has exactly k elements if and only if Z has exactly k
distinct elements. Q.E.D.

The proof of the above theorem is somewhat disappointing in that the convex
hull problem formed in the reduction has multiplicities on the convex hull. This
straightforward reduction leaves open the possibility that there exists an algorithm
solving the convex hull size verification problem (or any of the other variants) in
o(n log H) steps for point sets that are known a priori to contain no duplicates.
Fortunately, we can strengthen our lower bound to include tree algorithms based on
this rather dubious assumption as well. We will show that a convex hull algorithm
that is only guaranteed to be correct when the input points are distinct could be used
to solve a certain perturbed convex hull problem without input restrictions. An
algorithm for this perturbed problem in turn yields a solution for the multiset size
problem.

For the sake of notation let (, fi) be shorthand for (x,..., x, y,..., y) and
let g and denote (l/n) i= x and (l/n) "i=1 Y’ respectively. We call a tuple (, fi)
center-free iit (,) (x, y) for 1 -< <_- n. Define

Cn {(, fi) R2"]ext({(x,, y,)]l -<_ i_< n}) H} and

Pn {(,) R2" [ext({(x, + i(x,- g)e, Yi + i(y,-fi)e)]l -< _-< n})l H}
for all e > 0 sufficiently small.

Note that testing membership in CH is the convex size verification problem. The
intuitive meaning for PH is the following: Pn encodes the point sets {(x, y) RE11 =< =<
n) with the property that if each point p- (x, yi) moved radially away from ff (,)
for sufficiently small but positive time e at speed proportional to the index and
proportional to the distance from p to/, then the convex hull of the new point set
would have H extreme points. Observe therefore, that if (, fi) CH and the encoded
2-dimensional point set has no point on a convex hull edge, then (, fi) P/.

The following lemma shows that the convex hull size verification problem with
this dubious distinctness restriction is no easier to solve than the general membership
problem in PH for center-free tuples.

LEMMA 5.1. Let T be any dth order decision tree algorithm for deciding membership
in CH, assuming that all of the points (x, y), 1 <-_ <- n, are distinct. Then there exists a
dth order decision tree T’, with height (T’) <- d + 1) height (T), that decides membership
of center-free tuples in PH without the distinctness assumption.

Proofi We define a transformation on every subtree of T. The leaves of T are not
changed (i.e. they retain their YES.-NO labels). Consider an arbitrary subtree rooted
at a vertex vj with label f(, fi) (see Fig. 5.1). Define the multivariate polynomials
f.o,f,l," ", f,d by the equality

fj()t, fit) fj,0(),) ._A1 ())E -’’" "+’fj,d (),)Ed,

ULTIMATE PLANAR CONVEX HULL ALGORITHM 297

where

FIG. 5.1

;’=(Xl+(X-g)e, x2+2(x2-)e,’’’,x,,+n(x,,-)e) and

fi’= (Yl + (Yl-fi)e, Y2 + 2(y2- 37) e, ", Yn + n(yn -fi)e).

Clearly, the degree of each ,k is at most d.
Let T be the transformed versions of T, 1, 2, 3. The transformed version of

the full subtree is given by Fig. 5.2.

FIG. 5.2

Note that T’ does not depend on e. Furthermore, a straightforward inductive
argument shows that height (T’)-< (d + 1)height (T). The correctness of T’ follows
from the following observations.

(i) If e > 0 is chosen to be sufficiently small, then for center-free (, 37) the set

{ (xi + (xi g) e, y + (y)e), 1 <_- <- n} has distinct elements.
(ii) The decision tree T’ with input (,)7) agrees with the decision tree T with

input (’, 3Y), for all sufficiently small e > 0.
Observation (ii) holds since for any (, 37) the polynomial f(’, 97’)=0 for all

sufficiently small e >0 if[f,k(, 37) --0 for all k, and otherwise the sign of f(’, 37’)
for all sufficiently small e > 0 agrees with the sign of f,k(, 37) for the least k with

,(,)o.

298 DAVID G. KIRKPATRICK AND RAIMUND SEIDEL

Thus T’ decides membership of center-free (, 37) in P, without assuming that all
of the pairs (xi, yi) are distinct. Q.E.D.

The next lemma shows that deciding membership for Pn is no easier than the
multiset size verification problem.

LEMMA 5.2. The multiset size verification problem reduces to the membership problem
for center-free tuples in Pn.

Proof. It suffices to note that as no three distinct points on a parabola can be
collinear

2(Xl," xn) Ml-i iff (xl, xn, x2, x,) Pn,

and that (xl, , x,, x21, , x2) is center-free (except for the uninteresting case when
all xi are identical). Q.E.D.

The preceding corollary and lemmas immediately yield the final theorem.
THEOREM 5.3. The convex hull size verification problem requires O(n log H) steps,

in the worst case, with any dth order decision tree algorithm, even if the input points may
be assumed to be distinct.

6. Conclusions. We have introduced a variation ofthe familiar divide-and-conquer
paradigm and have illustrated this approach in the development of a new algorithm
for the planar convex hull problem. Our algorithm unifies and improves the best worst
case complexity bounds known for this problem in terms of the size of input and
output (i.e. number of data points and number of hull vertices). In fact, we demonstrate
that the algorithm is worst case optimal in terms of these two parameters in a very
general model of computation.

In a companion paper [10] we apply the same strategy to the maximal vector
problem. We are able to demonstrate an O(n log V) upper bound for the 2-dimensional
maximal vector problem, where V is the number of maximal vectors found. The same
upper bound applies to the 3-dimensional maximal vector problem, and also to the
d-dimensional maximal vector problem, d > 3, when V is sufficiently small compared
to n. These bounds tighten the best bounds known for the maximal vector problem.
It remains to be seen whether our "marriage-before-conquest" approach can be applied
successfully to other problems.

The results of this paper suggest other more specific open problems as well. In
particular, it is natural to ask whether our results on planar convex hulls (like those
for the maximal vector problem) extend to higher dimensions. For example, does there
exist an O(n log H) algorithm for the 3-dimensional convex hull problem?

Another practical open question is whether, like the algorithm of Bentley and
Shamos [4], our convex hull algorithm modified as suggested in footnote 2 has linear
expected time complexity for reasonable input point distributions. We suspect that
this is the case.

Acknowledgments. We are grateful to John Gilbert for his very careful reading of
the manuscript.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] D. Avis, On the complexity offinding the convex hull of a set ofpoints, School of Computer Science,
Report SOCS 79.2, McGill Univ., Montreal, 1979.

[3] M. BEN-OR, Lower bounds for algebraic computation trees, Proc. 15th ACM STOC, 1983, pp. 80-86.

ULTIMATE PLANAR CONVEX HULL ALGORITHM 299

[4] J. L. BENTLEY AND M. I. SHAMOS, Divide and conquer for linear expected time, Inform. Proc. Lett.,
7 (1978), pp. 87-91.

[5] M. E. DYER, Two variable linear programs are solvable in linear time, Manuscript, Dept. Mathematics
and Statistics, Teesside Polytechnic, Middlesborough, Cleveland, UK, 1982.

[6] U. F. EDDY, A new convex hull algorithm for planar sets, ACM Trans. Math. Software, 3 (1977), pp.
398-403 and pp. 411-412.

[7] P. VAN EMDE BOAS, On the O(n log n) lower-boundfor convex hull and maximal vector determination,
Inform. Proc. Let., 10 (1980), pp. 132-136.

[8] R. L. GRAHAM, An efficient algorithm for determining the convex hull ofa finite planar set, Inform. Proc.
Lett., (1972), pp. 132-133.

[9] R. A. JARVIS, On the identification of the convex hull of a finite set ofpoints in the plane, Inform. Proc.
Lett., 2 (1973), pp. 18-21.

[10] D. G. KIRKPATRICK AND R. SEIDEL, Output size sensitive algorithms for finding maximal vectors, in
Proc. ACM Symposium on Computational Geometry, 1985, pp. 89-96.

[11] O. E. KNUTH, The Art of Computer Programming, Volume 3, Addison-Wesley, Reading, MA, 1973.
12] H. T. KUNG, F. LuccIo AND F. P. PREPARATA, On finding the maxima of a set of vectors, J. ACM,

22 (1975), pp. 469-476.
[13] N. MEGIDDO, Linear-time algorithms for linear programming in R .and related problems, Proc. 23rd

FOCS (1982), pp. 329-338.
[14] F. P. PREPARATA, An optimal real time algorithm for planar convex hulls, Comm. ACM, 22 (1979), pp.

402-405.
[15] F. P. PREPARATA AND S. J. HONG, Convex hulls offinite sets ofpoints in two and three dimensions,

Comm. ACM, 20 (1977), pp. 87-93.
[16] R. SEDGEWICK, Quicksort, Ph.D. thesis, Stanford Univ., Stanford, CA, 1975.
[17] M. I. SHAMOS, Computational geometry, Ph.D. thesis, Yale Univ., New Haven, CN, 1978.
18] J. M. STEELE AND A. C. YAO, Lower boundsfor algebraic decision trees, J. Algorithms, 3 (1982), pp. 1-8.

[19] A. C. YAO, A lower bound to finding convex hulls, J. ACM, 28 (1981), pp. 780-789.

SIAM J. COMPUT.
Voi. 15, No. 1, February 1986

1986 Society for Industrial and Applied Mathematics
022

COMPUTING THE LARGEST EMPTY RECTANGLE*

B. CHAZELLE’, R. L. DRYSDALEt AND D. T. LEE

Abstract. We consider the following problem: Given a rectangle containing N points, find the largest
area subrectangle with sides parallel to those of the original rectangle which contains none of the given
points. If the rectangle is a piece of fabric or sheet metal and the points are flaws, this problem is finding
the largest-area rectangular piece which can be salvaged. A previously known result [13] takes O(N2)
worst-case and O(N log N) expected time. This paper presents an O(N log N) time, O(N log N) space
algorithm to solve this problem. It uses a divide-and-conquer approach similar to the ones used by Bentley
[1] and introduces a new notion of Voronoi diagram along with a method for efficient computation of
certain functions over paths of a tree.

Key words, computational geometry, divide-and-conquer, free tree, location theory, optimization

1. Introduction. We consider the following problem: Given a rectangle containing
n points, find the largest area subrectangle with sides parallel to those of the original
rectangle which contains none of the given points. If the rectangle is a piece of fabric
or sheet metal and the points are flaws, this problem is finding the largest-area
rectangular piece which can be salvaged. The special case in which a largest empty
square is desired has been solved in O(n log n) time using Voronoi diagrams in
Ll-(L-)metric [7], [12], which is just a variation of the largest empty circle problem
studied by Shamos [14], [15]. In [13] an O(n2) worst-case and O(n log2 n) expected-
time algorithm is presented for the largest empty rectangle problem. Other related
problems can be found in [3], [5].

This paper presents an O(n log n) time, O(n log n) space algorithm to solve this
problem. It uses a divide-and-conquer approach similar to the ones used by Bentley 1].

2. General approach. We first note that the largest area rectangle with sides parallel
to the bounding rectangle will have each edge supported by either an edge of the
bounding rectangle or by at least one of the given points. (If the set of points contains
two or more points lying on a vertical or horizontal line, an edge of the largest rectangle
may be supported by more than one point.) Any rectangle is uniquely determined by
its four supports (points or edges of the bounding rectangle). Therefore a naive
algorithm could choose quadruples of support and then test to see if any points lie
inside the rectangle formed. This method requires O(n5) time. However, it is shown
in [13] that the number of such empty rectangles is at most O(n2) and that by carefully
maintaining those rectangles the one with the largest area can be found in O(tl2) time.

We shall in this paper present a divide-and-conquer algorithm. Let Pl, P2," ",P,
be the n points sorted by x-coordinate and Xmin, Xmax, Ymin, and Ymax be the boundaries
of the bounding rectangle. Let the coordinates of point Pi be (xi, Yi). Our algorithm
splits the points into two halves by x-coordinate. We recursively solve the problem
for the sets S {Pl," Pln/2]} and $2 {P[n/21+," Pn}. (The bounding rectangles
of these recursive calls must be adjusted. The right boundary for the left call is xt,,/2
and the left boundary for the right call is Xln/2j/l.) These calls determine the largest

* Received by the editors July 7, 1983, and in revised form September 29, 1984. This research was
supported in part by the National Science Foundation under grants MCS 8202359, and ECS 8121741.

" Department of Computer Science, Brown University, Providence, Rhode Island 02912.
t Department of Mathematics and Computer Science, Dartmouth College, Hanover, New Hampshire

03755.
Department of Electrical Engineering/Computer Science, Northwestern University, Evanston, Illinois

60201.

3OO

COMPUTING THE LARGEST EMPTY RECTANGLE 301

rectangles with all four supporting points or edges in one half or the other. What
remains are rectangles with supports in both halves. These rectangles contain either
three supports in one half and one support in the other or two supports in each half
(see Fig. 1). Our algorithm finds the largest rectangle of each type, and then returns
the largest rectangle found with either all four supports in one half, three supports in
one half and one in the other, or two on each side as the largest rectangle.

FIG. 1. Possible empty rectangles.

Therefore the run time of our algorithm is governed by the time required to find
the largest rectangle with three supports in one half and one in the other and the time
to find the largest rectangle with two supports in each half. That is, we have

T(N) <= 2 T(N/2) + C(N) + D(N),
where T(N) denotes the run time of the algorithm for the largest empty rectangle
problem for N points, C(N) the time for finding the largest empty rectangle with
three supports in one half and one support in the other half and D(N) the time for
finding the rectangle with two supports in each half. As will be shown later, C(N)=
O(N) and D(N) O(N log2 N), which gives T(N) O(N log3 N).

3. Three supports in one half, one in the other. This is the easier of the two
subproblems. We will look at the case of three supports in the left half and one in the
right and present a linear time algorithm for this case. The other case is symmetrical,
and is solved the same way.

Our first observation is that we need only consider approximately n rectangles.
If the left support is a given point pj, the rectangle is completely determined. The upper
edge is supported by the first point above pj which also lies to its right. If no such
point exists, the rectangle is supported by the top edge of the bounding rectangle.
Graphically, this support is found by drawing a horizontal ray to the right from p and
sweeping it upward until it encounters either a point in the left half or the top edge
of the bounding rectangle. Similarly the bottom edge is supported by the first point
below p which also lies to its right if such a point exists, and the bottom edge of the
bounding rectangle otherwise. These are the only top and bottom supports possible if
all three supports are to lie in the left half. Let upper and lower denote, respectively,
the upper and lower supports of the rectangle whose left support is pj. The right support
right is found by extending the rectangle supported above by upper and below by
lower to the right until it encounters either a point in the right half or the right edge
of the bounding rectangle. (Note that if several points in the left half life on a horizontal
line, only the rightmost will support the left side of a rectangle.)

There are [n/2J + 1 rectangles supported by the left edge ofthe bounding rectangle.
If the p are sorted from top to bottom there is one rectangle above the top point, one

302 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

between each pair of points, and one below the bottom point. (If two or more points
lie on a horizontal line, then some of these rectangles will be empty.)

A naive algorithm would take each point in the left and find the upper and lower
supports of its rectangle, using O(n) time for each. Finding the right support would
take O(n) additional time. Similarly, the right support of each rectangle supported by
the left side of the bounding rectangle could be found in O(n) time, so the whole
process would take O(nE) time. However, we can find the largest rectangle in O(n)
time given the points sorted by y-coordinate.

Finding the upper and lower supports of rectangles with left support at the left
side of the bounding rectangle is trivial if the points are sorted by y-coordinate. We
present below a linear time algorithm to find the upper, lower and right supports of
each rectangle supported on the left by a point pj in the left half. Suppose that the
points in the left half are sorted from top to bottom as Pl, P2, Pm. gapj is defined
to be the right support of the rectangle supported above by P-I and below by p, with

Po (Xmax, Ymax) and P,,/I (Xmax, Ymin). gap1, gapE, gap, are obtained in linear
time with the points presorted by y-coordinate. Right is initialized to be the leftmost
point in the right half with y-coordinate y, or b -(X’max, Yj) if no such point exists,
where X’max is the right boundary of the current bounding rectangle for the right half.
The arrays aboe and below are used to hold the points with running minimum
x-coordinates (see Fig. 2).

upper- obovePj-

belowj gopj
Iowerj

Fit3. 2. Illustration of supports of a point pj.

Our algorithm uses a stack. It takes advantage of the fact that when processing
the points from top to bottom, the upper support of a point is the first point lying
above it which also lies to its right. Therefore, points lying above the current point
but to its left will never be upper supports for subsequent points and can be eliminated.
A symmetric argument can be made about lower supports for which we process the
points from bottom to top. This gives rise to the following algorithm.

1 Initialize the stack with upper support Po and qo Xmax, Ym,x) SO that top is
Po, x(top) Xmax, y(top) Ymax, above (top) qo and x(qo) X’max.

2. Scan the points p, PE, , P,, from top to bottom. For each pointp encountered
we do the following:
2.1. If x(gap (j)) < x(right (j)) then above (j) is set to gap (j) and to right (j)

otherwise.
2.2. While x(top) -< x(j) do;

if x(above (j)) -> x(above (top)) then above (j) is set to above (top);
pop the stack.

2.3. upper (j) is set to top.
2.4. Push p onto the stack.

COMPUTING THE LARGEST EMPTY RECTANGLE 303

3. Reinitialize the stack with lower support P,,+I and qm+l (Xmax, Ymin) SO that
top is Pro+l, x(top) Xmax, y(top) Ymin, below (top) q,,+l and x(q,,+l) X’rnax-

4. Scan the points Pl, P2, ", Pm from bottom to top. For each pointp encountered
we do the following:
4.1. If x(gap (j+ 1)) <x(right (j)) then below (j) is set to gap (j+ 1) and to

right (j) otherwise.
4.2. While x(top) -< x(j) do;

if x(below (j)) -> x(below (top)) then below (j) is set to below (top);
pop the stack.

4.3. lower (j) is set to top.
4.4. Push p onto the stack.

5. For each point p, j 1, 2,. , rn do;
if x(above (j)) < x(below (j))
then right (j) is set to above (j)
else right (j) is set to below (j).

As can be easily shown, the algorithm examines each candidate left support (steps
2, 4 and 5) once, taking a total of O(m) time. So we conclude this section with the
following.

LEMMA 1. The time C(N) forfinding the largest empty rectangle for Npoints with
three supports in one half and one support in the other half is O(N).

4. Two supports in each half. Notice that the two supports must be on adjacent
sides of the rectangle. Namely, the two supports in the left half must determine either
the upper left corner or the lower left corner of the rectangle and the other two supports
in the right half determine the lower right corner or the upper right corner of the
rectangle respectively. Since these two cases are similar, we shall consider only the
case where the two supports in the left half determine the lower left corner and the
two supports in the right half determine the upper right corner of the rectangle. If we
can identify all the possible lower left corner points in the left half and all the possible
upper right corner points in the right half, then what remains to be solved is to find
the so-called largest empty corner rectangle (LECR) which is determined by a corner
point in each half. Therefore, we shall first compute all the possible corner points in
each half and then devote ourselves to the problem of finding the largest empty corner
rectangle.

4.1. Computation of corner points. We observe that two points Pi and pj determine
the lower left corner point of an empty rectangle iff p is loweri. Thus, the point LC,
i= 1, 2,. ., m, determined by p and lower is a lower left corner point and has as its
x- and y-coordinates equal to x and y(loweri) respectively. In addition to these lower
left corner points we include the points L (Xmin, Yi), 1, 2, , m, i.e., the points
on the left boundary, and the original set of points to form the set CL=
{LC1, LC2," ., LCs} where s<=3m. All the possible upper right corner points in the
right half can be computed in an analogous manner. We now have two sets of corner
points CL= {LC1, LC2, ", LCs} and CR {RC, RC2, ., RCt} and want to find
the largest empty (corner) rectangle whose lower left corner and upper right corner
are from CL and CR respectively. Figure 3 shows the corner points in each half, with
and representing given and newly created points, respectively. Before we give the

algorithm for finding the LECR, some observations are in order. Notice that not every
point in CL can be paired with a point in CR. The empty rectangle that we seek must
be a rectangle with exactly two supports in each half. For example, in Fig. 3 the point

304 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

FIG. 3. Newly created corner points.

P in CL can only be paired with point Q in CR (but not Q’). Specifically, the following
pairing condition must be satisfied: the corner point LCi with left support Pt and bottom
support Pb can only be paired with a point RC whose corresponding top support is
higher than Pt and right support higher than Pb. Secondly, since original points are
included in CL and CR, we should not use any of these points as corner points of the
corner rectangle. However, as we will see in the following two lemmas, these problems
will not arise as far as the computation of the LECR is concerned. Inclusion of the
given points in CL and CR is to ensure that the corner rectangle thus determined
contains no given points in its interior.

LEMMA 2. The largest empty corner rectangle cannot use any of the given points as
corner points. Furthermore, the corner points from CL and CR, respectively, satisfy the
pairing condition prescribed above.

Proof. Let the LECR be determined by LCi and RCj for some and j. Suppose
that LC is one of the given points in the left half. Since there exists in CL a point
LCk to the left of LC which is the corner point determined by some point p and LC,
where x(LCk)= x(p) and y(LCk)= y(LC), and LCk can be paired with RCj to form
a larger empty corner rectangle, we have a contradiction. On the other hand, if LCi
violates the pairing condition that the associated left support is higher than RC, then
we can always find another corner point LCk, in CL with y(LCk,) y(LC) that satisfies
the pairing condition and can be paired with RC to form a larger empty corner
rectangle, a contradiction. The case where RC is one of the given points in the right
half or it violates the pairing condition that the associated right support is lower than
LC can be handled in a similar way. This completes the proof.

Thus, the largest empty corner rectangle must use the newly created points as its
corner points. We note that we only require that the corner rectangle contain none of
the given points, so it may contain some of the newly created corner points in its
interior. However, the following lemma rules out this possibility.

LEMMA 3. Ifa corner rectangle does not contain any given point in its interior, then
it must also not contain any newly created corner points.

Proof. Suppose it contains a newly created left corner point LC in its interior.
Let p and p be the two points in the left half that determine LC so that LC and p
have the same y-coordinate. Since the corner rectangle is determined by a lower left
corner and an upper right corner points that are in the left and right halves respectively,
it must contain point p in its interior as well, a contradiction. The case where it contains
a newly created right corner point in its interior can be handled similarly.

COMPUTING THE LARGEST EMPTY RECTANGLE 305

With the above two lemmas we can proceed to find a largest corner rectangle
which is determined by a point in CL and a point in CR and which is "empty" in the
sense that it does not contain any point (including those newly created corner points)
in its interior.

4.2. Computing the largest empty corner rectangle. We first assume that the points
in CL and in CR have been sorted in both x- and y-coordinates. Divide the sets CL
and CR each into two subsets CL1, CL2 and CR1, CR2, respectively, with CL1 above
CL2 and CR1 above CR2, using a horizontal line such that CL1 LJ CR1 is approximately
of the same size as CL2 LJ CR2 (Fig. 4). Assume recursively that we have computed
the LECR in CL1 LJ CR1 and in CL2 U CR2. So we may concentrate on the case where
the lower left corner is in CL2 and upper right corner is in CR1. If E(N) denotes the
time complexity of the latter problem and D(N) denotes that of the former problem,
we have

(2) D(N) _-< 2D(N/2) + E(N).

Our first observation is that we may discard all the points of CR1 that "dominate"
any other. (A point p is said to dominate point q if both p’s x- and y-coordinates are
greater than those of q’s; and a point is maximal if it is not dominated by any other
point.) This is identical to keeping the maxima of the mirror image of CR1 with respect
to the origin, so it can be accomplished in linear time, since the points of CR1 are
sorted in x-order. For points with the same y-coordinate we further trim them by
keeping only the rightmost one that does not dominate any other point in CR1. Similarly,
for points with the same x-coordinate we keep only the topmost point that does not
dominate any other point in CR1. See Fig. 4, in which points eliminated are marked

CL

XX

CL

CR

CR

FIG. 4. Subdivision of the points into four subsets and the trimming operation.

as x. The reason why they can be trimmed is that they cannot form the LECR with a
point in CL2. Similar remarks can be made about CL2, and we can trim this set in a
similar way. Finally, we can also apply this clean-up to CL1 and CR2. Note that this
final clean-up removes from CL1 the points that have the same y-coordinate except
the rightmost one and removes from CR2 the points that have the same y-coordinate
except the leftmost one. This procedure can be accomplished in O(N) time. In what
follows we assume that these sets have been trimmed.

The next step is to determine, for each point in CL2, the set of points in CRI with
which the point can be paired. This set is clearly a contiguous subsequence of the

306 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

points M1, M2," ", Mu of CR1 given in ascending x-order. We will therefore precom-
pute the functions l(P), and r(P) such that the set {MI(p), MI(,)+I," , Mr(p)} contains
exactly the points of CR which can be paired with P to form an empty corner rectangle
(Fig. 5). It is easy to precompute the function (and by the same token, r) in linear
time, proceeding as follows: assume that each set CL1, CL2, CR and CR2 has been
sorted by x-coordinates. In a merge-like scan through CL1 and CL2, we compute, for
each point P of CL2, its "counterpart" in CL, i.e., the leftmost point of CLt to the
right of the vertical line passing through P. We perform the same operation with respect
to CL and CR (rotated by 90 degrees), and the conjunction of the two lists thus
obtained precisely provides the desired correspondence between P and Ml(p. We
compute the function r(P) similarly.

CL

CL

M

M

b ol Mr(p(P)

CR z

M

FIG. 5. The points in CR that can be paired with P in CL2.

Once the set {M(p), M(p)+,..., Mr(p)} associated with P is computed, in order
to facilitate searching of a point Mi in the set with which to pair P to form the LECR
we make use of the notion of so-called LL-diagram (Lower-Left-diagram), which is
similar to the notion of Voronoi diagram (see, for example, [10], [11], [15]).

Computing the LL-diagram. The LL-diagram of a set S={M, M2,’", MN},
denoted LL(S), is defined as follows: LL($) is a set of regions
{V(M1), V(M2),..., V(MN)}, where

V(M,)={MeNE*Id(M,M,)>=d(M,M) for all j= 1,2,...,N}

and d (A, B), the d-distance between A and B, measures the area of the corner rectangle
between A and B if B dominates A and is zero otherwise; NE* denotes the region
(-oo, Xmax] X (--00, Ymax] excluding the smallest enclosing rectangle of S, where Xmax
and Ymax are maximum x- and y-coordinates of S respectively, and is the crossed-line
area shown in Fig. 6. Note that if a point M of S is dominated by another, its associated
region V(M) is empty. Thus, we only consider the case where S contains only maxima.
The LL-diagram of S has the following properties (Lemmas 4, 5 and 6).

LEMMA 4. Let S be a set ofN maxima, M1, M_, ., MN. Then LL(S) consists of
a set ofpossibly unbounded polygons which partitions NE*. All the polygons (except one)
are convex, and LL(S) involves only O(N) edges.

Proof. First consider the case where S consists of only two points A(0, v) and
B(u, 0) with u and v positive. The points M(x, y) in NE* farther from A than from
B (with respect to d) satisfy the relation x(v y) <- y(u x). This reduces to y_->0 or
vx-uy <-_ O, which is the area of NE* above the line passing by the diagonal (other

COMPUTING THE LARGEST EMPTY RECTANGLE 307

/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/
/

Ymax

cs)

Xmox

FIG. 6. ,Domain of definition of LL-diagrams.

than AB) of the corner rectangle determined by A and B (Fig. 7). In general, consider
the intersection W of the regions associated with Mi in LL(Mk, Mi), k 1, 2,..., N.
Since W is the intersection of unbounded convex polygons, it is itself a possibly
unbounded convex polygon. Also, since the domain of definition, NE*, as defined for
each LL(Mk, Mi), contains the domain of definition for LL(S), the region V(M) is
simply the intersection of W with NE*; it is therefore a possibly unbounded polygon,
which is always convex, except for the polygon which contains the "corner" of NE*.
We can also see that V(M) has an edge on the boundary of NE*. (Note that none
of the regions associated with M in LL(Mk, M) lies strictly inside NE*.) The last
point to make is that since LL(S) is a planar graph with O(N) faces, all of whose
vertices have degree >= 3, it involves O(N) vertices.

A(O,v)

VCA)

V(B)

B(u,O)

FIG. 7. LL-diagram for points A and B.

LEMMA 5. Let M1, M2, , MN occur in this order with ascending x-coordinate and
let L be any line parallel to the x-axis. It is impossible to find two points A and B on L
in NE* with increasing coordinates such thatA and B lie in V(Mi) and V(M), respectively,
with >j (Fig. 8).

308 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

FIG. 8. Point A cannot be in V(Mi) and point B in V(Mj).

Proof. Immediate from the definition of LL(Mi, M).
We now proceed with the computation of LL(S) using a standard divide-and-

conquer technique. We sort the points in S in ascending x-coordinates as
M1, ME,’’’, Ms. Recursively compute L1 LL(S1) and L2- LL(S2), where St=
{M, M2,""", Mts/2} and $2= {Mts/j+,... Ms}, and then merge them. We start
at the lower left corner of the corner rectangle determined by Mts/ and Mts/j+
drawing the diagonal AB (Fig. 9a) downwards until we hit an edge of L or L2, at
which point we stitch the two segments. We illustrate the stitching operation in Fig.
9b. Let us call a diagonal of a segment MiMe, the line supporting the diagonal of the
corner rectangle determined by Mi and M (other than MM). Suppose that the line
currently drawn follows the diagonal of MM downwards. When we encounter the
diagonal of MMk, we cut through it and replace it by the diagonal of MMk (Fig. 9b).
By doing so, we recompute the LL-diagram of S locally around the path being thus
drawn. If we iterate on this process i.e., drawing, hitting and stitching, we will produce
a path z, which is obviously monotone with respect to both the x and y axes. This is

"-S
ML.N/

(a)

M.

";-7,,

(b) aMk

FIG. 9. Stitching operation of two LL-diagrams.

COMPUTING THE LARGEST EMPTY RECTANGLE 309

due to the fact that z is made of chunks of diagonal, which all have positive slopes.
To ensure that stitching the two LL-diagrams L1 and L2 takes O(N) time, we do the
following. At all times, we keep track of the face in L and the face in L2 we are
currently in. The stitching operation corresponds to leaving one face of, say L, for
another face of L. At this point, we know the direction to follow, and we must compute
the next hitting edge. To do so, we maintain a pointer p (respectively P2) to go around
the current face of L counterclockwise (respectively L2 clockwise). Since all slopes
are positive, pointers will always be descending; therefore we can move them in a
simple round-robin fashion so as to detect the first intersection with the new drawing
direction without ever backtracking. As usual, we remove all parts of L and L2 which
have been cut and lie to the right and left, respectively, of the path z. We omit the
details and conclude that the entire computation of LL(S) takes O(N log N) time.
Interested readers are referred to, for example, 10], 11], 15] for details of the merge
concept.

LEMMA 6. The LL-diagram ofa set ofNpoints can be computed in O(N log N) time.

Proof. It suffices to show that in the recursive step of the above procedure each
point to the left and to the right, respectively, of z has its farthest neighbor in $1 and
in $2. Assume that this is not the case, and that, for example, a point M to the left of
z has its farthest neighbor in $2. Let us draw a horizontal line through M. This line
will necessarily intersect the path z in exactly one point P. Let P* be a point immediately
to the left of z (Fig. 10). P is, by construction, in the region of a point of S, since we
have already seen that the LL-diagram has been correctly constructed around z locally.
This is a contradiction to Lemma 5, which completes the proof.

FIG. 10. Illustration for the proof of Lemma 6.

With the LL-diagrams in mind let us consider how they can be effectively used
in finding the point of CR to pair with each point in CL. Consider the complete
binary tree T that has M, M2," ", Mu of CR1 for leaves, from left to right. Letting
SL be. the set of sequences of leaves of each subtree of T, we can use the standard
segment-tree technique [2] to rewrite any contiguous subsequences of M, M2, , Mu
as the concatenation of O(log u) sequences in SL (Fig. 11). It is clear that for any
interval [Mi, M] of consecutive leaves such decomposition can be obtained in O(log u)
time by a simple searCh for Mi and M in T. We omit the details (see Bentley and
Wood [2]). The purpose of this decomposition is to compute efficiently the farthest
neighbor in [Mtp), Mrp)] of each point P in CL2. To do so, we precompute the
LL-diagram of each sequence of points in SL so that we may decompose Mp), Mrp)]

310 I. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

M Mj

{Mi,...,Mj} :{A,B,C,D,E} pointer to LL- diogrom

FIG. 11. Decomposition of an interval Mi, M] into subintervals.

into sequences in SL and search for the farthest neighbor of P in each of the sequences.
A similar technique can be found in Gowda et al. [6]. Searching for the farthest
neighbor is, in this case, equivalent to determining in which region of the LL-diagram
P lies. This can be accomplished in logarithmic time, using only linear space with
Kirkpatrick’s planar point location algorithm [8].

To summarize, the preprocessing of the recursive step consists of:
1. Trimming CL1, CL2, CR1 and CR2 in O(N) time and space.
2. Precomputing the functions l, and r in O(N) time snd space.
3. Setting up the tree T for CR1, and computing the LL-diagram of each sequence

of points in SL. SL consists of one u-sequence, two u/2-sequences, ..., 2k

u/2k-sequences, etc. It follows that computing all the LL-diagrams requires
time T(u) 2T(u/2)/ O(u) O(u log u) and space S(u) 2S(u/2)/ O(u)
O(u log u). (See Lemma 6 or [6].)

4. Setting up the preprocessing required by Kirkpatrick’s planar point location
algorithm for each LL-diagram computed, which requires O(k) time and space
for a set of k points.

Consequently, the total cost ofthe preprocessing amounts to O(u log u) time and space.
The computation of the farthest neighbor in (Ml(p)," "’, Mr(p) of each point P

in CL2 is done by performing O(log u) planar point searches, each requiring O(log u)
time. Putting our results together, we conclude that it is possible to find the LECR
with corners in CR1 and CL2 in time E(N) O(N log2 N) and space O(N log N).
From the relations (1) and’(2) we therefore have the following.

LEMMA 7. The largest empty corner rectangle with corner points in CL and CR can
be computed in D(N)- O(N log N) time and O(N log N) space.

THEOREM 1. The largest empty rectangle problem for N points in the plane can be
solved in T(N) O(N log4 N) time and O(N log N) space.

4.3. An improved algorithm for computing LECR. The result ofthe previous section
can still be improved using a less redundant representation. The redundancy comes
partly from the horizontal recursion, since it is likely to entail repeated computations
of the same LL-diagrams. Instead, we will set up a global data structure for the entire
right half, namely the set CR.

Let M1," ’’, M, be the points of CR. We will arrange the points to be the nodes
of a rooted tree TCR that is constructed as follows. The root is an imaginary point
situated entirely above and to the left of CR. First of all, the points with the same
y-coordinates are connected to form chains, ordered in y-coordinate. Then for each
chain we connect the leftmost point to the point in a higher chain that is directly above

COMPUTING THE LARGEST EMPTY RECTANGLE 311

it (Fig. 12). We note that if P is an arbitrary point in CL and Mi is the lowest (rightmost)
point of CR higher than P, the path from Mi to the root of the tree contains the only
points which can be paired with P to form an LECR (Fig. 12).

h(P)

Tree TCRRoot

M

FIG. 12. Construction of the tree TcR.

By analogy with the previous section, we will precompute for each point in CL
the functions and r, which will now point to nodes in TCR. Notice that Mr(p) is simply
the lowest (rightmost) point of CR higher than P, and can be computed in linear time
for each P in CL. Similarly we can compute the "vertical" obstacle h(P)= upper (P),
in CL for each point P in linear time. Next we precompute the function as follows:
consider each point P in descending y-coordinate and 1) if P is in CR, ensure that
all the points and only the points on the path of TCR from the root to P are arranged
consecutively in a stack A, 2) if P is in CL, do a binary search in A in order to find
the highest point below h(P). Note that this point is exactly M(p). Since TCR is a tree,
operation 1 consists simply of updating a stack, which will take a total of O(N) time.
Of course, each point of CL may cause an O(log N) search time. Therefore the total
time complexity of the procedure is O(N log N).

Computing path functions in a free tree. Let T be a free tree with N vertices, each
of degree at most 3. Recall that a free tree is a connected acyclic graph. We wish to
compute "decomposable" functions over tree-paths very efficiently. We consider func-
tions of the form F(v, w), defined for any pair of vertices (v, w) of T. These functions
are assumed to have the following property: there exists an associative operator OP
computable in constant time, such that for any vertex z on the path from v to w, we have

F(v, w)= F(w, v)= OP(F(v, z), F(z, w)).

One trivial example of such a function is the distance between two nodes of the tree.
For the application at hand, (v, w) will be a pair of the form (l(P), r(P)) and F(v, w)
will be the maximum d-distance between P and any point on the chain from MIp) to
Mr(p).

Suppose now that in order to compute F(v, w) we can use a data structure L(v, w)
so that F(v, w) can then be evaluated in O(f(N)) time. We assume that L(v, w)
requires O(t) space and can be computed in O(t log t) time, where is the number
of nodes on the path between v and w. Instead of precomputing all possible structures

312 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

L(v, w) for all pairs of nodes (v, w), which would require O(N3) storage, we will
compute only a subset of them R L(vi, wi), which takes only O(N log N) space, and
has the property that the path between any pair of nodes in T is the concatenation of
disjoint paths between O(log N) pairs (v, wi). The availability of R clearly allows us
to evaluate F(v, w) in O(f(N)log N) time, assuming that we can express the path
(v, w) as a sequence in R in O(log N) time.

The construction of R relies on the fact that it is possible in linear time to find a
vertex (the centroid) of an N-vertex tree whose removal from the tree leaves subtrees
with at most N2 nodes [9]. We will compute R recursively. To do so, we will represent
T, as a rooted ternary tree G defined as follows: let C, the centroid of T be the root
of G. For the sake of simplicity we may assume without loss of generality that we have
exactly 3 subtrees, T1, T2, T3, rooted at C. We then proceed to compute their centroids,
C1, C2, Ca, which we insert in G as the sons of the root C. We iterate on this process
for each subtree, labeling the nodes in the following manner. Assume that T has
exactly Ni vertices (N1 + N2 + N3- N-1). The root C is labeled N and the general
rule is that T1 will be labeled recursively with the integers (1,..., N, T2 with
{N + 1,. ., N -t- N2}, and T with {N + N2-k- 1,. ., N- 1}. To be consistent we will
label the root of each subtree with the highest label available.

Our next task is to augment G with new edges, called extra-edges. For each vertex
v of G we, in turn, apply the following procedure to all the vertices which are adjacent
to v in T and are labeled lower than v in G. Let w be such a vertex. Since it clearly
must lie in the subtree of G rooted at v, we link to v every node, including w, on the
path in G from v to w, thus adding the so-called extra-edges. Figure 13a shows the
labeling of the tree and Fig. 13b the ternary tree representation G. The dotted lines in
Fig. 13b indicate the extra-edges that are introduced when the root node (labeled 26)
is considered.

(a)

3 II 12
9 14

4 6 (v)

2

23/ free tree

22 x’19

21

(b)

26 (v) augmented.... ternary tree G

\’,I II I\
15 13 I0 5 4 2

19 18 (w)

FIG. 13. Converting a free tree to an augmented ternary tree.

COMPUTING THE LARGEST EMPTY RECTANGLE 313

Since we can compute centroids in linear time and G clearly has height O(log N),
it is easy to construct the tree augmented with extra-edges in time
Max(O(NlogN),H(N)), where the first term accounts for the time needed for
augmenting the extra-edges, and H(N), the time for constructing G, is given by
H(N)=H(N1)+H(N)+H(N3)+O(N), NI+N2+N3=N-1, and N1, N2,
N/2, i.e., H(N)- O(N log N). The final addition to G is to set pointers from each
edge (u, v) of G to the structure L(u, v).

It is not difficult to evaluate the overall time and space complexities, T(N) and
S(N), respectively, of the preprocessing we have just described. Since an edge in G
from the root to a vertex k levels deeper gives rise to a path in T of length at most
N/2k, the time and space complexities, respectively, for computing all the structures
of the form L(root, x) required by our algorithm is O(N log N) and O(N). (Recall
that the structure L(v, w) is assumed to take O(t) space and O(t log t) time to construct
with being the number of nodes on the path in T from v to w.) Thus,

T(N) T(N) + T(Nu) + T(N3) + O(N log N)

and

S(N) S(NI) + S(N2) q- S(N3) -I- O(N)

with N + N2+ N3 N-1, and N, Nu, N3<= N/2. This gives .rise to the following
complexity bounds for computing the preprocessing structure R: T(N) O(N log- N)and S(N) O(N log N).

We can now show that this preprocessing allows us to evaluate F(u, v) for any
pair (u, v) of nodes in T in time O(f(N) log N). To do so, we walk up the path in
G from u towards .the root, stopping at the first node w with a label exceeding that
of v. We know that v lies in one of the subtrees of w. Note also that the labeling of
O allows us to go down from w to v in time proportional to the length of the path.
At this point we perform the same operations for u and v in turn, so we may describe
the procedure for u only. Let (w, u,..., Uk) (Uk U) be the path in G from w to u.
If this path has extra-edges connecting w to some ui, we note that G must have a set
of consecutive extra-edges wu, wu2,’", wuj between w and u. We collect the last
extra-edges wuj and iterate on this process, restarting at u (Fig. 14). If w does not
have an extra-edge on its path to u, we simply collect the edges WUl and iterate from
ul. Note that this collecting operation takes only O(length of path from w to u)=
O(log N). Finally we compute F(u, v) by evaluating OP(.., F(ui, vi),), where
the (ui, vi) are all the edges collected by the above procedure.

To show the correctness of our method it suffices to notice that the path formed
by the edges collected from u to w, along with the path collected similarly from w to
v, gives an exact partition of the path in T from u to v. There again, the reader can
supply an easy proof of the fact. We conclude as follows.

LEMMA 8. With O(N log N)-space, O(N log2 N)-time preprocessing, it is possible
to evaluate F(u, v) in O(f(N) log N) time for any pair of vertices (u, v) in T.

Note that the idea of decomposing tree-paths into canonical pieces is one aspect
of a general mapping principle between linear lists and trees developed in [4].

Computing the LECR efficiently. A simple application of the previous paragraph
provides an improved algorithm for computing the LECR of the sets S CLU CR.
Clearly T is our tree TcR, the structure L(u, v) is the LL-diagram of the points of CR
on the path between u and v, preprocessed so as to allow for Kirkpatrick’s planar
point location algorithm, the function F(u, v) simply returns the regions in L(u, v)
where a given point P of CL lies; its complexity is therefore f(N) O(log N). Finally,

314 B. CHAZELLE, R. L. DRYSDALE AND D. T. LEE

root

(=

,5’-//-/-/4 collected edges

FIG. 14. Collecting operation of a path from w to u.

the operator OP(M, M’) returns the point (M or M’) that forms the LECR with P.
Note that the only discrepancy comes from the fact that TCR is not necessarily a tree
with degree =< 3. There is an easy fix, however. We simply introduce dummy vertices
to reduce any excessive degree to 3. This adds only O(N) vertices and thus does not
affect the complexity of the algorithm. We are now in a position to compute the LECR
in S. To do so, compute F(MI(p), Mr(p)) for all P in CL, and return the point which
gives the largest area along with its upper right neighbor. We omit the details of this
straightforward transformation. Thus, with Lemma 8 and the above discussion we have
the following.

LEMMA 9. It is possible to compute the LECR determined by a pair ofpoints, each
of which is in one of the sets CL and CR respectively in D(N) O(N log2 N) time and
in O(N log N) space.

Using relation (1) we can state our main result.
THEOREM 2. The largest empty rectangle problem for a set of N points can be

computed in O(N log N) time and O(N log N) space.

5. Conclusion. We have presented an O(N log N)-time and O(N log N) space
algorithm for computing the largest area rectangle which contains none of the N points
in its interior. A simpler version of the algorithm with running time O(N log4 N) and
space O(N log N) has also been given. The algorithms are primarily based on the
divide-and-conquer strategy. We have addressed only the problem of locating a rec-
tangle whose sides are parallel to those of the bounding rectangle of the given set of
points. If the rectangle sought is arbitrarily oriented, the problem becomes much more
difficult.

Naturally one may ask for an arbitrary polygon instead of a rectangle within a
bounded region or generalize the problem to higher dimensions. We remark that if

COMPUTING THE LARGEST EMPTY RECTANGLE 315

the largest empty triangle is sought and the directions of the sides of the triangle have
been predetermined, then the largest empty triangle can be found in O(n log n) time
and O(n) space using a divide-and-conquer techique similar to the one used in 3.

REFERENCES

1] J. L. BENTLEY, Divide-and-conquer algorithmsfor closest pointproblems in multidimensional space, Ph.D.
thesis, Dept. Computer Science, Univ. North Carolina, Chapel Hill, NC, 1976.

[2] J. L. BENTLEY AND D. WOOD, An optimal worst case algorithm for reporting intersections of rectangles,
IEEE Trans. Comput. (1980), pp. 571-577.

[3] J. E. BOYCE, D. P. DOaKIN, R. L. DRYSDALE III AND L. J. GUIBAS, Finding extremal polygons,
Proc. ACM Symposium on Theory of Computing, 1982, pp. 282-289.

[4] B. M. CHAZELLE, Computing on a free tree via complexity-preserving mappings, Proc. 25th IEEE
Symposium on Foundations of Computer Science, 1984, to appear.

[5] D. P. DOBKIN, R. L. DRYSDALE III AND L. J. GUIBAS, Finding smallest polygons, to appear in
Advances of Computing Research, F. P. Preparata, ed., Jai Press.

[6] I. G. GOWDA, O. G. KIRKPATRICK, D. T. LEE AND A. NAAMAD, Dynamic Voronoi diagrams, IEEE
Trans. Inform. Theory, IT-29 (1983), pp. 724-731.

[7] F. K. HWANG, An O(n log n) algorithm for rectilinear minimal spanning trees, J. ACM, 26 (1979), pp.
177-182.

[8] D. G. KIRKPATRICK, Optimal search in planar subdivisions, this Journal, 12 (Feb. 1983), pp. 28-35.
[9] D. E. KNUTH, The Art of Computer Programming, Vol. I: Fundamental Algorithms, Addison-Wesley,

Reading, MA, 1968.
[10] D. T. LEE, Two dimensional Voronoi diagrams in the Lp-metric, J. ACM, 27 (1980), pp. 604-618.
11] D. T. LEE AND R. L. DRYSDALE III, Generalization of Voronoi diagrams in the plane, this Journal,

10 (1981), pp. 73-87.
[12] D. T. LEE AND C. K. WONG, Voronoi diagrams in L-(Lo-)metrics with 2-dimensional storage

applications, this Journal, 9 (1980), pp. 200-211.
[13] A. NAAMAD, W. L. Hsu AND D. T. LEE, On maximum empty rectangle problem, Appl. Disc. Math.,

8 (1984), pp. 267-277.
[14] M. I. SHAMOS, Computational geometry, Ph.D. dissertation, Dept. Computer Sciences, Yale Univ.,

New Haven, CT, 1978.
[15] M. I. SHAMOS AND D. HOLY, Closest-point problem, Proc. 16th IEEE Symposium on Foundations of

Computer Science, 1975, pp. 151-162.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

1986 Society for Industrial and Applied Mathematics
001

OPTIMAL POINT LOCATION
IN A MONOTONE SUBDIVISION*

HERBERT EDELSBRUNNER’, LEONIDAS J. GUIBAS: AND JORGE STOLFI

Abstract. Point location, often known in graphics as "hit detection," is one of the fundamental problems
of computational geometry. In a point location query we want to identify which of a given collection of
geometric objects contains a particular point. Let denote a subdivision of the Euclidean plane into
monotone regions by a straight-line graph of m edges. In this paper we exhibit a substantial refinement of
the technique of Lee and Preparata [SIAM J. Comput., 6 (1977), pp. 594-606] for locating a point in 5e
based on separating chains. The new data structure, called a layered dag, can be built in O(m) time, uses
O(m) storage, and makes possible point location in O(log rn) time. Unlike previous structures that attain
these optimal bounds, the layered dag can be implemented in a simple and practical way, and is extensible
to subdivisions with edges more general than straight-line segments.

Key words, point location, monotone polygons, planar graphs, partial order, graph traversal,
computational geometry

1. Introduction. Point location is one of the fundamental problems in computa-
tional geometry. In the two-dimensional case, we are given a subdivision 6e of the
plane into two or more regions, and then asked to determine which of those regions
contains a given query point p. If the same subdivision is to be used for a large number
of queries, as is often the case, we can reduce the total cost of this task by preprocessing
the subdivision into a data structure suitable for the search. We will measure the
performance of a proposed solution to this problem by three quantities, the preprocess-
ing cost P, the storage cost S, and the query cost Q.

Optimal solutions for this search problem have been known since Lipton and
Tarjan [LT] and Kirkpatrick [Ki]. For a subdivision b with m edges these optimal
solutions simultaneously attain S O(m), Q O(log m) and, under certain assump-
tions, also P O(m). The Lipton-Tarjan method is based on their graph separator
theorem, and so far has been only of theoretical interest. Kirkpatrick’s method, which
consists of building a hierarchy of coarser and coarser subdivisions, is implementable,
but still the implied constants are so large as to make current implementations of little
practical interest. In addition, neither of these techniques seems to extend in a natural
way to curved-edge subdivisions.

Historically, Dobkin and Lipton [DL] were the first to achieve O(log m) query
time, while using O(m2) space. Their method was subsequently refined by Preparata
[P] so that O(m log m) space suffices. Later Bilardi and Preparata [BP] again gave a
refinement that achieves O(m) space in the expected case, while retaining O(m log m)
space and O(log m) query time in the worst case. These solutions are applicable to
curved-edge subdivisions and seem to admit of efficient implementations.

A substantially different approach was taken by Shamos IS] and led to the
well-known point location paper of Lee and Preparata [LP], based on the construction

Received by the editors October 13, 1983, and in final revised form January 28, 1985.

t Institutes for Information Processing, Technical University of Graz, A-8010 Graz, Austria. The work
of this author was supported by the Austrian Fonds zur F6rderung der wissenschaftlichen Forschung.

Digital Equipment Corporation, Systems Research Center, Palo Alto, California 94301.
Digital Equipment Corporation Systems, Research Center, on leave from the University of So Paulo,

Silo Paulo, Brazil. Part of this research was conducted while this author was at the Xerox Palo Alto Research

Center, Palo Alto, California. The work of this author was supported in part by a grant from Conselho
Nacional de Desenvolvimento Cientifico e Tecnol6gico (CNPq).

317

318 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

of separating chains. This data structure attains P-O(m log m), S-O(m), and
Q- O(log2 m). The constants of proportionality in these expressions are quite small,
and the algorithms, particularly the query one, are simpler than those of Kirkpatrick.
While Kirkpatrick’s algorithm requires the regions to be triangular, that of Lee and
Preparata works for regions of a more general shape (monotone polygons, which
include the convex ones). Recently Chazelle [C2] described a variant of this solution
as a special instance of a general method for "searching in history". His structure
needs the same amount of space and time. These techniques again are applicable to
curved-edge subdivisions, although this possibility was not examined.

In a separate devolopment, Edelsbrunner and Maurer [EM] came up with a
space-optimal solution that works for general subdivisions, and even for sets of arbitrary
nonoverlapping regions. The query time is Q- O(log m), but it can be improved to
Q-O(log2 m) for rectangular subdivisions, where the structure becomes especially
simple. For this reason a generalization to rectangular point location in higher
dimensions has also succeeded; see Edelsbrunner, Haring and Hilbert [EH].

The purpose of this paper is to show an elegant modification to the separating
chain method of Lee and Preparata that yields a new optimal point location algorithm
for monotone subdivisions of the plane. The algorithm is based on a new data structure
called the layered dag. In this new structure the separating chains built into a binary
tree by Lee and Preparata are refined so that (1) once a point has been discriminated
against a chain, it can be discriminated against a child of that chain with constant
extra effort, and (2) the overall storage only doubles. The layered dag simultaneously
attains S- O(m) and Q- O(log m). An additional insight allows us to build this dag
(as well as the original Lee-Preparata tree) in only O(m) time. Not only is this new
structure optimal with respect to all of preprocessing, space, and query costs, but in
fact a simple implementation, with small constants of proportionality, is possible. Like
its Lee-Preparata predecessor, it also extends to curved-edge subdivisions.

In the organization of the paper we have adopted the policy that each new data
structure is first introduced by how it is to be used, and then by how it is to be
constructed. We have placed emphasis throughout on implementation considerations,
as well as the underlying theory. Section 2 describes the basic notions surrounding
monotone polygons and subdivisions. Section 3 shows how nonmonotone subdivisions
can be made monotone. Sections 4, 5 and 6 introduce a partial ordering of the regions
and its use in getting a complete family of separators. Section 7 reviews the Lee-
Preparata structure, while 8 and 9 introduce the layered dag, and explain its use in
point location and its construction. Section 10 gives an algorithm for constructing a
complete family of separators based on a traversal Of the subdivision. Two implementa-
tion issues are taken up in 11 and 12; these may be omitted on a first reading.
Section 11 describes some bit-twiddling trickery used to give us linear preprocessing
time, while 12 discusses how subdivisions can be traversed without auxiliary storage.
Finally 13 contains some further applications of the layered dag to problems in
computational geometry.

2. Monotone polygons and subdivisions. An interval is a convex subset of a straight
line, i.e., the whole line, a ray, a segment, a single point, or the empty set. An interval
is proper if it contains more than one point, and is open if it does not contain its
endpoints (if any). A subset of the plane is said to be monotone if its intersection with
any line parallel to the y axis is a single interval (possibly empty).

This refinement is similar to a technique proposed by Cole [C] and, in a different context, by Chazelle
[C3] (the hive graph).

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 319

We define a polygon as an open, connected, and simply connected subset of the
plane whose boundary can be partitioned into finitely many points (vertices) and open
intervals (edges). Note that, according to these definitions, polygons may have infinite
extent. A subdivision is a partition of the plane into a finite number of disjoint polygons
(regions), edges, and vertices; these parts are collectively called the elements of the
subdivision. It follows from the definitions that every edge is on the boundary between
two regions (not necessarily distinct), that every vertex is incident to some edge, that
every endpoint of an edge is a vertex, and that every region (unless there is only one)
has some edge on its boundary. From these facts and from Euler’s theorem, we can
conclude that a subdivision with m edges has O(m) vertices and regions, thus justifying
our use of m as the measure of problem size.

A subdivision is said to be monotone if all its regions are monotone and it has no
vertical edges. The last condition is a technical one" it is imposed only to simplify the
proofs and algorithms and can be removed with some care. Figure 1 illustrates a
monotone subdivision (arrowheads denote edges extending to infinity).

FIG. 1. A monotone subdivision.

With minor caveats and modifications, monotone subdivisions include many
interesting subcases, such as triangulations, subdivisions of the plane into convex
pieces, and so forth. The lemma below shows that monotone subdivisions are precisely
the "regular planar straight-line graphs" as defined by Lee and Preparata [LP]"

LEMMA 1. A Subdivision with no vertical edges is monotone if and only if every
vertex is incident to at least two distinct edges, one at its left and one at its right.

Proof. The "only if" part is easy, since if, for example, all edges incident to a
vertex v pointed to the right, then the region to the left of v would have a disconnected
intersection with a vertical line through v.

For the converse, assume R is a region that is not monotone, and let be a vertical
line whose intersection with R consists of two or more components, as in Fig. 2. Since
R is connected, any two components I1, 12 of the intersection are connected by a
simple path 7r in R. We can always choose I1, I2, and 7r so that I1 is above 12, and
does not meet except at its endpoints Pl I1 and P2 12. Then 7r and the interval
[Pl, P2] delimit a closed and bounded region S of the plane.

Suppose 7r lies to the left of I. The boundary of R must enter S at the lower
endpoint of 11 (and also at the upper endpoint of I2). Since the boundary cannot meet
the path 7r, there must be some vertex of the subdivision in the interior of S. Let v be
the leftmost such vertex; clearly all edges incident to v lie to the right of it, and we
have proved the lemma. A similar argument holds if 7r lies to the right of I.

320 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

FIG. 2

Therefore, we can check whether any subdivision is monotone by enumerating
all the edges incident to each vertex, and checking whether they satisfy Lemma 1. Each
edge will be examined at most twice, and each vertex once, so this algorithm runs on
O(m) time.

3. Regularization. Lee and Preparata [LP] have shown that an arbitrary sub-
division with rn edges can be refined into a monotone subdivision having <-2m edges
in O(m log m) time, a process they termed regularization. (They define a vertex as
being regular if it satisfies the condition of Lemma 1.) For the sake of completeness
we reproduce their algorithm here, in a slightly different setting.

The task of the regularization process is to add new edges to the subdivision so
as to make each vertex regular. Each new edge must connect two existing vertices (or
extend from an existing vertex to infinity), and may not intersect any other edges. In
other words, we can connect two vertices only if they are visible from each other. See
Fig. 3 for an example.

FIG. 3. Regularizing a nonmonotone subdivision.

The regularization algorithm is based on the sweeping line paradigm that has been
used extensively in computational geometry. We imagine that a vertical line sweeps
the plane from left to right. We call active those vertices, edges, and regions currently
intersecting the sweeping line. The list of active elements changes only when the line
passes through a vertex, at which time some edges may end and others may start.
Except at those moments, the active edges have an obvious vertical ordering, and cut
the sweeping line into one or more active intervals. To each active interval we assign
a generator, which is the last vertex swept over that happened to lie on or between the
two active edges bounding that interval. This vertex may be a left endpoint of those
edges, as Fig. 4 shows, or it may be an irregular vertex with no right-going edge, as
Fig. 5 shows.

LEMMA 2. The generator ofan active interval is visiblefrom anypoint in that interval

Proof. By definition, the hatched region in Figs. 4 and 5 is free of vertices and
edges. [3

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 321

generator

I-’>sweeping
line

gene
sweeping
line

FIG. 4 FIG. 5

The regularization algorithm simulates this line sweep. We start by sorting all
vertices of the subdivision by their x-coordinates. We will assume these coordinates
are all distinct; if necessary, we can enforce this condition by rotating the subdivision
through a sufficiently small angle. We also augment the subdivision with two dummy
vertices at x +, to which are incident all edges having infinite left and right extent,
respectively. During the sweep, we maintain a balanced search tree whose leaves
represent the active intervals of the current sweep line (and the associated generators),
ordered by y-coordinate. Conceptually, we imagine that the sweep line jumps from
one corridor between successive vertices to the next, because within a corridor neither
the ordering nor the generators of the active intervals can change.

Consider what happens when we pass a vertex v with left-going and r right-going
edges. At that moment we must delete the l+ intervals bounded by edges that end
at v, and insert in their place the r+ 1 intervals bounded by edges that start at v. In
particular, if 0, we must delete the currently active interval in which v lies, which
is bounded by the edges immediately above and below v. Similarly, if r 0, we add
one new interval bounded by those two edges. Updating the generators is straightfor-
ward" the vertex v simply becomes the generator of the r+ 1 new intervals.

When an active interval is about to be deleted, we check whether a new regularizing
edge should be added to the subdivision. If the generator u of that interval has no
right-going edges, or the new vertex v has no left-going ones, we add a new edge
between u and v. See Fig. 6. By Lemma 2, this edge does not intersect any others.

FIG. 6. Adding new edges.

When the sweep line reaches the vertex at x +, all irregular vertices will have
been fixed in this way. The number of new edges is at most the original number of
irregular vertices, which in turn is at most m. The running time is dominated by the
cost of sorting of the vertices and manipulating the balanced tree, which is O(m log m)
in the worst case. The problem of whether regularization can be done in time faster
than O(m log m) remains open.

4. The vertical ordering. We denote by HA the orthogonal projection of a set A
on the x-axis. The projection IIR of a monotone polygon is an open interval of the

322 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

x-axis, whose endpoints, if any, are the projections of at most two extremal vertices
of R. The frontier of R is the boundary of R minus its extremal vertices. This frontier
consists of two disjoint pieces, the top and the bottom of the region R. Each is either
empty, or a connected polygonal line, which may extend to infinity in one or both
directions.

Given two subsets A and B of the plane, we say that A is above B (and write
A >> B) if for every pair of vertically aligned points (x, y) of A and (x, Yb) of B we
have y,, >-Yb, with strict inequality holding at least once. In this case we also say that
B is below A (and write B << A). Some of these concepts are illustrated in Fig. 7. For
the rest of this section, we will restrict >> to the elements of a fixed monotone subdivision
ow, with n regions and m edges. Then >> has several interesting properties listed in the
lemmas below (straightforward proofs will be omitted).

FIG. 7. A>> B, HB.

LEMMA 3. For any two elements A and B of a monotone subdivision, A >> B if and
only ifA B and there is some vertical line segment with lower endpoint in B and upper
endpoint in A. I]

LEMMA 4. Any two elements A and B ofa monotone subdivision satisfy exactly one
ofA= B, A<< B, A>>B, or HAfqHB=. 13

If three elements A, B and C are intercepted by a common vertical line, then
from A << B and B << C we can conclude A << C. Therefore, the relation << is transitive
(and in fact a linear order) when restricted to all the elements intercepted by a given
vertical line. Transitivity may not hold without this restriction, but the following
property will be true in any case"

LEMMA 5. The relation << is acyclic.
Proof Suppose not. Let Eo << E << E2 << << E Eo be a cycle of << with minimum

length, where each E is an element of the subdivision 5. From Lemma 4, it follows
immediately that k > 2.

The x-projections of any two consecutive elements E and E+ in this cycle must
have some abscissa x in common. If for some we had HE = HE_, then the vertical
line through x would meet E_, E, and E+; transitivity would hold, and we would

x;
_1

FIG. 8

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 323

have Ei-1 << Ei+l. See Fig. 8. But then we could omit E and still get a cycle, contradicting
the assumption that k is minimum. For analogous reasons, we cannot have HEi c IIEi+.

Let E be one of the "leftmost" cycle elements, i.e., such that none of the intervals
HE contains a point to the left of HE. The projections HE_ and HE/I of its neighbors
must both meet HE, and, by what we have just said, extend beyond its right endpoint.
But then there would be again a vertical line meeting all three elements, implying
E_I << E+I and k is not minimum. We conclude that no such cycle exists. [-I

We say that a region A is immediately above a region B (and write A > B) if A >> B
and the frontiers of the two regions have at least one common edge; see Fig. 9.

FIG. 9. A > B.

In general, the > relation is stronger than >>, but the following is easily seen to

be true:
LEMMA 6. The transitive closure of >> (restricted to the regions of a subdivision) is

the same as that of >. [3

5. Separators. A separator for a subdivision is a polygonal line s, consisting of
vertices and edges of 9, with the property that it meets every vertical line at exactly
one point. Since s extends from x =-c to x +, any element of the subdivision
that is not part of s is either above or below it. See Fig. 10. The elements of s have
pairwise disjoint projections on the x-axis, and so can be ordered from left to right;
the first and last elements are infinite edges.

FIG. 10. A separator.

A complete family of separators for a monotone subdivision 6e with n regions is
a sequence of n- 1 distinct separators s << s2 <<’" << S,_l. There must be at least one
region between any two consecutive separators, and also one below Sl and one above
s,_l. If a region is below a separator si, it must also be below any separator s with
j > i. We can conclude that, if 9 admits a complete family of separators, its regions
can be enumerated as Ro, R,..., R,_ in such a way that R << s if and only if i<j;

324 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

in particular,

(1) Ro << sl << R1 << s2<< << Sn--1 << Rn-.

Given a complete family of separators and an enumeration of the regions as in (1),
let us denote by index (R) the index of a region R in the enumeration. Then Sindex(R)
R << Sindex(R)/ (whenever those separators are defined). Also, if we let above (e) be
the region above the edge or vertex e, and below (e) the one below it, the following
holds:

LEMMA 7. If/=index (below (e)) and j=index (above (e)), then the separators
containing e will be exactly Si+l, si/2,""’, sj.

6. Existence of a complete family of separators. It is a well-known result that any
acyclic relation over a finite set can be extended to a linear (that is, total) order.
Therefore, by using Lemma 5 we conclude that there is an enumeration
Ro, R,. , R,_ of the regions of 5 that is compatible with <<, i.e., such that R << Rj
implies i<j. Furthermore, any enumeration Ro, R,..., R,_ of the regions that is
compatible with < is also compatible with <<, and vice-versa.

Since a region with nonempty bottom frontier is immediately above some other
region, and therefore not minimal under <, the first region in any such enumeration
has no bottom frontier, and extends to infinity in the -y direction. Since vertical edges
are not allowed, its x-projection is the whole x-axis. Similarly, the last region R,_I is
the only one with no top frontier, and also projects onto the whole x-axis. Therefore,
we always have Ro << R << R,_ for 0 < < n- 1.

We are ready to prove the main result of this section:
TIaEOaEM 8. Every monotone subdivision 5 admits a completefamily ofseparators.
Proof Let Ro, R,..., R,_ be a linear ordering of the regions of ow that is

compatible with the << relation, i.e. R << R/ only if i<j. For i= 1, 2,..., n- 1, let s
be the collection of all edges and vertices that are on the frontier between regions with
indices <i and regions with indices >_-i. For example, Fig. 10 shows the separator s8.

Now consider any vertical line l, and let Ri,, R2,. ., Rq be the regions it meets,
from bottom to top. Since meets Ro and R,_, and Ri,<< R << << Rq, we will have
0= ii < i2 <... < iq n- 1. Therefore, there is exactly one point on that is on the
frontier between a region with index <i and a region with index ->_i, that is, on s.
Furthermore, the intersection of with s will be equal to or above that with si_l, and
for some such lines (those that meet R_) the two intersections will be distinct. So,
we have S << S2 << << S -1"

Clearly, the elements of s have disjoint x-projections, and therefore can be ordered
from left to right; they must be alternately edges and vertices, the first and last being
infinite edges. To prove that s is a separator, it remains only to show that s is connected;
if that were not the case, we would have some vertex v of s that is distinct from, but
has the same x-coordinate as, one endpoint of an adjacent edge e of s; see Fig. 11.

FG. 11

But then we would have u << R << v (or vice-versa), for some region R; and therefore
e<< R << v (or vice versa), contradicting the construction of si. Therefore, each si is a
separator, and s, s2,"" ", s,_ is a complete family of them.

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 325

7. A point location algorithm. Later on we will tackle the problem of efficiently
computing a complete family of separators for a monotone subdivision. Let us therefore
assume for now that we have such a family sl, s2,’", sn-1, with a corresponding
enumeration of the regions Ro, R,..., Rn-1 satisfying (1); we will show next how
they can be used to determine, in time O(log2 m), the unique element of 5 that contains
a given point p.

The algorithm we will describe is essentially that of Lee and Preparata [LP], and
uses two levels of binary search. The inner loop takes a separator si (as a linear array
of edges and vertices, sorted by x-coordinate), and determines by binary search an
edge or vertex e of si whose x-projection contains the abscissa px of p. By testing p
against e, we will know whether p is above s or below s (or, possibly, on e itself, in
which case the search terminates). The outer loop performs binary search on i, so as
to locate p between two consecutive separators s and s/, that is to say in a region Ri.

Besides the separators, the hlgorithm assumes the index, index (R) can be obtained
for any given region R, and similarly the adjacent regions above (e) and below (e) can
be obtained from an edge e, all in constant time. We will see that the construction of
these tables is part of the process of constructing the family of separators. The search
algorithm uses these tables to reduce substantially the storage requirements (and also
speed up the search a little bit).

Let T be the infinite, complete binary search tree with internal nodes 1, 2, 3,...
and leaves 0, 1, 2, 3, , as in Fig. 12. The tree T is used as a flowchart for the outer
loop of the search algorithm, with the convention that each internal node represents
a test of p against the separator si, and each leaf j represents the output "p is in Rj".
While reading the algorithm it should be borne in mind that "left" in the tree
corresponds to "down" in the subdivision. The left and right children of an internal
node k of T will be denoted by l(k) and r(k), respectively. We let lca (i,j) be the
lowest common ancestor in T of the leaves and j, that is, the root of the smallest
subtree of T that contains both and j.

FIG. 12. The tree T.

When testing p against a separator, we adopt the convention that each edge
contains its right endpoint but not its left. This is unambiguous since there are no

vertical edges. If the algorithm detects that p lies on some edge e during a discrimination
against a separator, it can terminate the search and, by comparing p with the right
endpoint of e, determine if our point is a vertex of the subdivision.

326 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

ALGORITHM 1. Point location in a monotone subdivision.
{ The algorithm returns in the variable loc a reference to the vertex, edge, or
region of 6f containing p.}

1. Set i-O,j-n-1, k-lca(0, n-l).
2 While i<j, do"

{At this point p is above the separator si and below sj+l (whenever those
separators exist). That is, p is in one of the regions Ri, R+I,..., Rj (or
in some edge or vertex between two of these regions). At each iteration of
this loop, either increases or j decreases, and k a common ancestor of
and j) moves down one level in the tree T}.

3 Ifi<k-<jthen
4. Find (by binary search) an edge e in Sk such that Px He.

Let a - index (above (e)), b-index (below (e)).
{By Lemma 7, e belongs to the separators Sb+l, Sb+2, ", Sa. Therefore,
by testing p against e we conclude it is either on e, above sa, or below
Sb+l.

5. If p is on e, set loc e and terminate the search.
6. Ifp is above e, set ia; else setj b.

7. Else
[8. If k>j set k/(k); else (if k_<- i) set k r(k).

9. Set loc -R and terminate the search.

The binary search along each separator Sk can be performed in O(log m) time if the
edges of Sk are stored in a linear array or balanced binary search tree sorted from left
to right. By the first iteration, the variable k lca (0, n 1) points to an internal node
of T at level [log n l; at each iteration it descends one level, so we have O(log n)
iterations, and a total time bound of O(log n log m)= O(log2 m). This bound is tight:
Fig. 13 shows a subdivision with m edges that realizes it. This example has x/+ 1
regions and a family of x/ disjoint separators with x/ edges each.

R

Ro
FIG. 13. A subdivision that is bad for Algorithm 1.

Note that by keeping track of the variables and j we are sometimes able to skip
the binary search for px in some separators. This optimization may improve the average
running time of the algorithm in practice, but does not affect the worst-case bound. It
was included primarily to make algorithm 1 more similar to the variants developed
further on.

If we were to independently represent each separator as a linear array, with all
its edges and vertices, we would have to store n- 1 separators, whose average length
can be as large as O(m) for some classes of subdivisions. So, the storage requirement

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 327

of this basic method is O(m2) in the worst case. However, after p has been tested
against the edge e in step 6, and j are updated in such a way that we will never again
look at the edges of any other separator that contains e. Therefore, an edge need only
be stored in the first separator containing it that would be encountered in a search
down the tree T. Specifically, if the edge e is in the common frontier of regions Ri
(below) and Rj (above), by Lemma 7 it belongs to separators si/l sj and so it suffices
to store it in Sk, where k is the least common ancestor of and j. This is the highest
node in T whose separator contains e.

Note that only those edges assigned to Sk according to the above rule are actually
stored in such a structure. In general these will form a proper subset of all the original
edges of Sk, SO between successive stored edges of Sk there may be gaps. See Fig. 14.
Actually, it may happen that all the edges of Sk are stored higher up in the tree, so
that Sk is reduced to a single gap, extending from x =-o to x +. The ordered list
of stored edges and gaps corresponding to separator Sk will be termed the chain Ck.
Note that to each subtree of T rooted at a node k there corresponds a "partial
subdivision" consisting of a range of regions and the edges and vertices between them.
The separator Sk splits this partial subdivision into two others, each having half the
regions; the gaps of Ck correspond to edges of Sk that lie on the upper or lower boundary
of the partial subdivision, as shown in Fig. 14.

CIO
C8

The total storage required to represent the chains is only O(m); in 10 we show
how they can be constructed in O(m) time. The derivation of this bound is contingent
on our ability to compute the least common ancestor of any two leaves of T in O(1)
time. This is made possible by the fixed, regular structure of the search tree T (see

11). The point location phase proper could easily be adapted to search a more
conventional linked tree structure, but such structures seem to admit no simple O(1)
algorithm for lca determination.

8. A faster loint location method. Our hope to obtain a faster algorithm for point
location comes from the fact that there is some obvious information loss in the method
of 7. Specifically, when we discriminate a point against a chain Ck, we must localize
it in the x coordinate to within an edge or a gap of Ck. Yet when we continue the
search down some child of k, we start this localization process all over again. It would
be nice if each edge or gap in a chain pointed to the place on each child chain where
the x search on that child will finish. The trouble is that an edge or gap of the parent
can cover many edges or gaps of the child.

The novel idea in the technique we present in this section is to refine the chains
so that the localization of Px in one chain allows us to do the same localization in its
children with only constant extra effort. In its ultimate form, this idea leads to breaking
up each chain at the x coordinates of all vertices of the subdivision. A bit of thought
will convince the reader, however, that such an extensive refinement will require

328 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

quadratic storage for its representation. Instead, we describe below a refinement that
produces for each chain Ck a list Lk of x-values, defining a partitioning of the x axis

into x-intervals. Each such interval of Lk overlaps the x-projection of exactly one edge
or gap of Ck and at most two x-intervals of the lists Ll(k) and Lr(k). As we will see in

9, this last condition is compatible with keeping the overall storage linear.
The lists Lk and their interconnections can be conveniently represented by a linked

data structure that we call the layered dag. This is a directed acyclic graph whose nodes
correspond to tests ofthree kinds: x-tests, edge tests, and gap tests. A list Lk is represented
in the dag by a collection of such nodes: each x-value of Lk gives rise to an x-test,
and each interval between successive x-values to an edge or gap test. See Fig. 15.

gap edge gap edge edge {lOp

XI X2 X4 X5 X6 7 X8

""x-tests ed{le tests gap tests
"-,f.

FIG. 15. The dag nodes for list Lk.

An x-test node contains the corresponding x-value of Lk, denoted by xval (t),
and two pointers left (t) and right (t) to the adjacent edge or gap nodes of Lk. An edge

or gap test node contains two links down (t) and up (t) to appropriate nodes of Ll(k)
and Lr(k). In addition, an edge test contains a reference edge (t) to the edge of Ck

whose projection covers the x-interval represented by t. A gap test node contains

instead the chain number chain (t) k. The various types of nodes present are illustrated

in Fig. 16.

choin:

down

FIG. 16. The nodes of the layered dag.

Let us define more precisely the meaning of the links down (t) and up (t). The
properties of the refined lists ensure that the x-interval of Lk corresponding to an edge
or gap test covers either one x-interval I of Ll(k), or two such intervals I1, I2 separated
by some element Xk of L(k). In the first case, down (t) points to the edge or gap test
of L(k) corresponding to the interval I; in the second case, down (t) points to the
x-test corresponding to the separating abscissa Xk. Similarly, the link up (t) points to

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 329

a node of Lr(k) defined in an analogous manner. In the special case when r(k) and
l(k) are leaves of T, we let down (t)= up (t)= nil.

The layered dag then consists of the test nodes for all lists L, L2, , L,_, linked
together in this fashion. We can use this dag to simulate algorithm 1; the main difference
is that each time we move from a separator to one of its children, the down or up
pointers (possibly together with an x-test) allow us to locate Xp in the new chain in
O(1) time. As before, the variables and j keep track of the interval of separators in
which the point p is known to lie, namely above si and below sj+. This interval is
updated after each edge test exactly as in the previous algorithm, and is used during
a gap test. When we come to a gap test, we know that the chain number of the gap is
not interior to the interval in question. This gives us an unambiguous test as to whether
we are above or below the chain of the gap. By the time the search algorithm gets to
a null up or down link, the interval will have been narrowed down to a single region.

We have now presented enough details about the structure of the layered dag that
we can give the code for the point-location algorithm. The layered dag contains a

distinguished node root where the point location search begins. This node is the root
of a balanced tree of x-tests whose leaves are the edge tests corresponding to the list
for the root node of T.

ALGORITHM 2. Fast point location in a monotone subdivision.
{ This algorithm takes as input the root node ofthe layered dag and the number
n of regions. Its output, as in algorithm 1, is placed in the variable loc.}

1. Set iO,jn-1, troot.
2. While <j do:

{At this point we know p is above the separator si and below sj/ (whenever
those separators exist). That is, p is in one of the regions R, R/, Rj
(or in some edge or vertex between two of these regions). The variable
points to a test node in the layered dag, which together with its descendants
will allow us to locate the point p among those regions.}

3. If is an edge test then let e edge (t) and do:
{At this point we know p, lies within lie.}

4. If p is on e, set loc e and terminate the algorithm.
5. If p is above e, set t-up (t) and iindex (above (e)).

Else set down (t) and j index (below (e)).
6. Else if is an x-test then do:

{ Thefollowing x-test routes us to the appropriate edge ofthe next chain
we need to test against.}

7. If Px <- xval (t) then - left (t) else right (t).
8. Else is a gap test; do

{ We have already comparedp against the appropriate edge of the chain
of the gap test. We just need to recontruct how that comparison went.}

9. If j < chain (t) then - down (t) else - up (t).
_10. Set loc -R and terminate the search.

9. Computing the layered dag. Now that we understand how the layered dag is
to be used, we will describe how it is to be constructed. Our starting point will be the
tree T and the chains Ck defined in 7; recall that Ck consists of those edges of Sk that
do not belong to any ancestor of Sk (that is, to any separator whose index is an ancestor
of k in T).

Our construction of the layered dag proceeds from the bottom up and happens
simultaneously with the refinement of the chains Ck. We first describe how the x values

330 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

in Lk are obtained. Note that we already have at our disposal three sorted lists of x
values" those corresponding to Lt(k), to Lr(k), and also to the endpoints of the edges
stored with the chain Ck associated with node k in the chain tree. The x values in Lk
are a merge of those in Ck, and every other one of those present in each of Lt(k) and
Lr(k). By convention, if k is a terminal node of the chain tree (so it corresponds to a
region), or k _-> n, then Lk is empty. We imagine now that, in a bottom-up fashion, this
is done for every node k of the chain tree. The propagation of every other value from
the children to the father constitutes the chain refinement we had mentioned in 8.
This refinement has two desirable properties"

LEMMA 9. An interval between two successive x values in Lk overlaps at most two
intervals in Lt(k) or Lr(k), respectively.]

LEMMA 10. The total number of x values in the lists Lk, summed over all k, is at
most 4m.

Proof. If ak denotes the number of edges in Ck, then

ak m,
kT

since each edge of the subdivision occurs in exactly one chain Ck. Let bk denote the
number of x values in Lk, and Ak (resp. Bk) denote the sum of ai (resp. bi) over all
nodes in the subtree rooted at k. To prove the lemma it suffices to show that

Br<-4Ar=4m
for the root node r =lca (0, n 1).

As an inductive hypothesis now assume that

(2) B + b <_- 4A
for i= l(k) or i-r(k). This hypothesis is trivially true for the leaves of T. Observe
now that

Bk Bl(k) d- Br(k) d- bk,

and that

bk 2ak + bl(k) + br(k))/2,

since each edge in Ck contributes at most two x-values to Lk. Applying the inductive
hypothesis (2) yields

Bk + bk 4Ak,

which proves the same conclusion for k. This concludes the proof of the lemma.
Intuitively, half of the x values of Ck propagate to the father chain, a quarter to

the grandfather, an eighth to the great-grandfather, and so on. Although this argument
is not strictly correct it illustrates why we can expect the combined length of the L
lists to remain linear in m, and in fact just twice as great as the total number of x
values in the chains Ck.

The construction of the x-test, edge test, and gap test nodes representing the list

Lk in the layered dag is now straightforward, as well as the setting of the left and right
fields of the x-tests. The down links of Lk can be set according to the rules stated in

8, by traversing simultaneously the two lists Lk and LI(k) from left to right. The up
pointers are analogous. In fact, it is possible to build Lk and link it to the rest of the
dag in a single simultaneous traversal of Ck, Ll(k), and Lr(k). This bottom-up process
terminates with the construction of the root chain Lr, where r lca (0, n 1). As a final

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 331

step we produce a tree of x-test nodes corresponding in a natural way to a binary
search on the x-values of the list Lr. The leaves of the tree are made to point to the
appropriate edge test nodes of Lr. All nodes of the layered dag can be reached from
the root of that tree.

ALGORITHM 3. Construction of the layered dag.
1 Set i-1. While i< n do:

{ Construct one more level of the tree T. The first node in this level is
and the difference between successive nodes is 2i. A node k on this level
is the common ancestor of the leaves k- through k + 1; its children
(if i> 1) are the internal nodes k-i/2 and k + i/2.}

2. Set k <- i. While k- < n do:
{Create the list Lk from the chain Ck and the lists L’= Ll(k) and
L" Lk) if they exist).}

3. If i- 1, set L’-, else set L’ - Lk-i/2.
4. If 1 or k + i/2 >- n, set L" -, else set L" - Lk+i/2.
5. If k _-> n, let Ck be a single gap from x =-o to x +.

Split the edges and gaps of Ck at every other x-value of L’ and L".
6. Set Lk -. For each edge or gap e in Ck, do:
-7. Append to Lk an edge or gap test representing e.

Set edge (t) <-- e or chain (t) - k, as appropriate.
8. If L’= b, let down (t) - nil.

Else, ifIIe overlaps only one x-interval of L’, let down (t) point
to the corresponding edge or gap test of L’.
Else IIe overlaps two x-intervals of L’; create a new x-test node
t’ that chooses between the two corresponding edge or gap tests
of L’, and let down (t)-t’.

9. Similarly, set up (t) to nil, to an edge or gap test of L", or to a
new x-test that chooses between two tests of L".

10. Set k-k+2i.
_11. Set i-2i.

12. Let r - lca (0, n 1). Construct a binary tree of x-tests for the list Lr, and
let root point to this tree.

Note that several different nodes of Lk may point to the same node of a child;
an example is shown in Fig. 17. Thus the resulting dags are not trees. We remark that

Lk

FIG. 17. Convergence in the dag.

the structure built by Kirkpatrick [Ki] also corresponds to a dag. This "sharing" of
subtrees seems to be an essential feature of algorithms for point location that simul-
taneously attain optimal space and query time.

To cut down on the number of links, we may consider storing the edge and gap
test nodes of each list Lk in consecutive memory locations, in their natural left-to-right

332 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

order, with the x-tests between them. The initial location of Xp in Lr could then be
carried out by standard binary search. Also, in the construction of Lk we would be
able to scan the lists Llk and Lrk without any auxiliary pointers or tables. Finally,
this sequential allocation would eliminate the need for the left and right links of x-tests,
a fact that may reduce the total storage used by pointers in the dag by about one third.

In any case, the initial location of Xp in the root list L can be determined in
O(log m) time. After that, Algorithm 2 executes exactly [lg n edge or gap tests (one
at each level ofT), and at most that many x-tests. So the total query time is O(log m).
A list Lk with x-values is represented in the layered dag by at most x-tests and + 1
edge/gap tests and, as we have seen, it can be constructed in O(t) time. Using Lemma
10, we conclude that the layered dag contains at most 4m x-tests and 4m + n 1 edge
and gap tests, and can be built in total time O(m+ n) from the chain tree T. In
summary, we have shown that

TREOREM 11. Assuming that the chain tree for a subdivision with m edges is given,
the layered dag data structure can be constructed in O(m) time, takes O(m) space, and
allows point location to be done in O(log m) time. Iq

10. Constructing a complete family of separators. We proceed now to the descrip-
tion of an efficient algorithm that constructs the chain tree T representing a complete
family of separators for a given monotone subdivision 5. As suggested by the proof
of Theorem 8, the first pass of this algorithm enumerates the regions in a linear order
compatible with <<. A second pass enumerates the edges and vertices of 5, in such a
way that the edges and vertices of each separator are visited in order of increasing
x-coordinate (even though this may not be true for elements belonging to different
separators). Therefore, by just appending each visited element to its appropriate
separator, we will get the sorted lists required in Algorithms 1 and 3.

As in 3, we will add to S two dummy vertices at x - and x +c, which are
endpoints of all edges with infinite left or right extent, respectively. If we orient every
edge of if’ from right to left, we obtain a planar embedding of a directed, acyclic graph
S with exactly one source and one sink (solid lines in Fig. 18). The enumeration we
need in the second pass is basically a compatible traversal of this graph, in which we
visit a vertex only after visiting all its outgoing edges, and we visit an edge only after
visiting its destination. This is a form of topological sorting, as discussed in [Kn].

Consider now the dual graph S* whose vertices are the regions of 5, and where
for each edge e of 5 there is an edge e’ from above (e) to below (e). By what we have
seen in 4-6, S* too is acyclic and has exactly one source and one sink. We can
draw S* on top of S (dotted lines in Fig. 18) in such a way that each of its edges e’
crosses only the corresponding edge e of S, and that exactly once (going down).

FIG. 18. The graphs S and S*.

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 333

Therefore, S* is planar, and corresponds to the topological dual of S. It turns out that
S* represents for the first pass what S does for the second: a compatible traversal of
S* will visit the regions in an order consistent with < and <<.

Therefore, both passes reduce to a generic graph traversal algorithm, applied first
to S* and then to S. In the first pass, as each region R is visited, we store in a table
(or in a field of the region’s record) its serial number index (R) in the enumeration.
In the second pass, as each edge or vertex e is visited, we obtain the indices a

index(above(e)) and b index (below (e)) of the regions immediately above and
below it, and append e to the separating chain Ck where k-lca (a, b). With an
appropriate representation for subdivisions, it is possible to accomplish this graph
traversal without any auxiliary storage. This topic is discussed in 12.

11. The lowest common ancestor function. If the construction of the separating
chains ci as described above is to run in O(m) time, it is essential that the total time
to compute lca (index (below (e)), index (above (e))) for all edges e be O(m). This
rules out the straightforward algorithm that starts at the leaves and j, and moves up
one level of T at a time, following "parent" links, until the two paths join at a common
node. This naive algorithm has running time l)(log [i-jl), and it is possible to have
subdivisions in which lindex (below (e))-index (above (e))] (x/) for [l(m) edges
e, thus giving an overall running time of (m log m).

Algorithms for computing in O(1) time the least common ancestor function on
general binary trees have been published by Harel [H]. His algorithms are probably
too complex to be of practical use here, but they can be considerably simplified thanks
to the regular structure of our search tree T. On this tree, the value of lca (i,j) has a
simple interpretation in terms of the binary representations of and j. Let u =[lg n
be the number of bits needed to represent any number from 0 through n- 1, and let

Then

i= (a_a,,_2’’’ar+2 0 a’’’’r aao)z,

j (a_ a_2 ar+2 1 a" a ao)2.

lca (i,j)=(a,,_la,,_l’’’ at+2 1 0 0 0)2.

Loosely speaking, lca (i,j) is the longest common prefix of and j, followed by 1 and
padded with zeros.

An efficient formula for computing lca (i, j) is based on the function msb (k)=
lca (0, k)--2 [lgk]-l, the most significant bit ofk. Its values for k= 1,2,..., n-1 are 1,
2, 2, 4, 4, 4, 4, 8, 8,..., 2-1; these numbers can be easily precomputed in O(n) time
and stored in a table with n- 1 entries, so we can compute msb (k) in O(1) time. Then
we can express the lca function as

lca (i,j)=j ^ -(msb (ij)- 1)

where 0), ^, and are the boolean operations of bitwise "exclusive or", "and", and
complement. We assume these boolean operations can be computed in O(1) time, like
addition and subtraction. We feel their inclusion in the model is justified, since their
theoretical complexity is no greater than that of addition, and most computers have
such instructions.2 For use in this formula, it is preferable to tabulate -(msb (k)- 1)
instead of msb (k).

In fact, some machines can even compute [lg k]- from k ("find first bit") and 2 from q ("shift
left q bits"), in a single instruction cycle. Under a more rigorous log-cost complexity model, all time and
space bounds in this paper and in the main references should be multiplied by an extra log m factor.

334 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

Another way of computing lca is based on the bit-reversal function rev (k), that
reverses the order of the last u bits in the binary expansion of k. For example, for
n 16 and k=0, 1,..., 15, the values of rev (k) are 0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5,
13, 3, 11, 7, 15. Using this function we get the formula

lca (i,j) rev (kq(k- 1)) ^j,

where k rev (i

12. Compatible traversal of an acyclic graph. The input to the compatible graph
traversal routine we mentioned in 10 is a planar embedding G of a directed, acyclic,
and connected graph with exactly one sink and one source, both on the exterior face
of G. See Fig. 19.

sink

ource

FIG. 19. The input to Algorithm 4.

Such an embedding defines a "counterclockwise" circular ordering of the edges
incident to any given vertex u. The post-order traversal of G is defined as a listing of
all its vertices and edges such that

(i) an edge is listed (or visited) only after its destination,
(ii) a vertex is visited only after all its outgoing edges, and
(iii) edges with same origin are visited in counterclockwise order.

This is clearly a compatible traversal as defined in 10. The post-order traversal is
unique, and is a particular case of the general depth-first graph traversal described by
Tarjan [Ta]. This problem admits a straightforward recursive solution. Given a vertex
u (initially the source of G), we enumerate the edges out of u, in counterclockwise
order. For each edge e, we first recursively apply the procedure to its desti.nation v
(unless it has been previously visited). We then visit e and proceed to the next edge.
After all edges out of u have been visited, we visit u and exit. This algorithm runs in
O(m) time and requires only O(m) auxiliary storage, the latter consisting of the
recursion stack and one mark bit per vertex (to distinguish the nodes that have already
been visited).

In the rest of this section we will show that this post-order traversal can be
performed without an auxiliary stack or any mark bits on the vertices, provided the
data structure used to represent the subdivision is rich enough. This improvement is
of significant practical interest, even though it does not affect the O(m) space bound.

As we observed, the embedding of G in the plane defines a counterclockwise
ordering of the edges incident to a given vertex u. In this ordering all outgoing edges
occur in consecutive positions, and the same is true of the incoming ones. To see why,
consider any two edges el, e2 entering u, and any two edges gl, g. leaving u. Let 7rl, 7r2
be two paths from the source vertex of G that end with the edges el and e2, and let
trl, tr2 be the two paths to the sink vertex that begin with gl, g2. See Fig. 20.

Since G is acyclic, both 7rl and 7r2 are disjoint from tr and tr2 (except for u itself).
Now, the paths 7rl and 7r2 together divide the plane in two (or more) regions. If the
two pairs of edges were interleaved, at least one of the paths trl and tr2 would have

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 335

/’1"

F’IG. 20

to cross 7r or 7r2, since they start on different regions but have a common destination.
This proves the above assertion.

If u has both incoming and outgoing edges, this result establishes a linear order
for each class with well-defined "first" and "last" elements, which will be denoted by
first in (u), last in (u), first out (u), and last out (u). See Fig. 21. To make this definition
meaningful also for the source and sink of G, we will introduce a dummy edge base ((3)
that connects the sink back to the source across the exterior face of (3. We may consider
the resulting graph G’ as embedded on the upper half of a sphere, with base (G)
running across the bottom half, as in Fig. 22. In the graph (3’, the first and last outgoing
edges of the source of (3 will be those incident to the exterior face of G. A similar
statement applies to the sink of (3.

first out(u)

(u)

last out(u) first in(u)

FIG. 21 FIG. 22

Let us mechanically translate the recursive post-order algorithm into an iterative
one, using an explicit stack Q to save the value of e when simulating recursive calls
(the value of u need not be saved, since it is always the origin of e).

ALGORITHM 4. Post-order traversal of an acyclic planar graph with one source and
one sink.

-1. Set Q-, u -source of G, e/-first out (u).
2. Repeat the following steps:

{At this point u is unvisited, and e is the first unvisited edge out of u.}
3. While e # base (G) and the destination v of e has not been visited yet,

4. Set u v, push e onto the stack Q, and set e -first out (u).
5. If e # base (G), visit e.
6. While e last out (u) do

8"
Visit u.
If Q is empty, the algorithm terminates. Else,
9. Pop the topmost edge of Q, and assign it to e.

Set u to the origin of e.
10 Visit e.

__11. Set e to the next edge out of u.

336 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

The following claims about Algorithm 4 are a direct consequence of the planarity and
acyclicity of G, and can easily be proved by induction on the number of executed steps:

(I) Before every step, the edges in the stack Q form a path in G from the
source to u;

(II) an edge is stacked onto Q (step 4) only if its destination is still unvisited;
(III) an edge is unstacked (step 9) only after its destination has been visited;
(IV) an edge is visited only after its destination has been visited;
(V) a vertex is visited only after its last outgoing edge has been visited;
(VI) every edge is stacked at most once;
(VII) for any given vertex, at most one incoming edge ever gets stacked; and
(VIII) an edge is visited only after the previous edge with same origin (if any) is

visited.
In particular, from (IV), (V), and (VIII) we conclude that all vertices and edges

of G are visited, and conditions (i)-(iii) are satisfied. Algorithm 4 defines a subgraph
H of G, consisting of all the edges that ever get stacked onto Q. Every vertex of G is
reachable from the source via a directed path in H (the contents of the Q at any
instant when the variable u is that vertex), and has at most one incoming edge in H.
It follows that H is an oriented spanning tree of G, as illustrated in Fig. 23. We remark

sink

source

FIG. 23. The spanning tree H.

that the order in which the vertices of G are visited corresponds to the post-order
traversal of the tree H, as defined by Knuth [Kn]. We will show now that the only
edge of H (if any) entering a vertex u is last in (u). More precisely, the following
lemma holds:

LEMMA 12. Before any step of algorithm 4, if the stack Q is not empty, its topmost
edge is last in (u); otherwise u is the source of G.

Proofi The second part of the lemma is obvious, since the contents of Q is always
a path in G from the source to u. Let us then assume Q is not empty. Let ul be the
current value of u, 7r be the path in Q, and el be the last edge of 7r (i.e., the top of
Q). See Fig. 24. Suppose e2 is an edge distinct from el but having the same destination
ul. From assertions (II) and (III) above we conclude that el and e2 have yet to be

sink

FIG. 24

source

left region

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 337

visited. By the time e2 is visited by Algorithm 4, the variable u will contain the origin
of e2; the contents of Q at that time, plus the edge e_, will define another directed
path zr’ from the source to ul. Since G is acyclic, the path 7r’ neither contains nor is
contained in 7r; in fact, because of property (VII) the paths 7r and 7r’ must diverge
exactly once, at some vertex w Ul, and converge exactly once at ul. Therefore all
edges of zr between w and u must be unstacked (and visited) before e2 is visited. In
particular, the edge a through which 7r leaves w is visited before the corresponding
edge a’ of zr’, and therefore a’ must follow c in counterclockwise order around w.

Let R be the complement of the outer face of G, and let r be any directed path
from u to the sink of G. The concatenation of 7r and tr divides R in two (not necessarily
connected) regions, which we call left and right (with the direction of 7rcr being taken
as "forwards"). The path 7r’ cannot cross tr (otherwise the two would give rise to a
cycle), and its first edge ce’ lies in the left region; therefore, after leaving w the path
zr’ must lie entirely in the left region, and in particular e2 precedes e in the counterclock-
wise order around ul. By repeating this argument for all possible edges e2 el into u,
we conclude that el last in (u). [q

Therefore, instead of retrieving e from the stack in step 9, we can simply set
e-last in (u). Note also that the test "ebase (G) and v has not been visited yet"
in step 3 is evaluated and yields true if and only if e is pushed into Q by the following
step, so we can replace that test by the condition "e base (G) and e last in (v)".
These observations enable us to dispense with the recursion stack and the "visited"
bits on the vertices.

A representation for the embedded graph G that allows the efficient computation
of first out and its companions is the quad-edge data structure [GS]. This representation
is similar to the well-known "winged edge" and DCEL data structures [B], IMP], but
has over them the important advantage of encoding simultaneously both G and its
dual embedding, in precisely the same format, at a negligible extra cost in storage.
This allows the post-order traversals of both S and S* to be performed by the same
procedure, applied to the same data structure.

The quad-edge structure by itself can only represent an undirected embedded
graph, such as the undirected subdivision 5f. However, every edge , of 5e is represented
by two distinct records in the structure, corresponding to the two possible orientations
of g. Therefore, to refer to the edge , of the structure we must actually refer to a
specific directed version of ,. Given such a directed edge e, the quad-edge data structure
gives immediate access to:

org (e) the origin vertex of e,
dest (e) the destination vertex of e,

onext (e) the next counterclockwise directed edge with the same origin,
dnext (e) the next counterclockwise directed edge with the same destination,
sym (e) the same edge directed the other way, and
rot (e) the dual of the edge e, directed from the right to the left faces of e.

A directed graph G, such as S or S*, can be represented by the quad-edge encoding
of the corresponding undirected graph, plus a predicate forward (e, G) that tells
whether the directed edge e of the structure is actually an edge of G. Clearly, e is in
G if and only if sym (e) is not in G, so forward (e, G)---qforward (sym (e), G). In
our case, forward (e, S) is simply the test of whether the x-coordinate of dest (e) is
smaller than that of org (e). Similarly, in the dual graph S* the predicate forward (e, S*)
tests whether the region dest (e) is immediately below the region org (e). This turns
out to be the same as forward (rot (e), S). The dummy edges that we must add to S
and S* are the only exception: we have rot (base (S*))=base (S), and yet both are

338 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

forward. For both graphs, we also have

e last in (dest (e)) :> forward (e, G) ^ forward (dnext (e), G),

e last out (org (e)) :forward (e, G) ^ forward (onext (e), G),

e last in (u) =:>sym (dnext (e)) first out (u).

These identities allow us to remove also the calls to first out and its companions from
Algorithm 4. Algorithm 5 below incorporates all these modifications.

ALGORITHM 5. Post-order traversal of an acyclic planar graph with one source and
one sink using 0(1) auxiliary storage.

1. Set u - dest (base (G)) and e - sym (dnext (base (G))).
2. Repeat the following steps"

{At this point u is unvisited, forward (e, G) is true, and e is the first
unvisited edge out of u.}

3. While e base (G) ^ forward (dnext (e), G), do
{Here e is the last edge into its destination v, so v has not been visited
yet.}

4. Set u dest (e), and set e - sym (dnext (e)).
{ This sets e to first out (u).}

{Now e is the dummy edge, or its destination has already been visited.}
5. If e base (G), visit e.

6. While -forward (onext (e), G) do
{Here e has been visited and is last out (u).}

7. Visit u.
8. If u- dest (base (G)), the algorithm terminates. Else,

{ Compute last in (u), and backtrack through it.}
9. Set e-sym (onext (e)).

While forward (dnext (e), G), do e - dnext (e).
Set u - org (e).

_10. Visit e.
_11. Set e onext (e).

The equivalence between Algorithms 4 and 5 is straightforward. It is also easy to show
that the latter runs in O(m) time for a subdivision with m edges. Every edge of the
graph is assigned to e at most twice" once in the enumeration of the edges out of a
vertex v (step 11), and once in the determination of last in (v) (step 9).

13. Conclusions and applications. We have introduced a new data structure, the
layered dag, which solves the point location problem for a monotone subdivision of
the plane in optimal time and space. The main idea has been to refine the chains
introduced by Lee and Preparata and connect the refined chains by links. The latter
concept originates with Willard [W] and has found frequent application since then.
The layered dag can be built from standard subdivision representations in linear time,
as follows. We use the graph traversal algorithm of 12 to enumerate the regions of
the subdivision in a way compatible with the vertical ordering presented in 4. Another
traversal of the subdivision then allows us to build the chain tree representing a
complete family of separators, as in 10. Finally, the layered dag is built from the
chain tree, as explained in 9. The point location algorithm using this structure has

OPTIMAL POINT LOCATION IN A MONOTONE SUBDIVISION 339

been given in 8. Compared to previous optimal solutions, the advantage of the layered
dag is that

it admits a simple, practical implementation, and
it can be extended to subdivisions with curved edges.

We will not discuss in detail here how to generalize our method to work for curved-edge
subdivisions. Certain requirements for such a generalization to work are clear. We
must be able to break up edges into monotone pieces, to introduce the additional
edges required by regularization, and to test on what side of (a monotone segment of)
an edge a point lies. Our time bounds will be maintained as long as we are able to in
constant time:

cut an edge into monotone pieces,
add a monotone regularization edge between two existing monotone edges, and
test if a point p is above or below a monotone edge e.

The layered dag also yields improved solutions for several other problems in computa-
tional geometry. All these problems are reduced to the subdivision search problem
treated earlier. For example, subdivisions with circular edges occur in the weighted
Voronoi diagram of a point set [AE]. There, each point p in a finite set U has associated
a positive weight w(p) and the region R(p)={xld(x,p)/w(p)<--d(x,q)/w(q),
for all q U}. The layered dag offers the first optimal method for locating a point in
the diagram defined by these regions.

Finally, certain problems related to windowing a two-dimensional picture given
as a collection of line segments have been reduced to subdivision search by Edels-
brunner, Overmars, and Seidel lEO]. The layered dag provides a way to extend their
methods to more general curves without losing efficiency.

Acknowledgments. We would like to thank Andrei Broder, Dan Greene, Mary-
Claire van Leunen, Greg Nelson, Lyle Ramshaw, and F. Frances Yao, whose comments
and suggestions have greatly improved the readability of this paper.

REFERENCES

[AE] F. AURENHAMMER AND H. EDELSBRUNNER, An optimal algorithm for constructing the weighted
Voronoi diagram in the plane, Pattern Recognition, 17 (1984), pp. 251-257.

[BM] J. L. BENTLEY AND H. A. MAURER, A note on Euclidean near neighbor searching in the plane, Inform.
Proc. Letters, 8 (1979), pp. 133-136.

[BP] G. BILARDI AND F. P. PREPARATA, Probabilistic analysis of a new geometric searching technique,
Manuscript, Dept. EECS, Univ. Illinois, Urbana, 1982.

[B] I.C. BRAID, Notes on a geometric modeller, C.A.D. Group Document No. 101, Computer Laboratory,
Univ. Cambridge, England, July 1979.

[C] R. COLE, Searching and storing similar lists, Tech. Rep. 83 New York Univ., New York, 1983.
[C1 B.M. CHAZELLE, An improved algorithm for thefixed-radius neighbor problem, Inform. Proc. Letters,

16 (1983), pp. 193-198.
[C2] ., How to search in history, Report CS-83-08, Dept. Computer Science, Brown Univ., Providence,

RI, 1983; also Proc. International Symposium on Fundamental Computer Theory, Springer-
Verlag, Berlin, 1983.

[C3] ,Filtering search: A new approach to query-answering, Proc. 24th Symposium on the Foundations
of Computer Science, 1983, pp. 122-132.

[DL] D. P. DO3KIN AND R. J. LIPTON, Multidimensional searching problems, this Journal, 5 (1976), pp.
181-186.

[EH] H. EDELSBRUNNER, G. HARING AND D. HILBERT, Rectangular point location in d dimensions with
applications, Comput. J., to appear.

[EM] H. EDELSBRUNNER AND H. m. MAURER, A space-optimal solution ofgeneral region location, Theoret.
Comput. Sci., 16 (1981), pp. 329-336.

340 H. EDELSBRUNNER, L. J. GUIBAS AND J. STOLFI

[EO] H. EDELSBRUNNER, M. H. OVERMARS AND R. SEIDEL, Some methods of computational geometry
applied to computer graphics, Computer Vision, Graphics and Image Processing, 28 (1984), pp.
92-108.

[GS] L.J. GUIBAS AND J. STOLFI, Primitivesfor the manipulation ofgeneral subdivisions and the computation
of Voronoi diagrams, Proc. 15th Annual ACM Symposium on Theory of Computing, 1983, pp.
221-234.

[HI D. HAREL, A linear time algorithmfor the lowest common ancestorproblem, Proc. 21st IEEE Symposium
on Foundations of Computer Science, 1980, pp. 308-319.

[Ki] D.G. KIRKPATRICK, Optimal search in planar subdivisions, this Journal, 12 (1983), pp. 28-35.
[Kn] D.E. KNUTH, The Art ofComputer Programming, Vol. 1: Fundamental Algorithms, 2nd ed., Addison-

Wesley, Reading, MA, 1975.
[LP] D.T. LEE AND F. P. PREPARATA, Location ofa point in a planar subdivision and its applications, this

Journal, 6 (1977), pp. 594-606.
[LT] R. J. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, Proc. 18th IEEE

Symposium on Foundations of Computer Science, 1977, pp. 162-170.
IMP] D. E. MULLER AND F. P. PREPARATA, Finding the intersection of two convex polyhedra, Theoret.

Comput. Sci., 7 (1978), pp. 217-236.
[P]
[PS]

Is]

[Ta]
[w]

F. P. PREPARATA, A new approach to planar point location, this Journal, 10 (1981), pp. 473-482.
F. P. PREPARATA AND K. J. SUPOWIT, Testing a simple polygon for monotonicity, Inform. Proc. Lett.,

12 (1981), pp. 161-164.
M.I. SHAMOS, Geometric complexity, Proc. 7th ACM Symposium on Theory of Computing, 1975,

pp. 224-233.
R. E. TARJAN, Depth first search and linear graph algorithms, this Journal, (1972), pp. 146-160.
O. E. WILLARD. New data structures for orthogonal queries, this Journal, 14 (1985), pp. 242-253.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

1986 Society for Industrial and Applied Mathematics
002

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES
WITH APPLICATIONS*

H. EDELSBRUNNER’, J. O’ROURKEt, AND R. SEIDEL

Abstract. A finite set of lines partitions the Euclidean plane into a cell complex. Similarly, a finite set
of (d- 1)-dimensional hyperplanes partitions d-dimensional Euclidean space. An algorithm is presented
that constructs a representation for the cell complex defined by n hyperplanes in optimal O(n d) time in d
dimensions. It relies on a combinatorial result that is of interest in its own right. The algorithm is shown
to lead to new methods for computing A-matrices, constructing all higher-order Voronoi diagrams, halfspatial
range estimation, degeneracy testing, and finding minimum measure simplices. In all five applications, the
new algorithms are asymptotically faster than previous results, and in several cases are the only known
methods that generalize to arbitrary dimensions. The algorithm also implies an upper bound of 2cd, c a
positive constant, for the number of combinatorially distinct arrangements of n hyperplanes in E d.

Key words, arrangements, configurations, geometric transformation, combinatorial geometry, computa-
tional geometry, optimal algorithm

1. Introduction. Let H denote a finite set of lines in the Euclidean plane E2. H
determines a partition of the plane called the arrangement A(H) of H or the cell
complex induced by H. A(H) consists of vertices (intersections of lines), edges (maximal
connected components of the lines containing no vertex), and regions (maximal
connected components of E2 containing no edge or vertex). All geometric entities of
this paper will be defined in Euclidean space which should make clear that our
discussion does not take the projective view. However, no essential use is made of the
concept of distance which implies that all results, but the ones on minimum measure
simplices in 4.5, also hold in real affine space.

Arrangements of lines have been studied from various mathematical points of
view since Steiner [St] in 1826. The first attempt to provide a systematic exposition of
the subject was made in 1967 in Griinbaum [G1], and to a more exhaustive extent five
years later in Griinbaum [G2]. In spite of the extensive literature on arrangements of
lines, there is a host of easily formulated but unsolved questions in this area. The
interested reader is referred to [G2] where many open conjectures are stated. Recent
advances on questions posed in [G2] are reported e.g. in Goodman and Pollack [GP1]
and Edelsbrunner and Welzl [EW3].

The notion of a two-dimensional arrangement is easily generalized to three and
higher dimensions. There, H is a finite set of ((d- 1)-dimensional) hyperplanes in the
d-dimensional Euclidean space E a. The arrangement A(H) consists of open convex
d-dimensional polyhedra and various relatively open convex k-dimensional polyhedra
bounding them, for 0-< k <- d- 1.

Arrangements in E a, for d >= 3, have received considerably less attention in the
mathematical literature than arrangements in E2. We refer to Griinbaum [G1, Chap. 18],
and Griinbaum [G3] for surveys of d-dimensional arrangements. A reason for the lack

* Received by the editors September 15, 1983, and in revised form November 5, 1984.
t Institutes for Information Processing, Technical University of Graz, A-8010 Graz, Austria. The work

of this author was supported by the Austrian Fonds zur Fiirderung der wissenschaftlichen Forschung.
Department of Electrical Engineering and Computer Science, The Johns Hopkins University,

Baltimore, Maryland 21218. This research was conducted while this author visited the Technical University
of Graz. The work of this author was supported in part by the National Science Foundation under grant
MSC-8117424.

Computer Science Department, Cornell University, Ithaca, New York 14583. This research was

conducted while this author visited the Technical University of Graz.

341

342 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

of attention is probably the difficulty of visualizing arrangements even in E3. Further-
more, Goodman and Pollack [GP2] demonstrated that a tool that is useful in E2 (the
"Levi enlargement lemma," see e.g. [G2]) does not generalize to E3.

Much of the significance of arrangements in E d is due to a dual correspondence
to configurations of points in E d. Many problems for sets of points are more con-
veniently solved for the corresponding arrangement. Examples for this thesis are the
computational geometry problems discussed in 4. Additional significance stems from
the correspondence of arrangements in E d to a special type of polytopes, called
zonotopes, in Ed/ that can be defined as the Minkowski sum of segments (see e.g.
[G3]).

The purpose of this work is to describe an optimal algorithm for constructing
arrangements in E d, for d->_ 2. The optimality of the algorithm follows from the fact
that the time required to construct an arrangement does not exceed asymptotically the
space needed to store it. To be more specific: An arrangement of n hyperplanes in
E a, for d >= 2, is constructed in O(n’) time, and the arrangement actually needs space
proportional to n d unless it is highly degenerate; see e.g. Griinbaum [G1], [G3],
Zaslavsky [Z], and Alexanderson and Wetzel [AW]. (For d 1, the arrangement is
essentially a sorted set of points on a line and cannot be constructed faster than in
O(n log n) time.)

The optimality of the algorithm relies heavily on a nontrivial combinatorial fact
that appears to be new (Thms. 2.7 and 2.8). This fact and other geometric preliminaries
are demonstrated in 2. Section 3 outlines the algorithm for constructing arrangements.
In 4, applications ofthe algorithm to h-matrices, halfspatial range estimation, Voronoi
diagrams, degeneracy tests, and minimum measure simplices are demonstrated. Finally,
5 reviews the main results and lists some open problems.

2. Geometric fundamentals. This section discusses properties of arrangements of
hyperplanes and configurations of points. It falls into three parts. Section 2.1 is devoted
to a geometric transform that realizes the duality between arrangements and con-
figurations; that will be exploited in the applications of 4. Section 2.2 lists rather
straightforward properties of arrangements that are relevant for the algorithmic part
of this paper, 3 and 4. Finally, 2.3 presents a combinatorial result that is the key
to the optimality of the algorithm outlined in 3.

d2.1. Arrangements and configurations. Let h be a nonvertlcal hyperplane n E
for d >- 2, that is, h is a (d 1)-dimensional hyperplane that intersects the dth coordinate
axis in a unique point. Then the points on h with coordinates x,..., Xd satisfy a
relation of the form Xd hXl + + hd-Xd- + ha. Let p (p, , Pa) be a point in
E d. We say that p is above, on, and below h if Pd is greater than, equal to, and smaller
than hlp + + hd-Pd-1 +hd. Let T be the geometric transform that maps the hyper-
plane h into the point T(h)=(h,... ha) and the point p into the hyperplane T(p)
whose points (x,... xa) satisfy Xd----px pd_Xd_d-pd. Where convenient,
we will also use the natural extension of T to sets of hyperplanes and sets of points.
One of the significant properties of T is that it preserves the relative positions of h
and p.

Observation 2.1. If p is above, on, or below h then T(h) is below, on, or above
T(p) respectively.

This observation establishes that T leads to dual and order preserving arrangements
of hyperplanes if applied to configurations of points and vice versa. This duality of T
has found applications to computing intersections of halfspaces (Brown [B]) and other
tasks [EMPRWW], JEW2], [O].

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 343

We continue the development with an implication of Observation 2.1. First, some
definitions are introduced. A set in E a is called a subspace ofdimension k (or a k-flat),
for 0 <= k <-d, if there are d- k hyperplanes (and no fewer) such that the set is the
intersection of these hyperplanes. Thus, E a is a d-flat, each hyperplane is a (d- 1)-flat,
and, for convenience, the empty set is said to be a (-1)-flat. (The terms "points,"
"lines," and "planes" are used to designate 0-fiats, 1-flats, and 2-flats in E2 or E3.)

Observation 2.2. Let S be a set of points in E a, and let H be the set of all
hyperplanes containing S. Then T(H) is the intersection of all hyperplanes T(p), for
pinS.

For the reader particularly interested in the transform T, we note that a rather
extensive list of similar implications restricted to E2 can be found in Goodman and
Pollack [GP3].

2.2 Properties of arrangements. Let H {h, , hn} denote a set of n nonvertical
hyperplanes in E a, for d => 2; since they are nonvertical, none contains a 1-flat parallel
to the dth coordinate axis. Let h- and h- denote the open halfspaces above and below
hi, for 1 _-<i=< n. The arrangement A(H) consists of faces f with

(*) f= f) sf(hi),
li--n

where sy(hi) is either hi, h-, or h-. Thus, each face f can be assigned its intersection
word w(f)= wl"’" wn, with wi =0, +, or depending on whether sy(hi) is hi, h-, or
h -. f is called a k-face, for 0 -< k -<_ d, if the affine hull of f is a k-fiat. (The affine hull

of a set X is the collection of points of the form Y i= aixi with ai real, Y i--1 ai 1, and
xi in X, for 0_-< <= m.) The terms "vertices," "edges," and "regions" are synonymous
with 0-faces, 1-faces, and 2-faces for arrangements in E and E 3. Iff is a k-face, then
w(f) contains d- k O’s, for k d- 1, d, and at least d- k, for 0 <-k <-d- 2. A k-face
g and a (k- 1)-face f are said to be incident if f is contained in the closure of g, for
1 <= k =< d. Thus, w(f) matches w(g) up to a positive number of letters which are 0 in
w(f). Also g is termed a superface off and f is called a subface of g. (To avoid
confusion, we say that f is a subface of g (or g a superface off) only if the dimensions
of f and g differ by one. A synonym for subface is facet.)

A(H) is called simple if the intersection of any k hyperplanes is a (d-k)-flat,
for 1 =< k <-d + 1. Observe that this condition excludes parallelism between any two
subspaces unless one contains the other. If A(H) is simple, then f is a k-face if and
only if w(f) contains exactly d k O’s for 0 _<- k -< d. Thus, a face f is subface of a face
g if and only if w(f) and w(g) differ in exactly one letter which is 0 in w(f).

It will be necessary to have a system of notation to describe the relationship
between the faces of an arrangement and a new hyperplane not part of the arrangement.
The reader who is less interested in the algorithm for constructing arrangements may
skip the introduction of this notation as well as Lemmas 2.3 and 2.4. Let H--
{hi,’", hn} denote a set of n nonvertical hyperplanes in E d, and let h denote a
nonvertical hyperplane not in H. We assign to each face f of A(H) one of the colours
white, red, black, and grey, depending on its relationship to h:
f is black if h contains f,
f is red if h intersects f but does not contain f,
f is grey if h does not intersect f but intersects the closure of f, and
f is white if h does not intersect the closure of f.

The nonwhite faces in A(H) are exactly those that are involved in updates if h is to
be added to the arrangement. Using the introduced notation, we present a few basic
properties of faces in arrangements.

344 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

LEMMA 2.3. Let A(H) be an arrangement in E d, f a subface offace g in A(H),
and h a nonvertical hyperplane not in H.

(i) Only the pairs of colours indicated by l’s in Table 2-1 can occur.
(ii) If g has two black subfaces, then g is black.
(iii) g is red if and only if it is a 1-face that intersects h, it has a red subface, or it

has grey subfaces on both sides of h.
(iv) If g is a 1-face, then only the circled l’s in Table 2.1 hold.

white
grey
red
black

TABLE 2.1
Matching colours.

white grey red black

(R) (R) (R) o
0 0
0 0 0
o O) o O)

The proof of Lemma 2.3 is omitted as straightforward arguments using (.) and
the definitions imply the assertion. The same is true for the proof of the next lemma.
Let A(H) and h be as above. We call a face f in A(Ht_J {h}) blue if it is contained in
h but was not present in A(H).

LEMMA 2.4. Let A(H) and h be as in Lemma 2.3 and let g be a red k-face in A(H),
for some k with 1 <- k <= d.

(i) g fl h+ and g f’)h- are k-faces in A(H U {h}), and g fl h is a blue (k- 1)-face
in A(H (.J {h}).

(ii) A (k-1)-face f ofA(Ht.J{h}) is a subface ofgf’lh + if and only if either (1) f
is a white or grey subface of g above h, (2) f =f’ f’l h /, for a red subface f’ of g, or (3)
f g f’) h. The symmetric statements hold for g f) h-.

(iii) A (k 2)-face f" is incident with g f’) h if and only if either (1) f" f’ fl h, for
a red subfacef’ of g, or (2) f" is a blackface in A(H) incident with a grey subface ofg.

For the analysis of the algorithms to follow in 3, the cardinalities of several sets
of faces and incidences are of interest. Let Ck(H) denote the number of k-faces of
A(H), for 0 <- k <= d, and let Ik(H) be the number of incidences between k-faces and
(k+ 1)-faces of A(H), for O<=k<=d-1. We prove below that both Ck(H) and Ik(H)
are in O(nd), if n denotes the number of hyperplanes in H.

LEMMA 2.5. Let H be a set of n hyperplanes in E d. Then
(i) Ck(H) < Ed

,=d-k (d-k)(7), for 0 <= k <= d, and
(ii) Ik(H) <2(d-k) Ed

i=d-k (d-k)(i), for 0<= k<= d 1.
Equality occurs if A(H) is simple.
Proof Part (i) of the assertion follows from the exact formula for simple arrange-

ments, e.g. given in Zaslavsky [Z] or Alexanderson and Wetzel [AW], and the fact
that the number of k-faces is maximized when A(H) is simple.

Observe now that a k-face f that is contained in hyperplanes (so i-> d k) has
at most 2(d _ik-) incident (k + 1)-faces. This follows from the fact that the hyperplanes
define at most (d-k-) (k+ 1)-flats each containing two superfaces of f. But as f
represents (d_k) k-faces (the maximal number of k-faces created by hyperplanes),
there are at most 2(d- k) (k + 1)-faces for each k-face thatf represents. The maximum
2(d k) is achieved if d k, which implies that Ik(H) is maximal if A(H) is simple.
This completes the argument.

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 345

Let now v be a 0-face in an arrangement A(H). Then the number of 1-faces
incident with v is called the degree deg (v) of v.

LEMMA 2.6. Let H be a set of n hyperplanes in E d and let Vdenote the set of O-faces
contained in a 1-flat ofA(H). Then vvdeg (v)= O(nd-1).

Proof. There are at most (d"-l) 1-fiats in A(H). One of these 1-fiats can intersect
each of the other 1-fiats at most once. Hence, vvdeg(v)<2(d)= O(nd-).

2.3. Combinatorial results. The combinatorial results demonstrated in this subsec-
tion are crucial for the algorithms in 3 and 4. They appear to be new and are of
independent interest. We start with the introduction of some notation.

Let H {ho, hi, , hn} denote a set of n + 1 nonvertical hyperplanes in E a. For
convenience, ho is assumed to coincide with the hyperplane spanned by the first d 1
coordinate axes. In 3, ho will play the role of the new hyperplane added to the existing
arrangement formed by h,. , hn. A d-face g in A(H) is said to be active (with respect
to ho) if g is above ho and the closure of g intersects ho. Note that g is active if and
only if it is contained in a grey or red face (with respect to ho) in A(H- { ho}). Extending
the notion of an incidence, a k-face f, for 0_-< k <= d 1, is said to bound d-face g if f
is contained in the closure of g. We call the pair (f, g) a k-border (of g); often the
d-face g will not be explicitly mentioned when it is irrelevant or clear from the context.
Where convenient, a flat is said to contain (f, g) if it contains f, and also f is said to
contain (f, g). The intersection of all open halfspaces containing g that are defined by
hyperplanes in H containing f is termed the cone of (f, g). In a two-dimensional
arrangement, the cone of a vertex is a wedge with apex at the vertex, and the cone of
an edge is a halfplane with the edge on its boundary. The k-degree degk (g) of g is
now defined as the number of k-faces that bound g, for 0 =< k =< d 1. The sum of the
k-degrees of all active d-faces in A(H) is denoted by S(H, ho). These definitions are
illustrated in Fig. 2.1, which shows the regions active with respect to the horizontal
line ho. In the arrangement depicted, S(H, ho)= 17 and S(H, ho)= 19.

FIG. 2.1. Regions active with respect to ho.

We call a k-border (f, g) active if g is active. So Skd(H, ho) counts the number of
active k-borders (rather than the number of k-faces that bound active d-faces). For
0 _<- k _-< d 1, define S(n) max S(H, h0)" H a set of n + nonvertical hyperplanes
in E d and ho in H}. It is easy to see that there are simple arrangements A(H) of n + 1
hyperplanes that achieve Skd (n). Thus, for deriving upper bounds it suffices to examine
simple arrangements.

We prove below that Sdk(n) is in O(nd-), which permits the insertion of ho into
A(H-{ho}) in O(nd-) time. The algorithm for performing the insertion will be

346 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

described in 3. Since the result is easiest to understand in E2, this case is considered
first and generalized to higher dimensions later. In both cases, the main technique is
to sweep the arrangement with a unidirected hyperplane initially coincident with ho.
During the sweep, faces in the hyperplane are classified into three states that change
over time. The rules obeyed by these changes are finally exploited to infer bounds on

THEOREM 2.7. So(n) 5 n 3 and S(n) 5 n 1.

Proof. Let H { ho, , h} denote a set of n + 1 nonvertical lines in E such that

ho coincides with the x-axis and A(H) is simple. We first show that 5n is an upper
bound for S(n) and demonstrate that it is tight. Then we argue that S(n)= S(n)-2.

Observe first that the number of active 1-borders contained in ho is n + 1. It remains
to show that 4n- 2 is the maximum number of active 1-borders that are not contained
in ho. To this end, we perform a continuous upwards sweep with a horizontal line h.
Initially h ho, and at each point in time h intersects A(H) in a one-dimensional
arrangement Ah(H). Let p, denote the intersection of h with hi, and let vL and vR
denote the 0-borders on Pi in Ah(H). The superscript L indicates that v .L, (pi, eL), for
eL the segment in Ah(H) to the left of Pi; the superscript R indicates the symmetric
situation to the right. Consult Fig. 2.2 for an illustration.

At each point in time, a 0-border v in Ah (H) is in one of three states. Let e denote
the 1-border in A(H) such that the cone of v in Ah(H) is the intersection of h and
the cone of e in A(H). The cone of v in Ah(H) is a horizontal ray within h with
endpoint v; the cone of e in A(H) is a halfplane with e on its boundary. Thus e must
contain v for the intersection of h and the cone of e to be the cone of v. Define the
state of v as follows:

v is alive or live if e is active.
v is dead if there are two lines hi and hj in H- {ho} such that the intersection

of hi and hj is between ho and h, e is contained in hi or h, and the cone of e

contains the wedge between hi and h that lies entirely above ho. (Note that death
is irreversible.)

Otherwise, v is sleeping.
Intuitively, v is sleeping when it traverses a "dead sector" of A(H) and still has

the chance to leave it and become alive. In Fig. 2.2, v and vR are alive, v3R, v2, v2R,
v, and Vl are dead, and v4 is sleeping. In the argument below, we watch the states
of 0-borders changing from live to dead which allows us to infer results on the number
of active 1-borders in A(H). During the sweep of h, the states of the 0-borders in

FIG. 2.2. The bottom-up sweep.

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 347

Ah(H) change only when two points Pi and pj switch. The following rules can be
observed:

R1. All 2n 0-borders are alive in the beginning of the sweep.
R2. At least two 0-borders are alive when h has passed all vertices of A(H).
Let now h pass the intersection of hi and hj such that Pi is to the left of pj before

they switch. The states of v and v after the switch depend only on their states before
the switch, and similarly for vR and vR. As the rules for the states of v ff and vR are
strictly symmetric, we consider only those for v and v. The rules observed in each
of five cases follow immediately from the definitions of the states "alive," "sleeping,"
and "dead." Table 2.2 indicates the possible states before and after the switch.

TABLE 2.2

Rule

R3
R4
R5
R6

R7

Before

alive alive
dead alive
alive sleeping
dead sleeping
dead dead
sleeping sleeping

After
L

Vi
L V

dead alive
dead sleeping
dead alive
dead sleeping
dead dead
dead sleeping

The two cases where v is alive or sleeping and v is dead have not been enumerated
as they cannot occur. Consult Fig. 2.3 for an illustration ofrules R3-R7. Living 0-borders
are indicated by solid lines, sleeping 0-borders by dashed lines, and dead 0-borders
by dotted lines.

FIG. 2.3. Illustration of rules R3-R7.

These rules are exploited for deriving an upper bound on the number of active
1-borders in A(H) that are not contained in ho. To this end, four counters are used:
ACT, to designate the current number of active 1-borders in A(H) that are entirely
below h and not contained in ho, and A, S, and D, to designate the current number
of0-borders in Ah(H) that are alive, sleeping, and dead, respectively. Initially, ACT O,
A=2n, S=0, and D=0 by R1; ultimately, A>=2 by R2. Application of the rules
R3-R7 causes the following changes to ACT, A, S, and D:

R3: ACT=ACT+2, A=A-1, S-S, D=D+I.
R4: ACT=ACT+I,A=A-1, S--S+I, D=D.
R5: ACT=ACT+I, A=A, S=S-1, D=D+I.
R6: ACT=ACT, A A, S S, D= D.
R7: ACT=ACT, A=A, S=S-1, D=D+I.

The transitions flow only from alive to dead (R3) or sleeping (R4), and from sleeping
to dead (R5 and R7). Both the alive dead and the alive- sleeping dead paths give
rise to at most two active 1-borders in A(H). Since A 2n initially, 4n active borders

348 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

could be generated. But A => 2 after the complete sweep, and each of the remaining
live 0-borders is contained in an unbounded active 1-border of A(H). Therefore, 4n 2
is an upper bound on the number of active 1-borders in A(H) that are not contained
in ho. This shows that (4n-2)+(n+l)=5n-1 is an upper bound on S2(n). The
arrangement shown in Fig. 2.1 actually realizes equality for n 4 and can be generalized
to arbitrary n in an obvious way. This shows S(n)= 5n- 1.

To establish So(n) -< S(n) 2, observe that degl (r) dego (r) for each bounded
region r in A(H), and that degl (r)=dego (r)+ 1 for each unbounded region r in
A(H). At least two of the active regions are unbounded, so S(n)<= S(n)-2. In fact,
the arrangement (shown in Fig. 2.1) that realizes S(n) has exactly two unbounded
active regions, which implies S(n)= S2(n)- 2 5n- 3. This completes the proof.

We recently learned that Theorem 2.7 was independently discovered by Chazelle,
Guibas, and Lee [CGL]. The proof given in [CGL] is considerably simpler than ours;
however, it does not seem to generalize to three and higher dimensions. In fact, the
motivation for presenting the proof given above (out of a number of possible proofs)
is its generalizability.

It is worth mentioning that the assertion of Theorem 2.7 also holds for families
of pseudo-lines. (A pseudo-line is an unbounded and connected curve in E2 such that
any two in a given arrangement intersect in exactly one point and cross there.) Consult
Griinbaum [G2] for an account of this natural generalization of lines. The proof of
Theorem 2.7 for arrangements of pseudo-lines is the same as that for lines except that
the sweep is performed with a pseudo-line.

Next, the analogue of Theorem 2.7 in d => 3 dimensions will be established. The
essential idea in the proof is the same as in the proof of Theorem 2.7" the halfspace
above ho is swept by a hyperplane h parallel to ho. The switches of pairs of points are
now replaced by switches of d-tuples of (d 2)-flats in h, that is, the d)-dimensional
bounded simplex defined by d (d- 2)-flats collapses and reappears in mirrored shape.
Consult Fig. 2.4, which depicts a switch when h is a plane.

FIG. 2.4. Switch in E3.

THEOREM 2.8. Sak(n)=O(na-), for d>-_3 and O<=k<-_d-1.

Proof Let H {ho,’’ ", h,} denote a set of n + nonvertical hyperplanes in E d

such that ho coincides with the hyperplane spanned by the first d- coordinate axes
and such that A(H) is simple. The intersection of A(H-{ho}) and ho is isomorphic

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 349

to a simple arrangement of n hyperplanes in E d-l. There are O(n d-l) k-faces (0 -< k-<_
d- 1) in this arrangement (see Lemma 2.5) and these k-faces bound d-faces of A(H)
that are active with respect to h0. Thus, S’(n)=O(nd-), for 0_-<k<-_d-1, which
establishes the asymptotic lower bound of the assertion.

For a proof of the upper bound, we perform an upwards sweep with a hyperplane
h parallel to ho, that is, h sweeps in the direction of the Xd-axis. Initially, h ho, and
at each point in time, h intersects A(H) in a (d- 1)-dimensional arrangement Ah(H).
We define a relation R between the faces of A(H) such that g, g’) in R, for (k + 1)-faces
g and g’ and 0_<- k_<- d- 1, if

(i) there is a (k + 1)-flat p (defined by d k- 1 hyperplanes in H) that contains
g and g’,

(ii) g and g’ share a bounding 0-face, and
(iii) there is no hyperplane parallel to ho that intersects both g and g’.

We call two faces g and g’ equivalent if they are in the same equivalence class induced
by the transitive closure of R. So all 1-faces of a 1-flat are equivalent, and h intersects
exactly one face of each equivalence class unless it contains a 0-face of A(H). The
notion of "equivalence" can be extended to borders of A(H) such that two (k4-
1)-borders c and c’ are equivalent if

(i) the two (k + 1)-faces g and g’ that contain c and c’ are equivalent, and
(ii) the cones of c and c’ are the same.

Let now b and b’ be two k-borders in Ah(H), for 0<_-k-< d-2, at different points in
time. Let c and c’ be the (k+ 1)-borders in A(H) such that the cone of b (and b’) is
the intersection of h and the cone of c (and c’). We identify b and b’ if c and c’ are
equivalent. Consult Fig. 2.4 for an illustration of this identification of borders which
is natural when the sweep of h is considered as a process in time.

At each point in time, a k-border b (0 =< k =< d 2) in Ah(H) is in one of three
states. Let c denote the (k+ 1)-border in A(H) such that the cone of b (in Ah(H)) is
the intersection of h and the cone of c (in A(H). Then the state of b is defined as follows:

b is alive if c is active.
b is dead if there are d hyperplanes in H-{ho} such that their common 0-face

lies between ho and h, c is contained in the intersection of d-k-1 of these
hyperplanes, and the cone of c contains the unique sector defined by the d hyper-
planes that lies above ho. (Death is thus irreversible.)

Otherwise, b is sleeping.
During the sweep of h, the states of the k-borders in Ah(H) change only when d

(d-2)-flats in Ah(H switch (see Fig. 2.4 for a switch of three lines (1-fiats) in E3).
The rules for the changes of the states that are observed can be related and reduced
to the rules described in the proof of Theorem 2.7: All (R)(n d-) k-borders in Ah(H),
for 0 =< k =< d -2, are alive in the beginning of the sweep. Let now h pass the common
0-face v of d hyperplanes hi," ", hid in H (see Fig. 2.4). There are certain k-borders
in Ah(H), for 0-< k <_-d- 2, that collapse into v as h comes closer to v. We call such
a k-border collapsing. A collapsing /-border B is paired with a collapsing (d- i-2)-
border b, for 0 <= <= d 2, if the following holds:

(i) there is no hyperplane in H that contains B and b (before they collapse), and
(ii) there is a proper halfspace in h that contains the cone of B and the cone of b.

In the arrangement shown in Fig. 2.4, the following 0-borders and 1-borders are paired:
(A1, a), (A3, a2), (B1, b), (B3, b2), (C, Cl) and (C3, c2). Note that there are collapsing
/-borders in Ah(H) that are not paired. However, each (collapsing) /-border, for
0--< i_-< d-2, of the collapsing (d- 1)-simplex s in Ah(H) is paired with a (d- i-2)-
border whose cone does not contain s. Let f be a (d- 1)-face in Ah(H) that shares

350 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

a bounding /-face with s, with maximal and O=< =< d-2. Then the /-border b of f
contained in that common/-face is paired with some (d- i-2)-border B of s. Paired
borders play the same role in this proof as v and @ have done in the proof of Theorem
2.7. Let B and b be two paired borders such that the cone of B contains s and the
cone of b contains f (before s collapses). After the collapse, B becomes a border of
f, and b becomes a border of s. Hence, b dies in any case, and the new state of B
depends on the old states of B and b. The changes of the states of B and b follow
exactly the rules R3-R7 (see Table 2.2 and Fig. 2.3). For instance, if b was alive before
the collapse then B stays or becomes alive as it belongs now to a (d-1)-face (in
Ah(n)) that is the intersection of h and an active d-face in A(H). If b was not alive
before the collapse, then it cannot change the state of B unless B is alive in which
case B falls asleep.

Let us now exploit this property for deriving an upper bound on the number of
active k-borders in A(H), for 0 -<_ k <- d 1. Note first that an active k-border is created
during the sweep of h (that is, the upper end of the k-face that contains the active
k-border is passed by h) only when a switch occurs in Ah(H) such that some of the
collapsing borders are alive. Furthermore, each collapse creates at most a constant
number of active k-borders.

Let g be the d-face in A(H) such that the collapsing (d- 1)-complex s in Ah (H)
is the intersection of g and h. We distinguish two cases: First assume that g is not
active. Then there is another (d- 1)-face f in Ah(H) with the following properties:

(i) Let g’ be the d-face in A(H) such that f g’ fq h. Then g’ is active and f shares
a bounding/-face, (i maximal and 0-<i -< d- 2) with s.

(ii) There is a (living) /-border b off contained in that/-face that is paired with
a (nonliving) (d-i-2)-border of s.
By rule R3 or R5, b dies. However, this implies that this case can occur only O(n d-l)
times as each occurrence increases the number of dead borders in Ah(H) by at least
one. Second, assume that g is active. As h is passing the topmost point of g (since s
is collapsing) and there are only O(nd-) active d-faces in A(H), this case can also
occur only O(nd-) times. This completes the proof.

In order to keep the proof of Theorem 2.8 short, we have refrained from deriving
more accurate than only asymptotic upper bounds. Nevertheless, we conjecture that
the applied proof technique is well suited for calculating more accurate bounds as
well. It is worthwhile to note here that Theorem 2.8 also holds for arrangements of
pseudo-hyperplanes appropriately defined (see e.g. [GP2]). In this more general setting,
the proof of Theorem 2.8 can be adapted by performing a sweep with a pseudo-
hyperplane.

There is an interesting consequence of Theorems 2.7 and 2.8"
COROLLARY 2.9. Let H be a set of n hyperplanes in E d, let f be a d-face in A(H),

and let degk (f) denote the number of k-faces (0 <= k <- d 1) bounding f. Then the sum

of the products degd-1 (f)degk (f), for all d-faces f in A(H), is in O(nd).
Proof The sum of Skd(H, h), for all h in H, is in O(n d) by Theorems 2.7 and 2.8.

Turning A(H) upside-down and repeating the evaluation of S(H, h) gives again
O(nd). But now, each k-face in A(H) has been counted degd- (f) times for each
d-face f that is bounded by the k-face.

3. Constructing arrangements. This section describes algorithms for constructing
arrangements in Euclidean spaces. For expository reasons, the algorithm working in
E2 is presented first and the general algorithm later. The next subsection presents the
overall structure of the algorithm and the data structure used for representing arrange-
ments.

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 351

3.1. The overall structure. The construction of an arrangement proceeds incre-
mentally, that is, the arrangement is built by adding hyperplanes one at a time to an
already existing arrangement. The order in which the hyperplanes are added is
irrelevant. To avoid tedious special cases that occur for sets of hyperplanes whose
normal-vectors do not span E d, we start with a carefully chosen subcollection of the
given set.

Let H denote a set of n hyperplanes hi, hn in Ed and define Hi {hi, , hi},
for <= i<-n. D(H) denotes the data structure to be described that represents the
arrangement A(H). We assume that the normal-vectors of the hyperplanes in H span
E d. Otherwise, each hyperplane is intersected with the k-dimensional subspace of E d

(with k < d) spanned by the normal-vectors, and the resulting k-dimensional arrange-
ment, which captures the essential information of the d-dimensional arrangement, is
constructed. We will see that this preprocessing phase only requires O(n) time if d is
considered a constant. Now, the overall structure of the algorithm can be described
as follows:

Without loss of generality, assume the normal-vectors of hi,’", hd span E d.
Construct D(Hd).

For running from d + 1 to n, construct D(Hi) from D(Hi_I) by insertion of
Finally, D(H) D(Hn).
Some comments are in order to clarify the preprocessing phase that computes the

space spanned by the normal-vectors of the hyperplanes. It is readily seen that this
action can be performed in O(n) time by successively testing whether the normal-vector
of the current hyperplane is contained in the subspace spanned so far. Let k denote
the dimension of the spanned subspace. Then this strategy can also be used to identify
k hyperplanes whose normal-vectors span the subspace. Without loss of generality let
this subspace be spanned by the last k coordinate axes. Then each hyperplane is
replaced by its intersection with this subspace and the arrangement of the resulting
hyperplanes in k dimensions is constructed. The method for constructing D(Hd) (or
D(Hk)) is demonstrated in the next subsection.

3.2. The representation of arrangements. For storing an arrangement A(H), we
basically use the incidence lattice of A(H) defined for polytopes in Gruenbaum [G1].
By convention, A(H) is called a (d + 1)-face and the empty set is called a (-1)-face
of A(H). Also A(H) is said to be incident with all its d-faces, and the empty set is
said to be incident with all 0-faces. The incidence lattice of A(H) represents each
k-face by a node, for -1-< k-< d + 1, and contains connections between nodes of
incident faces. Where convenient in the subsequent discussion, no distinction will be
made between a node and its corresponding face. See Fig. 3.1 for an arrangement of
two lines in E 2 and its incidence lattice.

h
2 2

FIG. 3.1. Arrangement and incidence lattice.

352 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

A point p(f) in f is also associated with each k-face f, for 0=< k <-d. If f is a
0-face, then p(f)=f To be precise, we use the following definition for p(f):

(1) If f is an unbounded 1-face then p(f) is the unique point of f with distance
from the only incident vertex.

(2) Iffis a bounded 1-face orfis a k-face with k >-2, then p(f)= (i--1 p(f))/m,
for fl,""" ,fro the subfaces of f
In addition, each (d- 1)-face is associated with its supporting hyperplane. The data
structure D(H) is thus the incidence lattice of A(H) augmented with some auxiliary
information as described. Without confusion, we will use A(H) and D(H) interchange-
ably. The auxiliary information used above is not the only choice: it could easily be
replaced by equivalent information, such as lists of supporting hyperplanes. The
preferred structure depends on the particular application for which the arrangement
is being used, and indeed we will further augment the structure when discussing specific
problems in 4.

Before proceeding to the algorithms for building D(H), we discuss the construction
of D(Ha) as required in the initial step of the algorithm. We make use of the special
structure of D(Ha), which results from the assumption that the normal-vectors of Ha
span E d. Recall that Ck(H) denotes the number of k-faces in A(H), for 0_<- k <_- d. By
definition C-1 Hd) Cd+ Hd) 1.

LEMMA 3.1. Ck(Hd)= 2g(kd), for 0 <- k<-_ d.
The assertion follows from the duality of A(Hd) and the d-dimensional cube in

conjunction with Theorem 4.4.2 in [G1]. By "duality" we mean that the incidence
lattices of A(Hd) and the cube are isomorphic. The assertion can also be verified
directly from the observation that the subarrangement of A(Hd) in one of the hyper-
planes is isomorphic to an arrangement defined by d- 1 hyperplanes in Ed- whose
normal-vectors span Ed-. Both facts can be exploited to find the connections to be
established between the nodes, thus determining the incidence lattice of A(Hd). The
following gives a simple and constructive description of the incidence lattice of A(Hd).
We will use the intersection words of the faces as defined in 2.2.

A(Hd) is a simple arrangement, so for each word w in {0, +, _}d there is a face

f with w(f)= w. If there are d-k O’s in w then f is a k-face. For a proof of this
observe that there are exactly 2k(kd) words of length d which contain d-k O’s. But
Lemma 3.1 tells us that there are also exactly that many k-faces in A(Hd).

Thus, the incidence lattice of A(Hd) can be set up by creating a node for each
word in {0, +, _}d. In addition, two nodes representing A(Hd) and the empty set are
created. Figure 3.2 shows the incidence lattice of A(H2) with the intersection word of
each node marked.

FIG. 3.2. Incidence lattice of A(He).

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 353

Two nodes are connected if their words differ in only one letter, which is 0 in one
word. In addition, all d-faces are connected to the (d+ 1)-face and the 0-face is
connected to the (-1)-face. It is easy to then augment D(Hd) with the necessary
auxiliary information.

3.3. Constructing arrangements of lines. This section describes an algorithm that
inserts a line h into an arrangement A(H) of a set H of n lines in E 2. The assumptions
on Ht.J{h} are that no line is vertical and that A(Ht_J{h}) is simple. The strategy for
inserting h into A(H) is presented on a rather intuitive level. The full details, including
the handling of degenerate cases, can be derived from the general strategy presented
in 3.4. The main purpose of this section is to provide intuition for the explanations
in 3.4.

The insertion of h into A(H) is accomplished in three steps:

Step 1. An edge of A(H) that intersects h is identified.
Step 2. All edges and regions that intersect h are marked red.
Step 3. The marked edges and regions are updated and the new vertices and edges

contained in h are integrated.

The three steps are now explained in more detail.

Step 1. To identify an edge eo that intersects h, the edges on an arbitrary line of
H are visited and tested. The process starts at an arbitrary edge e and proceeds edge
by edge closer to h until eo is reached.

Step 2. Starting with eo, all edges and regions that intersect h are marked and
remembered in separate storage. To initialize the process, eo is marked red and
remembered. In addition, the incident regions of eo are also marked red, remembered,
and put into an empty queue Q. While Q is not empty, the first region r is deleted
from Q, and its incident white edges are tested for intersection with h. Those that
intersect h are marked red and remembered. Also, if they have an incident region that
is not yet marked red then it is marked red and put into Q to await its computation.

Step 3. This step concentrates on splitting each red edge and each red region into
two, establishing their new incidences, and integrating the new vertices and edges
contained in h into the data structure.

Each red edge e is replaced by two new red edges ea and eb representing the parts
of e above and below h. Next, the incidences of ea and eb are established in the
appropriate way. That is: (1) Both are connected to the incident regions of e, and (2)
e (eb) is connected to the vertex of e above (below) h. In addition, a blue node v is
created that represents e f’)h and is thus connected to e, eb, and the (-1)-face. See
Fig. 3.3, where the red nodes are shaded and the blue node cross-hatched.

FIG. 3.3. Updating a red edge e.

354 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

Additional adjustment of incidences is carried out when the red regions are
updated. Instead of discussing the update of a red region (which is similar to that of
a red edge), we refer to Fig. 3.4, which depicts the actions to be taken in order to split
a red region r. Finally, all marked vertices, edges, and regions are unmarked by coloring
them white.

FIG. 3.4. Updating a red region r.

We only mention that O(n) time suffices to insert h into A(H); see also Lemma
3.2. Thus, O(n2) time suffices to set up the arrangement for n lines in E2; see also
Theorem 3.3.

3.4. Constructing arrangements in d dimensions. In this section, the insertion of a
hyperplane in E d into an arrangement A(H) of a set H of n hyperplanes is discussed.
It is assumed that the normal-vectors of the hyperplanes in H span E d, as discussed
in 3.1. No restriction on the position of the hyperplanes is assumed except for the
exclusion of multiple hyperplanes and of vertical hyperplanes; in particular, the
arrangement is not assumed to be simple.

The algorithm that inserts h into A(H) proceeds in three steps:

Step 1. A 1-face in A(H) is identified whose closure intersects h.
Step 2. All faces in A(H) whose closures intersect h are marked black, red, or grey.
Step 3. The marked faces are updated and the new faces contained in h are

integrated.

The remainder of this section describes in detail the actions taken in each step
and finally gives an analysis of the time and space requirements.

We apply the following strategy to determine a 1-face eo of A(H) whose closure
intersects h"

Step 1.1. Let w be an arbitrary 0-face and e an incident 1-face not parallel to h.
If the closure of e intersects h, then e is the 1-face eo required. Otherwise, set v to w
if e has only one incident 0-face, and set v to the incident 0-face nearer to h if there
are two.

Step 1.2. Let e’ (distinct from e) denote the superface of v collinear with e. If the
closure of e’ intersects h then e’ is the 1-face eo. Otherwise, let v’ be the subface of e’
distinct from v. Step 1.2 is now repeated with e and v replaced with e’ and v’.

Starting with the 1-face eo, all k-faces in A(H), for 0<= k<= d, whose closures
intersect h are marked and remembered in queue Qk. In addition to the queues
Qo,"’, Qd, we use a queue Q to store temporarily those 2-faces that are awaiting
examination.

Step 2.1. The 1-face eo is marked red if it intersects h, and grey, otherwise. (Note
that due to the method of choosing eo, eo is not contained in h.) In addition, eo is put

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 355

into Q1. If eo is red then all incident 2-faces are marked red and put into Q and Q2
(Table 2.1, third row and column). If eo is grey then its incident 0-face contained in h
is marked black and put into Q0. The incident 2-faces are marked grey, for the moment,
and put into Q and Q2 (Table 2.1, second row and column).

Step 2.2. While Q is not empty, the first 2-face r is deleted from Q. All incident
white 1-faces e are tested for intersection with h.

Case 2.2.1. If e is contained in h, then e is marked black and put into Q1.
The white subfaces of e are marked black and put into Qo. The white superfaces
of e are marked grey, for the moment, and put into Q and Q2 (Table 2.1, fourth
row and column).

Case 2.2.2. If e intersects h but is not contained in h, then e is marked red
and put into Q1. All white superfaces are marked red and put into Q and Q2
(Table 2.1, third row and column).

Case 2.2.3. If e does not intersect h but its closure does then e is marked
grey and put into Q1. The white subface contained in h (if it exists) is marked
black and put into Qo. The white superfaces are marked grey, for the moment,
and put into Q and Q2 (Table 2.1, second row and column).

Case 2.2.4. No action is taken if the closure of e does not intersect h (Table
2.1, first column).
Step 2.3. All grey 2-faces in Q that have either a red subface or grey subfaces

above and below h are marked red (Lemma 2.3(iii)). All grey 2-faces which have at
least two black subfaces are marked black (Lemma 2.3(ii)).

Step 2.4. For k running from 3 to d and for all faces f in Qk-1, the following
actions are taken for the white superfaces of f:

Case 2.4.1. If f is red then they are marked red (Table 2.1, third row).
Case 2.4.2. Iff is black, then they are marked black if they have at least two

black subfaces, and grey otherwise (Lemma 2.3(ii)).
Case 2.4.3. Iff is grey, then they are marked red if they have also red subfaces

or grey subfaces above and below h, and grey otherwise (Lemma 2.3(iii)).

In any of the three cases, the examined superfaces of f are put into Qk.

In Step 2, the nodes which are relevant for structural changes in D(H) have been
colored appropriately and stored in queues Qo," ", Qd. Step 3 performs these changes
by replacing each red node by two new ones, establishing their incidences, and
integrating the blue faces of A(H t_J {h}). The steps for updating the auxiliary informa-
tion in the incidence lattice are not discussed in detail. The only action that is not
completely trivial is to provide a blue and unbounded 1-face e with p(e). For this
action note that e is contained in a red 2-face r in A(H) that has at least two subfaces
el and e. The intersection of h with the two 1-flats through p(el) and p(e2) and 2p(
and 2p(e2), gives two points on the 1-flat that contains e. p(e) is easily derived from
these two points.

Step 3.1. For k running from 1 to d and for each red face f in Qk the following
actions are taken"

Step 3.1.1. In D(S) and in Qk, f is replaced by two new red faces fa and fb
representing the parts above and below h (Lemma 2.4(i)).fa is called an above-node
and fb is called a below-node (see Fig. 3.5).

Step 3.1.2. Each superface off is connected to both f and J, as in Fig. 3.5.
Step 3.1.3. Each white or grey subface off is tested for lying above or below

h. (It is convenient to use the auxiliary information for this test.) In the former

356 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

case, it is connected to fa, in the latter case to fb. Each red subfacial above-node
is connected to fa, and each red subfacial below-node is connected to fb (Lemma
2.4(ii)); again see Fig. 3.5.

Step 3.1.4. A new blue node f’ is created and put into Qk-1. f’ represents the
new (k-1)-face f f-)h, and thus, f’ is connected to f, and fb (Lemma 2.4(ii.3)).
In addition, it is connected to the blue subfaces of the red subfaces of f and to
the black subfaces of the grey subfaces of f (Lemma 2.4(iii)); see Fig. 3.5. (If f’
is a 0-face, then it is connected to the (-1)-face.)
Step 3.2.. Finally, Qo,’", Qd are emptied and all black, red, grey, and blue

nodes are unmarked by coloring them white.

la

FIG. 3.5. Updating a red face f.

This completes the description of the algorithm. It is worthwhile to note that the
same algorithm can also be used to construct cell complexes defined by a set of
pseudo-hyperplanes. In this case, however, assumptions on the computability of inter-
sections of the pseudo-hyperplanes must be made. We now turn to the analysis of the
time requirements.

LEMMA 3.2. Let H be a set of n hyperplanes in E d and h be a hyperplane not in H.
Then the above algorithm constructs D(H{h}) in O(nd-l) time from D(H).

Proof. It is trivial to implement Step such that the time needed is proportional
to the sum of deg (v), for all 0-faces v examined. This sum is in O(nd-l) by Lemma 2.6.

A tedious look at Steps 2 and 3 reveals that the time required is proportional to
the number of incidences of all faces in A(Ht_J{h}) whose closures intersect h. Let
inc be such an incidence between a k-face g and a (k-1)-face f, for some k with
0 <-k <-d. Observe that the closure of g intersects h whereas the closure off may not
(Table 2.1, first row). Assume first that g is contained in h, that is, g and f are contained
in h. As hOA(H) is an arrangement in d-1 dimensions, there are at most O(nd-l)
incidences of this kind according to Lemma 2.5. Now assume that g is not contained
in h and without loss of generality that g is above h. We will show that there are at
most O(nd-l) incidences of this kind.

For counting purposes, inc is attributed to the unique k-fiat p that contains g.
Define Hp {h*: h*= h’ f’lp, for h’ in H such that h’ does not contain p} and define
hp h f)p. Then the faces in p whose closures intersect h are exactly the faces in
A(Hp tA {hp}) that are active with respect to hp. Thus, the number of incidences attributed
to p is at most Skk_ (n)= O(n k-1 by Theorems 2.7 and 2.8. However, there are at most

(dk) O(n d-k) k-flats defined by H, which implies that there are at most O(nd-l)
incidences attributed to all k-flats in A(H). Summing up for k running from 0 to d
gives again O(nU-), which completes the argument.

As shown in the beginning of 3, the strategy to set up A(H) for a set H of n
hyperplanes in E d is to successively insert the hyperplanes. Thus, we state the main
result of this section, which follows directly from Lemma 3.2 and Lemma 2.5.

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 357

THEOREM 3.3. Let H be a set of n hyperplanes in E d, for d >-2. Then the outlined
algorithm constructs A(H) in O(n d) time, and this is optimal.

4. Applications. The problem of constructing an arrangement of hyperplanes is
an underlying task for several applications, five of which are demonstrated in this
section. The algorithm introduced in 3 leads to optimal methods for computing
A-matrices and Voronoi diagrams. It also leads to methods for halfspatial range
estimation, degeneracy testing, and finding minimum measure simplices that are faster
than those previously known.

It turns out that the first three applications are closely related to the concept of
"levels" in arrangements. It is for this reason that we introduce what we call the
"ranked representation" of an arrangement, which is essentially the incidence lattice
augmented with some additional information stored in the nodes.

Let H be a set of n nonvertical hyperplanes in E a and let f be an arbitrary k-face
in A(H). The ranks a(f), o(f), and b(f) off denote the number of hyperplanes strictly
above f, containing f, and strictly below f Clearly, a(f) + o(f) + b(f) n, o(f) d k,
for k d 1, d, and o(f) >-_ d k, for 0 <= k -< d 2. D(S) augmented with the ranks of
its faces is called the ranked representation ofA(H). In what now follows, an algorithm
is outlined that computes the ranks of each k-face, for 0 =< k =< d. The algorithm proceeds
in three steps and uses a queue Q.

Step 1. The d-face ftop that has no hyperplane above it is identified. This can be
done by testing, for each d-face f whether there is an incident (d-1)-face whose
supporting hyperplane is above p(f).

Step 2. For each d-face f, the numbers a(f), o(f), and b(f) are computed as
follows:

Step 2.1. a(ftop)= o(ftop)=0 and b(ftop)= n. ftop is marked and put into Q.
Step 2.2. If Q is not empty, then the first d-face f is removed from Q and

the following actions are taken for each subface f* of f: Let g denote the
superface of f* different from f Unless g is already marked, the ranks of g
are computed as follows: If f is above and g is below the hyperplane that
supports f*, then a(g) a(f) + 1, o(g) 0, and b(g) b(f) 1. Otherwise,
a(g) a(f) 1, o(g) 0, and b(g) b(f) + 1. Finally, g is put into Q and Step
2.2 is repeated.

Step 3. For k running from d-1 to 0 and for each k-face f, the numbers a(f),
o(f), and b(f) are calculated as follows: a(f)=min {a(g): g superface of f}, and
b(f) =min {b(g): g superface off}. Finally, o(f)= n-a(f)-b(f).

It is readily seen that this algorithm requires constant time per incidence, which
implies that it is in O(n d) by Lemma 2.5.

4.1. The A-matrix. Goodman and Pollack [GP4] introduced the A-matrix of a
finite set of points as a generalization of sorting to arbitrary dimensions. Among the
applications, they suggest it can be used as a tool in pattern recognition, as it character-
izes the set with respect to convexity properties.

Let (p,... ,Pd+) denote a sequence of d + points in E d, for d_->2, with

Pi--(Pi,1,""", Pi,d), for _--<i_--< d + 1. The sequence is said to have positive orientation

((1, , d + 1)> 0) ifdet (Pi.j)>0, wherepid+ 1, for 1--< i,j_--< d+ 1. (1,. , d + 1)
0 and (1,... ’d+l)<0 are analogously cefined. As noted in [GP4], (1,2,3)>0 if
(P, P2, P3) is oriented counterclockwise, (1, 2, 3) 0 if the points lie on a common line,
and (1, 2, 3) < 0 if the sequence is oriented clockwise. Let now S {Pl, ",Pn} denote
a set of n points in E d. Then A (i,..., id) denotes the number of points pj in S such

358 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

that (il,’", ia, j)>O. The A-matrix A(S) of S is the d-dimensional matrix with
A (il,..., ia) as the element with indices i,..., ia provided the points with indices
i,. ., in determine a unique hyperplane containing them. Otherwise, the element is
not defined. For d 2, the A-matrix is a two-dimensional array with entry (i, j) filled
with the number of points that fall to the left of the directed line from Pi to pj. Figure
4.1 shows a set ofpoints in E 2 and the corresponding A-matrix. (The undefined elements
are denoted w.) For d 3, the A-matrix is a three-dimensional array with entry (i,j, k)
filled with the number of points that fall to the "positive" side of the plane determined
by pi, pj, and Pk.

II Pl

P5

P3

P4 P2

0 3 2

2 3 0

3 0 2

0 3 2

2 2

FIG. 4.1. Point-set and A-matrix.

Let H T(S) using the geometric transform T defined in 2.1. Furthermore, let

hi T(pi), for 1-<i<= n. By Observation 2.2, the points with indices il,’", id define
a unique hyperplane if and only if the intersection of the hyperplanes in H with the
same indices is a 0-face v of A(H). In addition, A(il,..., id)=a(v) if the positive
side defined by the points is above T-(v), and A(i, , id)= b(v), otherwise. These
explanations suggest that A(S) be computed as follows"

Step 1. Construct the ranked representation of A(H).
Step 2. Associate with each 0-face in A(H) the list of hyperplanes in H which

contain it.
Step 3. Derive the elements of A (S) from the ranks of the vertices of A(H).

By now, the details of this strategy should be obvious. Due to Theorem 3.3 and the
fact that A (S) consists of na elements, we conclude:

THEOREM 4.1. Let S denote a set of n points in E a, for d >= 2. Then there exists an

algorithm which computes A S) in O(n a) time, which is optimal.
This is an improvement over the O(n d log n) time algorithm presented in [GP4].

4.2. Halfspatial range estimation. Let S denote a set of n points in E and let h
denote a nonvertical plane. Let a(h) denote the number of points strictly above h. The
halfspatial range search problem requires that S be stored in a data structure such that
for any nonvertical plane h, a(h) can be computed easily. This problem is a generaliz-
ation of the halfplanar range search problem as considered, e.g., in Willard [W] and
Edelsbrunner and Welzl JEW4]. Since there seems to be no solution for the problem
(as well as for the one in E2) that is efficient in both time and space, we consider the
following simpler halfspatial range estimation problem: S is to be stored such that it is
easy to decide for a plane h whether a(h)< In/2], or a(h) >- In/2]. The solution to
be described below is a generalization of a data structure in Edelsbrunner and Welzl
[EW2].

By Observation 2.1, a point p in S is above h if and only if T(h) is below T(p).
Let the K-level of A(H) (with H T(S)) be the collection of regions (2-faces) r in

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 359

A(H), with a(r)= K-1 together with the bounding edges and vertices. Clearly,
a(h) < K if and only if T(h) is above or contained in the K-level of A(H). This
suggests that the K-level L/, for K In/2], be used as the basis for our data structure.

Note that LK intersects each vertical line exactly once and that the projection L:
of the edges and vertices of Lr onto the xlx2-plane gives a planar subdivision defined
by straight line edges. Let m denote the number of edges in L:. Then there exists a
data structure that requires O(m) space and O(m) time for construction from Lr such
that O(log m) time suffices to determine a region of L: whose closure includes a query
point (see Kirkpatrick [K] or Edelsbrunner, Guibas, and Stolfi lEGS]). Thus, to
determine whether or not T(h) is above L/, we locate projection T(h)’ of T(h) in L:
and then test whether or not T(h) is above the region of Ln that belongs to the located
region. This implies"

THEOREM 4.2. Let S denote a set of n points in E and m the number of edges of
Lr, for K n/2]. Then there exists a data structure that requires O(m) space such that
O(log n) time suffices to answer a halfspatial range estimation query. O(/I3) time and
space is needed to construct the data structure.

Unfortunately, no upper bound better than O(/13) is currently known for m. We
refer to Erd6s, Lovasz, Simmons, and Straus [ELSS] and Edelsbrunner and Welzl
[EW1], who derived independently nontrivial bounds for the corresponding quantity
in E2.

Clearly, the notion of a "level" and thus the above method can be generalized
beyond three dimensions. Using all K-levels for 1-_< K <_-n, and binary elimination to
determine the one immediately below a query point, yields a solution for the halfspatial
range search problem. The complexities are Q(n3) space and O(log2 n) time which
matches the best but more general structure by Chazelle [C].

4.3. Order-K Voronoi diagrams. Voronoi diagrams have received a great deal of
attention in such diverse areas as geography, archeology, crystallography, physics,
mathematics, and computer science. Let S denote a set of n points in E d for d > 2
Then V(p) {x in F_,d: d(x, p) < d(x, q), for q in S-{p}} is called the Voronoi polyhe-
dron ofp in S. The cell complex consisting of the Voronoi polyhedra and the bounding
lower dimensional polyhedra is called the order-1 Voronoi diagram 1-VOD (S) of S.
Shamos and Hoey [SH] were the first to describe an optimal algorithm for constructing
1-VOD (S) if S is in E 2. They also introduced "higher-order" Voronoi diagrams:
V(S’)={x in Ed: d(x,p)<d(x,q), for p in S’ and q in S-S’} is called the Voronoi
polyhedron ofS’. Let K be an integer with 1 <= K -< n 1. Then the cell complex consisting
of the Voronoi polyhedra (plus lower dimensional bounding polyhedra) for the subsets
S’ of S with cardinality K is called the order-K Voronoi diagram K-VOS (S) of S.

For simplicity, we restrict our attention to E2; generalizations to three and higher
dimensions are straightforward. In a separate paper, [ES], a transformation P is
described that relates Voronoi diagrams in E2 with arrangements of planes in E3. Each
point P=(Pl, P2) in S is transformed into the plane P(p) that is tangent to the
paraboloid x3 Xl

2 + x and touches it in the point (p, P2, P+P). Let L/ denote the
K-level of A(H) (with H P(S)) as defined in 4.2). The vertical projection of the
intersection of L/ with L/I (that is, all 1-faces e with a(e) K and their endpoints)
yield K-VOD (S). The generalization of these considerations implies:

THEOREM 4.3. Let S denote a set of n points in E d. Then O(n d/l) time suffices to
construct all order-K Voronoi diagrams for S, for 1 <- K <= n- 1.

In E2, K-VOD (S) can be exploited to determine the K closest points to a query
point x in O(log n + K) time. To this end, a region of K-VOD (S) is determined whose

360 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

closure includes x. The region r in K-VOD (S) found uniquely determines the K
closest points which can, e.g., be stored with r. Thus, the data structures in [K] or
lEGS] (this issue, pp. 317-340) yield the result.

Unfortunately, storing the lists of closest points with each region r in each
K-VOD (S), for 1-< K _-< n- 1, increases the space required to O(/’4). If the explicit
neighbor lists are required, then O(/14 is optimal for constructing all higher-order
Voronoi diagrams, as Dehne claimed [D]. However, the lists can be encoded into the
diagrams as follows:

Let r denote a region in K-VOD (S), for some K->_ 1. Then r is equipped with a
pointer into an arbitrary region r’ in (K- 1)-VOD (S) such that the list of K- 1
closest points of r’ is contained in the list of r. (0-VOD (S) is defined to be E2 and
has an empty list of closest points associated.) The pointer from r to r’ is labelled
with the one point in the list of r that is missing in the one of r’.

This strategy reduces the space required to O(n a+l) and retains the query time of
O(log n + K).

4.4. Degeneracy testing. A set S of n => d + 1 points in E d is said to be in general
position if any subset of d+ 1 points is affinely independent, that is, there is no
hyperplane that contains d + points of S. Recently, van Leeuwen [vL] posed the
question whether O(n2 log n) time is the best possible time bound for an algorithm
that decides whether or not n points in E2 are in general position. Theorem 3.3 implies
that the answer is negative"

THEOREM 4.4. Let S denote a set of n points in E d. Then there is an algorithm that
decides in O(nd) time and O(n2) space whether or not S is in general position.

Proof. S is in general position if and only if no d + 1 hyperplanes in H (with
H T(S)) intersect in a common point or are normal to a common hyperplane.
Construct all two-dimensional subarrangements and determine whether or not any one
contains d 1-fiats intersecting in a common point or normal to a common 1-fiat. There
are O(nd-2) such subarrangements, and each requires O(n2) time and space to con-
struct.

4.5. Minimum measure simplices. For simplicity, we confine the discussion in this
section to E2 and thus to minimum area triangles. Generalizations to higher dimensions
are straightforward. Let S denote a set of n points in E 2. Any three points Pi, Pj, Pk of
S define a triangle TR (i, j, k) with area m(i, j, k). Then MAT (S) TR (io, j0, ko) such
that m(io, jo, ko) assumes the minimum is called a minimum area triangle of S. We can
restrict our attention to S in general position. Otherwise, there are three points on a
line that define a triangle with area zero. However, this case can be checked in O(n2)
time by Theorem 4.4.

The problem of finding a minimum area triangle was first considered by Dobkin
and Munro [DM] who gave an O(n21og2 n) time and space algorithm. Later,
Edelsbrunner and Welzl [EW2] improved their result to O(n2 log n) time and O(n)
space. Both approaches are based on:

Observation 4.5. Let MAT (S)= TR (i,j, k). Then Pk is the closest point among
S-{pi, pj} to the line through Pi and p.

The line through pi and p corresponds to the intersection of T(p) and T(p) by
Observation 2.1. Furthermore, Pk corresponds to the line T(pk) immediately above or
below (vertically) the intersection. (As two parallel lines have no intersection, S is
assumed to contain no two points on a vertical line. Otherwise, $ is assumed to contain
no two points on a vertical line. Otherwise, $ is rotated by an appropriate angle, which

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 361

takes O(/12) time.) The following strategy for computing MAT (S) is suggested by
these observations:

Step 1. Construct A(H), with H T(S).
Step 2. For each region r in A(H) and for each vertex v T(pi)(3 T(pj) on the

boundary of r the following actions are taken: Determine each line T(pk) that contains
an edge of r and calculate the area rn(i,j, k), provided k is different from and j.
Record the triple (i,j, k) if rn(i,j, k) is less than the area of the smallest triangle
determined so far.

Obviously, for each vertex v T(pi) T(pj) in A(H), the line T(pk) immediately
above or below v is among the lines tested for v. Not counting the requirements for
Step 1, the amount of time required for each region r in A(H) is proportional to the
product of dego (r) and degl (r). The sum of these products, over all regions r in A(H),
is in O(n2) by Corollary 2.9. Observing that the algorithm given above as well as all
results used in this section generalize to three and higher dimensions, we conclude"

THEOREM 4.6. Let S denote a set ofn >-_ d + 1 points in E d, d >- 2. Then the minimum
measure simplex determined by d + points in S can be found in O(nd) time and space.

This result, and the presented algorithm, were independently discovered for d 2
by Chazelle, Guibas, and Lee [CGL].

5. Discussion. We have presented an optimal method for constructing cell com-
plexes defined by hyperplanes in E d, basing our algorithm on a new combinatorial
result (Theorems 2.7 and 2.8). The result also holds for arrangements of pseudo-
hyperplanes. In fact, the algorithm applies to the problem of constructing such more

general arrangements, provided that the pseudo-hyperplanes are, in some sense, com-
putationally simple.

Bieri and Nef [BN] described the only existing algorithm known to the authors
which computes the faces of an arrangement in E d. The disadvantage of their algorithm
is that it requires more time than ours and does not explicitly establish the incidences
between the faces. The significance of the presented optimal method is that there is a
host of applications leading to new and faster solutions for problems thought to be
unrelated in the past. The five applications shown in 4 are:

(1) An optimal algorithm for computing ,-matrices for finite sets of points in
Euclidean spaces, improving the best result known to date [GP4].

(2) A new data structure and algorithm for halfspatial range estimation for which
no sophisticated solution was yet known.

(3) An optimal algorithm for constructing all higher-order Voronoi diagrams. This
improves the result of Dehne [D] in E2 and appears to be the first algorithm known
for higher dimensions.

(4) A faster algorithm for testing for degeneracies in a set of points, providing
an improvement of existing algorithms and a partial answer to question P20 of [vL].

(5) A faster algorithm for computing minimum measure simplices defined by a
set of points. This improves the results of [DM] and [EW2] in E2 and appears to be
the first nontrivial result beyond d 2.

The algorithm also immediately leads to an upper bound on the number of
arrangements. For n hyperplanes in E d, the algorithm takes O(n d) binary decisions
and so can construct only 2") combinatorially different arrangements. This is also
an upper bound for the number of different combinatorial types since the algorithm
is not restricted to any subclass of arrangements. This improves the upper bound given
in [GP4].

362 H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL

Several open problems are suggested by the results in this paper. Three of the
most important ones are as follows:

(1) Let H be a set of n planes in E and let ILK(H)I denote the number of regions
of the K-level LK (H) of A(H). We define bK (n) max {ILK (H)I: H a set of n planes
in E3}. The authors can show bk(n)=(nk log k), but no nontrivial upper bound is
currently available. It is likely that the methods in [ELSS] or [EW1] can be extended
in some nontrivial way to obtain an upper bound.

(2) Is f(n2) a lower bound for deciding whether or not a set of n points in E2

is in general position? Due to its simple appearance, this computational problem seems
to be well suited for a lower bound analysis. Also, there are several problems to which
degeneracy testing in E2 can be reduced. Examples are the minimum area triangle
problem of 4.5, and several geometric problems posed in [LP], [EOW], and
[EMPRWW].

(3) There are some geometric problems for which O(n log n) time solutions are
known that might be amenable to applications of Theorem 3.3 to reduce the time to
O(n2). An example is the "shadow problem" of Lee and Preparata [LP]:

Let S denote a set of n line segments in E2. Compute a direction (if it exists)
such that each line parallel to the direction intersects at most one line segment.
If light shines parallel to this direction, none of the shadows overlap.

Acknowledgments. We thank Emmerich Welzl for discussions on Theorem 2.7.
We also thank Friedrich Huber for implementing the construction of arrangements in
arbitrary dimensions, and Gerd Stoeckl for implementing the algorithms presented in

4.1 and 4.3. The third author wishes to thank Jack Edmonds for the many enlightening
discussions.

REFERENCES

lAW] G.L. ALEXANDERSON AND J. E. WETZEL, Simplepartitions ofspace, Math. Mag., 51 (1978),
pp. 220-225.

[BN] H. BIERI AND W. NEE, A recursive plane-sweep algorithm, determining all cells of a finite
division of R d, Computing, 28 (1982), pp. 189-198.

[B] K.Q. BROWN, Geometric transformsforfast geometric algorithms, Ph.D. thesis, Rep. CMU-
CS-80-101, Dept. Computer Science, Carnegie-Mellon Univ., Pittsburgh, PA, 1980.

[C] B.M. CHAZELLE, How to search in history, Proc. International Symposium on Fundamental
Computer Theory, Springer-Verlag, Berlin, 1983.

[CGL] B.M. CHAZELLE, L. J. GUIBAS AND D. T. LEE, The power ofgeometric duality, Proc. 24th
Annual IEEE Symposium of Foundations of Computer Science, 1983, pp. 217-225.

[D] F. DEHNE, An optimal algorithm to construct all Voronoi diagrams for k nearest neighbor
searching in the Euclidean plane, Proc. 20th Annual Allerton Conference on Communication
Control and Computing, 1982.

[DMJ D.P. DOaKIN AND J. I. MUNRO, private communication.
[EGS] H. EDELSBRUNNER, L. GUIBAS AND J. STOLFI, Optimal point location in a monotone

subdivision, this issue, pp. 317-340.
[EMPRWW] H. EDELSBRUNNER, H. A. MAURER, F. P. PREPARATA, A. L. ROSENBERG, E. WELZL

AND D. WOOD, Stabbing line segments, BIT, 22 (1982), pp. 274-281.
[ES] H. EDELSBRUNNER AND R. SEIDEL, Voronoi diagrams and arrangements. Rep. 85-669,

Dept. Comput. Sci., Cornell Univ., Ithaca, NY, 1985.
[EOW] H. EDELSBRUNNER, M. n. OVERMARS AND O. WOOD, Graphics in Flatland: a case study,

in Advances in Computing Research, Vol. 1: Computational Geometry, F. Preparata, ed.,
JAI Press, 1983, pp. 53-59.

[EWI H. EDELSBRUNNER AND E. WELZL, Or/ the number of line-separations of a finite set in the
plane, J. Combin. Theory Ser. A., to appear.

JEW2] , Constructing belts in two-dimensional arrangements with applications, this Journal, to
appear.

CONSTRUCTING ARRANGEMENTS OF LINES AND HYPERPLANES 363

[EW3]

[EW4]

[ELSS]

[GP1]

[GP2]

[GP3]
[GP4]
[G1]
[G2]

[G3]

[K]
[LP]

[o]

[SH]

[St]

[vL]
[w]
[z]

, On the maximal number of edges of many faces in an arrangement, Rep. F99, Inst.
for Information Processing Technical Univ. Graz, Graz, Austria, 1982.
, Halfplanar range search in linear space and 0(/10695) query time, Rep. F111, Inst. for

Information Processing Technical Univ. Graz, Graz, Austria, 1983.
P. ERD6S, L. LOVASZ, A. SIMMONS AND E. G. STRAUS, Dissection graphs ofplanar point

sets, in A Survey of Combinatorial Theory, J. N. Srivastava et al., eds., North-Holland,
Amsterdam, 1973, pp. 139-149.

J. E. GOODMAN AND R. POLLACK, Proof of Griinbaum’s conjecture on the stretchability of
certain arrangements ofpseudolines, J. Combin. Theory Ser. A, 29 (1980), pp. 385-390.
, Three points do not determine a (pseudo-) plane, J. Combin. Theory Ser. A, 30 (1981),

pp. 215-218.
, A theory of ordered duality, Geom. Dedicata, 12 (1982), pp. 63-74.
, Multidimensional sorting, this Journal, 12 (1983), pp. 484-507.
B. GRONBAUM, Convex Polytopes, Interscience, London, 1967.
, Arrangements and spreads, CBMS Regional Conference Series in Applied Mathe-

matics 10, American Mathematical Society, Providence, RI, 1972.
,Arrangements and hyperplanes, Congressum Numerantium III, Louisiana Conference

on Combinatrics Graph Theory and Computing, 1971, pp. 41-106.
D. G. KIRKPATRICK, Optimal search in planar subdivisions, this Journal, 12 (1983), pp. 28-35.
D. T. LEE AND F. P. PREPARATA, Euclidean shortest paths in the presence of rectilinear

barriers, Proc. 7th Conference on Graphtheoretical Concepts in Computer Science,
(WG 81), Carl Hanser, 1981, pp. 303-314.

J. O’ROURKE, On-line algorithms forfitting straight lines between data ranges, Comm. ACM,
24 (1981), pp. 574-578.

M. I. SHAMOS AND D. HOEY, Closest-point problems, Proc. 16th Annual IEEE Symposium
Foundations of Computer Science, 1975, pp. 151-162.

J. STEINER, Einige Gesetze iiber die Theilung der Ebene und des Raumes, J. Reine Angew.
Math., (1826), pp. 349-364.

J. VAN LEEUWEN, P20, Bull. EATCS, 19 (1983), p. 150.
D. E. WILLARD, Polygon retrieval, this Journal, 11 (1982), pp. 149-165.
TH. ZASLAVSKY, Facing up to arrangements: face-count formulas for partitions of space by

hyperplanes, Memoirs Amer. Math. Soc. 154, American Mathematical Society, Providence,
RI, 1975.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
003

A SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER
GENERATOR*

L. BLUM?, M. BLUM AND M. SHUB

Abstract. Two closely-related pseudo-random sequence generators are presented: The lIP generator,
with input P a prime, outputs the quotient digits obtained on dividing by P. The x mod N generator with
inputs N, Xo (where N P. Q is a product of distinct primes, each congruent to 3 mod 4, and x0 is a quadratic
residue mod N), outputs bob1 b2" where bi parity (xi) and xi+ x mod N.

From short seeds each generator efficiently produces long well-distributed sequences. Moreover, both
generators have computationally hard problems at their core. The first generator’s sequences, however, are
completely predictable (from any small segment of 21PI + consecutive digits one can infer the "seed," P,
and continue the sequence backwards and forwards), whereas the second, under a certain intractability
assumption, is unpredictable in a precise sense. The second generator has additional interesting properties:
from knowledge of Xo and N but not P or Q, one can generate the sequence forwards, but, under the
above-mentioned intractability assumption, one can not generate the sequence backwards. From the
additional knowledge of P and Q, one can generate the sequence backwards; one can even "jump" about
from any point in the sequence to any other. Because of these properties, the x mod N generator promises
many interesting applications, e.g., to public-key cryptography. To use these generators in practice, an
analysis is needed of various properties of these sequences such as their periods. This analysis is begun here.

Key words, random, pseudo-random, Monte Carlo, computational complexity, secure transactions,
public-key encryption, cryptography, one-time pad, Jacobi symbol, quadratic residuacity

What do we want from a pseudo-random sequence generator? Ideally, we would
like a pseudo-random sequence generator to quickly produce, from short seeds, long
sequences (of bits) that appear in every way to be generated by successive flips of a
fair coin.

Certainly, the idea of a (fast) deterministic mechanism producing such non-
deterministic behavior seems contradictory: by observing its outcome over time, we
could in principle eventually detect the determinism and simulate such a generator.

The resolution [Knuth], usually, is to require of such generators only that the
sequences they produce pass certain standard statistical tests (e.g., in the long run, the
frequency of O’s and l’s occurring in such a sequence should be nearly the same, and
the O’s and l’s should be "well-mixed").

However, the usual statistical tests do not capture enough. An important property
of sequences of coin tosses is their unpredictability. Pseudo-random sequences should
be unpredictable to computers with feasible resources. We say that a pseudo-random
sequence generator is polynomial-time unpredictable (unpredictable to the right, unpre-
dictable to the left) [Shamir], [Blum-Micali] if and only if for every finite initial segment
of sequence that has been produced by such a generator, but with any element (the
rightmost element, the leftmost element) deleted from that segment, a probabilistic

* Received by the editors September 7, 1982, and in final revised form August 15, 1983. A preliminary
version of this paper was presented at Crypto 82.

" Department of Mathematics and Computer Science, Mills College, Oakland, California 94613, and

Department of Mathematics, University of California at Berkeley, Berkeley, California 94720. This work
was supported in part by the Letts-Villard Chair, Mills College.

$ Department of Electrical Engineering and Computer Sciences, University of California at Berkeley,
Berkeley, California 94720. This work was supported in part by the National Science Foundation under

grant MCS 82-04506.
IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598, and City University

of New York, New York, New York 10036. This work was supported in part by the National Science

Foundation under grant MCS 82-01267.

364

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 365

Turing machine can, roughly speaking, do no better in guessing in polynomial time
(polynomial in the length of the "seed," cf. 2) what the missing element is than by
flipping a fair coin.

1. Two pseudo-random sequence generators. In this paper, two pseudo-random
sequence generators are defined and their properties discussed. These are called"

(1) the 1 /P generator,
(2) the x2 mod N generator.

The two generators are closely related. For example: From short seeds, each quickly
generates long well-distributed sequences. Both generators contain hard problems at their
core (the discrete logarithm problem and the quadratic residuacity problem, respec-
tively). But only the second is "unpredictable"--assuming a certain intractibility
hypothesis.

More specifically, TIEOREM 2, Problem 4 (6). Arty sequertce produced by the
1/P generator is completely predictable; that is, given a small segment of the sequertce,
orte cart quickly infer the "seed" and efficierttly extend the givert segment backwards
artd forwards.

On the other hand, TIaEOREM 4 (7). Modulo the quadratic residuacity assump-
tion, the x2mod N generator is polynomial-time unpredictable to the left. We
say, for reasons pointed out irt the applications (10), that the sequences it gerterates
are cryptographically secure.

The 1/P generator has been well studied in the history of number theory [Dickson]
and as a pseudo-random number generator [Knuth]. Our results concerning its strong
inference properties, we believe, are new and surprising.

The x2 mod N generator is an outgrowth of the coin-flipping protocol of [Blum].
Its strong security properties derive from complexity based number theoretic assump-
tions and arguments [Blum], [Goldwasser-Micali], [Yao]. Our investigation reveals
additional useful properties of this generator: e.g., from knowledge of the (secret)
factorization of N, one can generate the sequence backwards; from additional informa-
tion about N, one can even random access the sequence. Our number-theoretic analyses
also provide tools for determining the lengths of periods of the generated sequences.

Both generators have applications. The lIP generator has applications to the
generation of generalized de Bruijn (i.e., maximum-length shift-register) sequences.
The x2 mod ?4 generator has applications to public-key cryptography.

The two generators are presented together so that each one’s properties help to
illuminate the other’s.

2. Notation and definitions. In this paper, the underlying models of computation
are Turing machines [Hopcroft and Ullman]. Probabilistic procedures are effective
procedures (Turing machines) that can toss a fair coin (at a cost of 1 step per toss) to
produce truly random bits during their computation. (Probabilistic) polynomial-time
procedures halt in (worst-case) time poly(n), where poly denotes a polynomial, and n
is the input length.

The base, b, will always be an integer > 1. For any positive integer, N, let

INl- [1 +logbN] be the length ofN when N is expanded base b, and let IN[- INI2.
We also let n [NI so N-O(2).

For - {0, 1,..., b-1}, let * be the set of finite sequences of elements of ,
and let be the set of (one-sided) infinite sequences of elements of .

For x e *, let Ix[be the length ofx, and for integers k _-> 0, let {x e Ixl- k}.
For x e, and for integers k >_-0, let x be the initial segment of x of length k, and
x be the kth coordinate of x where x0 is the initial coordinate of x.

366 L. BLUM, M. BLUM AND M. SHUB

DEFINITION. Let N be a set of positive integers, the parameter values, and for
each N e N, let Xv c {0, 1} be a set of seeds (recall n -[N[). The set X {(N, x)lN N,
x e XN} is called a seed domain.

We can, and sometimes do, think of Xv as a subset of X by identifying seed
x Xv with "seed" (N, x)e X. With this identification, X can be thought of as the
disjoint union (-Jr Xv. The point of view should be clear from context.

DEFINITION. Let X" ={(N, x)[N N, [NI n, and x XN} be the set of seeds of
length n. Suppose for all sufficiently large integers n,/z is a probability distribution
on X :’. Fnen U ={/x} is an accessible probability distribution on X if there is a
polynomial poly and a probabilistic poly(n)-time procedure that for each sufficiently
large input, n, outputs an element of X according to/z, with negligible error, i.e., it
outputs an element of a set containing X according to a probability distribu-
tion on the set containing X) where, for all t, for all sufficiently large n,
E(,x)x ItEm(N, x)- tz’,,(N, x)[< 1/n’.

A pair (X, U), where X is a seed domain and U is an accessible probability
distribution on X, is called a seed space. We simply let X denote the seed space when
the underlying distribution is clear.

Now, let Z {0, 1, ... , b- 1}.
DEFINITION. A (base b) pseudo-random sequence generator G on seed space X is

an effective map G’X E such that for each integer s => 0, there is an integer => 0
such that for all (N, x) X with tx(N, x) O, [G(N, x)]’, the initial segment of G(N, x)
of length n , is output in time O(nt). (Thus, from short "seeds" (i.e., of "length" n),
that are produced using at most poly(n) truly random bits, G generates long sequences
(i.e., of length n), in polynomial time.) G(N, x) is called the pseudo-random sequence
generated by G with input or seed (N, x).

Remark. If X represents a set of "observable states" for elements of seed space
X, then the sequence G(N, x) might represent the observed states through which seed
x p’;:es (at times 0, 1, 2,...) resulting from some underlying transformation of X
into itself. This point of view motivates the following more structured (and rrre
restrictive) formulation of a pseudo-random sequence generator.

DEFINITION. A transformation T on seed space X is a poly-time effective map
T: X X such that for all sufficiently large n, T(X) X and T preserves/x, (i.e.,
/x, (A) =/x(T-1(A)) for each A X). For each seed x XN, the sequence x,
Tx, T2x, is called the orbit of x under T. We sometimes write Xk Tkx, SO Xo X

and Xg+l T(Xk).
DEFINITION. A partition B of seed space X into states E is a poly-time effective

map B:XE.
The system (X, T, B), with X a seedspace, T a transformation on X, and B a

partition naturally defines a base b pseudo-random sequence generator G on X where
the kth coordinate, [G(N, X)]k B(Tkx). Thus, if Xo, Xl, x2," is the orbit of x under
T, then G(N, x)= bobl"" where bk B(Xk) is the state of x at time k.

Remark. If T is poly-time invertible on X, i.e., if T- is defined and poly-time
computable, we can, and sometimes do, think of G mapping X into the set of 2-sided
infinite sequences on E.

In the next two sections we give examples of specific pseudo-random sequence
generators. We use x2 rood Ngenerator to denote a particular type of pseudo-random
sequence generator, whereas x2 mod N denotes the remainder upon dividing a specific
integer x2 by N. A similar distinction is made between the 1 !P generator and the string
of digits 1/P.

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 367

Throughout this paper x mod N denotes the least nonnegative integer remainder
upon dividing x by N (rather than denoting the residue class mod N).

Recall that Z* {integers xl0 < x < N and gcd (x, N) 1 } is a multiplicative group
of order 0(N). If P is prime, then Ze* {1, 2,..., P-1} is cyclic. For each N, we
consider Z* c {0, 1} via the natural identification.

3. The lIP generator. Fix an integer b > 1 and let 5: {0, 1,..., b-1}.
DEFINITION (lIP generator (base b)). To define the seed space, let N {integers

P> 1 relatively prime to b} be the parameter values, and let the seed domain X be
the disjoint union t-Jpr Z*e. We can, and sometimes do, identify X with the (denge)
subset {r/PIP N, r Z,} of the unit interval [0, 1). Let/zn be the distribution on X
given by/zn(P, r)= un(P), vp(r), where u is the uniform probability distribution on
(e N[IPI n} and Vp is the uniform distribution on Z*e. Then U {/} is an accessible
probability distribution on X.

Let G :X E be defined by letting G(r/P) qlq2q3 be the sequence of b-ary
quotient digits that immediately follow the decimal point when rip X is expanded
base b. (We note that the successive digits of G(r/P) can be computed in O(Ibl" Iel)-
time, and that the sequence G(r/P) is periodic with period dividing 0(P).) We call
this pseudo-random sequence generator the lIP generator (base b).

From the state space point of view, the lIP generator (base b) is the pseudo-
random sequence generator defined by the triple (X, T, B) where X is the seed space
defined above, the transformation T: X - X is defined for x in [0, 1) by Tx bx mod 1
(equivalently T(r)= br mod P for re Ze*, which is a permutation on Ze*), and the
partition B:XE={O, 1,2,...,b-1} is defined for x in 0,1) by B(x)=[bxJ
(equivalently, B(r)= [br/PJ for rZ*e).

Remark. The lIP generator (base 2) might be considered to be a discrete realiz-
ation of the classical arithmetical model of a coin toss defined by the map 2x mod 1
and partition [0, 1/2) (_J [1/2, 1) of the unit interval [Billingsley, Kac]. In 6 we see that while
a number of the "ergodic" like properties of the classical model are reflected in this
discrete realization, the sequences produced are predictable.

Example. Let the base b= 10, and let P= 7 and r= 1. The pseudo-random
sequence generated by the lIP generator (base 10) with input 1/7 is 142857142....
Note that 10 is a primitive root mod 7 (i.e., a generator of the cyclic group ZT*) and
that the period of this sequence is 7-1 6 (see Theorem 1). From the state space
point of view, the orbit .of 1/7 under T is: 1/7, 3/7, 2/7, 6/7, 4/7, 5/7, 1/7,...,
and so, bo=l (since 1/7[1/10,2/10)), b1=4 (since 3/7 [4/10, 5/10)), b2=2,
b3=8, b4--5,’".

4. The generator xz rood N.
DEFINITION IX2 mod N generator]. Let N {integers NIN P. 0, such that P, O

are equal length (IPI OI) distinct primes =3 mod 4} be the set of parameter values.
For N N, let XN {x2 mod Nix Z’u} be the set of quadratic residues mod N. Let
X disjoint t_J Nr X/ be the seed domain.

For (N, x) X", let/x,(N, x) u,(N) Vl(X), where u, is the uniform probability
distribution on {N NIINI- n} and vu is the uniform distribution on X,. Then
is an accessible probability distribution on X since

1. asymptotically, 1/(k In 2) of all k-bit numbers are prime and half the primes
of any given lengths are =3 mod 4 (by de la Vallee Poussin’s extension of the prime
number theorem [Shanks]);

368 L. BLUM, M. BLUM AND M. SHUB

2. primality is decidable in polynomial time by (Monte-Carlo) probabilistic pro-
cedures [Strassen-Solovay], [Rabin ’80] or, assuming the extended Riemann
hypothesis, by a deterministic polynomial time procedure [Miller], and

3. gcds are computable in polynomial time, and IZI/IZNI 1 as n .
Let the transformation T:X X be defined by T(x) x2 mod N for x Xv. T is

a permutation on Xu (see Lemma 1) and is computable in poly-time. Let the partition
B:X{0, 1} be defined by B(x) =parity of x. B is computable in poly-time. Then
(X, T, B) defines a pseudo-random sequence generator (base 2) called the x2 mod N
generator. Thus, with inputs (N, Xo) the x2 mod Ngenerator outputs the pseudo-random

2sequehce of bits bob1"’" obtained by setting xi+l x mod N and extracting the bit

b =parity (xi). Such sequences are periodic with period usually equal to ,X (, (N)) (see
8 for the definition of h and clarification of "usually"). We also note that the equality

x x’ mod N x02’md(u mod N enables us to efficiently compute the ith sequence
element, given x0, N and h (N), for i> 0. For i< 0, use xi XimoO x(a(u).

Example. Let N=7.19=133 and Xo=4. Then the sequence Xo, Xl=
Xo2 mod 133,... has period 6, where Xo, X,’" ,xs, 4, 16, 123, 100, 25, 93,. .
So bobl...bs...=O 0 1 0 1 1.... The latter string of b’s is the pseudo-random
sequence generated by the x2 mod N generator with input (133, 4). Here, A(N)= 18
and h (h (N)) 6.

5. The assumptions. Our main results about unpredictability and cryptographic
security follow from assumptions concerning the intractability of certain number-
theoretic problems by probabilistic polynomial-time procedures. Stronger results would
follow from stronger assumptions concerning the circuit size complexity of the number
theoretic problems below. Such results would be desirable, for example, if’ we wished
to assure that sequences produced by our generator appear random to hard-wired
circuits.

1. The discrete logarithm (index finding) problem. Let P be a prime. Let b be a
primitive root rood P (i.e., a generator for Ze*). The function fb.e’Z*e Z*e defined by
fb.e(x) b mod P is a permutation of Ze* that is computable in polynomial time. The
discrete logarithm (index finding) problem with parameters b and P consists in finding
for each y in Zp* the index x in Zp* such that b mod P y. A (probabilistic) procedure
P[b, P, y] solves the discrete logarithm problem if for all primes P, for all generators
b for Z’e, and for all y in Z,, P[b, P, y] x in Ze* such that b rood P y.

The discrete logarithm assumption. (This asserts that any procedure for solving
the discrete logarithm problem will be inefficient for a fraction of the inputs.) Let
P[b, P, y] be a (probabilistic) procedure for solving the discrete logarithm problem.
Let 0 < 8 < 1 be a fixed constant, and let be a fixed positive integer. Let poly be a
fixed polynomial. Then for all sufficiently large n, for all but 8-fraction of n-bit primes
P, for all primitive roots b mod P, Probability {(expected) time to compute P[b, P, y]=>
poly (n)ly is selected uniformly from Ze*,} > 1In t.

2. The quadratic residuacity problem [Gauss]. Let N be a product of two distinct
odd primes. Exactly half the elements of Z* have Jacobi symbol +1, the other half
have Jacobi symbol -1. Denote the former by Z*(+I) and the latter by Z*(-1).
None of the elements of Z*(-1) and exactly half the elements of Z*(+ 1) are quadratic
residues. The quadratic residuacity problem with parameters N and x consists in
deciding, for x in Z*(+ 1), whether or not x is a quadratic residue.

The quadratic residuacity assumption (QRA). (This asserts that any efficient
procedure for guessing quadratic residuacity will be incorrect for a fraction of the
inputs.) Let poly (.) be a polynomial. Let P[N, x] be any (probabilistic) poly-time

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 369

procedure which, on inputs N, x, each of length n, outputs 0 or 1. Let 0 < 6 < 1 be a
fixed constant, and let be a positive integer. Then for n sufficiently large and for all
but 6 fraction of numbers N of length n, N a product of two distinct equal length odd
primes, the probability that PIN, x] is incorrect in guessing quadratic residuacity (i.e.,
PIN, x] 0 if x Z*(+1) is a quadratic residue mod N; 1 if not), given that x is chosen
uniformly from Z’u(+ 1) and given the sequence of coin flips (in the case the procedure
is probabilistic), exceeds 1/n in the sense that

*+l Prob (PIN, x] is incorrect) > 1/n’.
o(N)/2

By Lemma 3, the "l/nTM is replaceable by "(1/2)-(1/n’)."

6. The lIP generator is predictable. Let P and b be relatively prime integers > 1
and r0 an integer in the range 0 < r0 < P. Denote the expansion of ro/P to base b by

(1) ro/P .qlq2q3"

where 0 <_-qi < b. Since b is prime to P, the expansion is periodic. Then, for m >_-0,

(2) (b’.ro)/P=ql...q,,.q,+lq,,+2 (ql""" q,,)+r,,/P

where

(3) 0 < r,,, b’ro mod P < P
and

(4) O<rm/P=.q,,+lq,,+z...=(b".ro/P)modl<l.

Here, ql, q2," are (quotient) digits base b and qq2" denotes their concatenation,
whereas rm, the mth remainder (of ro/P base b), is an integer whose length (base b)
is less than or equal to the length of P: Irmlb <-IPI, where in this section]PI denotes
IPIb. Recall for roe Z’v, (1) defines the pseudo-random sequence generated by the 1/P
generator with input ro/P.

There are several reasons one might consider the 1/P generator a good pseudo-
random sequence generator: if the parameter P is a prime, and b is a primitive root
mod P, the sequences produced have long periods and nice distribution properties
(Theorem 1 below)l. In addition, these sequences possess certain hard-to-infer proper-
ties. For example, given a remainder r generated during the expansion of 1/P base b,
it is hard, in general, to find any index m such that r,, r. This is because r,, bm mod P,
so m is the discrete logarithm of r mod P. It follows (Theorem 2, problem 1) that,
given a string of quotient digits q,,+qm+2" qm+k (k poly (IPI)), it is hard in general
to find its locatioh in the sequence.

We remark that it would be natural to restrict the 1/P generator (base b) to the seed space Y {(P, r)lP
is an odd prime, b is a primitive root mod P, Ze*} with the product distribution: for each (P, r) yn, let
tzn(P, r) u,,(P) ve(r), where u is the uniform distribution on the parameters of length n and ve is uniform
on Z*p. Then, on reasonable conjecture, {,},,z is accessible on Y since: a) E. Artin’s conjecture and the
prime number theorem imply that if b is not a square, then the cardinality of {PIP is a prime of length n
and b is a primitive root modP} is more than (1/3). (2"/n), asymptotically as n goes to infinity [Shanks
p. 81]. And, there are (Monte-Carlo) probabilistic polynomial-time procedures for b) testing primality
[Strassen-Solovay]; c) testing if b is a primitive root mod P, given P and the factorization of P- [LeVeque,
Thm. 4.8]; d) producing, for any k, k bit integers in factored form according to the uniform probability
distribution [Bach]; and e) computing greatest common divisors.

370 L. BLUM, M. BLUM AND M. SHUB

On the other hand, Theorem 2 will give a sense, which is correct, that the lIP
generator yields a poor pseudo-random sequence: from knowledge of P and any
IPl-long segment of the expansion of ro!P base b, one can efficiently extend the segment
backwards and forwards (problem 2). More surprisingly (problem 4), from knowledge
of any 21PI + 1 successive elements of the sequence, but not P, one can efficiently
reconstruct P, and hence efficiently continue the sequence in either direction.

It follows that there is a simple efficient statistical test for deciding whether a
3n-long string of digits has either been generated by the expansion of lIP base b, for
some prime P of length n, or has been generated at random (uniform probability
distribution), given that it was produced in one of those two ways. Use 2n + 1 of the
given 3n digits to recover the suspected P; use this P to generate 3n digits; then
compare the generated digits with the 3n given digits: if they agree, the string has
probably (with probability >=1-1/2"-1) been generated using the lIP generator.

To lead up to Theorem 1, we consider the following types of sequences (closely
related to maximum-length shift register sequences [Golomb]).

DEFINiTiON. Let P, b denote arbitrary positive integers. A (generalized) de Bruijn
sequence of period P-1, base b, is a sequence qlq."" of b-ary digits (i.e., 0-< qi < b
tor all i) of period P-1 such that (1) every b-ary string of length IPI-1 occurs at
least once in the sequence, and (2) every b-ary string ot length IPI occurs at most once
in any given period of the sequence.

THEOREM 1. Let P prime. Let b {1, 2,. , P- 1} be a primitive root mod P.
Let ro {1, 2,. , P- 1}. Then the pseudo-random sequence generated by the 1/P
generator (base b) with input ro/P is a (generalized) de Bruijn sequence ofperiod P- 1,
base b.

Proof. Since r, b"’ro mod P and b is a primitive root mod P, the sequence
of remainders r,, (generated during the expansion o 1/P base b) is periodic with

period P-1, the remainders in any period are distinct, and {r,,ll <--m <_-P-1}
{1,2,..., P- 1}.

Similarly, the sequence of quotients r,,,/P is periodic with period P-1, the
quotients in any period are distinct, and

(5) {r,lPI1 <= m <-P- 1}= {lIP, 2/P,..., (P- 1)/P}.

Therefore, the sequence of quotient digits qm is periodic with period at most P- 1.
If the period were less than P-1, then there would be integers 0-< m < m2 < P-1
such that .q-,l/1q,-l/2 .qm/lq,-2/Z" "" Since rm/P=.q,,/lq,,/2 we would
have r,l/P r,u/P, a contradiction. Therefore the period is P-1. [Gauss]

Now, a string al’" as of s b-ary digits appears somewhere in the expansion of
ro/P if and only if it appears as an initial string in the expansion of r,/P for some
1 =< m =< P-1 if and only if (by (5)) it appears as an initial string in the expansion of
g/P for some 1 =< k-< P-1. But also, the set of b-ary strings of length s correspond
exactly to the subintervals of the unit interval [0, 1) of the form Ill b s, (l + 1)/bs) where

is an integer, 0=< l< bs. Since l/P< libIPI-1, there is for each l, at least one k,
1 <- k<=P 1 such that k/P[l/bIPI-1, (l+ 1)/bIPI-1) and so we have property 1. Since
1/bIPI l/P, there is for each at most one k, 1 -< k _-< P- 1 such that k/P [l/bIPI,
(1-1-1)/blPt), and so we get property 2. QED

So, if P is prime and b is a primitive root mod P, it follows from Theorem 1
concerning de Bruijn property 1 (and Artin’s conjecturesee footnote 2 concerning
that conjecture) that neither IPI-1 successive digits of quotient, qm+l’"qm+lPl-1, nor
(the approximately IPI- 1 successive digits of) a remainder, r,, are enough to construct
P, or to extend the sequence, on purely information-theoretic grounds. In contrast, it

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 371

will follow from Theorem 2 below that (various combinations of) approximately
digits of information are sufficient to efficiently extend the sequence in either direction.

THEOREM 2. Let P and b be relatively prime integers > 1 (P not necessarily prime),
and let ro be an integer in the range 0 < ro < P. The following problems are solvable in
polynomial Pl -time.

Problem 1. Choose a polynomial, poly (.), and hold it fixed.
INPUT: P, b, remainder r,,,, positive integer k <-poly
OUTPUT: r,,-1, r,,+k;

Problem 2 [Gauss]. This is a computational version of Theorem 1 concerning de
Brui.in property 2. (A similar algorithm gives the computational version of property 1.)

INPUT: P, b, IPI successive digits of quotient qm+lqm+2" q,/lPl"
OUTPUT: r,,, (and hence, by problem 1, r,+lp and q,, q,,+lPl+l).
Problem 3. We assume that P is relatively prime to each of 1, 2,. , b (to ensure

that the output is the unique P that generated r,,, and r,/l).
INPUT: b, r,,, r,,+l such that r,,. b r,,/l (i.e. r, >= P/ b).
OUTPUT: P (and therefore also, by problem 1, q,q,,+l q,,+lel).
Problem 4. We assume that ro is relatively prime to P (e.g., r0 1).
INPUT: b; k quotient digits, q,,+lq+2 q,+k, where k [1Ogb (2P2) and m is

arbitrary. (Note that k <- 21PI + 1).
OUTPUT: P; rm (and hence by problem 1, qm and qm+k+).

Proof. To solve problem 1" rm+k bkrm mod P and rm-- b-lrm mod P where b-1

is the inverse of b mod P. We note that

(6) (bkr,n)/P=qm+l q,,+k + r,,+/P.

So, q,.., qm+k [(bk+lrm-1)/PJ (By convention, we do not drop initial digits in a
concatenation of quotient digits, e.g., in (6).)

To solve problem 2: By (6), r,,=(q,+l" "q,,+lpl)’P/blPl+(r,n+lpi)/bIPI. Since

rm+lPI < P < blPI, rm [(qm+l qm+lel) P blPI]
In problems 3 and 4, the number P is not available and must be constructed.
To solve problem 3" By (6) with k 1, b. r, r,,/l q,,/l P where 0 =< q,,/l < b.

Actually, 0 < q,+l, since, by assumption, b. r,,, # rm/l. Therefore, P equals some integer
in the sequence of real numbers (b.r,,-r,,/l)/1, (b. rm-r,,/l)/2,’",(b’r,,-
r,,/l)/b-1. Select any integer P in the sequence such that P is relatively prime to
1, 2,..., b. Such an integer P is unique; for suppose to the contrary that P, O are
two such integers relatively prime to each of 1, 2,. , b. Then P. (i) O" (j) for some
0 < i, < b. Without loss of generality, suppose P< O. O is relatively prime to each of
1, 2,..., b, so gcd (O, i)= 1, so OIP, so O -< P, which is a contradiction.

The solution to problem 4, which is very pretty, is by continued fractions: By (6),
r,,/P=q,,+l"’" q,,+/b+e where O<=e<l/b. By [LeVeque, p. 237, Thm. 9.10],
the continued fraction expansion of q,,/l"’" q,,/k/bk has convergent r,,/P if l!bk=<
1/2P2, i.e., 2p2<=bk, i.e., logb (2p2)_-< k, as postulated. So r,/P=A/B for one of
the convergents A1/B1, A2/B2," of the fraction q,n+l qm+k/bk. Since both b and
ro are relatively prime to P, it follows (from (3)) that gcd (r,, P)- 1, so r, A and
P= Bi.

It remains to show that rm and P can be obtained by generating the above
convergents until for some the first k digits of Ai/Bi are q,/l" q,/, at which
point r,,,=Ai and P=B. To see why, recall that the continued fraction
qm+l qm+k/bk 1/al + l/a2+ l/a3+" 1/ai+" has convergents A1/B1 1/al,
AE/B2 a2/(ala2 + 1),. , A/B (aAi_l / A_2)/(aB-I + B-2), ". Here, the Bi

372 L. BLUM, M. BLUM AND M. SHUB

are strictly increasing with i. Since for some i, Ai/Bi r,,/P, this procedure for obtaining
r, and P will never go beyond A/B r,,/P. To see that the procedure generates
convergents to the point where A/B=r,,/P, note that when Aj/Bj=
q,,,+l"’’qm+k’’’, the error is sufficiently small to ensure that A/B rm/P.

Since Ai and Bi grow exponentially, P= Bi and r,, A can be computed in
polynomial(IBil), in particular in O(number of steps to compute the ith Fibonacci
number), and therefore in polynomial(lPI) steps. This solves problem 4. QED

Example. Let b 10 and P 503. Then P is a prime and b is a primitive root
mod P, so the lIP generator with input 1/503 quickly generates a sequence of base
10 digits with period 502. This sequence is

00198 80715 70576 54075 54671 96819 08548 70775 34791 25248 50894 63220 67594 43339 96023
85685 88469 18489 06560 63618 29025 84493 04174 95029 821073558648111 33200 79522 86282
30616 30218 68787 27634 19483 1013916500 99403 57852 88270 37773 35984 09542 74353 87673
95626 24254 47316 10337 97216 69980 11928 42942 34592 44532 8031809145 12922 46520 87475
14910 53677 93240 55666 00397 61431 41153 08151 09343 93638 17097 41550 6958250497 01789
26441 35188 86679 92047 71371 769383697813121 2723658051 6898608349 90059 64214 71172
96222 66401 59045 72564 61232 60437 37574 55268 38966 20278 33001 98807""

Since 15031- 3, every string of two decimal digits occurs at least once in the above
sequence, and every string of three decimal digits occurs at most once in any period
of the sequence.

Since k [lOgl0 (2. 5032) 6, we can, from any segment of length 6 of the above
sequence, efficiently recover P, and then quickly extend the segment in either direction.
For example, consider the segment 433399 (shown in bold type above). The continued
fraction expansion of.433399 is 433,399/ 1,000,000 1 / 2 + 1/ 3 + 1/ 3 + 1/ 1 + 1/ 16 +
1/6+1/1+1/1+1/358+..., and its first five convergents are" 1/2=.5; -37=.48...;
10 .434 13 218
----23 =.43333 ,5--0- .4333996 At last, the first 6 digits agree with
the segment 433399. So we get P= 503 and r,, 218 (and so r,,-1 10-1" rm mod 503
151.218 mod503=223). In this way, we can extend the given segment, 433399,
forwards and backwards.

7. The x2 mod N generator is unpredictable. In this section we elaborate on
properties of the x2 mod N pseudo-random sequence generator, and prove (modulo
the QRA) that it is polynomial-time unpredictable (Theorem 4, this section).

First we recall some number-theoretic facts. Suppose N P. O where P and O
are distinct odd primes. Let Z* {integers x]0 < x < N and gcd (x, N) 1 }. Then ORgy,
the set of quadratic residues mod N, form a multiplicative subgroup of Z of order
q(N)/4 (where q(N) is the cardinality of Z’N). Each quadratic residue x2 mod N has
four distinct square roots, +/-x mod N, +y mod N. If we also assume, as we shall for
the rest of this paper, that P= Q= 3 mod 4, then each quadratic residue mod N has
exactly one square root which is also a quadratic residue (see Lemma 1, this section).
In other words, squaring mod N is a 1-1 map of QRN onto QRN. (Comment: half
the primes of length n are congruent to 3 mod 4 asymptotically as n - c [LeVeque],
so there are plenty such N.)

We now investigate what properties can be inferred about sequences produced
by the x2 mod N generator, given varying amounts of information. In the following,
N is of the prescribed form, that is to say, N P. Q where P, Q are distinct primes
both congruent to 3 mod 4. Also, xi is a quadratic residue mod N, Xi/l x2 mod N and
bi parity (x):

1. Clearly, knowledge of N is sufficient to efficiently generate sequences
x0, xl, x2,’’’ (and hence sequences boblb2" ") in the forward direction, starting from
any given seed xo. The number of steps per output is O(INI 1+) using fast multiplication.

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 373

2. Given N, the factors of N are necessary and sufficient to efficiently generate
the x2 mod N sequences in the reverse direction, x0, x-l, x-2," , starting from any
given seed Xo. (See proof below).

3. What is more, the factors of N are necessarymassuming they are necessary
for deciding quadratic residuacity of an x in Z*(+l)mto have even an e-advantage
in guessing in polynomial time the parity of X-l, given N and given Xo chosen "at
random" from QRI. (Note that to choose a quadratic residue at random with the
uniform probability distribution from QRN, it is sufficient to choose x at random (with
the uniform probability distribution) from Z* and square it mod N).2

To see Claim 2 above, we first prove the following:
LEMMA 1. IfN P" Q wherePand Q are distinctprimes such thatP Q 3 mod 4,

then each quadratic residue mod Nhas exactly one square root that is a quadratic residue.
Proof. Whenever N is a product of two distinct odd primes, every quadratic

residue mod N has four square roots, +x and +y. Since N= 1 mod 4, their Jacobi
symbols satisfy (+x/N)=(-x/N) and (+y/N)=(-y/N). Since P=3mod4,
(+x/N) (+y/N) (this can easily be proved from the fact that gcd (x + y, N) P and
gcd (x- y, N) Q, whence x + y kP and x- y lQ, whence (x/P) (-y/P) and
(x/ Q) (y/ Q)). Thus (+x/N) (-x/N) (+y/N) (-y/N). Eliminating the two
roots, say + y, with Jacobi symbol -1 with respect to N, we are left with the two roots
+/-x having Jacobi symbql +1 with respect to N. Exactly one of these roots has Jacobi
symbol + 1 with respect to both P and Q, because P 3 mod 4, and this one and this
one only is a quadratic residue mod N. OED

The necessity (of knowing the factors of N) now follows" Suppose we can efficiently
generate such sequences in the reverse direction. To factor N, select an x in Z* whose
Jacobi symbol is (x/N)=-1. Let Xo x2 mod N and compute x-1. Then efficiently
compute gcd (x + X-l, N) P or Q. We can sharpen this argument to show [Rabin ’79]
that the ability to compute x-1 for even a fraction of seeds Xo will enable us to factor
N efficiently with high probability.

On the other hand, if we know the factors of N we can use the algorithm described
in Theorem 3 (below) to efficiently generate sequences backwards:

THEOREM 3. There is an efficient deterministic algorithm A which when given N
(of the prescribed form), the prime factors of N and any quadratic residue Xo in Z,
efficiently computes the unique quadratic residue x_ mod Nsuch that (x_1) 2 mod N Xo.

A(P, Q, Xo) x-1.

Proof. By Lemma 1, the map from the quadratic residues mod N into the quadratic
residues mod N, f:x - x2 mod N, is 1 1 onto. The algorithm A can now be described
as follows:

INPUT: P, Q two distinct primes congruent to 3 mod 4; Xo a quadratic residue
mod N, where N P. Q.

OUTPUT: A quadratic residue x-1 mod N whose square mod N is Xo.
Compute Xp -X//--O mod P such that (Xp/P) + 1, where 4oo mod P denotes an,integer in Zp whose square mod P is Xo:
/oo mod P +XoP+1/4 mod P (for P-- 3 moO 4). Compute xo x/oo moO Q. Use

the Euclidean algorithm to construct integers u, v such that P. u + Q. v 1, and from

A more formal statement of claim 3: Modulo the QRA, given a polynomial poly, a constant 0 < 6 < 1,
and a positive integer t, if P IN, Xo] is a probabilistic poly-time procedure for guessing the parity of x-1
given Xo in QRN, then (YxoORN Prob [P[N, Xo] Parity (x_x)])/(q(N)/4) < (1/2) + (1/n’) for sufficiently
large n, and all but 3 fraction of prescribed integers N of length n.

374 L. BLUM, M. BLUM AND M. SHUB

that obtain the particular number, XN -’]"Xp" Q V "-t- XQ" P. u x/00 mod N, that is a
square root of x0 mod N, and that is also a quadratic residue with respect to both P
and Q and therefore with respect to N. QED

To see Claim 3 above, we start with the following definition.
DEFINITION. Given a polynomial poly and 0 < e _-< 1/2, a 0-1 valued probabilistic

poly-time procedure P(.,.) has an e-advantage for N in guessing parity
(of x-1 given arbitrary x0 in QRrq) if and only if (xooRNProb[P[N, xo]
Parity (x_)])/(o(N)/4)>-(1/2)+e. In a similar fashion, we can define a procedure
having an e-advantage forN in guessing quadratic residuacity (of arbitrary x Z*(+1))
[Goldwasser-Micali]. The 1/2 / e makes sense in the second definition since exactly
half the elements in Z’N(+ 1) are quadratic residues.

LEMMA 2. An e-advantage for guessing parity (of x-1 given quadratic residue Xo)
can be converted, efficiently and uniformly, to an e-advantage for guessing quadratic
residuacity (of x in Z*(+1)).3

Proof. Let x Z’N(+ 1) be an element whose quadratic residuacity mod N is to be
determined. Set Xo x2 mod N. Since P-- Q-= 3 mod 4, the square roots of x2 mod N
that are in Z’N(+ 1) are x and N-x (see proof of Lemma 1), and since N is odd, each
of these square roots has opposite parity. Only one of these square roots is a quadratic
residue (i.e., equal to x-i), and only one of these has parity equal to parity (x-i).
Therefore, x is a quadratic residue modN if and only if x=x_l if and only if
parity (x) parity (x_). QED

LEMMA 3 (Goldwasser and Micali). An e-advantage for guessing quadratic
residuacity can be amplified to a 1/2-e advantage, uniformly and efficiently.4

Idea of proof. Suppose P[N, x] is a probabilistic poly-time procedure that has an
e-advantage for N in guessing quadratic residuacity. Then we can in polynomial time
sample (uniformly) the elements x of QRN and of Z*lV(+I)-QRI (by selecting a
number at random from Z*, squaring it, then taking its negative mod N), and estimate
constants A and B such that

Prob [P[N, x]
A and

q(N)/4
YxZ*+I>--OR,

Prob [P[N, x] 1]
/ B,

q(N)/4

and A-B>-_2e (approximately). Now let xZ(/l) be an element whose quadratic
residuacity mod N is to be determined. To this end, select r’s independently and at
random with uniform probability from Z*. Compute x. r2 mod N. [Comment: For
x QRN, x. re mod N is uniformly distributed over QRv; for x : QRN, x. r2 mod N is
uniformly distributed over Z(+I)-QRI.] Test each of the resulting numbers,
x. r2 mod N, for quadratic residuacity by checking if PIN, xr2] 1 (using sequences of
coin tosses as may be required by P). Compare the resulting fraction of favorable
outcomes to the fractions A and B in order to get an amplified advantage in guessing
quadratic residuacity of x. QED

3A more formal statement of Lemma 2: Given poly, O<e(n)<-_l/2, N=a set of integers N of the

prescribed type. If there is a probabilistic poly-time procedure that has an e(INI)-advantage for each N e N
in guessing parity (of x-1 given an arbitrary Xoe QRr), then there is a polynomial poly’ and a probabilistic
poly’ procedure that has an e(INI)-advantage for N e N in guessing quadratic residuacity (of arbitrary x in

Z*(+I)).
4A more formal statement of Lemma 3: Given poly, t= a positive integer, and N =a set of integers

N of the prescribed type. If there is a probabilistic poly-time procedure that has a 1/IN[’ advantage for

N N in guessing quadratic residuacity (of x in Z*(+ 1), then for any positive integer t’ there is a polynomial
poly’ and a probabilistic poly’-time procedure that has a 1/2-l/IN]c advantage for NN in guessing
quadratic residuacity (of x Z*(+ 1)).

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 375

CLAIM 3 follows" Suppose to the contrary that P is a probabilistic poly procedure
that has a 1/n advantage in determining parity (for infinitely many n, and for more
than 3 of prescribed numbers N of length n). Then convert P (Lemma 2) to a
probabilistic poly’ procedure P’ for determining quadratic residuacity that has an
amplified advantage (Lemma 3) of 1/2-1/nc (for these same integers N). This
contradicts the quadratic residuacity assumption.

Leading up to Theorem 4 we make the following definition.
DEFINITION.
1. A predictor P(.,.) is a probabilistic poly-time procedure that on inputs N,

bl bk, with bi {0, 1} and k =< poly (INI), outputs a 0 or 1 (the output may depend
on the sequence of coin-tosses that the probabilistic algorithm makes).

2. P has an e-advantage for N in predicting to the left sequences produced by
the X2 mod N generator if and only if for some k -< poly ([NI), YxOR., Prob [P(N, bl(X),

bk(X)) bo(x)]/(q(N)/4)>- (1/2)+ e, where bi(x) =parity (x2’ mod N).
THEOREM 4. Modulo the QRA, the x2 mod Ngenerator is an unpredictable cryp-

tographically secure) pseudo-random sequence generator. That is to say, for each prob-
abilistic poly-time predictor P, each constant 0 < < 1, and positive integer t, P has at
most a 1/n advantage for N in predicting sequences to the left (for sufficiently large n
and for all but a fraction of prescribed numbers N of length n).

Proof Suppose we have a predictor for the x2 mod N generator with an e-

advantage for N. This can be converted efficiently and uniformly into a procedure with
an e-advantage in guessing parity (of x_l given arbitrary x0 in QRN). To see this,
suppose we are given Xo QRN. From seed x0 generate the sequences boblb2" Then
parity (x_1) b_ 1.

Now convert (Lemma 2) to a procedure for guessing quadratic residuacity
with an amplified advantage (Lemma 3) to get a contradiction to the quadratic
residuacity assumption. QED

It follows from a fundamental theorem of Yao [Yao] that, under the QRA, the
sequences produced by the x2 mod N generator pass every probabilistic polynomial-
time statistical test (roughly speaking, these sequences cannot be distinguished by any
poly (n)-time statistical test--with more than a negligible advantage--from sequences
produced by successive flips of a fair coin). More precisely, what does this mean? Yao
gives a very general definition of the concept of a probabilistic poly-time statistical
test, but the following definition adequately describes such a test for our purpose:
formally, a probabilistic poly-time statistical test, T, is a probabilistic poly-time algorithm
that assigns to every input string in {0, 1}* a real number in the unit interval [0, 1]
(the particular value depends in general on the sequence of coin flips made by the
algorithm). Let a,, denote the average value that such T assigns to a random m-bit
string (chosen with uniform probability from among all m-bit strings). We say that a
pseudo-random sequence generator passes test T if, for every positive integer t, the
average value, over all seeds of length n, that the statistical test assigns to a poly (n)-bit
pseudo-random string (produced by the given generator) lies in the interval apoly(n) +

1! n for all sufficiently large n. If a generator does not pass test T, then we say that
T has an advantage in distinguishing between the pseudo-random bits produced by
the generator and truly random sequences of bits.

THEOREM 5 (following Yao). Modulo the QRA, the sequences produced by the
x2 mod N generator pass every probabilistic polynomial time statistical test.

Idea of proof. Here and in the sequel, we use polyl, poly2,’., to denote distinct
polynomials. Suppose there were a probabilistic polyl-time test T that, for infinitely
many n, has an advantage in distinguishing between the pseudo-random sequences of

376 L. BLUM, M. BLUM AND M. SHUB

length poly (n) produced (from random seeds of length n) by the x mod N generator
and truly random sequences of bits of the same polyl (n) length. Then for some positive
integer and infinitely many n, the average value that T assigns to the pseudo-random
sequences of length polyl (n) (generated from seeds of length n) lies outside, say
above, apoy. + 1/n, whereas the average value it assigns (truly) random sequences
lies inside Opolyl(n) q" 1In t+l. For each of these n, we can find integers j, k _->0, j+ k
polyl (n) (in probabilistic poly2 (n)-time) such that "with high probability" the average
value that T assigns to sequences in A {rl" r)+b b} is closer to Opoly(n) by
at least 1/(nt+l.poly (n)) than the average higher value it assigns to sequences in
B ={rl...rbob... b}where the bo"" b are sequences produced by the gen-
erator, the seed Xo having been chosen uniformly at random, and the rl"’" r+l are
sequences of independent random bits. Integers j, k are found by trying different
values of j, k, in each case sampling elements of the associated sets A, B, and applying
T to these samples. The Weak Law of Large Numbers assures that this can be done
in probabilistic poly2(n)-time.

We can convert T into a predictor for the generator: Given a sequence b b
produced by the generator, we submit a sample of poly3 (n)-many sequences of the
form rl’"r1Ob", bk (where the rl,"" ", r are independently chosen random bits)
to test T and estimate the average value, call it a, assigned by T to the entire set of
these sequences. Then submit the corresponding sequences rl ri I b bk to T and
estimate the associated a 1. T’s "advantage" in distinguishing between pseudo-random
and random sequences can now be converted into an advantage in predicting bo
correctly: Use a biased coin to predict bo. Set the bias so that the coin has probability
1--1 0 1)-r(a -a of coming up heads. Toss the coin and if it comes up heads, predict
bo 0, else bo 1. (It is tempting but incorrect to suggest that we predict b0 0 if a
is greater than a 1, else bo 1. Problems arise if for a few choices of bl ", the random
strings rl’"rb’." bk give a correct strong bias toward bo=0, whereas for most
choices of b..., the strings rl’"rb’l’" b’k give a weak bias toward b 1. One
would end up giving wrong answers for the majority of strings b b,. In this case,
the expectation of predicting bo correctly would be less than 1/2. The biased coin makes
the expectation greater than 1/2.) QED

Remark. We can construct another unpredictable generator as follows: recall that
since N-- 1 mod 4, both x and -x (in Z*) have the same Jacobi symbol, and since N
is odd, x and -x have opposite parity. Therefore, the parity property partitions Z*(+1)
in half. In a similar fashion, the location property, where location (x)=0 if x <
(N-1)/2, 1 if x-> (N-1)/2, partitions Z*(+I) in half. Exactly one of x and -x is a
quadratic residue; but which of the two is the quadratic residue is hard to decide. Thus
we get the following.

THEOREM. The modified x2 mod N generator, gotten by extracting the location bit
at each stage (instead of parity) is cryptographically secure (modulo the quadratic
residuacity assumption).

Conjecture. The modified x2 mod N generator, gotten by extracting two bits at
each stage, parity (x) and location (x), is cryptographically secure.

Question. Parity (x) is the least significant bit of x; we can think of location (x),
in a sense, as the most significant bit. How many bits (and which ones) can we extract
at each stage and still maintain cryptographic security?

8. Lengths o| periods (of the sequences produced by the x2modN gen-
erator). What exactly is the period of the sequence generated by the X

2 mod N
generator? For quadratic residues Xo mod N, let r(Xo) be the period of the sequence

2
Xo, Xl, x2, , where x Xo mod N. Since the x2 mod N generator is an unpredictable

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 377

pseudo-random sequence generator (modulo QRA), it follows that on the average,
r(Xo) will be long. In this section we investigate the precise lengths of these periods
without relying on unproven assumptions (such as quadratic residuacity). To start, we
show that the period is a divisor of A (A (N)).

DEFINITION. Let M--2e,pI, *pek, where P,... ,Pk are distinct odd
primes. Carmichael’s A-function is defined by

2e-1 if e 1 or 2,
A(2e)=[2-2 if e> 2,

and)t(M) lcm [A(2e), (P1-1)* P1-1, "’, (Pk-- 1)* p?-l]. Carmichael [LeVeque],
[Knuth] proves that A(M) is both the least common multiple and the supremum of
the orders of the elements in Z*. As corollary, Carmichael’s extension of Euler’s
theorem asserts that a(4) 1 mod M if gcd (a, M)= 1 [Knuth, vol. 2, p. 19].

The following theorem asserts that the period, r(Xo), divides ,X (,X (N)).
TI-IEOREM 6. Let N be a number of the prescribed form (that is to say, N P. Q

where P, Q are distinct primes both congruent to 3 mod 4). Let Xo be a quadratic residue
mod N. Let 7r 7r(xo)=period of the sequence Xo, X1, X2," ". Then rlX(X(N)).

Proof. Let order x denote the order of x mod N. Then for x e Z*(+1), order x is
odd, because:

(1) order x order xi+l. This is because
(i) order xi/llordv x, and
(ii) Xo, xl," cycles.

(2) for all positive integers u, 2"llordvx=:>2"-llordvx+. (Here, 2"[[ordux
means 2U}ordvx and 2"+1 does not divide order x.)

Hence, by Carmichael’s extension of Euler’s theorem,

2x (rdNX) 1 mod (ordu Xo).

But r is the least positive integer such that 2’ 1 mod (order x0), since r is the
least positive integer such that Xo Xo

2" mod N.
Therefore, rlA(ordNxo). (This is a stronger result than the statement of the

theorem!)
But A(ordvxo)lA(,(N)) since order (Xo)l,(N) for Xo in Z.
Therefore, zrlA (A (N)). QED
The following theorem provides conditions under which A(A(N))lr(Xo)and

therefore A (A (N)) ,r(Xo).
THEOREM 7. Let N be a number of the prescribed form, Xo a quadratic residue

mod N, 7r(xo)= period of the sequence Xo, Xl,"
1. Choose N so that ordv)/2 (2) A (A (N)). (Note: this equality frequently holds

for prescribed N. See Theorem 8.)
2. Choose quadratic residue Xo so that ordu (Xo) A (N)/2. (Note: one can always

choose a quadratic residue Xo this way. See the paragraph below immediately following
the proof of this theorem.)

Then A (A (N))lr(Xo) (and therefore A (A (S)) r(xo)).
Proof. Recall that x =(Xo)2’ mod N, and so ,r-least positive integer such that

x, (Xo)2= mod N Xo.
Next note that 2"mod(A(N)/2)=l: By 2,-A(N)/2=least positive integer

such that x2v)/2 modN-1. But xmodN=xo, so Xo
2-1 modN= 1. Therefore,

(N)/212=- 1.

378 L. BLUM, M. BLUM AND M. SHUB

Finally, we show that h (h (N))lTr" By 1, h (h (N)) least positive integer such
that 2a((N)) mod(h (N)/2)= 1, but (we just saw), 2 mod (h (N)/2)= 1. Therefore
h (h (N))[7r. QED

Condition 2 of the above theorem holds for a substantial fraction of quadratic
residues, x0 in Z. Specifically, the number of quadratic residues in Z that are of
order A(N)/2 mod N is (N/(ln In N)z) (where f(n) l(g(n)) means there exists a
constant c such that f(n)> c.g(n) for all sufficiently large n). To derive this lower
bound, let N P. Q. Let gp, go be generators mod P, Q respectively. Let a gp mod P,
=go mod Q. It is easy to see that ordNa lcm [P-1, Q-1] (N). Now there are
q q (P)) generators mod P and q q(Q)) generators mod Q. By the Chinese remainder
theorem, Z*=Z*pXZ, so there are at least q(0(e)). 0(q(Q)) elements in Z* of
order A(N). But q(x) > x/(6 lnln x) for all integers x> 2. Hence

q(q(P)), q(q(O))= q(P-1) q(O- 1)->
P-1 O-1

6 In In (P- 1) 6 In In O 1)

N-P-O+I
[6 In In (N 1]2

The map x x2 mod N is 4 1. Therefore, there are at least l)(N/4(ln In N)2) quadratic
residues in Z} of order ,(N)/2.

Condition 1 of the above theorem is harder to ensure in general. The following
definition and theorem give conditions of special interest for our applications, under
which condition 1 will hold.

DEFINITION. A prime P is special if P 2Pa + 1 and P1 2P2+ 1 where P1, Pz
are odd primes. A number N P, O is a special number of the prescribed form if
and only if P, O are distinct odd primes both congruent to 3 mod 4, and P, O are both
special (note: distinctness of P and O implies that P2 # O2).

Example. The primes 2879, 1439, 719, 359, 179, 89, are special. The number
N 23,47 is a special number of the prescribed form.

Remark. It is reasonable to expect [Shanks] that the fraction of n-bit numbers
that are special primes is asymptotically 1/((ln P)(ln Pa)(ln Pz)), which is asymptotically
1/(n31n3 2) since 2"<P<2"+a, 2"-a<Pa <2", and 2n-z<Pz<2n-a. It follows that
there is an efficient, i.e., polynomial (n), probabilistic algorithm to find special n-bit
primes: simply generate n bit numbers at random and use a probabilistic primality
test [Strassen-Solovay], [Miller], [Rabin ’80] to select the ones that are special.

THEOREM 8. Suppose N is a special number of the prescribed form, and that 2 is
a quadratic residue with respect to at most one ofP1, O1.5 Then ordx<u)/2 (2) A (A(N))
(and therefore A (A (N)) 7r(xo) for some Xo).

Proof. For N of the prescribed form, A (N) lcm [2Pa, 201] 2P1Qa, and
A(A(N))=lcm[2PE, 2QE]=2PEQ2. It is easy to see that A(A(N)/2)=A(A(N)), so

ordx<u)/2 (2)]A(A(N)). Therefore, ordx<u)/2 (2)[2P2Q2.
Assume to the contrary that ordx(r)/2 2 # 2P2Q2. Then either ordx<N)/2 (2) P2Q2

or ordx<N)/2 (2)12P2 or ordx<N)/2 (2)12Q2. Without loss of generality, we may assume
that ordx<u)/E212P2 or ordx<N)/2 (2)= P202.

Roughly three fourths of all special numbers of the prescribed form satisfy this additional condition
(that 2 is a quadratic residue with respect to at most one of Px and Oa). The condition is needed: for

example, the special number in prescribed form, N 719.47, fails this condition (for this N, orda(N)/2 (2)
X (X(N))/2).

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 379

Case 1. ordx(s)/2 212P2.
Then 22P2-= 1 mod (A(N)/2)-- 1 mod P1Q1.
Therefore 22P2-= 1 mod Q1.
But 22Q2= 1 rood Q1 since Q1 2Q2+ 1, by Fermat’s Little Theorem.
Therefore 2gcd(2PE’2Q2) 1 mod Q1.
Therefore 22-- 1 mod Q1. This is a contradiction (since Q2 >- 3 and therefore

QI->_ 7).
Case 2. orda(l)/2(2) PeQ2. Then 2P=- l mod P1Q1, which implies 2P=-

i mod QI, which implies 22-1 mod Q1 since P2 is odd. Therefore,
-1 mod Q1. Therefore, 2 is a quadratic residue with respect to QI. Similarly, 2 is a
quadratic residue with respect to P. Contradiction. QED

Open question. Let 7rb(Xo) be the period of the sequence bobl’" produced by
the x2 modN generator with input (N, Xo). Then 7rb(Xo)lTr(Xo). What is the exact
relation between rrb(Xo) and 7r(Xo)? Are they generally equal?

9. Algorithms for determining length of period and random accessing. The fol-
lowing two theorems provide algorithms for determining

(1) r(xo), the period of the x2 mod N sequence that begins with Xo, and
(2) the ith element x.
These will be useful in the cryptographic applications.
TEOREM 9. There exists an efficient algorithm A which, when given any N of the

prescribed form,6 A (N), A (A (N)) AND the factorization of A (A (N)), efficiently deter-
mines the period r(Xo) of any quadratic residue Xo in Z*, i.e., A[N, A(N), A (A(N)),
factorization of A (A (N)), Xo] r(Xo).

Proof Let r=r(Xo).
Recall that

(1) xi=(Xo)2modN and x,=(Xo)Z=modN=xo.
(2) rlA (A (N)) (by Theorem 6).

Therefore, (Xo)’ rood N Xo.
It follows that (x0)2mdv) modN=xo (by Carmichael’s extension of Euler’s
theorem, a)= 1 modN if gcd (a,N)= 1; therefore x)-- 1 modN; therefore
2 (x (N)) d- kh (N)Xo mod N= Xo).

Therefore, from knowledge of A (N), A (A (N)), and the factorization of A (A (N)),
one can efficiently determine or: look for the largest d]A(A(N)) such that
(Xo)\2x(X(N))/dmdA(N) mod N x0. Then 7r h(h(N))/d. QED

THEOREM 10a. There exists an efficient deterministic algorithm A such that given
N, h (N), any quadratic residue Xo in Z’N, and any positive integer i, A efficiently computes
xi, i.e.,

A[N, , (N), Xo, i] xi.
2imodA(N)Proof. x xo mod N.

The number of steps to compute xi in this fashion, given N, A(N), Xo and i, is
O(INI+) using fast multiplication. QED

THEOREM 10b. There exists an efficient deterministic algorithm A such that given
any N of the prescribed form, A (N), any quadratic residue Xo in Z’N, and any positive
integer i, A efficiently computes x-i (note the negative subscript), i.e., A[N, , (N), Xo, i]

Proof [Miller] has shown how to efficiently factor N-P. Q given A (N). The
proof of Theorem 3 shows that x/0modP= +XoP+l/4. Exactly one of these two

N P* Q, where P, Q are primes congruent to 3 mod 4.

380 L. BLUM, M. BLUM AND M. SHUB

roots is a quadratic residue since -1 is not a quadratic residue mod P for P 3 mod 4.
Therefore, x-i mod P XO

P+l/4 or --XoP+l/4. Similarly, x-2 mod P -t-Xo(P+1/4)2 (since
(--1)P+1/4 +1). Continuing, x-i modP=+xo(P+l/4)’modP=+xo(P+l/a)’md(P-1)
mod P, which can be computed efficiently. From x-i mod P and x_i mod Q, The Chinese
Remainder Theorem enables one to efficiently compute x_i. QED

Conversely, the following theorem asserts that an algorithm that knows the period,
zr, and for any can obtain the ith element x of the sequence x0, Xl," obtained by
squaring mod N can factor N.

THEOREM 11. Let 0 denote an oracle such that O(N, Xo, i)=(r, x), where 7r

r(xo). There is an efficient probabilistic algorithm Ao such that A (N)= P or Q, for
N=P,Q.

Proof. The algorithm A works as follows:
Search at random for y e Z* such that (y/N) -1 (half the elements of Z* have

Jacobi symbol -1 with respect to N). Set x0 y2 mod N. Ask the Oracle for 7r, then
for x-i (recall: x=xo). Then y2=(x_l)2=x=xomodN. But y# +x-i since
(y/N)=-I and (+X_l/N)=+l. Therefore, gcd (y+x_l,N)=P or Q (by elemen-
tary number theory). QED

Open question. Can an algorithm use an oracle that outputs just xi--namely,
O(N, x0, i)= xmto factor N?

Open question. Can an algorithm use an oracle that outputs just rmnamely,
O(N, x0)= 7rmto factor N?

10. Applications. (1.1) The lIP generator (base 2) is useful for constructing
(generalized) de Bruijn sequences. These have applications, for example, in the design
of radar for environments with extreme background noise [Golomb]. We believe there
may be additional interesting applications making use of properties identified in this
paper, particularly the property that from 21PI / 1 but not IPI- 1 quotient digits, one
can infer the sequence backwards and forwards. For example, one could split a
key, P, between two partiesmby giving IPI successive quotient digits to each so that
together they have 2lPI successive digits. Neither party alone would have the slightest
information which prime, P, was key, but cooperatively they could determine P
efficiently.

(1.2) Maximum-length shift-register sequences (which are closely related to the
lIP generator) are used for encryption of messages [Golomb]. We view the inference
procedure given here as yet another step toward breaking such crypto-systems.

(2.1) The x2 mod N sequence can be used for public-key cryptography: Alice can
enable Bob to send messages to her (over public channels) that only she can read.
Alice constructs and publicizes a number NA, her public key, with the prescribed
properties: NA PA * QA where PA and QA are distinct equal length randomly chosen
primes both congruent to 3 mod 4. She keeps private the primes PA and QA, her private
key.

Bob encrypts: Suppose Bob wants to send a k-bit message rfi =(ml," "’, mk),
where k =poly (INAI), to Alice. Using Alice’s public key, Bob constructs a one-time
pad" he selects an integer x0 from Z* at random, squares it mod NA to get a quadratic
residue Xl, and uses the x2modN-generator with input (NA, Xl) to generate the
one-time pad/ (bl,. , bk). Bob then sends BOTH the encrypted message, rfi @/
(ml0)bl,’", mkbk), AND Xk/l to Alice over public channels, where 03 is the
exclusive-or.

Alice decrypts: From her knowledge of PA and QA, her private key, Alice has
enough information to efficiently compute Xk, Xk-1,’’’, Xl from Xk/l by backwards

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 381

jump (Theorem 3). From that, she reconstructs the one-time pad/ and, by 0)-oring
/ with the encrypted message, decrypts the message,

Anyone who can reconstruct (i.e., guess with some advantage) even one bit of
from knowledge of k and Xk/l can thereby obtain (guess with some advantage) a bit
of the one-time pad b. This is impossible (by the quadratic residuacity assumption and
the following theorem) if r is a randomly selected message.

THEOREM 12 (stronger version of claim 3). Let poly be a polynomial Let 0 < < 1.
Let be a positive integer. Then for all but a g-fraction of numbers N of the prescribed
typeS, the factors ofNare necessary--assuming they are necessary]:or deciding quadratic
residuacity of x in Z*(+l)--to have even an e-advantage,7 e l/IN[t, in guessing in
poly-time any pair (l, bt) (i.e., any bit bt and its location in the sequence bl, bk),
1 --<_ <- k poly (INI given N and Xk/l, where b parity (x).

Proof. Assume to the contrary that the probabilistic poly-time procedure P has
an e-advantage in guessing a pair. This P can be used to obtain a probabilistic poly-time
procedure that has an e/poly (INI)-advantage in deciding quadratic residuosity of a
randomly-chosen x Z*(+1)" Select l, 1 <- =< poly (INI), at random with the uniform

X2probability distribution, set x/l mod N, and generate Xk/l. Compute PIN, Xk/l].
The chances are 1/poly (INI) that PIN, Xk/]=(l, b) for the above-chosen and some
b. If so, the. guess that x is a quadratic residue if and only if parity (x)= b. If not,
toss a fair coin to decide quadratic residuacity of x. The advantage (in guessing quadratic
residuacity of x) will be e/poly (INI). QED

(2.2) Having constructed a number NA PA" QA with the prescribed properties,
Alice. can compute A(N) and use it, by Theorem 10a, to quickly compute xi
Xo2’mdx(N) mod N (for any Xo QRv). This means she can use word as address to
retrieve word xi or bit bi efficiently--as if the x2 mod N generator were a random
access memory that is storing a pseudo-random sequence. [Brassard] has suggested
applications, e.g., to the construction of unforgeable subway tokens, where this jumping
ahead is desirable.

(2.3) Cryptographically secure pseudo-random sequence generators (such as the
x2 mod N generator) may be viewed as amplifiers of randomness (short random strings
are amplified to make long pseudo-random strings).

(2.4) One often uses pseudo-random sequences (rather than random sequences)
because they are reproducible [von Neumann]. For the pseudo-random sequences
produced by the x2 mod N generator, one has only to store a short seed in order to
reproduce a long sequence; one does not have to store the entire random sequence.

11. Briet history relevant to this paper. W. Diftie and M. Hellman [Diffie-
Hellman] first introduce the notion of a trapdoor function and public-key cryptography.

R. Rivest, A. Shamir and L. Adleman [Rivest-Shamir-Adleman] propose the first
concrete example (and implementation to public-key cryptography) of a trapdoor
function relying on (but not yet proved equivalent to) a number theoretic conjecture
(which they propose) that factoring is hard. The RSA trapdoor function is x mod N
(where N P. Q, P, Q are distinct odd primes and gcd (s, p(N)) 1). Later [Shamir-
Rivest-Adleman] utilize a private-key commutative function in their solution to the
problem of mental poker posed by R. Floyd.

DEFINITION. A probabilistic poly-time procedure P[N, Xk+l] has an e-advantage]:or N in guessing a
pair (l, b), <-l<= k =poly (INI) (given arbitrary Xk+l selected uniformly from QRN) if and only if

I..Xk.+leQR Prob (vkt=l {P[N, Xk+l] =(/, parity (x,))}) _>(1/2) +] E.
((N))/4

382 L. BLUM, M. BLUM AND M. SHUB

M. O. Rabin [Rabin ’79] introduced for his signature scheme the many-one
trapdoor x2 mod N (where N P. Q for distinct odd primes P, Q), which he proves
is as hard to invert as factoring.

M. Blum [Blum] for his coin-flipping algorithm first chose P= Q-= 3 mod 4 to
construct a trapdoor (the 3 mod 4 trapdoor) x2 mod N (as hard to invert as factoring)
which is 1-1 on the quadratic residues mod N.

S. Goldwasser and S. Micali [Goldwasser-Micali] use these properties (of the
x2 mod N trapdoor and the 3 mod 4 trapdoor) and the quadratic residuacity assumption
which they first propose, to construct a protocol for mental poker and an encryption
scheme that hides partial information. This directly addresses the problem pointed out
by R. Lipton [Lipton] that partial information can be preserved and transmitted by
trapdoor functions (e.g. the set of quadratic residues is invariant under the RSA
function) giving rise to an advantage, and enabling trapdoors to be inverted on certain
message spaces.

A. Shamir [Shamir] proposed the first example (based on RSA) o a cryptographi-
cally strong (i.e. polynomial-time unpredictable) pseudo-random sequence generator.

M. Blum and S. Micali [Blum-Micali] present general conditions on predicates
that will ensure a cryptographically strong generator. Using these conditions and the
Discrete Logarithm Conjecture they construct cryptographically strong sequences of
pseudo-random bits.

A. Yao [Yao], in his foundational paper on complexity based information theory,
constructs a "perfect" pseudo-random sequence generator on the very general assump-
tion that there exists a so-called "stable" one-way function.

Our x2 mod N generator is based directly on a 3 mod 4 trapdoor and the QRA.
We believe that the 3 mod 4 scenario, because o its nice mathematical properties (e.g.
Lemma 1) will continue to lead to fruitful applications. We also believe that an in-depth
analysis of sequences produced by unpredictable pseudo-random sequence generators,
as begun in this paper, will provide useful information concerning the nature of these
generators, and lead to insights about the number theoretic assumptions that have
been made.

Acknowledgments. We thank Silvio Micali for pointing us to the literature
on de Bruijn sequences, and for his numerous helpful and encouraging suggestions.
We are grateful to a number of people for valuable discussions on this work, including
G. Brassard, S. Even, A. Lempel, L Levin, J. Plumstead, M. O. Rabin, D. Rich,
S. Smale, R. Solovay and A. Yao. Umesh Vazirani provided a necessary ingredient
for our proof of Theorem 5 [Yao]; Rene Peralta did the same for Theorem 10b.

Note added in proof. The assertion "modulo the QRA" and/or its equivalent in Theorems 4, 5 and
12 can be replaced by "modulo the assumption that factoring is hard". This is a consequence of the main

theorem in W. ALEXI, B. CHOR, O. GOLDREICH AND C. P. SCHNORR, RSA/Rabin bits are (1/2)+
(1/poly (log N)) secure, IEEE 25th Symposium on Foundations of Computer Science, 1984, pp. 449-457.

REFERENCES

[1] L. ADLEMAN, On distinguishing prime numbers from composite numbers, Proc. 21st IEEE Symposium
on Foundations of Computer Science, 1980, pp. 387-408.

[2] E. BACH, How to generate random integers with known factorization, submitted for publication.
[3] P. BILLINGSLEY, Ergodic Theory and Information, John Wiley, New York, 1965.
[4] M. BLUM, Coin flipping by telephone, in Proc. IEEE Spring COMPCON, 1982, pp. 133-137.
[5] M. BLUM AND S. MICALI, How to generate cryptographically strong sequences of pseudo random bits,

IEEE 23rd Symposium on the Foundations of Computer Science (1982), pp. 112-117.

SIMPLE UNPREDICTABLE PSEUDO-RANDOM NUMBER GENERATOR 383

[6] G. BRASSARD, On computationally secure authentication tags requiring short secret shared keys, in
Advances in Cryptology, Proc. of Crypto 82, ed. D. Chaum, R. L. Rivest and A. T. Sherman,
Plenum Press, New York, 1983, pp. 79-86.

[7] L. DICKSON, History of the Theory of Numbers, Chelsea Pub. Co., 1919 (republished 1971).
[8] W. DIFFIE AND M. HELLMAN, New directions in cryptography, IEEE Trans. Inform. Theory, IT-22

(Nov. 1976), pp. 644-654.
[9] S. EVEN, Graph Algorithms, Computer Science Press, Potomac, MD, 1979.

[10] C. G. GAUSS, Disquisitiones Arithmeticae, 1801; reprinted in English transl, by Yale Univ. Press, New
Haven, CT, 1966.

[11] S. GOLDWASSER AND S. MICALI, Probabilistic encryption and how to play mental poker keeping secret
all partial information, 14th STOC, 1982, pp. 365-377.

[12] S. GOLOMB, Shift Register Sequences, Aegean Park Press, 1982.
[13] J. HOPCROFT AND J. ULLMAN, Formal Languages and Their Relation to Automata, Addison-Wesley,

Reading, MA, 1969.
[14] M. KAC, What is randomness?, American Scientist, 71 (August 1983), pp. 405-406.
[15] D. KNUTH, The Art of Computer Programming: Vol. 2, Seminumerical Algorithms, Addison-Wesley,

Reading, MA, 1981.
[16] W. LEVEQUE, Fundamentals of Number Theory, Addison-Wesley, Reading, MA, 1977.
17] R. LIPTON, How to cheat at mentalpoker, Univ. California, Berkeley, preliminary report, August 1979.
[18] G. MILLER, Riemann’s hypothesis and testsforprimality, Ph.D. thesis, Univ. California, Berkeley, 1975.
[19] J. PLUMSTEAD, Inferring a sequence generated by a linear congruence, IEEE 23rd Symposium on

Foundations of Computer Science, 1982, pp. 153-159.
[20] S. POHLIG AND M. HELLMAN, An improved algorithm for computing logarithms over GF(p) and its

cryptographic significance, IEEE Trans. Inform. Theory, IT-24 (1978), pp. 106-110.
[21] M. O. RABIN, Digital signatures and public-key functions as intractable as factorization, MIT/LCS/TR-

212 Tech. memo, Massachusetts Institute of Technology, 1979.
[22] ., Probabilistic algorithm for testing primality, J. Number Theory, 12 (1980), pp. 128-138.
[23] R. RIVEST, A. SHAMIR AND L. ADLEMAN, A method for obtaining digital signatures and public key

cryptosystems, Comm. ACM, 21 (1978), pp. 120-126.
[24] A. SHAMIR, R. RIVEST AND L. ADLEMAN, Mental poker, in The Mathematical Gardner, D. Klarner,

ed., Wadsworth, New York, 1981, pp. 37-43.
[25] A. SHAMIR, On the generation of cryptographically strong pseudo-random sequences, ICALP, 1981.
[26] D. SHANKS, Solved and Unsolved Problems in Number Theory, Chelsea, New York, 1976.
[27] R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, this Journal, 6 (1977), pp.

84-85.
[28] J. VON NEUMANN, Various techniques used in connection with random digits, Collected Works, vol.

5, Macmillan, New York, 1963, pp. 768-770.
[29] A. YAO, Theory and applications of trapdoor functions, IEEE 23rd Symposium on Foundations of

Computer Science, 1982, pp. 80-91.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics

EVALUATING RATIONAL FUNCTIONS: INFINITE PRECISION IS FINITE
COST AND TRACTABLE ON AVERAGE*

LENORE BLUMf AND MICHAEL SHUB

Abstract. If one is interested in the computational complexity of problems whose natural domain of
discourse is the reals, then one is led to ask: what is the "cost" of obtaining solutions to within a prescribed
absolute accuracy e 1/2 (or precision s =-log2 e)? The loss of precision intrinsic to solving a problem,
independent of method of solution, gives a lower bound on the cost. It also indicates how realistic it is to
assume that basic (arithmetic) operations are exact and/or take one step for complexity analyses. For the
relative case, the analogous notion is the loss of significance.

Let P(X)! Q(X) be a rational function of degree d, dimension n and real coefficients of absolute value
bounded by p. The loss of precision in evaluating P!Q will depend on the input x, and, in general, can be
arbitrarily large. We show that, w.r.t, normalized Lebesgue measure on Br, the ball of radius about the
origin in R", the average loss is small: loglinear in d, n, p, r; and K, a simple constant.

To get this, we use techniques of integral geometry and geometric measure theory to estimate the volume
of the set of points causing the denominator values to be small. Suppose e > 0 and d -> 1. Then:

THEOREM. Normalized volume {x nrllQ(x)l < } < e/dKdnd(d + 1)/2r.
An immediate application is a loglinear upper bound on the average loss of significance for solving

systems of linear equations.

Key words, loss of precision/significance, condition of a problem, rational functions, average case,
integral geometry, models of real computation

1. Introduction. One approach to the analysis of the computational complexity
of algebraic problems, such as the cost of evaluating rational functions over the reals,
presupposes a model of computation with all arithmetic operations exact and of unit
cost, for example, the real number model (Borodin-Munro [1], Knuth [6]). How do
results concerning such an idealized infinite continuous model apply to the finite discrete
process ofcomputing on actual machines ? For example, in the real number model there
is no problem to decide given real x if x # 0, and if so then to compute 1/x. However,
on any real computer, when x is ultimately presented digit by digit, the "marking
time" to observe the first nonzero digit of x, as well as the "input precision" for x
needed to compute 1/x to within absolute accuracy 1/2s, can be arbitrarily large. If x
is presented in floating point notation, the computation of 1/(1-x) in the unit interval
to relative accuracy e exhibits analogous problems.

How do these factors influence the actual cost and reliability of real computation,
particularly as we move away from these simple examples to more interesting ones?
For instance, given an invertible n x n real matrix A, what is the "input precision"
needed to specify the entries of A in order to compute 1/det A to within accuracy 1/2
(Moler [9])? Such questions, dealing with tolerable round-off error and achievable
accuracy are often avoided in approaches to algebraic complexity theory that assume
infinite precision. As Knuth says in [6, p. 486], they are "beyond the scope ofthis book".

In this paper we address some of these questions with regard to the problem of
evaluating rational functions. One approach might be to analyze achievable accuracy

* Received by the editors December 28, 1983, and in revised form January 22, 1985.
f Mills College, Oakland, California 94613, Department of Mathematics, University of California,

Berkeley, California 94720. The work of this author was supported in part by NSF-VPW grant RII-8310570
and the Letts-Villard Chair, Mills College, Oakland, California. This work was done in part while the author
was a National Science Foundation Visiting Professor at The Graduate Center, City University of New York.

* IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598 and City University
of New York, New York, New York 10036. The work of this author was supported in part by National
Science Foundation grant MCS 82-01267.

384

EVALUATING RATIONAL FUNCTIONS 385

and related costs assuming given input size or machine precision. In an attempt to
perhaps more fully interpret and apply results concerning the continuous model, we
take a somewhat opposite approach. That is, we ask, given a rational function
P(X)/Q(X) of n variables over the reals, and desired accuracy 1/2s, what "input
precision" is needed to achieve this desired accuracy? Clearly, the answer will depend
on s, on P and Q (i.e., the number of variables, the degrees and coefficients), and on
the input x (x, , x,). It is unbounded in general. Surprisingly, however, we show
(Theorem 4 in 5) that the average input precision sufficient for x in B,, the ball of
radius r about the origin in R", is finite and exceedingly "tractable". Here average
means with respect to normalized Lebesgue measure on B,. This tractability result, as
well as others in this paper, is explicit rather than asymptotic.

Our main tool is a formula which enables us to estimate the volume of the set of
inputs causing the denominator values to be small. In its normalized version, we get
the following elegant estimate (in 4).

MAIN THEOREM.

Vol {x BrlIQ(x)I < e} ella
Vol {Br} <Co r

where Q" R"--> R is a polynomial of degree d >= 1, r, e are positive real numbers, Co
K lo/d nd (d + 1 /2 and Ko is a simple constant depending on the coefficients ofQ (see 4).

This result allows us to estimate, for example, the average "marking time" to
determine that Q(x) is not zero for x Br (Theorem 3 in 5).

We prove the Main Theorem using techniques from geometric measure theory
and integral geometry (Federer [2] and Santalo [11]), thus using methods that are
somewhat new to computational complexity theory.

We address questions both of absolute and relative accuracy. However, unless
otherwise stated, "accuracy" will mean "absolute accuracy". The results on "relative
accuracy" are included in 6.

Remark 1. Computational complexity and the condition/loss ofprecision ofa prob-
lem. If one is interested in the computational complexity of problems whose natural
domain of discourse is the reals (or complex numbers), then one is led, both naturally
and necessarily, to ask: What is the "cost" of obtaining solutions to within a prescribed
accuracy e 1/2 =< 1 (or equivalently, to within a prescribed precision s =-log2 e)?

Clearly, a satisfactory answer must resolve a number of issues relating to tolerable
error and the number of bit and/or basic operations required. In particular, we at least
must answer the following two questions"

(1) What is the necessary and sufficient input accuracy 6 (or equivalently, input
precision -log 6) required for the data in order to obtain a solution to within output
accuracy e ? Here 6 will in general depend on both e and the data, and we assume
that both e and 6 are positive real numbers less than or equal to 1. (If 6 > 1, then we
will define the associated precision to be 0.) The ratio e/6 is a measure of the condition
of the problem (Henrici [4], Wilkinson [17]) and will be "very large" for ill-conditioned
problems, i.e., for problems where the necessary input precision Ilog 61 is "much larger"
than the prescribed output precision Ilog el or where the loss ofprecision

e [llog61-11ogellog+ - 1,0 otherwise
if e/6> 1,

is "great". Thus, ill-conditioned problems are generally not computationally tractable (nor

386 LENORE BLUM AND MICHAEL SHUB

are they computationally stable--small perturbations of the input can result in large
changes in the output).

(2) Given input data of precision -log 8, what is the cost, (e.g. in terms of the
number of basic arithmetic operations needed) of evaluating the solution of within
output precision -log e ?

The condition of a problem (1) is often investigated in numerical analysis; the
basic number of steps required (2) is generally investigated in complexity theory.
Clearly, a deeper understanding ofthe complexity issues arising in the real (or complex)
case requires an understanding of both issues.

The condition and loss of precision are measures intrinsic to a problem and
independent of method of solution. However, we remark that from a computational
point of view, the loss ofprecision appears more natural than the condition. For one,
the loss of precision gives a lower bound on the complexity of a problem. But also,
the mathematics helps affirm its naturalness even more. For example, a simple computa-
tion shows that, while the average (with respect to the uniform distribution) condition
of the problem of evaluating 1Ix in the unit interval is infinite, the average loss of
precision (i.e., average log+ of the condition) is very small, consistent with our intuition.
(See 2 and also 6 for an example in the relative case.) Thus, we propose that one
focus on the loss of precision, rather than the condition of a problem, for purposes
of computational complexity.

In this paper we investigate the condition, more precsiely, the loss of precision
in evaluating rational functions with respect to an average case analysis. This point of
view is new. Our results show that, although the problem of evaluating rational functions
can be arbitrarily badly ill-conditioned, the average loss of precision (and standard
deviation) is small.

An anlysis of average cost now just incorporates known results about the number
of arithmetic operations to evaluate rational functions, as well as the cost of multiplying
m-bit numbers (Borodin-Munro [1], Knuth [6]). Thus even on the level of bit
operations required, our results imply that the problem of evaluating, to accuracy 1/2s,
rational functions of n variables, of degree d, whose coefficients lie in a ball of radius
p, on a point x in a ball of radius r about the origin in R n, is on the average tractable
in s, n, d, and T, the maximum number of nonzero terms.

Remark 2. Interpretation and application. We can interpret our results as saying
that computation of rational functions of infinite precision real numbers is tractable
on the average, as long as one only uses as much precision as one needs. It suggests
a methodology for the design of algorithms to compute such functions: start with the
input precision sufficient on the average to achieve the desired accuracy and increase
as necessary, e.g. by the standard deviation.

We give a general formula for input precision sufficient on the average that holds
for all rational functions. Hence the result implies the average tractability of many
problems such as the computation of 1/det A for an invertible n x n matrix A, the
inversion of the matrix by Cramer’s rule, the estimation of the average logarithm of
the condition number of such a matrix, and other problems expressable by a polynomial
number of rational functions. Of course, in any specific problem one expects to do
better. For example, Norman Weiss [16] has shown us that the exponent of e in the

For a problem whose underlying function P is differentiable, an infinitesimal version of the condition
of the problem at input x is the size]P’(x)] of the linear operator P’(x) [Henrici]. The analogous measure
of loss ofprecision would be log IP’(x)l. Results similar to those in this paper can be achieved using these
notions.

EVALUATING RATIONAL FUNCTIONS 387

computation of the volume estimate for the determinant in any dimension can be taken
equal to 1 instead of l!d and for the discriminant of polynomials of one variable of
degree d, the exponent is trivially seen to be no worse than 1/2.

In general, sharper volume estimates for polynomials should be possible depending
on such criteria as irreducibility, the lower coefficients, etc. and these would be
interesting. However, the example P(x) xd demonstrates the sharpness of our results
for the general case with regard to the exponent of e.

Remark 3. Abstract models of computation: recursive analysis. Our results have
implications for recursive analysis, the abstract theory of computation of functions on
the reals (or complex numbers). A model for such a theory of computation could be
based on the notion of function-oracle Turing machines. (See Ko-Friedman [7] for
the development of a formal theory). Informally, we imagine a Turing machine My for
computing a real function f being fed, by oracle, a real input x digit by digit as
necessary. Computations are performed by My in the usual oracle Turing machine
manner. Outputs are produced digit by digit converging to a sequence representing
the real value f(x). Computable real functions are then those functions that can be
realized in this model, and are necessarily continuous (on their domains). The com-
plexity of functions is measured by the cost (in terms of time and space) of producing
outputs that are accurate to within e. Hence, in this model, polynomial-time computable
functions must have polynomially bounded moduli of continuity (i.e., input precision
-log which is polynomial in the desired output precision -log e). Thus, rational
functions are not in general polynomial-time computable.

Our results show that if in this model we extend the notion of "tractable" to mean
"polynomial time computable on the average", then we significantly extend the class
of tractable functions in a way that is both natural and useful. In so doing, we also
show how methods from integral geometry and probability theory can be used to
obtain results in recursive analysis.

Remark 4. Relation to other work. Much of our work and techniques are motivated
by Smale [13] and Shub-Smale [12]. Myong Hi Kim [5] is doing an analysis of the
finite precision analogue of the real number model results on average tractability of
Newton-Euler iteration schemes for finding approximate zeros of polynomials. Smale
[14] is also investigating general notions for the condition (or loss of precision) of a
problem.

The first draft of this paper, including the main results on sufficient input precision,
was finished in the fall of 1983. In Steve Smale’s seminar in the spring of 1984, Blum
suggested that the log of the condition was the appropriate concept for study. Smale
then introduced the expression "loss of precision" and asked what the average loss
was for linear systems. This motivated the facile application of our main results in 7.
Using special techniques Eric Kostlan [8] and Adrian Ocneanu 10] get sharper results
for linear systems.

Remark 5. Further directions and results. The results can be easily extended to the
complex case, the exponent of e changes to 2/d, and generalized to semi-analytic
functions. R. Hardt [3] has proven a volume estimate for these functions which should
be sufficient to conclude the average tractability of the loss of precision function for
a single f. Also, averages could be computed with respect to other probability measures,
reflecting nonuniform distributions inherent in classes of naturally arising problems.

Remark 6. Organization ofpaper. We begin with three simple examples (in 2)
to illustrate key points. In 3 we outline our procedure for the analysis of input
precision sufficient to evaluate a rational function to within accuracy e. In 4 we
estimate the volume of the set of points on which a polynomial has values near zero.

388 LENORE BLUM AND MICHAEL SHUB

Using this, we estimate, in 5, the average marking time to determine that a polynomial
is not zero. This enables us to estimate the input precision sufficient on average. Section
6 deals with floating point notation and the relative case. In 7 we give an immediate
application of the main results of the paper to the problem of solving linear systems.

2. Three simple examples. We start with three elementary examples in order to
illustrate key points.

(1) Let x[0,1] and let l(x)=llog(x)[. Then m(x)=[l(x)J+l is sufficient
"marking time" to observe the first nonzero entry in a binary expansion of x. Although
m(x) can be arbitrarily large, its average or expected value Av m is less than 2.5 since

Avm< (l(x)+l)dx=log2e+l.
o

(2) Suppose that an integer s _-> 1 is given and that x [0, 1]. We wish to compute
1/x to within absolute accuracy 1/2S. If Ix- x* < 1/2S++2/(’)+ where e 1/2S+, it is
not hard to see that I1/x- 1/x*l < 1/2S+ (and if I1/x*-y*l < 1/2S+ then I1/x-y*l <
1/2s). Thus, an "input precision" Hs(x) for x sufficient to compute 1Ix to within
absolute accuracy 1/2 (allowing truncation in the answer) is s + 1 + [2/(x) + e], which
again can be arbitrarily large depending on x. In this case, the average is

AvHs Hs(x) dx<= (s+l+[21(x)+e])dx< (s+l+21(x)+l)dx
o

s + 2 log2 e + 2

which is approximately s+4.885, and anyway, less than s/5, again exceedingly
tractable.

Thus, the average "loss of precision" in evaluating 1/x in [0, 1] is finite and does
not exceed 2 log2 e / 2, consistent with our intuition. On the other hand, using the fact
that given e > 0, 6(e, x)- ex2/(1 / ex), a simple calculation shows that the average
"condition" e/6 for the problem is infinite.

In these examples, we can also easily estimate the variance. Here it is useful to
note that for square integrable functions f and f* on [0, 1] if f*<-f<-f*+ 1 then
If-fl<lf*-Jf*l+l. So, a crude estimate by Cauchy-Schwarz gives Var(f)_-<
Var (f*) + 2tr(f*) + 1 where

Var (f)= f(x)- f(x) dx dx

is the variance of f, and tr(f)= x/Var (f) is the standard deviation.
Thus, in example 2, letting II*(x)= s+21(x)+ 1, a straightforward calculation

shows that

Var (1-Is) (Hs(x) Av Hs)2 dx <= 4(10g2 e)2 / 4 log2 e + 1.

Hence, cr(IIs) < 4.

(3) Suppose that a positive integer s is given, and real numbers P and Q are
chosen at random in the unit interval [0, 1]. We wish to compute P/Q to within relative
accuracy 1/2S. What precision H (P, Q) is sufficient for P and Q? If PI > 1/2 and

EVALUATING RATIONAL FUNCTIONS 389

then

P/Q
1

2s+l

as long as [P P*[< 1/2A and [Q Q*[< 1/2A, where A> s + + 3.
Thus, II(P, Q)<_-s+max (re(P), re(Q))+3. The average value of II in the unit

square is

[m((1-)2 (_1Av II-<_ s + 1 2,,,_. +3

_-<m
2m_

+ 2m_2
q- S + 3

=m
2 -1 +s+3=

1-1/2
+s+3=s+7.

In the above examples we have basically used the following, which we also use
later on.

LEMMA 1. Let s, m, v, 0 and A be positive integers and P, Q, P*, Q* be real numbers
none of which is zero. Then:

1) If IQI >- 1/2 and IQ- Q*[--< 1/2o then I1/Q- 1/Q*I < 1/2 as long as 0 > s + 2m.
2) If [Q[_->l/2m, [Pl<_-2 v, IQ-Q*]_-<1/20 and [P-P*l =<1/23 then

[P/Q-P*/Q*]<I/2 as long as O> s+2m+v+l and A> s+m+l.
3) If]P-P*l<(1/2+-)lPI and IQ-Q*I<(1/2+)IQl, then

Proof.
1)

P/Q
1

1 1 Q* *QI < 1/2’
Q. =(1/2m)(1/2--1/2) 20-m__l

1
as long as 0 > s + 2m.

2)

Now by 1)

and thus

1 1 1
2s+v+l

Hence

1
<2=-I-

2s+o+l.

390 LENORE BLUM AND MICHAEL SHUB

3) I1-P*/PI<I/2+ and I1-Q*/QI<I/2s+. So,

1 P* 1
1--;7 <--< 1 + 2s+----5

and

So

Now multiply and subtract 1 to see that IP*Q/Q’P-11 < 1/2s.
3. Procedure for the analysis. We define the precision associated with accuracy 8 > 0

to be Ilog2 81 if 8 =< 1 and to be 0 otherwise.
Our procedure for the analysis of sufficient "input precision" (and hence a lower

bound on the "cost" involved) on average, is as follows.
First, using Lemma 1.2 in 2, we estimate the (output) precision O(P, Q, x) for

P(x) and Q(x) (depending on the values of P(x) and O(x)) necessary and sufficient
for the value f(x)= P(x)/O(x) to be within accuracy 1/2=< 1:

where

O(P, Q, x) <- s + 2mo(x + log_ IP(x)[+ 1

llog IQ(x)ll if[Q(x)[<- 1,
mo(x)

1.0 otherwise

is the marking time to determine that the denominator of f is not zero.
Next, we let It(P, Q, x) be the (input) precision for x and the coefficients ofP and

Q, necessary and sufficient for the values P(x) and Q(x) to be within accuracy 1/2 <-_ 1.
Even the most naive method of evaluating P and 0 by multiplying out the monomials
and adding them up will show that, for every positive integer t, I,(P, Q, x)<=
+ H(d, Ty, p, r) where

H d, Tf, p, r) <= log d + log2 Tf+ d log-r+log-p+2.

Here log+ max {log, 0}, d max {deg P, deg Q}, Ty is the maximum ofthe number
of nonzero terms of P and 0 and is bounded by (,/1d), where n is the maximum
number of variables of P and Q, p is an upper bound on the absolute value of the
coefficients of P and Q, r is a positive real and Ixl < r. Here Ix[is the Euclidean norm.

So, letting IIs(P, Q, x) be the input precision for x and the coefficients of P and Q
necessary and sufficient to evaluate f(x) to within accuracy 1/2, we have II(P, Q, x)<-
It (P, Q, x) where O(P, Q, x). And so,

1-Is(P, Q, x) <- Os(P, Q, x)+ H(d, Tf, p, r)

<- s+2mo(x)+log2 IP(x)l+ 1 + H(d, Tf, p, r)

<-s+2mo(x)+[log_ Tf + d log- r+log2 p]+ 1 + H(d, Ty, p, r)

<-s+2mo(x)+2[log2 Ty+d log- r+log+ p]+log_ d+3.

EVALUATING RATIONAL FUNCTIONS 391

Now, we also note that computing P(x)/Q(x) to within accuracy 1/2 using the
naive method suggested above and fast multiplication requires no more than 2(d 4-1) T
arithmetic operations times O(IIs(P, Q, x) log II(P, Q, x) log log II(P, Q, x)) bit
operations.

Thus, in order to show that tractability of the average input precision necessary
and sufficient to evaluate f to within accuracy 1/2 and hence the tractability of
evaluating f on average, our main problem, and the focus of this paper, is to estimate
and show the tractability of the average marking time to decide that a polynomial is
not zero. To do this we first show that the volume of the set of points on which a
polynomial has values near zero is "small".

4. The volume estimate. Given a polynomial Q: Rn- R of degree d _-> 1, express
Q as

Q(X) Y, alx’11 X 4- a0

where

I:{i,, 0 < il, in <-- d
and

Let b= ilI""" in!a (where 0!= 1) and Ko= 1/maxll=d
Let r be a positive real number and let Br {X R n] Ixl <= r} be the ball of radius

r about the origin in R n. Let An-1 be the (n- 1)-dimensional surface area of OB, the
boundary of B1. Let Vn be the volume of B1. So, the surface area of OB is An_lr-
and the volume of B is Vnrn.

MAIN THEOREM 1. Let Q Rn--> R be a polynomial of degree d >-1. For any real
numbers r > 0 and e > O,

Vo1 {XE r’IQ(X)I E}<2Ei/dKlo/dlr Vn-I 4-1d(dt + I)
2-1)An-lJrn-12

Proof outline. The proof is by induction on the degree d. The linear case (d 1)
is straightforward. The inductive step uses the co-area formula (Federer [2]) to show
that the Vol {x E B[]Q(x)l < e} can be computed by first computing the volumes of
the fibers Q-l(w)f’lB for (Iwl<e), and then integrating over the fibers. Then the
methods of integral geometry (Santalo [11]) are used to compute the volumes of the
fibers. The "capsule" {x BI [Q(x)l < e} is partitioned in such a way as to make use
of the inductive hypothesis.

Proof Since {x e Brl [Q(x)[< e} {x e B,[IgoQ(x)l < go}, and noting that

K/coo 1, it suffices to prove the theorem when Ko 1. We prove this theorem by
induction on the degree d. If the degree of Q is 1, Q(X)=Y=I aX+ ao and 1
1/max,>ola,[. The gradient VQ=(al,’", an) and 1/IVQI<= 1. Vol{xBrl IQ(x)l < e}
is therefore less than the volume of the ball of radius r in the n- 1 plane orthogonal
to (al,’’’,an) with (-ao/[VQI2) (al,’",an) as center, times 2e/IVQI. So,
Vol {x B[IQ(x)[< e}<2eV,,-rn-. Now we proceed by induction. Assuming the
inequality proven for d-> 1 we attempt to prove it for Q of degree d + 1. Choose x
such that Koo/ox, Ko 1.

392 LENORE BLUM AND MICHAEL SHUB

Let S {x Brl [Q(x)l < e} and $2 {x B, IoQ/ox, < ea/<a+’>}.
Vol (S $2) + Vol ($2). By the inductive hypothesis

Vol (S2)2(ed/(d+l))/d[Vn-l+(d(d+2 1)

Vol (S1) <-

On S1-S2, 1/IVQI <= 1/loQ/oxil < lie a/ca+l). So, by the co-area formula (see Federer
[2, Thm. 3.2.12, p. 249]),

Vol (S $2)
1

o-’(w)a(s,-s) IVQI
dw

1
<-_2e

d/(d+l) max (VO1 (Q-(w)(S1-S2))

2el/(d+)(max vol (Q-(w) f) (S1- S2))

where vol Q-I(w) I")(S-S2) and the first integral are with respect to the inducdd
(n-1)-dimensional volume on the hypersurface Q-(w). Thus we will be done as
soon as we show that Vol (Q-L(w)) t3 (S1- $2)--< (d + 1)(A,_l/2)r"-. This follows from
the following proposition which is essentially contained in Smale [13]; the general
case was shown to us in a personal communication from Smale.

PROPOSITION 1 (Smale). Let Q:R"--> R be a polynomial of degree d > 1. For any
real number r > 0

Vol (Q-l(w) fflBr)<d r"-I
2

For the sake of completeness, we include a sketch of this proposition. The typical
line L1 in R" can meet Q-l(w)f’l Br in at most d points. Of the ones that do, the
typical one intersects OBr- S’]- in two points. Using results from Santalo [11, 14.70,
p. 245] we have

,4" 1(A--Vol (Q- w) fqBr) (Q-I(w) I’IBrf"IL1) dE1
Q-I)CI BrCI LI f

<-_- 2 dL
2

<-- 2 dL1

dA Vo! (S-)
2A
d A,,

r"- Q.E.D-2 A--- A’-
MA TORN 2. Let O R"R be a polynomial of degree d >-0. For any real

numbers r > 0 and e > 0

Vol {x e B, IQ(x)l < e}
Vol {B,}

where Co Klo/d n((d(d + 1))/2).

< CQE1/d
r

EVALUATING RATIONAL FUNCTIONS 393

Proof Recall (e.g. Santalo [11, p. 976] Vo 1, V2 2, V2 r and generally V,
2,r"/2/nF(n/2) where F is the gamma function. Also, Ao=2, A =2,r, A2=4r and
generally A, 2zr("+)/2/F((n+ 1)/2). Thus for n 1,

Vol (x B, IQ(x)l <2 e’/dK ’/ad(a + 1)
O 2

So, if we normalize, we have for n 1,

Vol{xB,IIQ(x)l<e) e’/K’/dd(d+l)
Vol {B,}

< or 2

and for n > 1,

Vol{xG__nrllQ(x)l<f, } 2F_, lid 1Q/d[Vn_l (d(d -- 1)
Vol {Br}

< K +
r Lv. 2

Now A,_/ V, n and

2g.J"

V,_ (n) F(n/2) <;. Q.E.D.V.- n,i F((n-1)/2)rr1/2

5. Average marking time and average input precision. We continue with the notation
and setting introduced in 3 and 4. We now wish to estimate the average value of
mo(x) the "marking time" to determine that Q(x) is not zero for x B.

Recall,

llog2 IQ(x)ll
m(x)=

0 otherwise.
iflQ(x)l-<_ 1,

From the normalized volume estimate, and assuming normalized Lebesgue measure
on B. we see that for 0<= e <- 1, mo(x)<=llog2 el with probability at least 1--Coe/d/r.
This enables us to estimate the average value of mo(x).

THEOREM 3. Let Q:R" --> R be a polynomial of degree d >= 1 and let r be a positive
real number. Then Av mo, the average ofmo(x) in Br with respect to normalized Lebesgue
measure, satisfies

Av mo <- d(log- (?) + log2 e)
where Co Kdnd(d + 1)/2 and log+ max (log, 0).

Also, tr(mo) the standard deviation of mo(x) in Br, satisfies

tr(mo)-<_dlog2e In+
1/2

+21n+ C+2
Proof We first recall the following (from Shub-Smale [12, Part II]):
DEFINITION. Let (X,/z) be a probability space with no atoms. Let m: X --> R/ be

a real valued nonnegative measurable function and let f: (0, 1)--> R be decreasing and
Riemann integrable. We say that m(x)<=f(tz) with probability 1-/z if z{xlm(x) <-

f(y)} >= 1 y for all 0 < y < 1.
PROPOSITION 2. Suppose as above that m(x) <f(/x) with probability 1- tz. Then
(1)

E(m) m(x)tx(dx) <- f(tx) dtx;

394 LENORE BLUM AND MICHAEL SHUB

(2)

Yar (m) (re(x)- E(m))2(dx) <-_ f2(x) d (E(m)).
Returning to our proof, we let e()=(min(1, rx/Co))a for O<_-x_-<l. Thus,

letting f()=lloge(x)l, we get mo(x)<-_f(x) with probability 1-x. And so, by
above In too(x) dx <= Iof(tz) dlz.

Nox, lof(/x) d/z =-d log2 (ytz/CQ) dlz =log2 e(dv+ dr In (Co/yr)), where
y min (Co/r, 1). Thus, if Co/r >= 1, then y 1 and we have

I f(/z)d/z =d log_ e(ln C+ 1)"r

And, if CQ/r< 1 then y= Co/r and jf(/x) d/z < d log e. So, J mo(x) dx<= f(tz) dtx <=
d log e(ln+(Co/r)+ 1)= d(logY (Co/r)+log e).

The second estimate follows in a similar fashion, now using part 2 of Proposition
2 and the fact that tr(mo)=x/Var (mQ). Q.E.D.

And thus we have also shown:
COROLLARY. Let Q: R"--> R be a polynomial of degree d. Then (with respect to

normalized Lebesgue measure)

f 2dln(d)+dln(n)+d+ln(KO) ifCo>lIlnlQ(x)ll <-
BnO-lt_,l Cod if Co < 1.

By 3 and Theorem 3 we get:
THEOREM 4. Let f(X) P(X)/Q(X) be a rational function f: R" -> R of degree

d >-1. Suppose that the maximum absolute value of the coefficients of P and Q is p and
that a real number r >- 0 and an integer s > 0 are given. Then Avixl< IIs(P, Q, x), the
average input precision for x and the coefficients of P and Q necessary and sufficient to
evaluate f(x) to within accuracy 1/2 on Br with normalized Lebesgue measure, is finite
and satisfies

Av IIs(P, Q,x)=<s+2 Av mo+logmaxlP(x)l+l+H(d Ty, p,r)
Ixl<r Ixl<r Ixl<r

< s+2d(log- CO+log2 e) +2[log2 Tf + d log+r+log2 p]+log d +3

where Co Kand(d + 1)/2 and Ty, the maximum number of nonzero terms of P and
of Q, is bounded by (").

So, the average loss of precision in evaluating P(x)/Q(x) in Br is loglinear and
crudely bounded by

2d(2 log2 d +2 log2 (n+ 1) +log- r+log2 e) +log2 d + 2(log- p +log2 K) +3.

We may average as well over the polynomials themselves. Let P(n, d) denote the
vector space of real polynomials Q:R"-R of degree d, and F a vector subspace
determined by allowing a fixed subset of the coefficients to be nonzero, with at least
one of these the coefficient of a term of degree d. Let k be the number of nonzero
coefficients of degree d and rn the dimension of f Let C(p) be the cube of side 2p
in F i.e., C(p) {Q F[the maximum absolute value of a coefficient of Q is less than
or equal to p}. Thus the volume of C(p)= 2"p’. We normalize this volume to one,
fix r>0 and average log- (Co over C(p).

EVALUATING RATIONAL FUNCTIONS 395

LEMMA 2. log- (Co/r)<(1/d) log- (1/rptzl/k)+log2 n+log2 (d(d + 1)/2) with
probability 1 tz.

Proof Ko <-_ 1/maxl=d lalI - 1/pp, 1/k with probability at least 1 -/ since the nor-
malized volume of

{Q C(p)imax la,] < pi’/k}

is equal to

2mpm-k(ptz l/k)k
2mp

< log- +log2 n +log2
r =

1--- log- 1/k + log2 n + log2
d rptz

with probability
Now let

Q.E.D.

d(d+l)
2

d(d+l)

k(P, r)

llog2 (e) if pr >--_ 1.

Now Proposition 2 gives
LEMMA 3.

Co d(d+ 1) 1
log- _-< log_ n / log2/--d/k(p, r).

c() r 2 d

Proof.

+(1) for (rpl)log2 1/k log2 (e) In Ilk dlz
rptz

where y=min (1,(1/pr) k) and the two cases give the two integrals.
THEOREM 5. Let F be as above and r, p real numbers bigger than zero. Then the

average marking time for a point (Q, x) in C(p)xBr is less than or equal to d log2 n+
d log2 (d(d + 1)/2)+ d/k(p, r)/ d log2 e.

Proof. The double integral C(p)XBr M is just the iterated single intervals by
Fubini’s theorem and thus Theorem 3 and Lemma 3 finish the argument.

6. The relative case. We now consider the relative case. The relative condition of
evaluating a function f at x is the ratio e/8 where IAxl/Ixl implies IAfl/If(x)[e.
Its logarithm+ can be considered a measure of the loss ofsignificance for x in evaluating
f(x) since it represents the loss of significant digits when input x and output f(x) are
given in scientific or floating point notation. Rewriting the ratio IAJ]llflllAxl/Ix[we
get IAJ]/Ihx[Ixl/If(x)l which is approximated by [DJ]. Ix]/]f(x)l the infinitesimal
condition of the problem. (Note that by the mean value theorem, we have IAf[/[xl <--_

sup [Df(x*)] over all x* on the line segment between x and x+hx.) We call the
logarithm+ of the infinitesimal condition, the infinitesimal loss of significance.

396 LENORE BLUM AND MICHAEL SHUB

As an example, we consider the problem of evaluating f(x)= 1/(1-x) in the unit
interval. Here the infinitesimal condition is x/(1-x) and the infinitesimal loss of
significance is log+ (x/(1-x)). So, analogous to the absolute case, we have a problem
were the average loss of significance is small (j log- (x/(1-x)) dx= 1), although the
average condition is infinite.

We now wish to estimate the average loss of significance for x in evaluating a
general rational function f= PQ. Suppose we know that IAxl < ’ implies IAJ]/IJ] < e.
Then we have, IAxlllxl < implies IA/lq < where ’llxl. So,

log+ =log+
,/ixl

<-log+ +log+

By Lemma 1 and 3 we have,

log+(,) =<max (mp(X), mo(x))+2+ H(d, Ty, p, r).

So, Theorem 6 follows.
THEOREM 6. Let f P/ Q: R R be a rational function of degree d >= 1 and let

r > 0 be a real number. Then, the average loss of significance for x in evaluating f(x) in

Br is bounded by

Av log+ [xl+ Av max (mp(x), mo(x))+ H(d, T, p, r)+2

=< log2 r --+ d log- + d log2 e + H(d, Tf, p, r) + 2.
n r

Proof. To integrate nrlog+ Ixl/vol n use polar coordinates and integration by
parts.

Also, by Theorem 2 we have,

Vol {xenlmin (IP(x)[IQ(x)l)<e} (Cp+Co)e ’/a

Vol Br r

Now proceed as in Theorem 3.

7. Loss of significance in solving linear equations. An immediate consequence of
Theorem 3 is a tractable upper bound for the average loss of significance in solving
systems of linear equations. This was a question of great interest to von Neumann
[15]. Here the problem is: Given A Rn2, a real n x n invertible matrix and a vector
b R, solve Ax b for x. What is the loss of significance?

Suppose an error Ab in input causes an error Ax in solution, i.e., A(x+Ax)=
b+ Ab. By linearity, we have A(Ax)= Ab and by invertibility, we have A-I(Ab)= Ax.
So, the relative condition of the problem is

IAxl
Ixl IAxllbl IA-(Ab)I IAxl
IAbl IAbllxl I(ab)l Ixl

where l] is some standard norm. We note that the right-hand side is bounded above
by KA IIa-ll Ilall, where Ilall- max Iaxl/Ixl- ma.xl,l=l Iaxl is the operator norm of
A. Numerical analysts, see e.g. Moler [9], call KA the condition number of the matrix
A, and it can be considered the worst case measure of the relative condition for the

EVALUATING RATIONAL FUNCTIONS 397

problem of solving Ax b (with fixed A, varying b). Analogously, we consider log KA
which is a measure of the worst case loss of significance of the system.

THEOREM 7. With respect to the Euclidean norm II in R" and R"2 and normalized
Lebesgue measure,

n-l)Avln KA <-In n-- In (n-1)+n+4n Inn.
ABI_R 2

Proof Let A=(a0) and A-l=(bo/DetA) where b0 is the ijth cofactor of A.
Suppose A B1. Then, IIAII-<_ 1" For suppose Ixl 1. Let aj be the vector (ajl, ", aj,).
Then,

IAxl (a, x)= __< a,l=lxl
_

la,12 a02
i=1 i=1 i=1 i=lj=l

1/2

since A B c R".
To estimate IIg-ll we estimate Ibol" Suppose bo= Det (c) where c are entries

from A. Let C (Y’__-I ci) /2 be the length of the kth column vector. Then Ib01_-<

"-- C< 1 And so, Hkn- Ck
< (1/x/n 1) n-1 Thus, Ibol <I-Ik= Ck. Since A B1, k

(1//n- 1) "-1. So we have,

g IIA-111 IIAII--< IIA-111 Det A
max Ibel

Therefore,

n 1

Det A (n 1)("-1)/:"

n- 1) In (n- 1)+1 In IDet All.In Ka <--In n-
2

Now, Det A is a polynomial in/I2 variables of degree/1 and KDetA 1. By the corollary
to Theorem 3,

n-l)Av In KA <= In n In (n 1) + 2n In n + n In n2 + n
ABI 2

n- 1) In (/1-1)+/1+4n In/1.=Inn-
2

This estimate follows from very general considerations, and so one would expect better
results for this particular problem. Indeed, using methods different from ours, Eric
Kostlan [8] has shown that although the average condition number (with respect to
the standard Gaussian measure or the space of/1 x/1 complex matrices) is infinite, the
average loss of significance is less than -52 Inn. Adrian Ocneanu [10] has calculated
sharp upper and lower bounds, (3 + e) Inn and (-e) In n respectively, where e can
be made as small as desired by setting a lower bound on n.

Acknowledgments. We would like to thank Steve Smale and Henryk Wozniakowski
for useful conversations.

REFERENCES

[1] A. BORODIN AND I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,
American Elsevier, New York, 1975.

398 LENORE BLUM AND MICHAEL SHUB

[2] H. FEDERER, Geometric Measure Theory, Springer, Berlin, 1969.
[3] R. HARDT, Some analytic bounds for subanalytic sets, in Differential Geometric Control Theory, 1981,

pp. 259"-267.
[4] P. HENRICI, Essentials of Numerical Analysis, John Wiley, New York, 1982.
[5] M. H. KIM, Thesis, in preparation.
[6] D. KNUTH, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed., Addison-

Wesley, Reading, MA, 1981.
[7] K. Ko AND H. FRIEDMAN, Computational complexity of real functions, Theoret. Comput. Sci., 20

(1982), pp. 323-352.
[8] E. KOSTLAN, Estimates in numerical linear algebra, preprint.
[9] C. B. MOLER, Three research problems in numerical linear algebra, in Numerical Analysis, Proc. Symposia

in Applied Mathematics, Vol. XXII, G. H. Golub and J. Oliger, eds., American Mathematical
Society, Providence, RI, 1978, pp. 1-18.

[10] A. OCNEANU, On the loss ofprecision in solving large linear systems, preprint.
11 L. SANTALO, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA.

[12] M. SHUa AND S. SMALL, Computational complexity: on the geometry ofpolynomials and a theory of
cost, Part I, Ann. Scientifique de L’Ecole Normale Superieure, 4, 18 (1985); Part II, this Journal,
15 (1986), pp. 145-161.

[13] S. MALE, Th fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (New
series) 4 (1981), pp. 1-36.

14], On the efficiency of algorithms of analysis, preprint.
[15] J. VON NEUMANN, Collected Works, Vol. 5: Design of Computers, Theory ofAutomata and Numerical

Analysis, A. H. Taub, ed., Pergamon, New York, 1963.
[16] N. WEISS, personal communication.
[17] J. H. WILKINSON, Rounding Errors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, NJ, 1963.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

1986 Society for Industrial and Applied Mathematics
005

OPTIMAL APPROXIMATIONS AND POLYNOMIALLY LEVELABLE SETS*

PEKKA ORPONENf, DAVID A. RUSSO AND UWE SCH(NING

Abstract. A set A not in P is polynomially levelable if any algorithm for A has speedup to a polynomial
infinitely often in A: precisely, if given any algorithm M for A and polynomial p, it is possible to find
another algorithm M’ for A and polynomial p’, such that M’ runs in time p’([x[) on infinitely many inputs
x in A, on which the running time of M exceeds p(]x]). Intuitively, this condition states that among
polynomial time computable approximations to A there is no optimal one, or one giving correct answers
on a maximally large subset of A. It appears that most naturally occurring intractable sets are polynomially
levelable. We prove this for sets not in P that are either "paddable," "self-reducible," or complete for a
deterministic time class. We also discuss levelability preserving reductions, and give a simple reducibility
characterization of nonlevelable sets.

Key words, computational complexity, approximations, paddability, self-reducibility, completeness,
polynomial reductions

1. Introduction. We define a set of strings A to be polynomially levelable, or
P-levelable for short, if for any algorithm M recognizing A and polynomial p there
exist another algorithm M’ for A and polynomial p’, such that M’ runs in time p’(Ixl)
on infinitely many strings x A on which the running time of M exceeds p(Ixl). (Use
of the term "levelable" was suggested by K. Ko [9] in analogy with the notions
discussed in [4], [19].) P-levelability can be thought of as a kind of pseudo-speedup
property, but it is more naturally viewed in the context of approximations.

Consider the following simple case of approximation: an approximation algorithm
for a set A is a polynomial time algorithm M that on each input x outputs either "1"
(accept), "0" (reject) or "?" (do not know), in such a manner that M(x)= 1 implies
x A and M(x)=0 implies x A. (This notion of approximation was essentially
introduced by Meyer and Paterson in [14]; see also [11].) An approximation algorithm
is optimal if no other polynomial time algorithm correctly decides infinitely many more
inputs, i.e., outputs infinitely many more correct l’s or O’s. It is fairly easy to show
that a recursive set A has an optimal approximation algorithm in this sense if and
only if neither A nor A is P-levelable.

Meyer and Paterson [14] show that many natural intractable sets do not have
"good" approximation algorithms. We prove that often they do not have even optimal
ones. In 3 and 4 of this paper we prove the P-levelability of all sets not in P that
are either "honestly paddable" [3], [21], "honestly k-creative" [21], or in a restricted
sense "self-reducible" 10], 14], 18]. These results cover all known NP- and PSPACE-
complete sets [3], [21], and for the common notion of "invertible" paddability we
prove even much stronger results. Further, we derive as a corollary to a theorem by
L. Berman [2] the P-levelability of intractable sets that are complete for deterministic
time classes, for example, EXPTIME.

In 5 we consider the problem of proving the P-levelability of all NP- and
PSPACE-complete sets and introduce a levelability preserving subclass of the poly-

* Received by the editors July 10, 1984, and in final form December 26, 1984. This work was supported
in part by the Emil Aaltonen Foundation, the Academy of Finland, the Deutsche Forschungsgemeinschaft,
and the National Science Foundation under grant DCR83-12472.

" Department of Computer Science, University of Helsinki, SF-00250 Helsinki 25, Finland. This work
was carried out while this author was visiting the Department of Mathematics, University of California,
Santa Barbara, California 93106.

Department of Mathematics, University of California, Santa Barbara, California 93106.
Institut fiir Informatik, Universit/it Stuttgart, D-7000 Stuttgart 1, West Germany.

399

400 r,. ORPONEN, D. A. RUSSO AND U. SCH(NING

nomial time many-one reductions. Another related class of reductions gives us a natural
reducibility characterization of the non-P-levelable sets, very similar to that given for
the "bi-immune" sets in].

The notion of P-levelability originally evolved from our studies of complexity
cores of intractable sets [5], [15], [16], [17]. A complexity core for a set A is a set C
such that given any algorithm M for A and polynomial p, the run time of M exceeds
p(lxl) on almost all x in C. In a sense, the inputs in C are "uniformly hard" for any
algorithm deciding A. This notion was introduced by Lynch [12], who proved that
any recursive set A not in P has an infinite complexity core. Moreover, it can be shown
that any recursive set A not in P contains an infinite complexity core [16].

If A were to contain a core that is maximal up to finite variations, we could
interpret the core as consisting of all the hard (yes-)instances of the decision problem
for A. In [5] it was pointed out that this happens if and only if A is not P-levelable.
In [16] it was further shown that for a recursive set A, non-P-levelability is equivalent
to the condition that A be the disjoint union of a set in P and a P-immune set. (A set
is P-immune if it has no infinite P-subsets [6].) The non-P-levelable sets were in this
context called almost P-immune. By the results reported in this paper, we now know
that many natural intractable sets are not almost P-immune, and do not contain maximal
complexity cores. Instead their complexity core structure is very complicated. (Surpris-
ingly, all recursive P-levelable sets have the same complexity core structure, as lattices
ordered by inclusion modulo the finite sets [15]. Moreover, it has been shown that
their P-subset structures are also isomorphic [17].)

2. Preliminaries. We consider sets of strings over the alphabet X--{0, 1}. The
length of a string x E* is denoted Ixl; similarly, the cardinality of a set A E* is
denoted IAI. For a set a

E* and integer n _-> 0, an) denotes the finite set {x a llxl--< n}.

A set A is (polynomially) sparse if for some polynomial p, IA _-< p(n) for every n => 0.
Set A is eventually contained in set B if the difference A-B is finite.

As a model of computation we use deterministic Turing machines; occasional
reference is also made to nondeterministic and oracle machines. These machines and
their time complexity measures are defined as in, for example, [7]. The set of strings
accepted by machine M with oracle A is denoted L(M, A), and the set L(M,) is
denoted briefly L(M). The complexity classes P and NP have their standard definitions,
and the class EXPTIME is defined as:

EXPTIME {L(M)IM runs in time 2 c", for some constant c}.

A set that has no infinite subsets in P is called P-immune.
Set A is (polynomial time many-one) reducible to set B, denoted A -< P,,, B, if there

is a polynomial time computable function f: Z* Z* such that for all x Z*, x A if
and only if f(x) B. Set A is %hard, for a class of sets of, if every B cf is reducible
to A, and %complete, if in addition A of. Sets A and B are polynomially isomorphic
if A is polynomial time reducible to B via a one-one, onto function f whose inverse

f-1 can also be computed in polynomial time. A function f: * Z* is (polynomially)
honest if there is a polynomial p such that p(If(x)[)>-Ixl, for all x *. Polynomial
isomorphisms are necessarily honest.

3. P-levelability and paddability. In this section we introduce the notion of P-
levelability, and prove our basic result: that "honestly paddable" sets not in P are
P-levelable. We also present a stronger version ofthis theorem for "invertibly" paddable
sets, and apply the proof technique to establish the P-levelability of Young’s [21]
"honestly k-creative" sets.

OPTIMAL APPROXIMATIONS AND LEVELABLE SETS 401

DEFINITION 3.1. Given a deterministic Turing machine M and a function f on
the natural numbers, denote by E(M,f) the set {x AIM accepts x in time f(lxl)}. A
set A

_
E* is P-levelable if, given any recognizer M for A and polynomial p, it is

possible to find another recognizer M, for A and polynomial p’, such that the difference
E (M’, p’) E (M, p) is infinite.

A simple, but useful, characterization of the P-levelable sets is obtained by
observing that for a recursive set A, the sets E(M, p) for machines M recognizing A
and polynomials p correspond exactly to the polynomial time recognizable subsets of
A. Hence it can be seen that a recursive set A is not P-levelable if and only if it contains
a P-subset E that is maximal, in the sense that each E’_ A, E’ P is eventually
contained in E.

A set A_ E* is paddable [3], [21] if there exists a polynomial time computable
function pad: E*xE* E.* that is one-one in its second argument and satisfies: x A
if and only if pad (x, y) A, for all x, y E*. If there exists a polynomial p such that
p(Ipad (x, y)[)>= lxl+lyl, for all x,yE*, then A is honestly paddable. If there exists a
polynomial time computable function decode: E* - E*, such that decode (pad (x, y))
y for all x, y E*, then A is invertibly paddable. It was observed in 13] that if a set is
invertibly paddable, then it has a padding function that can be inverted in both
arguments in polynomial time. From this it easily follows that invertibly paddable sets
are also honestly paddable.

THEOREM 3.2. Let A be a recursive set not in P. IfA is honestly paddable, then A
is P-levelable.

Proof. Let pad (x, y) be an honest padding function for A, and let p be a nonde-
creasing polynomial such that p(lpad (x, y)])=> [xl+ly for all x, y E*. Define

f(x) pad (x, 0p(II)+ 1).
Then If(x)l > Ixl, and f(x) A if and only if x A, for all x E*. Moreover, f can be
computed in polynomial time.

Assume that A is not P-levelable, with a maximal P-subset E. Consider the
following "boundary" set of E:

B={xlx_E,f(x)E}.
Clearly, B P and B f-I E G. Further, B c_G_ A because E c__ A and f is membership-
preserving. We prove that B is infinite, contradicting the maximality of E.

For any x A, the set Ex {x,f(x), f(f(x)),...} is a subset of A. Because f is
length-increasing Ex is infinite and in P. By the maximality of E, E must be eventually
contained in E. In particular, for each x A-E there is a smallest n => 1 such that
f(’(x) E. (Here f(’) denotes the n-fold composition of f) For this n,f"-l)(x) B.
Hence, from each x A- E begins a length-increasing sequence x,f(x),f(f(x)),. of
strings in A- E, ending in a string y B. Because A P, A- E is infinite. But because
of the increase in length, only finitely many sequences can end in each y B. Thus, B
is infinite.

If we assume the padding to be invertible, we can prove a much stronger result.
We say that a set A is nonsparse P-levelable if for any P-subset E of A there exists
another P-subset E’ of A such that the difference E’-E is nonsparse.

TIEOREM 3.3. Let A be a recursive set not in P. If A is invertibly paddable, then
A is nonsparse P-levelable.

Proof Assume to the contrary that A has a P-subset E that is maximal up to
sparse sets. Consider the following boundary set of E:

B= {zlz: E, but z=pad (x, y) and pad (x, yblb2) E for some bl, b2{0 1}}.

402 P. ORPONEN, D. A. RUSSO AND U. SCH(NING

Clearly B P and B A-E, so B must be sparse. Let q be a polynomial such that
for all n.

Let M be any algorithm for A. We may assume, without loss of generality, that
E contains the P-set

Eo {pad (x, y)[M accepts x in [y[steps}.

(Otherwise replace E by E UE0 in the proof.) Given any string xA, the set
{pad (x, y)[y E*} is eventually contained in Eo. In fact, given any finite set F c__ A, the
set

F* {pad (x, y)lx F, y E*}

is eventually contained in Eo. Our proof is now based on the fact that if F A-E,
the number of strings in F* increases at an exponential rate with the length of the
padding y, whereas the bounda.ry B admits only a polynomial "flow" of strings from
A-E to E. By choosing the basis set F so that it has a certain "critical mass," we
can make the difference F*-E infinite, leading to a contradiction.

Let d be the density function of the set A-(EU B), d(n)=[(A-(E
and let p be a polynomial such that Ipad (x, Y)I <- p(Ixl + lyl) for all x, y 6 E*. It can be
shown ([16, Cor. 3.4]) that because A is paddable and not in P, the difference A-E’
is nonsparse for any P-subset E’ of A. Hence d is not polynomially bounded, and we
can find an n such that

q(p(n+2k))<=2k-ld(n) for all k=>l.

(Let m be such that q(p(t))<-mt for all t-> 1, and M so large that M. 2k->=2"mk
for all k => 1. Choose n so that d(n)>= Mn’. It follows that

q(p(n + 2k)) <= m(n + 2k)" <_ m 2"k’n" <_ M 2-n,, <_ 2-d(n),
for all k ->_ 1.)

Let F (A- (E U B))(n) and define F* as above. To prove that F*-E is infinite,
divide F* into levels;

F {pad (x, y)[x F, y E*, [y[_-< 2k}.

We prove by induction that for each k->_ 1, F contains at least 2kd(n) strings not in
EUB.

Case k 1. The set F contains 4[F[=4d(n) strings, of which at most q(p(n +2))
may be in B, and none in E. Hence

[F-(EU B)l>-4d(n)-q(p(n+2))>-4d(n)-2d(n)=2d(n).
Case k k+ 1. Assume that [F-(E t_J B)l>=2kd(n). Then, as above,

[F+- (E U B)[_->4 2’d(n)-q(p(n+2(k+ 1)))

>--2.2+ld(n)-2+’d(n)
2’+’d(n). l-I

The preceding result applies to very many natural intractable sets.
COROLLARY 3.4. Thefollowing sets are nonsparse P-levelable, unless they are already

in P:
(i) SAT, TAUT and all other "natural" NP-complete and co-NP-complete sets;
(ii) ISO (the set representing the graph isomorphism problem, which is not known

to be NP-complete [14]);
(iii) QBF.

OPTIMAL APPROXIMATIONS AND LEVELABLE SETS 403

Berman and Hartmanis [3] conjectured that all NP-complete sets are polynomially
isomorphic. Their conjecture was motivated by the observation that all NP-complete
sets known at the time were easily seen to be invertibly paddable, and invertibly
paddable NP-complete sets can be shown to be isomorphic [3], [21]. Recently, however,
Young [21] has introduced a class of structurally constructed NP-complete sets (the
k-creative sets) which do not appear to have padding functions. We show that the
proof technique of Theorem 3.2 can be used also to establish the P-levelability of all
k-creative sets actually constructed in [21].

For the remainder of 3 we will assume a standard enumeration of nondeterminis-
tic Turing machines {Mi}, where is a "nice" encoding (see, for example, [7]) of
machine Mi. (Define L(M) to be empty if does not encode a syntactically correct
program.) We say that M witnesses L(M) NP(k) if the run time of M on input x is
bounded by [i[.]x[k+ [/[, for every x E*.

DEFINITION 3.5. A set C is k-creative if C is a member of NP and there exists a
polynomially computable function f such that for each Mi which witnesses L(M)
Np(k), f(i) L(Mi) if and only iff(i) C. The function f is called a productive function
for the set C E*- C.

It is not difficult to show that all k-creative sets are NP-complete. On the other
hand, it is not obvious that k-creative sets exist. However, it was shown in [21] that
every honest, one-one, polynomially computable function f is the productive function
for the complement of some k-creative set. While it is not required for the definition,
all of the k-creative sets C constructed in [21] have honest productive functions for t.

THEOREM 3.6. All k-creative sets C with honest productive functions for are
P-levelable, unless P-NP.

Proof. Let C be k-creative and f an honest productive function for (. Let M be
an NTM which witnesses that C is in NP and let qo be a polynomial time bound for
M. From the proof of Theorem 3.2 we see that it is sufficient to show that there is a
polynomially computable length increasing membership preserving function, h, for C.
We construct such a function by utilizing the membership properties of the productive
function f, i.e., h(x)-f(g(x)), for the appropriately defined g. First we define g(x)
to be an encoding of a Turing machine so that [g(x)l-> p(]x[), where p is a polynomial
as yet unspecified, which behaves as follows: "input y; simulate M on input x; accept
y if M accepts x." To compute g on input x one need only make minor modifications
to the encoding of M and append p([x[) "instructions" which can never be executed.
Thus, g can be computed in polynomial time and has the property that for all
x,]g(x)[p([x[).

Notice that the set accepted by the program encoded by g(x) is either E* or the
empty set. Moreover, it is not difficult to see that for all x, Mg(x witnesses that L(Mg(x)
is a member of NP(k whenever p is chosen so that p(n)>-qo(n) for all n>-0. Hence,
for such a polynomial p, it is possible to define h(x)=f(g(x)) and be certain that h
is defined for all x in E*.

From the definition of g(x) we notice that ifx is a member of C then L(Mg()
while if x is not a member of C then L(Mg(x)) . Hence, f(g(x)) L(mg()) if and
only if x C. Because f is a productive function for (,f(g(x)) L(Mgx)) if and only
if f(g(x)) C. Therefore, x C if and only if f(g(x)) C, i.e., h(x) =f(g(x)) is
membership preserving.

We have seen that for the appropriate polynomial p, in the definition of g, h(x)
is polynomially computable and membership preserving. It only remains to show that
h(x) is length increasing. Since f was assumed to be honest, there is a polynomial ql
for which q,(lf(x)l)>]xl for all x in g*. Let p be any polynomial which is everywhere

404 P. ORPONEN, D. A. RUSSO AND U. SCHNING

greater than qo and ql (for example, p(n) qo(n)+ ql(n)). It is easy to see that this is
sufficient to insure that h is the desired polynomially computable, length increasing,
membership preserving function.

4. Self-reducibility and completeness. In this section we prove that P-levelability
is a consequence of both a restricted form of self-reducibility and completeness for a
deterministic time class. We begin with self-reducibility.

A set A___ E* is (polynomial time) self-reducible [8], [10], [14], [18] if there exist
a well-founded partial order =< on :*, and a polynomial time deterministic oracle
Turing machine M, such that L(M, A) A, and M on any input x queries only strings
that strictly precede x in the order -<. (One simple choice of order is to define x < y
if and only if Ixl<lyl.) It can be shown that any such self-reducing machine M
determines a unique "fixed point" set, i.e., a set A such that L(M, A)= A. We prove
this below in a special case.

A self-reducing machine M is monotone if for all X, Y_ E*, X
_

Y.implies
L(M, X)_ L(M, Y). (Monotone self-reducibility is a generalization of "positive truth
table self-reducibility" [10], [20], which in turn is a generalization of the common
"disjunctive" and "conjunctive" reducibilities.) The question of the existence of a
unique fixed point set is slightly simpler for monotone machines than in general.

LEMMA 4.1. Let M be a monotone self-reducing machine. Then there is a unique
set A such that L(M, A)= A.

Proof. Define

Ao ;
Ai/l L(M, Ai) for i=>0.

Because M is monotone, A0___ A1
_

A2___ ". We claim that the set

A= IA Ai
i>_o

is the unique fixed point. First, because M can query only finitely many strings on
each input,

xL(M,A) if[

xeL(M,A)=A/I for somei->0 if[

xA.

Hence L(M, A) A. To show uniqueness, assume that B A is another set for which
L(M, B)= B. Let x be a minimal element with respect to the reduction order in the
symmetric difference A A B. Then for each string y queried by M on input x, y 6 A if
and only if y B. Hence x A if and only if, x B, contradicting our choice of x.

We need.to impose an additional restriction on our self-reducing machines. Let
M be a self-reducing machine for a set A. M determines a "query" ordering =< t on
Z*, given by the reflexive and transitive closure of the following relation < ’y < x
if M queries y on input x and oracle A. Let M be a monotone machine, and let the
sequence Ao, A, A2,’’’ be defined as in Lemma4.1. We require M to have the
following property:

(*) For each y Y* there is some >= O such that x A and y <- x implies x A.
In other words, for each string y there is a bound such that no string in A "higher"
than Ai depends on y. This condition is satisfied, for instance, by the length preserving

OPTIMAL APPROXIMATIONS AND LEVELABLE SETS 405

self-reductions of Karp and Lipton in [8], but not necessarily by the more general
ones considered by Meyer and Paterson in 14]. However, all known natural examples
of self-reducible sets have monotone self-reducing machines satisfying condition (.).

THEOREM 4.2. Let A be a recursive set not in P. IfA is monotone self-reducible via
a machine satisfying (.), then A is P-levelable.

Proof. Let M be a polynomial time monotone self-reducing machine for A,
satisfying condition (.), and let E be any P-subset of A. Consider the set L(M, E).
Clearly L(M, E) P, and because M is monotone, L(M, E) L(M, A) A. We prove
that the difference L(M, E)- E is infinite, thus showing that E is not maximal.

Let <-4 be the query ordering determined by M, and A0, A1,’’’ the sequence
of sets defined in Lemma 4.1. We establish first that for each x A- E there exists a
y L(M, E)-E such that y=< 4x. This is certainly true of x A1-E, since A1
L(M,) g L(M, E); simply choose y x. So let x Ai E for some => 2. Then either
x L(M, E), and we are done, or x Ai- L(M, E). In the latter case there must exist
an x’ A_- E such that x’ -< 4x, because otherwise x L(M, E f’) Ai_) L(M, E),
contrary to our assumption. Repeating the argument leads eventually to an element
y L(M, E)- E with y -<_ Mx.

Now, assume that L(M, E)- E is finite. Condition (.) then gives a uniform index
k such that if x A and if y -< Mx for some y L(M, E) E, then x Ak. By the above
argument, this means that A-E Ak. But it is easy to see that each of the sets Ak,
k>-0, is in P, so we get A=E(A-E)=Et_JAkP, contrary to our initial
assumption. [3

As a corollary, we can prove the P-levelability of some interesting sets which do
not seem to have padding functions.

COROLLARY 4.3. The following sets are P-levelable, unless they are in P:
(i) FACTOR= {(m, a, b)lm, a, b natural numbers, < a <-_ b < m, m has a factor

between a and b} [8], [14];
(ii) for any nondeterministic Turing machine M"

L {(x, c)lc codes an initial segment of
an accepting computation ofM on input x}. [3

Our final P-levelability result applies to, for example, all EXPTIME-complete sets.
THEOREM 4.4. Let A be a recursive set not in P. IfA is completefor some deterministic

time class, then A is P-levelable.
Proof Assume that A is not P-levelable. It was shown in [15] that A then is the

disjoint union of an infinite P-immune set C and a set in P. It is easy to see that if A
is complete for some class of sets, then so is C. However, L. Berman proved in [2]
that infinite P-immune sets cannot be complete for deterministic time classes.

5. Reductions preserving P-levelability. There seems to be no simple way of extend-
ing our results to prove the P-levelability of all NP-complete sets. In general, very little
is known about the structure of arbitrary NP-complete sets. The straightforward
approach to proving such results would be to first establish that some known NP-set
has the structural property in question, and then show that the property is preserved
under =m< " -reductions. Unfortunately, =,< " -reductions can behave very badly on poly-
nomial time recognizable subsets, which are our main concern. (In fact, a <- ’,-reduction
can map a set in P onto any r.e. set.) In this section we show that this is the essence
of our problem; if a reduction behaves well "locally" on P-sets, then it preserves the
"global" property of P-levelability. A subclass of the well behaved reductions also
gives us a natural reducibility characterization of sets that are not P-levelable.

406 P. ORPONEN, D. A. RUSSO AND U. SCHtNING

DEFINITION 5.1. A polynomial time many-one reduction f from A to B is P-to-P
if for each E

_
A, E P, the image set f[E] is in P. The reduction is P-to-finite iffiE]

is finite for each E
_
A, E P.

A well-known class of P-to-P reductions is formed by the polynomial time
isomorphisms of Berman and Hartmanis [3]. Their conjecture that all NP-complete
sets are polynomially isomorphic implies, of course, very strongly that these sets are
related by P-to-P reductions.

We begin with the characterization theorem.
THEOREM 5.2. A recursive set A is not P-levelable ifand only if there is a P-to-finite

reduction from A to some recursive set B.
Proof Assume first that A is not P-levelable, with a maximal P-subset E. A

P-to-finite reduction from A can be obtained by fixing any element a A and defining

f(x) {xa ifxE,
otherwise.

Clearly if A is recursive, then so is f[A] (A- E) {a}, and f is a reduction from A
to f[A].

To show the converse, let f be a P-to-finite polynomial time reduction from A to

B, and let Ms be an algorithm for B. Define

E {x[Ms accepts f(x)in Ix steps}.

It is easy to see that E
_
A and E P. We claim that E is in fact maximal among the

P-subsets of A. To show this, let F be another P-subset of A. Because f is P-to-finite,
the image f[F] B is finite, and so there is a uniform bound n such that Ms accepts
each y f[F] in n steps. But then each x in F with Ix => n is also in E. Hence F is
eventually contained in E. U

We can now use this characterization to establish the preservation result.
THEOREM 5.3. Let A and B be recursive sets, and let A be P-to-P reducible to B.

Then A is P-levelable implies that B is P-levelable.
Proof Assume that B is not P-levelable, with a maximal P-subset F. Let f be a

P-to-P reduction from A to B. Let E be a P-set in A-f-[F]. Because f is P-to-P, the
image f[E

_
B F is in P. In fact, by the maximality of F, f[E is finite. But because

F P, also f-[F] P, and we can modify f to map all of f-[F] to a single point.
This new reduction will be P-to-finite, so by the preceding theorem, A cannot be
P-levelable. 1

We conjecture that all NP-complete sets are related by P-to-P reductions, and so
are P-levelable if P NP. This is a very weak consequence of the Berman-Hartmanis
conjecture: it is even vacuously true if P NP, in which case the latter conjecture fails
badly 13].

6. Concluding remarks. We have established that P-levelability is a common

property among the natural intractable sets, by showing that it follows from a number
of other frequently encountered properties. We have proved the P-levelability of
intractable sets that are, for example, honestly paddable, or monotone self-reducible
in a certain restricted way, or complete for deterministic time classes.

Several improvements and extensions naturally suggest themselves. First, one

would like to establish the P-levelability of all NP-complete sets, instead of just the
"known" ones. Unfortunately, this is likely to be a difficult task, because the result
would be equivalent to the nonexistence of P-immune NP-complete sets [5]. This was

OPTIMAL APPROXIMATIONS AND LEVELABLE SETS 407

conjectured by L. Berman in [2], but the conjecture has remained unproven. One
possible approach would be to try to prove that all NP-complete sets are related by
P-to-P reductions, as suggested in 5. It would also be interesting to investigate other
common reductions, for example, is it the case that all sets complete for NP (or
PSPACE) with respect to log-space reducibility are P-levelable?

Another shortcoming one would like to see corrected is the need for the extra
condition on self-reducibilities in Theorem 4.2. Proving the result without the condition
would establish the nonexistence of monotone self-reducible P-immune sets, and
conversely. A more general question is: what are the relationships between P-immunity
and the different notions of self-reducibility?

In a different vein, it would be interesting to extend these results to other notions
of polynomial approximation. Recall that in 1 we required the approximation
algorithms to be "safe:" if they cannot reach a correct decision, they output a "?."
Yesha [20] has introduced a more general "unsafe" approximation notion, in which
the algorithms may make errors on a small fraction of the inputs. Our techniques do
not seem to work in this generalization.

Acknowledgments. The authors would like to thank Professor Ronald V. Book for
his unfailing interest and support during the course of this work, and Mrs. Leslie
Wilson for her expert typing of the numerous drafts of this paper.

REFERENCES

1] J. L. BALCAZAR AND U. SCHNING, Bi-immune sets for complexity classes, Math. Systems Theory, to
appear.

[2] L. BERMAN, On the structure ofcomplete sets: almost everywhere complexity and infinitely often speedup,
Proc. 17th IEEE Symposium on Foundations of Computer Science, 1976, pp. 76-80.

[3] L. BERMAN AND J. HARTMANIS, On isomorphism and density of NP and other complete sets, this
Journal, 6 (1977), pp. 305-322.

[4] M. BLUM AND I. MARQUES, On complexity properties ofrecursively enumerable sets, J. Symbolic Logic,
38 (1973), pp. 579-593.

[5] D.-Z. Du, T. ISAKOWITZ AND D. Russo, Structural properties of complexity cores, submitted for
publication.

[6] P. FLAJOLET AND J. M. STEYAERT, On sets having only hard subsets, Proc. 2nd International Col-
loquium on Automata, Languages, and Programming, 1974, Lecture Notes in Computer Science
14, Springer-Verlag, Berlin, pp. 446-457.

[7] J. E. HOPCROFT AND J. D. ULLMAN, Introduction to Automata Theory, Languages, and Computation,
Addison-Wesley, Reading, MA, 1979.

[8] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes, Proc.
12th ACM Symposium on Theory of Computing, 1980, pp. 302-309.

[9] K. Ko, Non-levelable sets and immune sets in the accepting density hierarchy in NP, submitted for
publication.

[10] On self-reducibility and weak P-selectivity, J. Comput. System Sci., 26 (1983), pp. 209-221.
[11] K. Ko AND D. MOORE, Completeness, approximation and density, this Journal, 10 (1981), pp. 787-796.
[12] N. LYNCH, On reducibility to complex or sparse sets, J. Assoc. Comput. Mach., 22 (1975), pp. 341-345.
[13] S. R. MAHANEY AND P. YOUNG, Orderings ofpolynomial isomorphism types, Theoret. Comput. Sci.,

to appear.
14] A. R. MEYER AND M. S. PATERSON, With whatfrequency are apparently intractable problems difficult

Tech. Rep. TM-126, Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, 1979.

[15] P. ORPONEN, A classification of complexity core lattices, submitted for publication.
[16] P. ORPONEN AND U. SCH(NING, The structure ofpolynomial complexity cores, Mathematical Founda-

tions of Computer Science 1984, Lecture Notes in Computer Science 176, Springer-Verlag, Berlin,
pp. 452-458.

[17] D. A. Russo AND P. ORPONEN, A duality between recursive complexity cores and polynomial time
computable subsets, submitted for publication.

408 P. ORPONEN, D. A. RUSSO AND U. SCHNING

18] C. P. SCHNORR, Optimal algorithms for self-reducible problems, Proc. 3rd International Colloquium on
Automata, Languages, and Programming, 1976, Edinburgh Univ. Press, pp. 322-337.

[19] R. SOARE, Computational complexity, speedable and levelable sets, J. Symbolic Logic, 42 (1977),
pp. 545-563.

[20] Y. YESHA, On certain polynomial-time truth-table reducibilities ofcomplete sets to sparse sets, this Journal,
12 (1983), pp. 411-425.

[21] P. YOUNG, Some structural properties of polynomial reducibilities, Proc. 15th ACM Symposium on
Theory of Computing, 1983, pp. 392-401.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

1986 Society for Industrial and Applied Mathematics

006

PROBABILISTIC BOUNDS ON THE PERFORMANCE OF
LIST SCHEDULING*

JOHN L. BRUNO? AND PETER J. DOWNEY$

Abstract. The problem of scheduling tasks on m processors to minimize the schedule length (makespan)
is NP-complete. Here we study the behavior of list schedules under the assumptions that there are no task
precedence constraints and that task times are chosen from a uniform distribution.

We show that, given a desired degree of confidence 1- e, we can find a minimum sample size N such
that if n => N and the n task times 3 (X1, , Xn) are chosen from any uniform distribution, then

I L(.) 4(m .1..)]P
OPT()

<1+
n

> 1-e

where L(.) is the length of any list schedule and OPT() is the length of the optimal schedule. Thus for
n sufficiently large, the performance of any list schedule can be made arbitrarily close to that of the optimal
policy with any desired degree of confidence. For example, for m 2 and e 0.01, the ratio is bounded by
1.11 when n 36 and bounded by 1.03 when n 100.

Key words, list scheduling, approximation algorithms, Kolmogorov-Smirnov statistics, makespan
scheduling, probabilistic algorithm analysis, NP-complete problems

AMS (MOS) subject classifications. 68C, 05B, 68Q
CR categories. F.2.2, G.2.1

1. Introduction. The makespan schedulingproblem is: given n tasks with processing
times X, X2,’’ ", Xn, find a way to sequence these tasks on m identical processors
so as to minimize the makespan (the finishing time of the last task). There are no
precedence or resource constraints affecting the ordering of the tasks.

It is well known that this problem is NP-complete for m-> 2 (and NP-complete
in the strong sense for m => 3 [Gar79]). We can interpret this result as saying that it is
unlikely there will ever be found a simple scheduling rule which produces an optimal
schedule for any given set of task times.

In view of this complexity result, work has focused on finding "approximation
algorithms"" simple, nonoptimal but very good scheduling policies. The standard
measure of "goodness" is the relative performance--the ratio of the policy’s finishing
time to that of the optimal. The policies considered are restricted to the class of list
schedules, described as follows. Based on the task times, a list L (i,. ., in) of task
indices is computed. The tasks are assigned to processors in the order induced by L;
an assignment is made from the list whenever a processor becomes free during
scheduling. Since complete information is known on task times when the list L is
computed, and since no idle time is inserted during scheduling, list schedules coincide
with work-conserving schedules in this model.

One widely studied example of a list schedule is the LPT (Largest Processing
Time first) schedule, which lists the tasks in nonincreasing order by time.

Received by the editors February 18, 1983, and in final form January 14, 1985.
? Department of Computer Science and the Computer Systems Laboratory, University of California,

Santa Barbara, California 93106. The work of this author was partially supported by the National Science
Foundation under grant MCS80-04257.

Department of Computer Science, The University of Arizona, Tucson, Arizona 85721. The work of
this author was partially supported by the National Science Foundation under grant MCS80-04679.

409

410 JOHN L. BRUNO AND PETER J. DOWNEY

Suppose the task times are X (X1, , X,). For a given list schedule determined
by list L, let L(J) be the finishing time of the schedule. Let LPT() be the finishing
time of the LPT schedule, and let OPT(X) be that of the optimal schedule.

Intuitively, LPT should be among the better list schedules. Graham [Gra69] has
studied the worst-case behavior of LPT, with the result

(1.1)
LPT(X) <4
OPT(X)-3 am

Thus LPT finishes not more than g later than the optimal, for any set of tasks.
Graham’s result is the best possible bound for LPT in the worst case [Gra69]. In

this paper we address the probabilitistic question" how well do LPT and other list
schedules perform "most of the time"? In other words, if task times are not chosen
by a malevolent adversary, but only by a randomizing (indifferent) one, can the bound
in (1.1) be improved upon? Coffman, Frederickson and Lueker [Coff84] have examined
the expectation of the makespan for the LPT schedule, and compared it to the
expectation of the optimum. Here we study the distribution of the relative performance
for any list schedule.

In 3 we show that, given a desired degree of confidence 1- e, we can find a
minimum sample size N such that if n >_-N and n task times X are chosen from any
uniform distribution, then

4(m-l)L(X)
<1+ >l-e(1.2) P OPT([) n

for any list schedule L. The minimum sample size N depends only on e and not on
the distribution of times or on the structure of the schedule L. Actually, Theorem 3.2
gives a sharper result than (1.2), in which it is possible to quantify the size of N.

The results in this paper are not about "probabilistic scheduling", since here
scheduling is done with complete a priori information concerning task times. The
probabilistic aspect comes in sampling the task processing times from a distribution
before making scheduling decisions. The results are more properly regarded as prob-
abilistic analyses of deterministic scheduling policies. While Graham’s result (1. l) gives
information about the worst that can happen in using LPT, (1.2) provides information
about the shape of the distribution of finishing times of any list schedule when task
times are uniformly distributed.

A result which holds in general for any list schedule is of interest since it reflects
the realities of scheduling "on-line", without any special ordering of the tasks
beforehand.

The result (1.2) holds for all sufficiently large n, where the choice of n depends
only upon the desired degree of confidence e, and not upon the particular uniform
distribution from which the X are chosen. To see the force of this result, it will be
instructive to compare (1.2) with a deterministic result. Suppose we agree ahead of
time that all task processing times will be restricted to integers in the interval [A, B].
Then by a theorem due to Graham (Theorem 3.1 below), for every n task times X and
any list schedule L

L(X) (m- l) B
-<1+--(1.3)

OPT(X)- n A"

Since the submission of this paper, the bounds given by Theorem 3.2 have been improved still further

using results on sums of i.i.d, uniform variates. This work is reported in [Cof85], where an analysis for

exponential task times also appears.

BOUNDS ON THE PERFORMANCE OF LIST SCHEDULING 411

TABLE
Quantiles of the one-sided Kolmogorov-Smirnov test
statistic [Mi156]. Values of d,, displayed are defined by

P[D <- dn,] e P.(dn,).

Values of d,,

n>40

.95 .99

5 .509 .627
10 .369 .457
15 .304 .377
20 .265 .329
25 .238 .295
30 .218 .270
35 .202 .251
40 .189 .235

1.22 1.52

As n, the number of tasks, is allowed to grow in (1.3), L comes as close to the optimal
as desired.

Is (1.3) stronger than (1.2), in being deterministic instead of probabilistic? No,
because in (1.3) the bound results from choosing a very large number of tasks from a
bounded interval, so that none of the execution times is large compared with the sum
of all the execution times. Thus given [A, Bl, for all sufficiently large sets of tasks, L
is as close to OPT as desired. By contrast, (1.2) allows the interval [A, B] to be chosen
after n is bound. Indeed, the size of the interval plays no role in the result, so that
task times could be allowed to range very much larger than n. The price paid for this
freedom is that (1.2) now holds, not for every choice of X (i.e., worst case), but only
with high probability if the data are distributed uniformly.

In 2 the main probabilistic tools used in this paper are presented. Section 3
contains the main result (Theorem 3.2). In 4 the result is illustrated by numerical
examples.

2. Preliminaries. Let X,,. , X, be mutually independent random variables with
a common continuous distribution F. The vector X (X,,..., X,) is referred to as a
random sample of size n from F. If

X(1) 2(2) " X(n)

are the n values of X arranged in nondecreasing order, then the random variable
is the ith order statistic of the sample.

For an event [E], let I[E] take the value l if [E] occurs and 0 otherwise. The
sample distribution function of X (X1, Xn) is defined as

(2.1) F,,(x) =1 I[Xi<-x].

That is, F,(x) is the proportion of sample values lying in the interval (-, x].
Given a sample X of size n define the random variable

(2.2) D,+ sup (F,,(x)- F(x)).
--ooxoo

D+ is referred to as the Smirnov statistic or the one-sided Kolmogorov-Smirnov statistic

of the sample.

412 JOHN L. BRUNO AND PETER J. DOWNEY

Intuitively we would expect that as the sample size n gets large, D,+ would approach
zero with high probability. Theorem 2.2 below shows this is true. More remarkably,
the distribution of D+ can be completely described; it depends only on n and not at
all upon the distribution F.2 TO see this, we show that F can be replaced in (2.2) by
U, the uniform distribution on [0, 1]. The following result is well known in different
forms [Dur73].

THEOREM 2.1. Let . be a sample of size n from a continuous distribution F. IfD+n
is defined by (2.2),

(2.3) D"+= l_<-,_-<nmax (-Y,)),
where Y is a sample of size n from U, the uniform distribution on [0, 1].

Proof. Define the inverse of F by

F-(t) sup {x’F(x)<-t}, t[0,1].

Then F-1 is nondecreasing, right-continuous and satisfies

(2.4) F(x) <- if and only if x-< F-l(t),
(2.5) F(F-(t)) t.

Given the sample X from F, the n random variables Y F(Xi) are independent and
distributed uniformly on [0, 1]. For by (2.4), the event Y -<_ t] [F(Xi) <-_ t] is identical
to the event [Xi<-F-I(t)], and the latter has probability F(F-I(t)) t. Thus " is a
sample from U.

Let U, be the sample distribution function of sample Y. Let Y) be the ith order
statistic of the sample.

Now

(2.6) D+- sup [F(x)-F(x)]- sup [F,,(x)-F(x)]
--oo<=x<=oo F-

o_<t=<l

since, because F is continuous, F-1 takes on all values of x except in those intervals
of x on which F is constant. But in any interval in which F is constant, we also have
F constant, as there is zero probability of any X occurring there.

From (2.6), using (2.5) and then (2.4),

D.+ sup (FnF-(t) FF-(t))
o_<_t__<l

=SUPo__<t-_< (I[Xi<=F-l(t)]-t)i=l

o=<t-<l i=1

sup (U,(t)- t).
0_< t__<l

This distribution-free property makes D+ important in testing for the goodness of fit of data to an
hypothesized distribution. The one-sided Kolmogorov-Smirnov test is described in ICon80].

BOUNDS ON THE PERFORMANCE OF LIST SCHEDULING 413

Since U, is a step function with jumps at Y), this last difference has local maxima
at the jumps. So the supremum can be replaced with

D+= max (U,(Y(i))- Y(i))= max Y(i)
l<--i<--n <-i<-n n

The last equality follows since exactly of the sample values are < Y(i) by definition.
This last equality establishes the result. [3

By the above theorem, for each n the cdf

(2.7) P,(x) P[D +. <= x]
is well defined. The following closed form representation ofthis cdf is derived in [Bir51]"

THEOREM 2.2. (Birnbaum and Tingey).

(2.8) P,,(x) 1 x E + x 1 x 13
i=0

Because of the importance of D in hypothesis testing, extensive tables have been
computed based on (2.8) [Bir51], [Mi156], [Owe62]. For testing purposes, the function
(2.8) needs to be inverted; the tables contain the solution d,, of the equation

(2.9) P,,(d,,)=l-e

for selected n and small values of e. Table 1 gives a short table of values of d,,
compiled from [Bir51] and [Mi156]. These data will beused to work examples in 4
below.

The large sample behavior of P,(x) is described by an asymptotic result [Dur73].
THEOREM 2.3. (Smirnov). For n - oo

(2.10) p, x
1 e-2x2 --+ 0

Computations in [Bir51], [Mil 56] show that for 0.001<- e =< 0.1 the values of d,,
computed from (2.10) are greater than those given by the exact formula (2.8), and are
in close agreement for n -> 50.

3. List seheflules. Let L denote a particular list schedule, and let L(X) be the
finishing time achieved by this schedule on rn processors. The worst case performance
of any list schedule can be measured by the following result, due to Graham [Gra76,
Thm. 5.3]. It has a very simple proof which we repeat here.

THEOREM 3.1. (Graham).

L(X)
< 1 +(m 1)maxiX(3.1) OPT(2) E,=, x,

Proof. Write x,) for maxi xi. Let f be the index of the last task to finish under
L, and let Sy be the starting time off. Then L(X)= Sy + Xy. No processor can be idle
before time Sy= L(X)-Xy, and afortiori no processor can be idle before time
L(X) X,). Since at least one processor is busy for L(X) units of time, it follows that

X>=L(2)+(m-1)(L(2)-X,,)).
i=1

414 JOHN L. BRUNO AND PETER J. DOWNEY

This inequality and the observation that

(3.2) OPT(X)>-_
m

imply

OPT(2) >-_ 1(L(2) + m 1)(L(2) X(,)))
m

which yields

L(X)_ =<l+(m-l) X(n)_ -_1+(m-1) XnnOPT(X) m OPT(X) E,--1 Xi
where we have used (3.2) once more. The last inequality proves the theorem.

Theorem 2.1 and Graham’s theorem are used to prove the main result:
THEOREM 3.2. For all e > 0 and for any positive integer n, if X1, , X are task

processing times sampledfrom a uniform distribution on any interval [A, B] with A >-O,
then for any list schedule L

L(X)
< 1+2(m- 1) 1

_->l-e.(3.3) a
OPT(X) n 1-2d,.

Proof. By (2.9), it will be enough to show that for arbitrary d

2(m- 1) 1L(X)
<1+ >-P,(d).(3.4) P OPT() n 1 2d

Set R B-A and assume R> 0. Now if the Xi are chosen from a uniform
distribution on [A, B], then the random variables

X(i)- A
R

are the order statistics of a sample of size n from the uniform distribution on [0, 1].
Theorem 2.1 then yields

so that

(3.5) P[m.a, x(i+ A-Xi)) <-dRl P,(d).

Before using (3.5), let us derive some implications from the inequality

(3.6) max(+A- <-dR.

In what comes below, we will assume that this inequality holds, and only later return
to the probabilistic argument.

The inequality (3.6) is equivalent to

R
+ A X(i) dR for all i.

BOUNDS ON THE PERFORMANCE OF LIST SCHEDULING 415

Summing over all in this inequality yields

(3.7)
R(n+l)+An dRn <= X.2 i=1

Putting (3.7) into Graham’s result (3.1) gives us

L(X) <- +(m-)
OPT(X)

and since X(,) _-< R + A we obtain

L(X)
<l+(m-1)(3.8)

OPT(X)

<l+(m-1)

X(.)
R(n + 1)/2 + An dRn

R+A
(R/2+A)n-dRn+R/2

R+A
(R/2+A)n-dRn"

Dividing the numerator and denominator of (3.8) by (R/2+ A)n and using the fact
that (R/2+A)=(R/2)(1 +2A/R), we obtain

L(X)
(3.9) OPT(2) < 1+2(m-1) (I+A/R)/(I+2A/R)

n 1-2d/(I+2A/R)

The right side of (3.9) can be bounded, using A/R >-0, to yield

L(X) 2(m 1) 1(3.10) OPT(2) < 1+
n 1-2d

in which A and B play no role.
To summarize: the inequality (3.6) implies (3.10). Thus the probability of the

event represented by (3.10) must dominate the probability of the event represented by
(3.6). But by (3.5), the latter probability is P(d). Thus the probability of (3.10) is at
least P(d), and (3.4) is proved. [-1

COROLLARY 3.3. For all e > 0 andfor all sufficiently large n, ifXI," ", X, are task
processing times sampledfrom a uniform distribution on any interval [A, B] with A >= O,
then for any list schedule L

L(X) 4(m 1)
(3.11) P OPT.ff.< 1-

n
>- 1 e.

Proof From (3.4) with d =, the probability in (3.11) is at least P,(-). By Smirnov’s
result (2.10), P,(1/4) can be made greater than 1-e for all sufficiently large n.

4. Examples and conclusion. Since LPT is an example of a list schedule, Theorem
3.2 extends our knowledge about the behavior of the ratio LPT(X)/OPT(X) beyond
the information given by the deterministic bound (1.1), under the uniformity assump-
tions. Let us denote the bound in Theorem 3.2 by

(4.1) fl,,,(n, e) +2(m- 1) 1

In the following examples we numerically examine the sharpness of (4.1) for particular
values of m and n.

Example 1. Suppose we seek 99% confidence bounds on LPT(X)/OPT(X) and
there are m 2 processors. Figure 1 plots/32(n, 0.01) against n for n 20(1)100. Also

416 JOHN L. BRUNO AND PETER J. DOWNEY

1.3

Graham

40 60 80 I00

n
FIG 1. 99% confidence bounds on list scheduling for m 2 processors. For comparison, Graham’s deter-

ministic bound for LPT scheduling is shown. The crossover occurs at n 28.

1.4,

Graham

l’Ol;o I00 120 140 160

n
FIG. 2. 99% confidence bounds on list scheduling for m 10 processors. For comparison, Graham’s

deterministic bound 13 for LPT scheduling is shown. The crossover occurs at n 89.

1.05 1.06 1.08

BOUND ,2(40, E)
114 1.6 1.17

FIG. 3. For m 2 processors and a sample size n 40, the graph depicts the tradeoffbetween bound values
/32(40 e) and confidence in these bounds 1- e.

BOUNDS ON THE PERFORMANCE OF LIST SCHEDULING 417

shown is the bound 7/6 from (1.1), which holds with probability 1. Theorem 3.2 begins
to yield better information than (1.1) at n 28 where the bound is 1.162, with probability
at least 0.99. The bound improves to 1.029 at n 100 with the same confidence.

Example 2. Again consider the 99% confidence level, but let there be m 10
processors. The bound (1.1) is now 1.3 with probability 1. Figure 2 plots fllo(n, 0.01)
against n for n 80(1)160. Here the crossover with the deterministic bound occurs at
n 89, where the bound is 1.296 with probability at least 0.99. At n 150 the bound
has decreased to 1.159 with the same confidence.

Example 3. To see how the tightness of bound (4.1) varies with confidence 1- e,
we show in Fig. 3 the probability of various bounding values for m 2 processors and
sample size n =40. Figure 3 gives values of the bound fl2(40, e) on the abscissa. On
the ordinate is the minimum probability 1-e of achieving this bound.

The above examples show that Theorem 3.2 yields sharp information on the
trade-off between performance bounds and the certainty about performance. Nothing
in the proof of Theorem 3.2 made use of any special property of the LPT schedule,
and the result holds for all list schedules. But in an LPT schedule, the last completed
task will be short with high probability, and perhaps the inequality (3.8) could be
improved. Thus it is possible that a more refined argument, based on the special
properties of the LPT policy, will yield even better bounds for LPT, especially for
large m. Bounds on the expected makespan for LPT appear in [Cott84], but bounds
on the distributional behavior await discovery.

REFERENCES

[Bir51] Z.W. BIRNBAUM, AND F. H. TINGLY, One-sided confidence contours for probability distribution
functions, Ann. Math. Statist., 22 (1951), pp. 592-596.

[Cof84] E.G. COFFMAN, JR., G. N. FREDERICKSON AND G. S. LUEKER, A note on expected makespans
for largest-first sequences of independent tasks on two processors, Math. Oper. Res., 9,
2(1984), pp. 260-266.

[Cof85] E.G. COFFMAN, JR. AND E. N. GILBERT, On the expected relative performance of list scheduling,
Oper. Res., 33 (1985), pp. 548-561.

ICon80] W.J. CONOVER, Practical Nonparametric Statistics, 2nd ed., Wiley, New York, 1980.
[Dur73] J. DURBIN, Distribution Theory For Tests Based on the Sample Distribution Function, Society for

Industrial and Applied Mathematics, Philadelphia, 1973.
[Gar79] M.R. GAREY, AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of

NP-Completeness, San Francisco, W. H. Freeman, San Francisco, 1979.
[Gra69] R.L. GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),

pp. 416-429.
[Gra76] ., Bounds on the performance ofscheduling algorithms, in Computer and Job-Shop Scheduling

Theory, E. G. Cotiman, ed., John Wiley, New York, 1976.
[Mil56] L.H. MILLER, Table of percentage points of Kolmogorov statistics, J. Amer. Statist. Assoc., 51,

(1956), pp. 111-121.
[Owe62] D. B. OWEN, Handbook of Statistical Tables, Addison-Wesley, Reading, MA, 1962.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

1986 Society for Industrial and Applied Mathematics
OO7

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS*

G. AUSIELLOt, A. D’ATRI- AND D. SACCA

Abstract. In this paper the problem of minimal representations for particular classes of directed
hypergraphs is analyzed. Various concepts of minimal representations of directed hypergraphs (called
minimal equivalent hypergraphs) are introduced as extensions to the concepts of transitive reduction and
minimum equivalent graph of directed graphs. In particular, we consider equivalent hypergraphs which are
minimal with respect to all parameters which may be adopted to characterize a given hypergraph (number
of hyperarcs, number of adjacency lists required for the representation, length of the overall description,
etc.). The relationships among the various concepts of minimality are discussed and their computational
properties are analyzed. In order to derive such results, a graph representation of hypergraphs is introduced.

AMS (MOS) subject classifications. 05C65, 68E10

Key words, algorithm, closure, computational complexity, (directed) graph, (directed) hypergraph,
minimal equivalent hypergraph, minimum equivalent graph, NP-complete, transitive reduction

1. Introduction. Hypergraphs [5] are a generalization of the concept of graph
which has been extensively used for representing structures and concepts in several
areas of computer science (see, for example, [6], [TJ, [9], [11], [15]). In this paper we
consider a particular class of directed hypergraphs which are a natural generalization
of directed graphs. In such hypergraphs the hyperarcs are directed from a nonempty
set of nodes to a single node and they may be interpreted as a relationship between
sets of objects and a single object. Such relationships may be often encountered in
computer science. For example, in problem solving [12] the connection between a
problem P and the set of problems whose solutions are needed to solve problem P is
a relationship of this kind (usually represented by means of and-or graphs). Similarly
in a Petri net [13] the marking of a place is determined by the simultaneous presence
ofmarks in all places that are required to activate a transition. Finally the same situation
arises in the representation of some data dependencies in relational data bases [14].
Given a set of attributes U, a set of functional dependencies is a relation over P
(U) x U. A functional dependency from X to (denoted X-> i) where X U and
i U means that, given the values of all attributes in X, the value of the attribute is
uniquely determined.

For example, if A, B, C, D, E are attribute names, the following set of functional
dependencies"

{A,B}--->C, {A,B}--->D, {B}->E, {E}-->C

represents implication relationships between attribute values, that is the fact that a
pair of values over A and B univocally determines the values over C and D, etc. Also
in this case a directed hypergraph is the most immediate graphical representation for
such a relationship.

In several applications of directed hypergraphs, analogously to what happens in
the case of graphs, the following concepts assume an important role: the concept of

* Received by the editors January 18, 1983, and in final revised form January 24, 1985. This work was

supported by CASMEZ under grant PS. 35-92/IND, and by MPI within the National Projects on Theory
of Algorithms and Formal Aspects for Databases.

Dipartimento di Informatica e Sistemistica, Universit di Roma La Sapienza, Via Eudossiana 18,
00184 Roma, Italy.

CRAI, Via Bernini 5, 87030 Rende, Italy.

418

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS 419

traversal (i.e., hyperarc connection leading from a set of nodes to a single node), the
concept of closure (i.e., representation of all connections over a hypergraph), the
concept of equivalence (i.e., hypergraphs with the same closure) and finally the concept
of minimal representation among equivalent hypergraphs. In the case of functional
dependencies, for example, the concept of closure, equivalence and minimality have
been investigated with the aim of providing the set of functional dependencies which
is minimal among all sets equivalent to the given one according to particular minimality
criteria [2], [10].

In this paper we introduce various concepts of minimality among equivalent
directed hypergraphs, their relationships and their complexity properties. Minimal
representations of hypergraphs are defined with respect to all parameters which may
be adopted to characterize a hypergraph (number of hyperarcs, number of adjacency
lists required for the representation, length ofthe overall description, etc.). Some results
may be found in [2], [4], [10] due to the strict correspondence between directed
hypergraphs and sets of functional dependencies. In this paper we extend such results
in order to give a complete treatment of all concepts of minimality which are relevant
not only in the context of functional dependencies but also in a more general
environment.

A formulation based on directed labelled graphs (FD-graphs, previously intro-
duced in [2] for the design of efficient algorithms for functional dependency manipula-
tion) is used throughout this paper as a representation of hypergraphs in order to
prove the desired results. This formalism is very convenient not only because it provides
a ground for the unified treatment of the various results but also because it allows one
to state more clearly such concepts as redundancy of arcs and nodes in hypergraphs
and because it may be used to obtain economy in the description and computation of
the hypergraph closure.

The paper is organized as follows. In 2 we present the basic definition of
hypergraphs, hypergraph closure, equivalent hypergraphs and their representation by
means of FD-graphs. In 3 we present various concepts of minimal equivalent
hypergraphs and prove all relationships among such concepts. Finally, in 4, we
discuss the complexity of finding minimal equivalent hypergraphs.

2. Hypergraphs and their graphical representation. Various definitions of hyper-
graphs have been introduced in the literature. In particular, in [6] a very general
concept of hypergraph (directed recursive labelnode hypergraph) has been defined;
on the other hand, in [5] a simpler definition has been given which generalizes the
definition of undirected graph by allowing edges to be composed by an arbitrary
number of nodes. In this paper, we shall deal with hypergraphs which are generaliz-
ations of directed graphs.

A directed hypergraph H is a pair (N, H), where N is the set of nodes and H is
the set of hyperarcs, and a hyperarc is an ordered pair (X, i) such that X is a nonempty
subset of N and N.

Given a directed hypergraph, we call source set a set of nodes that appears as the
left side of at least one hyperarc.

From now on we shall refer to directed hypergraphs simply as hypergraphs.
Example 1. The hypergraph H= ({A, B, C, D, E, F}, {({A, B}, C), ({B}, D),

({C, D},E), ({C, D}, F)}) is shown in Fig. 1, where hyperarcs are represented by
arrows. The source sets of H are {A, B}, {B}, {C, D}.

The basic parameters which will be taken into account in order to evaluate the
algorithms presented in this paper will be the following" the number of nodes of the

420 G. AUSIELLO, A. D’ATRI AND D. SACC,

8 "h
FIG. 1. Directed hypergraph.

hypergraph (n), the number of hyperarcs (m), the number of source sets (s), the source
area (a), that is the sum of cardinalities of all source sets, and the overall length of
description of the hypergraph (Ial).

In the previous example we have:

n=6, m=4, s=3, a=5.

As far as the length of the description is concerned, if we assume a representation
based on adjacency lists (where for every source set the list of adjacent nodes is given)
we have IHI- a + m. According to the same representation, the number of source sets
corresponds to the number of adjacency lists.

In order to simplify the notation, here and in the following, nodes will be denoted
by the first latin upper case letter A, B,... and sets of nodes will be expressed by
concatenating the names of nodes (e.g., AB instead of {A, B} and, in particular, A
instead of {A} when no ambiguity may arise). Besides, the last latin upper case letters
X, Y, , Z will be used to denote sets of nodes. In this case concatenation will stand
for union (XY stands for X U Y) and the cardinality of X will be denoted by IxI,

In this paper we are mainly concerned in discussing the equivalence between
hypergraphs, based on the concept of traversal and closure of hypergraphs.

Given a hypergraph H (N, H), the closure of H, denoted by H/, is the hypergraph
(N, H/) such that (X, i) is in H/ if one of the following conditions holds:

a) (X, i) H, or
b) X (extended reflexivity), or
c) there exists a set of nodes Y= {n,..., nq} such that for each j, 1-<j_-< q,

(X, n) is a hyperarc in H+, and (Y, i) is a hyperarc in H (extended
transitivity).

Note that when X and Y are singletons, the extended reflexivity and transitivity
rules coincide with the usual definitions of reflexivity and transitivity as given for graphs.

Example 2. Let us consider the hypergraph H of Fig. 1. Some of the hyperarcs
in H+ are: (AB, C), AB, A), AB, E).

Two hypergraphs are equivalent if they have the same closure.
The main problem we shall deal with throughout the paper is the problem of

finding a minimal representation of a given hypergraph, that is an equivalent hypergraph
which has fewer hyperarcs or some other kind of minimality property. Notice that the
problem of finding a minimal representation in the case of hypergraphs is generally
more complex than in the case of graphs because, while in the case of graphs the
number of arcs in the closure is at most quadratic in the number of nodes, in the case
of hypergraphs the number of hyperarcs in the closure is always exponential in the
number of nodes.

In many cases, in order to deal with problems on hypergraphs, a graphical
representation has been introduced (for instance, in [5] bipartite graphs are used to
represent undirected hypergraphs). Similarly, in order to approach minimal equivalent
hypergraph problems, we present a graphical representation of directed hypergraphs,
which has been previously introduced in [2] for the manipulation of functional
dependencies in relational databases.

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS 421

Given a hypergraph H (N, H) the FD-graph of H is the labelled graph Gn
(Nn, Af, Ad) where:

-NH N t.J Nc is a set of nodes, where N will be called the set of simple nodes
and Nc {XIX is a source set in H such that IX[> 1} will be called the set of
compound nodes;
Ay Nn x N is the set of arcs (labelled f) {(X, i)1 there exists a hyperarc (X, i)
in H}, that will be called the set of full arcs;
Ad N x N is the set of arcs (labelled d) {(X, J)l for every X N and j X}
that will be called the set of dotted arcs.

Example 3. Let us consider the hypergraph of Fig. 1. Its FD-graph representation
is given in Fig. 2. In this case the set of simple nodes is N {A, B, C, D, E, F} and
the set of compound nodes is N {AB, CD}.

FIG. 2. FD-graph of the hypergraph in Fig. 1.

Given a hypergraph H with n nodes, rn hyperarcs, s source sets, s’ source singletons
(source sets with cardinality equal to 1) and source area a, H will be represented by
an FD-graph with n simple nodes, nc s-s’ compound nodes, m full arcs and
md a- s’ dotted arcs. If we consider the length of the description of the FD-graph,
we may easily assume that it coincides with the length IHI---a + m of the description
of the given hypergraph.

The use of FD-graphs and of their closure in some cases allows us to determine
minimal equivalent hypergraphs without falling into the exponential explosion of the
hypergraph closure because, as it will be shown below, the FD-graph closure grows
only at most quadratically. More precisely, in order to find a minimal representation
H’ of a hypergraph H, we first give the FD-graph representation G/ of H, then we
determine the closure G of GH (instead of H/) and, finally, we use this closure to
find a reduced representation Gn, of GH (that we shall call minimal covering) corre-
sponding to H’.

The sequence of transformations that we may go through in such cases is given
in Fig. 3 (continuous line).

H H H’
hypergraph closure 1

minimal equivalen! hypergraph

H/

FD-graph closur FD-graph covering

G, G
FIG. 3. The sequence of transformations to determine minimal equivalent hypergraphs.

422 G. AUSIELLO, A. D’ATRI AND D. SACC,

Given an FD-graph Gil (Nu, Ay, Ad) and a pair of nodes i,j Nil, an FD-path
(i, j) from to j is a minimal subgraph Gu (Nil, Af, Ad) of Gil such that i,j Nu
and either Aft.J Ad {(i, j)} or one of the following possibilities holds"

j is a simple node and there exists a node k such that (k, j) Ay U Aa and there
is an FD-path (i, k) in GH (transitivity);
j is a compound node with component nodes ml,’",mq and
(j, ml)," ", (j, mq) Ad, and there are FD-paths (i, ink) in Gu, for k 1,. ., q
and mk (union).

Furthermore an FD-path (i, j) is dotted if all arcs leaving in the FD-path are
dotted, otherwise it is full

Example 4. In Fig. 4a a full FD-path and in Fig. 4b a dotted FD-path of the
FD-graph of Fig. 2 are shown.

a) Full FD-path (AB, E). b) Dotted FD-path (AB, D).

FIG. 4. Some FD-paths of the FD-graph in Fig. 2.

We observe that, due to the minimality requirement, a compound node without
outgoing full arcs can only be either a source or a target node of FD-paths to which
it belongs.

Given an FD-graph Gn=(NII, Ay, Ad) we define closure of Gn the labelled
directed graph G (Nn, Af, A) where an arc (i, j) is

in A if[there exists a dotted FD-path (i, j) in Gn;
in A if[(i,j) A- and there exists a full FD-path (i, j) in Gil.

In [2] an algorithm is shown which, given an FD-graph Gil and a node i, provides
the sets of nodes which may be reached from the node by means of a full or dotted
FD-path in time O(m + md). This algorithm is an extension to FD-graphs of the usual
transitive closure algorithm for graphs. The only substantial modification concerns the
application of the union rule that is implemented by associating a counter with every
compound node j. This counter keeps track of the number of component nodes of j
which are currently reached from the source node i. By applying this algorithm to all
the nodes, we may determine the closure of G in time O((n + no)x (m + md)). In
terms of the parameters of the hypergraph we have that the closure algorithm runs in
time O(s x [HI).

The closure of an FD-graph is a succinct representation of the closure of the
corresponding.hypergraph in the sense expressed in the following theorem.

THEOREM 1. Let H (N, H) be a hypergraph and Gil (Nn, As, Ad) the correspond-
ing FD-graph. Given a pair of nodes i, j Nil where j is a simple node andj i, the arc
i,j) is in G+n if and only if there exists a corresponding hyperarc in H/.

Proof. Only ifpart. Since every arc in G incident into a simple node is either in
Gn or is derived by applying the transitivity and the union rules, it is easy to observe
that the corresponding hyperarc is either in H or is derived in H/ by applying the
extended transitivity and the reflexivity rules.

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS 423

If part. Let the hyperarc (i,j) be in H/, where j is a single node. We prove by
induction on the construction of H/ that the arc (i,j) is in G. The following cases
may arise (the first two cases are the basis of the induction):

either (i, j) is a hyperarc of H, then (i, j) is a full arc in Go and, hence, in G;
or (i,j) is a hyperarc of H/ obtained by reflexivity, then the dotted arc (i, j)
appears in Go and, hence, in G;
or there exists a set of simple nodes Y= {nl,’", nq} such that for each k,
1 <= k <= q, (i, nk) is in H/, and Y, j) is in H. In this case, by inductive hypothesis
there exist FD-paths (i, nk) in GH, for k 1,. ., m and nk i; then by union
rule (or by transitivity rule if q 1) there exists the FD-path (i, j) and, hence,
(i,j) is in G. [3

Notice that the hypergraph corresponding to G is the hypergraph IZI+ in Fig. 3
which is equivalent to H.

3. Minimal equivalent hypergraphs. Several definitions of minimality in an
equivalence class of hypergraphs may be introduced with respect to the various
parameters we have introduced to characterize a hypergraph. Before defining minimal
equivalent hypergraphs, we introduce the following concepts of redundancy.

Let H (N, H) be a hypergraph:
a node j is redundant in a source set X of H if j X and (X -j,j) H/;
a hyperarc (X,j) is redundant if (X,j) is in the closure of the hypergraph
obtained from H by eliminating (X,j);
H is nonredundant if it has neither redundant nodes in any source set nor
redundant hyperarcs.

PROPOSITION 1. Let H be a hypergraph. The hypergraph H’ obtained from H by
eliminating a redundant hyperarc or a redundant node in a source set is equivalent to H.

Proof. In case of elimination of a redundant hyperarc, the proof is trivial. Let us
now assume that H has a redundant node j in the source set X. The hypergraph H’ is
obtained from H by replacing every hyperarc (X, i) in H with (X-j, i). We have to
prove that H is equivalent to H’, thus H/ ’+ H+ H’/H where and are the closures
of H/ and H’/, respectively. To this end, it is sufficient to show that for each hyperarc
(X, i) in H, both (X, i) is in H’/ and (X-j, i) is in H/ (in fact, H and H’ only differ
in such hyperarcs). Since (X-j, i) is in H’ by construction and for each r in X-j,
(X, r) is in H’/ by extended reflexivity, the hyperarc (X, i) is in H’/ by extended
transitivity. On the other hand, since (X, i) is in H by assumption, (X-j, j) is in H/

by definition of redundant node, and for each r in X-j, (X-j, r) is in H/ by extended
reflexivity, the hyperarc (X-j, i) is in H/ by extended transitivity. This concludes the
proof, l-I

We now introduce several definitions of minimality for hypergraphs. Let H be a
nonredundant hypergraph. We say that H is:

Source-minimum ($M) if there exists no hypergraph equivalent to H with fewer
source sets;
Hyperarc-minimum (HM) if there exists no hypergraph equivalent to H with
fewer hyperarcs;
Source-hyperarc-minimum (SHM) if there exists no hypergraph H equivalent
to H such that g+ n5 < s + m, where s and m (g and nS) are the number of source
sets and hyperarcs of H (H’);
Source-area-minimum (SAM) if there exists no hypergraph equivalent to H with
smaller source area;
Optimum (O) if there exists no hypergraph equivalent to H with smaller size
(i.e., source area+ number of hyperarcs).

424 G. AUSIELLO, A. D’ATRI AND D. SACC,

Example 5. In Fig. 5 we have: a) a nonredundant hypergraph H, b) an SM-
hypergraph equivalent to H obtained from it by replacing the hyperarcs (CD, E) with
the hyperarc (AB, E), c) a HM-hypergraph equivalent to H obtained from it by
replacing the hyperarcs (F, E) (E, G), (E, H) with the hyperarcs (F, G), (F, H), d)
an SHM-hypergraph equivalent to H obtained from it by combining the above replace-
ments, e) an SAM-hypergraph equivalent to H obtained from the SM-hypergraph in
b) by replacing the hyperarc (HGK, L) with (FK, L), f) an O-hypergraph equivalent
to H obtained from the SHM-hypergraph in d) by replacing the hyperarc (HGK, L)
with (FK, L).]

a) Nonredundant hypergraph. b) SM hypergraph.

c) HM hypergraph. d) SHM hypergraph.

e) SAM hypergraph. f) 0 hypergraph.

FIG. 5. Minimal equivalent hypergraphs.

In this section we shall prove that all the above concepts of minimality are strongly
related. Such relationships, summarized in Fig. 6 (where AB means that A-mini-
mality implies B-minimality), imply that, given a hypergraph H, there exist hypergraphs
equivalent to H, which are simultaneously minimal with respect to any combination
of the criteria: number of hyperarcs, number of source sets, source area. In particular,
it must be noted that an O-hypergraph equivalent to H can be found among the
SHM-hypergraphs (or SAM-hypergraphs) equivalent to H, an SHM-hypergraph
among the HM-hypergraphs (or SM-hypergraphs), and an SAM-hypergraph among
SM-hypergraphs.

In order to prove the above relationships, we need some definitions and results
for FD-graphs associated to nonredundant hypergraphs.

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS 425

NON REOUNOANT 0

SM AM

FIG. 6. Relationships among concepts of minimality for hypergraphs.

Let GH--(NH, Af, Ad) be the FD-graph of the hypergraph H. We say that:
a compound node k of G/_/is redundant if for each full arc (k,j), there exists
a dotted FD-path (k, j) in Go;
a dotted (full) arc (k, j) of Go is redundant if there exists a dotted (full or
dotted) FD-path (k, j), which does not contain the arc (k, j).
a pair of nodes i, j No are equivalent if there exist both FD-paths (i, j) and
(j, i) in Go’,
a compound node of G/_/is superfluous if there exists a dotted FD-path (i, j),
where j is equivalent to i;
Go is LR-minimum if it has neither redundant nodes and arcs nor superfluous
nodes;
Go, is a covering of Go if H’ is equivalent to H, where H’ is the hypergraph
represented by Go,.

We note that the definition of FD-graph covering given in [2] coincides with the
definition given here because ofthe strict correspondence between directed hypergraphs
and sets of functional dependencies in relational database theory. It follows that some
of the results derived in [2] can be also used in this paper:

FACT 1 [2]. Let Go be an FD-graph.
a) Every FD-graph obtained from Go by eliminating any redundant node together

with all its outgoing arcs or any redundant arc is a covering of Go.
b) Let be a superfluous node in Go and let j be a node equivalent to such that

there exists a dotted FD-path (i,j) in Gu. Let Go, (N’u, A’f, A’d) be an FD-graph where:
A’f=(AfU{(j, k)l(i k)eAf})\{(i, k)l(i k)eAf},
A’d=Ad\{(i, k)l(i, k)eAd},
N’H No\{i}.

Then Go’ is a covering of GH.
c) Let Go, be a covering of Go. Let + +GH’, GH be the closures of GH’ and Go,

respectively. Let i, j be two nodes both in Go, and in Go. If i, j) is a full arc in G+H and
a dotted arc in +GH,, then every dotted FD-path i, j) in GH, contains a node k equivalent
to i.

From now on, by elimination of a redundant node in an FD-graph we shall also
mean the elimination of all arcs leaving the redundant node (notice that, by definition
of FD-graph, compound nodes do not have incoming arcs). Besides, by elimination
of a superfluous node we shall mean the procedure indicated in Fact lb.

We point out that a covering Go, of an FD-graph Gn may differ from Go not
only in the set of arcs but also in the set of compound nodes; on the other hand, Go
and G, have the same set of simple nodes.

Example 6. In the FD-graph of Fig. 7b (corresponding to the hypergraph of Fig.
7a), the nodes AB and CD are equivalent and the node CD is superfluous. The

The name is due to the properties of corresponding definitions given in [2] for FD-graphs representing
functional dependencies.

426 G. AUSIELLO, A. D’ATRI AND D. SACC,

a) Hypergraph H.

: All........... CO -"[

b) FD-graph GH of H. c) LR-minimum covering of GH.

FIG. 7

FD-graph in Fig. 7c is an LR-minimum covering of the FD-graph in Fig. 7b and is
obtained from it by eliminating the superfluous note CD.

We now introduce a technical lemma which outlines a structural property of
LR-minimum FD-graphs that will be used to derive the main results. We note that
some of these properties (namely, part a) and b) of the lemma) were also proved in
[2] but they will also be presented here in order to provide a ground for the proof of
part c).

LEMMA 1. Let H and H’ be two equivalent hypergraphs and let GH NH, Af, Ad

G/,=(N/4, A, A’d) be their corresponding FD-graphs. If both Gn and GH, are LR-
minimum then

a) there exists a bijection b" NI-I,-- NH, where NH NI4\NH’ and Nn,- NH,\ NH’,
b) for each Nt-l,, b(i) is equivalent to in GH,,=(Nn NH’, Af, Ad A’d);
C) for each Nt-/,, there exists a dotted FD-path (d(i), i) in Gn,,.
Remark. All nodes in Nn and in NH, are compound since GH and Gn, have the

same set of simple nodes.
Proof. Let G (NH, A+ A) and G, (NH,, fy, A’/ A+) be the closure of GH and

Gn,, respectively.
a) We define the bijection b by associating to each node in NH, a node j b(i)

in NH as follows. Let us construct the FD-graph Go by adding and its outgoing
dotted arcs to G, (recall that is a compound node). Let G/= (No,, ,) be the
closure of Go. By Fact l a, Go is a covering of GH and, then, of GH,. Since is
nonredundant in GH, by hypothesis, there exists at least one simple node r such that
(i, r) is in A) and then in A)/. In addition, since Go is a covering of G/4, and since
all arcs leaving in Go are dotted, the arc (i, r) is in ,. Hence, by Fact l c, every
dotted FD-path (i, r) in Go contains at least a node k equivalent to i. Let j b(i) be
a node in Nu equivalent to and such that there is a dotted FD-path (i, j) in Go that
does not contain any other node equivalent to i. Such a node obviously exists. We
now show that j is in N/ by contradiction. In fact, if j was also in Nu,, by Fact l c
the arc (i,j) would be in A’/

d, since there is a dotted FD-path (i, j) in Go which does
not contain any other node equivalent to i. Hence, would be superfluous in
(contradiction with the hypothesis that G/, is LR-minimum). We now prove that
is bijective by showing that th is injective and that I, I1. Let -be a node in
Nu, different from i. Let us suppose, by contradiction, that b(i) b(i)=j. Hence,
and are equivalent in Gu,. Let Go, be the FD-graph obtained from Gu, by adding
the node j and all its outgoing dotted arcs (notice that j is compound since it is in
No) and let G+o, (No,, /’+.r,/+) be the closure of Go,. Since j is equivalent to and

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS 427

-in Go, and since all arcs leaving j in Go, are dotted, (j, i) and (j, i-) are in ,/.
Furthermore, since the dotted FD-paths (i, j) and (i,j) in Go do not contain other
nodes equivalent to or and since Go is a covering of Go,, by Fact l c there exist
also dotted FD-paths (i, j) and i, j) in Go,. Now, without loss of generality, we suppose
that the dotted FD-path (j, i) in Go, does not contain the node (otherwise we could
refer to (j, i)). Since in Go, there exist the dotted FD-paths (i,j) and (j, i) and since
(j, i) does not contain the node i, there also exists a dotted FD-path (i, i) in Go, (see
the definition of FD-path). Furthermore, this FD-path does not contain the node j
since all arcs leaving j in Go, are dotted. Hence, the dotted FD-path (i, i) is also in
Go, because Go, differs from Gn, only in the compound node j. It follows that is
superfluous in Gn, and we get a contradiction with the hypothesis that Gn, is LR-
minimum. Therefore, b is injective and, hence, Ir,,,I <_-I.1. If we exchange Gn with
Gn, and conversely in our argument, we also obtain It follows that
I,1 It,,,I and b is a bijection.

b) Let us consider the FD-graph Gn,, defined in the statement of the lemma. We
observe that since and j b(i) are equivalent in Go and since Go is a covering of
Gt-/,, by Fact l a, and j are equivalent in Gn,, by Theorem 1.

c) Finally we prove that there is a dotted FD-path (j, i) in Gn,,, where j b(i).
First of all we recall that there is a dotted FD-path (j, i) in Go,. We now show that
this FD-path does not contain any node equivalent to j by contradiction. Let us suppose
that there exists a node i’ equivalent to j in (j, i). Without loss of generality, we can
suppose that the dotted FD-path (j, i’) does not contain any node equivalent to j. Since
there is also a dotted FD-path (i,j) in Go, (as we have proved before), there exists a
dotted FD-path (i, i’) in Go,. This FD-path is also in Gn, since Go, differs from
only in the compound node j that has no outgoing full arcs. It follows that is
superfluous (contradiction with the hypothesis that Gn, is LR-minimum). Therefore
the dotted FD-path (j, i) in Go, does not contain any node equivalent to j. Hence,
since Go, is a covering of Gn,,, by Fact l c there is a dotted FD-path (j, i) in GH,, and
this concludes the proof. [1

The next proposition establishes the correspondence between LR-minimum FD-
graph and source-minimum hypergraph. This result is useful both for proving the
relationships among the various definitions of minimality for hypergraphs and for
applying the computational results proven in [2] for LR-minimum FD-graphs to source
minimum hypergraphs.

PROPOSITION 2.. Let H be a hypergraph and let Gn be the FD-graph of H.
a) H is nonredundant iff Gn has neither redundant nodes nor redundant arcs.
b) H is source minimum iff Gn is LR-minimum.

Proof. a) By Theorem and the definition of FD-graph, it is easy to see that a
hyperarc (X, i) in H is redundant in H if and only if the full arc (X, i) is redundant
in GIa (and, in particular, X is a redundant node in Gn if and only if all hyperarcs
leaving the source set X in H are redundant) and that a node j is redundant in a
source set X of H if and only if the dotted arc (X, j) is redundant in Gri.

b) Only if part. Let H be SM. By part a) of the proposition, Gn has neither
redundant nodes nor redundant arcs. In addition, G/ has no superfluous nodes,
because otherwise we could find a hypergraph equivalent to H with fewer source sets
by eliminating the superfluous nodes (by Fact lb). Hence GH is LR-minimum.

If part. Let GH be LR-minimum. Let H’ be an SM-hypergraph equivalent to
H and let GH, be the corresponding FD-graph. By the only if part of this proposition
Gn, is LR-minimum. Hence, by Lemma 1, GH and GH, have the same set of simple
nodes and the same number of compound nodes. Furthermore, by Theorem the

428 G. AUSIELLO, A. D’ATRI AND D. SACC,

outdegree of a simple node in GH is equal to 0 if and only if the outdegree of is
0 in Gn,. Hence, G/ and in GH, have the same number of nodes with outdegree > 0.
This means that H and H’ have the same number of source sets, i.e., H is SM. D

We are now ready to prove the results concerning implications among minimality
concepts (see Fig. 6).

THEOREM 2. Let H be a hypergraph.
a) If H is SHM then H is also SM.
b) If H is SHM then H is also HM.
c) If H is SAM then H is also SM.
d) If H is 0 then H is also SHM.
e) If H is 0 then H is also SAM.
Proof. Let GH be the FD-graph of H.
a) (SHM=C,SM). Let us proceed by contradiction by supposing that H is SHM

but not SM. By Proposition 2b, GH is not LR-minimum, and, by Proposition 2a, since
H is nonredundant, GH has neither redundant nodes nor redundant arcs. Hence GH
has at least one superfluous node. By eliminating such a node, by Fact lb, we determine
a covering G/, of Gn with fewer nodes. Hence the corresponding hypergraph H’ is
equivalent to H and has the same number of hyperarcs as H but a smaller number of
source sets (contradiction with the fact that H is SHM).

b) (SHMHM). Let us proceed by contradiction by supposing that H is SHM
but not HM. Then there exists a hypergraph H’ equivalent to H with fewer hyperarcs
and more source sets than H, since H is SM by part a) of the theorem. Since H’ is
not SM, by Proposition 2b, Gn, is not LR-minimum. Furthermore, since Gn, has no
redundant arcs, Gn, has at least one superfluous node. Let Gn,, be the FD-graph
obtained from G/_/, by eliminating all superfluous nodes. By definition and by Fact lb,
Gn, is LR-minimum and is a covering of Gn. Hence, by Proposition 2b, H" is SM
and equivalent to H and has less hyperarcs than H (contradiction).

c) (SAM==> SM). Since H is nonredundant by definition of SAM hypergraph, by
Proposition 2a, G/ has neither redundant nodes nor redundant arcs. Moreover, Gn
has no superfluous nodes because otherwise, by eliminating such nodes, by Fact lb,
the so-obtained FD-graph would be the representation of an equivalent hypergraph
with a smaller source area than H (contradiction). Hence Gn is LR-minimum and,
by Proposition 2b, H is SM.

d) (O=:> SAM). Let us proceed by contradiction by supposing that H is optimal,
but that there exists an equivalent hypergraph H’ with a smaller source area (and,
then, more hyperarcs) than H. Let us consider the FD-graphs Gu (N, Ay, Aa) and
Gu,= (N/,, A), A) associated to H and H’, respectively. We construct the FD-graph
GH,,= (Nn Nu,, Ay, A’d (-J Aa). By Fact la, Gu,, is a covering of G/4 and Gu,. Further-
more, both GH and G/, are obviously LR-minimum. Hence, by Lemma 1 c) every
compound node in Nu\Nu, is superfluous in G/,,. By eliminating such superfluous
nodes, we obtain an FD-graph with the same number of full arcs as G/ and the same
set of nodes as G/_/,. By Fact lb, this FD-graph is a covering of G/,, and, then, of G/;
therefore, the hypergraph represented by this FD-graph has the same number of
hyperarcs as H but smaller source area (contradiction).

e) (O=>SHM). Once again we proceed by contradiction by supposing that H is
optimal, but that there exists an equivalent hypergraph H’ with less hyperarcs (and,
then, a larger source area) than H. By repeating the same argument used in the proof
of part d) of the theorem, we would find a hypergroph with the same source area as
H but less hyperarcs (contradiction). lq

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS 429

Remark. None ofthe other implications among concepts ofhypergraph minimality
hold (except those obtained by transitivity).

Example 7. Let us again consider the equivalent hypergraphs in Fig. 5. We note
that: a) the SM (HM) hypergraph in Fig. 5b (in Fig. 5c) is not HM (SM), b) the
SHM (SAM) hypergraph in Fig. 5d (in Fig. 5e) is not SAM (SHM or HM). [3

4. Finding minimal equivalent hypergraphs. In this section, we discuss the com-
plexity of finding minimal representations of hypergraphs, thus hypergraphs which
are equivalent to a given one and have some of the minimality properties defined in
the preceding section.

As we have already observed, the problem of determining minimal equivalent
hypergraphs is more complex than in the case of graphs, essentially because the closure
of a hypergraph has an exponential number of hyperarcs and because, in the case of
hypergraphs, we can define minimality with respect to different parameters. In fact,
in the case of graphs, the only concept of minimality is the minimality with respect to
the number of arcs (transitive reduction).

The first results concerning the complexity of determining minimal equivalent
hypergraphs may be derived as immediate consequences of results obtained for sets
of functional dependencies. The first result concerns the complexity of determining
an SM hypergraph.

PROPOSITION 3. Given a hypergraph H=(N, H), finding an SM-hypergraph
equivalent to H can be done in O([HI2).

Proof. An SM-hypergraph equivalent to H can be obtained by the following steps:
1. determine the FD-graph GH of H;
2. eliminate redundant nodes;
3. eliminate superfluous nodes;
4. eliminate redundant arcs;
5. derive the hypergraph H’ corresponding to the reduced FD-graph GH,.
Steps 2-4 correspond to the algorithm presented in [2] for finding an LR-minimum

covering of an FD-graph in time quadratic in the size of Gn. Hence, considering that
the size of Gn is equal to the size of H and that steps 1 and 5 can be obviously
performed in linear time, the result is proved. [3

We point out that also a nonredundant representation of a hypergraph H can be
found in time quadratic in IHI. In fact, to this end, by Proposition 1, it is enough to
perform all steps of the algorithm in the proof of Proposition 3 but step 3.

A second result derived from database theory concerns the complexity of finding
an O equivalent hypergraph.

PROPOSITION 4. Given a hypergraph H (N, H) and an integer k, the problem of
deciding whether there exists a hypergraph H’ equivalent to H with a’ + m’<- k, where a’
and m’ are respectively the source area and the number ofhyperarcs ofH’, is NP-complete.

Proof. See the result in 10] concerning the complexity of determining an optimum
covering of a set of functional dependencies.2 [3

If we now take into consideration Fig. 6, we may note that a characterization of
the complexity of all other minimality criteria is needed. The next results provide a
more precise borderline between tractable and intractable in this domain. To this end,
considering the relationships among all minimality concepts stated in Theorem 2, it is

In [10] it has also been proved that an optimum covering of functional dependencies is also LR-
minimum (i.e., an O hypergraph is also SM). Actually, this implication is also a direct consequence of
Theorem 2.

430 G. AUSIELLO, A. D’ATRI AND D. SACC

sufficient to prove the intractability for the cases of HM and SAM equivalent hyper-
graphs (actually, Proposition 4 may be seen as a direct consequence of the next results).

Let us first of all consider the problem of finding a minimal equivalent hypergraph
with the minimum number of hyperarcs (HM). This problem corresponds to the
transitive reduction of a graph. From the computational point of view it is interesting
to observe that the complexity of this problem increases dramatically when we go from
graphs to hypergraphs. In fact, given a graph G (N, A), the problem of finding the
transitive reduction may be solved in polynomial time O(INI. IAI) [1]. Instead, in the
case of hypergraphs, we shall prove the following theorem.

THEOREM 3. Let H be a hypergraph and let k be a positive integer. The problem of
whether there exists a hypergraph H’ such that H’ is equivalent to H and has no more
than k hyperarcs is NP-complete.

Proof. Since the problem is clearly in NP, we only have to prove its NP-hardness.
To this end, we give a polynomial reduction from the set-covering problem [8] to the
given problem. Let an instance of the set covering problem be given: let S {s, , sn}
be a set of elements and S,. , Sm be a family of subsets of S such that Ui=,...,mSi S.
The set-covering problem is the problem of deciding whether there exists a sub-family
of at most h sets Si,..., Sh such that Uj=I,...,hSO S. Given the above instance, we
may construct a hypergraph H whose nodes are g, , s-,, S, , Sin, T and for every
sj S there is a corresponding hyperarc (S,); besides, for each i, 1 -< -< m, there are
the hyperarc ({g,..., g,}, S) and the hyperarc (T, Si) (see Fig. 8). The problem
consists in deciding whether there exists a hypergraph H’ equivalent to H with a
number of hyperarcs less or equal to k ==,...,, (Is, I)+ m + h. Note that if we take
out from the hypergraph the node T and the hyperarcs leaving it the remaining
hypergraph is nonredundant and no equivalent hypergraph with a smaller number of
hyperarcs may exist. Hence the only redundant hyperarcs may be those leaving T. In
fact, if the sets Sil,’’’ Sih provide a covering of S, all arcs leaving T and different
from (T, S),. ., (T, Sh) are redundant and may be eliminated without changing the
closure. Since the reduction from the instance of set covering to the instance of HM
equivalent hypergraph problem can be obviously done in polynomial time, the theorem
is proved, l-1

Let us now consider the problem of finding a minimal equivalent hypergraph with
the minimum source area (SAM). This problem has no meaning in the case of graphs
since the fact that the outdegree of a node is zero or one is invariant in all equivalent
graphs.

THEOREM 4. Let H be a hypergraph and let k be a positive integer. The problem of
whether there exists a hypergraph H’ such that H’ is equivalent to H and has a source
area less than k is NP-complete.

Proof. Also in this case the problem is clearly in NP. In order to prove that it is
NP-hard, we use a slight modification of the proof of Theorem 3. Let us again consider
the hypergraph in Fig. 8. We construct a new hypergraph H as follows. First we add

FIG. 8. Hypergraph associated with an instance of the set-covering problem.

MINIMAL REPRESENTATION OF DIRECTED HYPERGRAPHS 431

a new node T1 and then we replace the hyperarcs T, S1), T, Sm) with the hyperarc
($1"" SmT1, T). This latter hyperarc may contain redundant nodes. If we eliminate
such nodes, by Proposition 2b, we obtain an SM equivalent hypergraph of H, since
its FD-graph representation Gn is LR-minimum. In fact, in GH neither nodes nor
arcs are redundant and no node is superfluous because there are no equivalent nodes.
Notice that if we did not add the node T1 in Gn, the node $1 Sm would have been
superfluous with respect to the node gl s-,. The instance of the set-covering problem
given in the proof of Theorem 3 has a solution (i.e., it admits a covering of no more
than h sets) if and only if there exists a hypergraph which is equivalent to H and has
a source area not larger than k n + rn + 1 + h. l-1

We conclude by mentioning that in case of minimal equivalent subhypergraphs
of a given hypergraph H (i.e., HM-hypergraphs obtained from H by deleting some
hyperarcs without modifying the closure), the problem is still intractable because of
the NP-completeness of the minimal equivalent subgraph problem [8]. On the other
hand, a nonredundant equivalent subhypergraph can be easily found in quadratic time
by iteratively deleting redundant nodes and arcs in the associated FD-graph representa-
tion. Finally, we note that a stronger concept of directed hypergraph equivalence has
been studied in [3].

REFERENCES

1] A. V. AHO, M. R. GAREY AND J. D. ULLMAN, The transitive reduction ofa directed graph, this Journal,
(1972), pp. 131-137.

[2] G. AUSIELLO, A. D’ATRI AND D. SACCA, Graph algorithms for functional dependency manipulation,
J. Assoc. Comput. Mach., 30 (1983), pp. 752-766.

[3 ,Strongly equivalent directed hypergraphs, in Analysis and Design ofAlgorithms for Combinatorial
Problems, G. Ausiello and M. Lucertini, eds., Annals of Discrete Mathematics, 25 (1985), pp. 1-26.

[4] C. BEERI AND P. A. BERNSTEIN, Computationalproblems related to the design ofnormalform relational
schemes, ACM TODS, 4 (1979), pp. 30-59.

[5] C. BERGE, Graphs and Hypergraphs, North-Holland, Amsterdam, 1973.
[6] H. BOLEY, Directed recursive labelnode hypergraphs: a new representation language, Artificial Intel-

ligence, 9 (1977), pp. 49-85.
[7] R. FAGIN, A. O. MENDELZON AND J. O. ULLMAN, A simplified universal relation assumption and its

properties, ACM TODS, 7 (1982), pp. 343-360.
[8] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-

Completeness, W. H. Freeman, San Francisco, 1979.
[9] S. GNESI, U. MONTANARI AND A. MARTELLI, Dynamicprogramming as graph searching: an algebraic

approach, J. Assoc. Comput. Mach., 28 (1981), pp. 737-751.
10] D. MAIER, Minimum covers in the relational data base model, J. Assoc. Comput. Mach., 27 (1980), pp.

664-674.
11] D. MAIER AND J. D. ULLMAN, Connections in acyclic hypergraphs, Proc. 1st ACM Symposium on

Principles of Data Base Systems, Los Angeles, Ca., 1982, pp. 34-39.
12] N. J. NILSSON, Problem Solving Methods in Artificial Intelligence, McGraw-Hill, New York, 1971.

[13] C. A. PETRI, Communication with automata, Tech. Rep. RADC-TR-65377, Vol 1, Griffith Air Force
Base, New York, 1966.

[14] J. D. ULLMAN, Principles of Database Systems, Computer Science Press, Rockville, MD, 1982.
15] M. YANNAKAKIS, A theory of safe locking policies in Database Systems, J. Assoc. Comput. Mach., 29

(1982), pp. 718-740.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
008

REPRESENTATIONS AND PARALLEL COMPUTATIONS FOR
RATIONAL FUNCTIONS*

JOACHIM VON ZUR GATHEN"

Abstract. Representations of univariate rational functions over a given base of polynomials are con-
sidered, and a fast parallel algorithm for converting from one base representation to another is given. Special
cases of this conversion include the following symbolic manipulation problems: Taylor expansion, partial
fraction decomposition, Chinese remainder algorithm, elementary symmetric functions, Pad6 approximation,
and various interpolation problems. If n is the input size, then all algorithms run in parallel time O(log n)
and use n oct) processors. They work over an arbitrary field.

Key words, parallel processing, algebraic computing, symbolic manipulation, interpolation, Chinese
remainder algorithm, Pad6 approximation

1. Introduction. This work forms part of an endeavour to understand the power
of parallelism in symbolic computation: for which problems in algebraic manipulation
with a polynomial-time sequential solution do fast parallel algorithms exist? Answers
to this question may help to understand the power of parallelism in general: one may
compare the power of different models of concurrent computation by testing on which
models these algorithms can be implemented.

In this paper we present fast parallel algorithms for various problems in algebraic
computation. It soon became apparent that the algorithms for all the problems con-
sidered here would follow the same pattern, namely conversion between different
representations of the given rational function. So we start by introducing in 2 the
notion of representations of rational functions in a given "base" of polynomials. This
notion encompasses several ways of representing rational functions, which are
especially familiar if the rational function is a polynomial: the sequence of coefficients,
a list of values, Taylor series, and a general list of values in "Hermite format". It turns
out that if numerator and denominator degrees are correctly specified, then usually
(but not always) such representations also determine a rational function uniquely.

We describe in 3 two fast parallel algorithms that convert the standard coefficient
representation of a rational function into a "base representation", and vice versa.
Combining them we get an algorithm that converts the representation of a rational
function in one base into that in another base. Section 4 discusses the existence question
for representations. This turns out to be slightly less straightforward than one might
expect, and is illustrated by the well-known fact that the rational functions required
in Pad6 approximation or rational interpolation may fail to exist.

Section 5 presents as application of the general conversion algorithms fast parallel
methods for the following problems in symbolic manipulation: Taylor expansion,
partial fraction decomposition, Chinese remainder algorithm, elementary symmetric
functions, Pad6 approximation, and various interpolation problems. As our model of
parallel computation we can take an arithmetic network, which is a directed acyclic
graph such that each edge either carries arithmetic values from the ground field or
Boolean values, and with the following nodes: arithmetic operations (+, -, x,/, fetch-

* Received by the editors June 28, 1983, and in final revised form December 10, 1984. An abstract of
this paper appeared in the Proceedings of the 24th IEEE Symposium on Foundations of Computer Science,
Tucson, Arizona, 1983, pp. 133-137. This work was partially supported by Natural Sciences and Engineering
Research Council of Canada grant 3-650-126-40 and Schweizerischer Nationalfonds grant 2175-0.83.

Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.

432

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 433

ing a constant), tests (a 0?) of an arithmetic value a, Boolean operations, and selection
of one of two arithmetic inputs according to the value of a further Boolean input. The
algorithms can also be implemented on an algebraic PRAM. The networks all have
depth (=parallel time) O(log2 n) and size (=number of processors) n (i), where n is
the input size. They work over an arbitrary ground field.

The representations discussed so far are sufficient to solve the computational
problems of 5. But their theoretical shortcomings warrant a generalization, so that
in 6 "Laurent representations" are introduced. They have the desired feature that
rational functions now always have a unique representation.

The dual relationship between evaluation at many points and interpolation has
been observed for a long time; also the fact that both computational problems consist
in converting the representation of a polynomial from one format to another; see e.g.
Strassen 1974]. However, one usually employs two quite different-looking sequential
algorithms to solve the two problems. Besides the unification resulting from our
approach even for polynomials, the fact of including rational functions into this
framework seems to be even more interesting from a computational point of view,
making bedfellows of such distinct-looking problems as Hermite interpolation and
Pad6 approximation. We leave as an open question how well this approach translates
into the sequential setting.

2. Representations of rational functions. Let F be an arbitrary field. A sequence
B (hi," , bp) ofpairwise relatively prime polynomials bl," , bp F[x]\F is called
a base. A sequence N (nl, ., np) Np with hi_-> 1 is called a precision (for B), and
n =Y__<i_<_p ni deg b is the total precision of (B, N). A sequence

r- (rlo,""", r1,.,-l; rpo,’’’, rp,np--1)

such that for all i, j with 1 <_- _-< p and 0 -<_j < n

ri Fix],

deg rj < deg b,

is called a representative in base B with precision N, or (B, N)-representative for short.
R(B, N) is the set of all (B, N)-representatives. R(B, N) can be identified with F".

DEFINITION 2.1. Let r R(B, N), and g, h Fix] with h 0. Then r is called a
weak (B, N)-representation of (g, h) if for 1 -< <- p we have

g=-h Z rub modbT’.
O<--j

r is called a (B, N)-representation off= g/h F(x) if in addition

In other words, if we set

gcd (b bp, h)= 1.

ri-- Z rob,
O<--j<ni

then f= r mod b’, is given with "precision ni deg b", and r is developed according
to powers of b.

One verifies that for given B, N, f, r the property "r is a (B, N)-representation
of f" does not depend on the choice of polynomials g, h such that f= g/h and

434 JOACHIM VON ZUR GATHEN

gcd (bl bp, h) 1. Ideally, we would like our representations to have two properties:

Representability: Given (B,N), every fF(x) has a unique (B,N)-
representation.

Convertibility" There exists a fast parallel algorithm for converting rep-
resentations from one base into another base.

As they stand, both properties fail to hold; but fortunately this failure is only marginal.
Representability is discussed in 4 and Remark 5.4, and it turns out that almost all
rational functions have a unique representation. The second conversion algorithm of
3 may return a pair of polynomials of which the input representation is only a "weak

representation"; this is the reason for introducing the latter. Again, for almost all
inputs this weakness does not appear. Note that it does not make sense to speak of
weak representations of a rational function, since the above congruence alone would
allow any (B, N)-representative r to represent any rational function f= g/h F(x),
by writing f (bg)/(bh) with b bl. bp. The gcd condition rules these unwanted
representations out.

In 6, we introduce the more general "Laurent representations". These then have
both desired properties, and thus are the appropriate objects for this theory. Though
inappropriate from a theoretical point of view, there are two reasons for introducing
the representations and weak representations as above: Firstly, they are easier to define
and work with, and secondly, they are sufficient to discuss the applications in 5.

If N=(nl,...,np) and M=(ml,...,mp) are two precisions for B, mi<-ni for
all i, and r R(B, N) is a representation of f, then one obtains a representation in
R(B, M) off by truncating the ro’s with j>_- rni.

Before proceeding with the general development, let us look at a few familiar
representations that fit into this framework. As examples we will use n 5 and the two
rational functions

-7x2+x+2fl=x4-xa+2x2-3x-2F[x], f2 xE+x_l F(x).

When B and N are given, we will write r p(f) if r is a (B, N)-representation
off.

1. Sequence of coefficients. In this most familiar of all representations we have
p=l, B-(x) and N=(n). For a polynomial f=o<_jfxJF[x], the (B,N)-
representation p(f)= (fo,""" ,f,-1) is simply the sequence of the first n coefficients
(irrespective of the degree off). For a rational function f (with nonzero constant term
in the denominator polynomial), p(f) is an initial segment ofthe power series expansion
off. In the example, N=(5) and p(fl)=p(f)=(-2,-3,2,-1, 1).

2. List of values. Given are a,..., a, F pairwise distinct, and p--n, B=
(x-al,’’’ ,x-a,) and N=(1,. ., 1). Then ri=f(a) is the value off at a. For the
example, let (al,"’,as)=(-2,-1,0,1,2) (and assume that char F#5, so that
gcd(x-2, x2+x-1)=l). Then B=(x+2, x/l,x,x-l,x-2), N-(1,1,1,1,1),
p(f) (36, 5,-2,-3, 8), and p(f2)= (-28, 6,-2,-4,-__4)

3. Taylor expansion. Here some aF is given, and p=l, B=(x-a), N=(n),
and r (ro, , r,_l) where

f= E r(x-a) mod(x-a)",
0=<j<

so that ro," , r,_ are the first n coefficients of the Taylor expansion off at a. (It is
assumed that f can be written with a denominator that does not vanish at a.) If

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 435

char F 0, then

Note that these Taylor coefficients are well-defined for any field F, whereas the
expression on the right-hand side above does not make sense if char F =<j.

The sequence of coefficients is nothing but the Taylor expansion at 0. In the
example, if we choose a 2 and n 5 (and char F # 5), then

(-24-34-11)P(f1)= (8, 25, 20, 7,1) and p(f2)=
5 5’25’25’15

4. General list of values. As a common generalization of the last two cases, we
get the general list of values of the rational function and some of its derivatives in
"Hermite format". We have al,’", ap F pairwise distinct, B (x-a1,’’’, x-ap)
and N (hi, ", np) with n +" + np n. Then

P(f) (rio,""", rl,.,-1; rpo, , rp,.-l),
where

ri E ro(x- ai) j--f mod(x-ai)"’
O<j< ni

is the initial segment of length ni of the Taylor expansion of f at ai. In the example,
we choose p=2, al=-l, a2=2, B=(x+l,x-2) and N=(2,3) (and again assume

char F 5). Then

0(fl) (5, -14; 8, 25, 20) and o(f2)= 6, -21,
5 5’

Remark. Note that the standard encoding of a rational function f= g/h by the
coefficients of g and h is not a representation in our sense. However, it will play a

crucial role in the conversion algorithms of the next section.

3. Conversion algorithms. We now describe two algorithms" the first one converts
a rational function that is given as the quotient of two polynomials (and these
polynomials are represented by their coefficient sequences) into its representation in
base B with precision N, and the second one performs the inverse conversion. Thus
the standard representation by coefficients plays a special role: The basic parts ro are
given by their coefficients, and our conversions from one representation to another
pass via this standard representation.

We will make use of the Extended Euclidean Scheme of two polynomials ao, al
F[x], where al 0:

ao qla + a_, s2ao-F t2a a2,

at-2 qt-lat-1 -b at, staoq- ttal at,

al-1 qlat, st+lao+ tl+lal al+l,

where the following conditions are satisfied for 2 <_- k _-< + 1: ak, qk, Sk, tk F[x], at+l 0,
ak-1 qkak + ak+l, deg ak deg ak-1, S0 1, to 0, S 0, t 1, Sk Sk_2 qk_lSk-1 and
tk tk-2--qk-1 tk-1. Thus the q’s are the quotients and the a’s the remainders of Euclid’s
algorithm, the s’s and t’s are the "continuants" or "convergents", and gcd (ao, al) is

436 JOACHIM VON ZUR GATHEN

the unique monic scalar multiple of at. (By convention, all gcd’s of polynomials in
F[x] are monic.) Also note that gcd (Sk, tk) 1 and deg ak-1 +deg tk -deg ao for all
k>_-l.

ALGORITHM STANDARD-TO-REPRESENTATION. (Standard coefficients to
base representation.)

Input: A base B (bl,. ", bp) with a precision N (nl,. ", np) and total
precision n, and a pair (g, h) of polynomials in F[x] such that
gcd (bl bp, h) 1. All input polynomials are given by their coefficient
vectors.

Output: A (B, N)-representation r off-gh.
1. For all i, 1-<_i-<_p, do steps 2, 3, 4.
2. Compute si, ti F[x] such that

sib’’ + tih 1,
deg t < ni deg b.

3. Compute r F[x] such that
r-- gt mod b ’,,
deg r < n deg bi.

4. For all j, 0-<_j < n, compute uo, vo, ro Fix] such that
r uijb +
deg v <j deg bi,
rq uq u,+ b.

(Division with remainder of r by b. Use uo=ri and ui,,, =0.)
5. Return

r= (rio,’’’, r,,-l;’’’; rpo,’’’, rp,,,_).
ALGORITHM REPRESENTATION-TO-STANDARD. (Base representation to

standard coefficients.)
Input: A base B=(b,..., bp) with a precision N=(n,..., np) and total

precision n, a representative re R(B, N) and d N with d < n. (This
number d serves as a bound on the degree of the denominator poly-
nomial.) Again all input polynomials are given by their coefficients.

Output: The coefficients of two polynomials g, h F[x] such that r is a weak
(B, N)-representation of (g, h), deg h =< d, deg g < n d, h is monic and
god (b’ bp, h) =god (g, h).

1. For all i, 1 -< _-< p, compute r ’.oj<,, rob.
2. For all i, 1 -<_ -<_ p, compute vi, ei Fix] such that

vibes.., b’5’b"’+’. ",,
+ bp =lmodb,,

deg vi < n deg b,
tli_ tli+ tip,ei vib bi_ bi+ bp

3. Compute to Fix] such that

w =- riei mod b’ bp,,
l<_i<_p

deg w < ni deg bi n.
(Then for all i, w-= r mod .)

4. Compute the length and the entries ak, Sk, tk, where 2_--< k_-< l+ 1, of the
Extended Euclidean Scheme of (ao, a)= (b’... b,, w).

5. Determine k, 1 _-< k-_< l+ 1, such that deg ak < n d <= deg ak-1, the leading
coefficient A of tk, and return g A-lak, h X-tk.

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 437

THEOREM 3.1. The algorithms STANDARD-TO-REPRESENTATION and REP-
RESENTATION-TO-STANDARD work correctly as described. They can be performed
on arithmetic networks ofdepth O(log2 n) and size n o(1 for inputs that have totalprecision
at most n and (for STANDARD-TO-REPRESENTATION) deg g + deg h < n.

Proof. We first consider algorithm STANDARD-TO-REPRESENTATION. The
depth and size bounds follow from the results in yon zur Gathen 1984b].

To prove correctness, we note that for 1 _-< i-< p

Y’. rob= E (u,j-u,,j+lb,)b
0----<j ni 0_--<j< n

’. (uobj ui,j+ bj+) Uio- ui.,bT’ ri,
Oj<ni

and the polynomial

rijbi uijbj ui.j+ bj+1 vii + Vi,j+

has degree < (j + 1) deg bi, and hence deg r0 < deg b. This shows that r R(B, N), and

g hr =- g hgt =- g(1 hti) =- 0 mod

implies that r is a weak (B, N)-representation of (g, h). Thus algorithm STANDARD-
TO-REPRESENTATION works correctly.

To prove correctness of algorithm REPRESENTATION-TO-STANDARD, we
first note that v as required in step 2 exists, since b,..., be are pairwise relatively
prime. For 1-<_ i,j <-p we have

ei Sij mod

(so that the e’s are "mutually orthogonal idempotents" in F[x]/(b’; .bTop)), and
w r mod b’,. (This is the "Lagrange version" of the Chinese remainder algorithm.)

Clearly Skb’; bT,p+ tkW ak implies that

g=- hw=- h rb mod b"’
O<=j<ni

for all i. Also
god (g, h)= gcd (b’, b, h),

since gcd (Sk, tk)- 1. (For later use, it is convenient to make tk monic.) Furthermore,
deg ak- + deg tk n and n d _-< deg ak-1 imply the required degree bound deg h _-< d.
The depth estimate O(log2 n) follows from von zur Gathen [1984b]. lq

Remark 3.2. Division with remainder of two polynomials in Fix] of degree at
most n can be performed in depth O(log n) and size n o(1), and also the iterated product
p=p...p, of polynomials with degp<_- n. This was proved by Reif [1983] in the
case that F supports the Fast Fourier Transform, and by Eberly 1984] in general (for
P-uniform networks). Therefore all steps of the two conversion algorithms can be
performed in depth O(logn), except possibly step 2 of STANDARD-TO-
REPRESENTATION, and steps 2 and 4 of REPRESENTATION-TO-STANDARD.
In particular, both conversion problems (i.e. computing the output from the input, as
stated) are "log-depth reducible" to EES, the problem of computing all entries of the
Extended Euclidean Scheme of two univariate polynomials. (The reduction is P-
uniform, rather than the usually required log-space uniform.)

On the other hand, also EES is log-depth reducible to the problem of computing
the conversion from representation to standard coefficients: given ao, a F[x] with

438 JOACHIM VON ZUR GATHEN

0 _-< deg a < deg ao =< n, we can compute for all d, 0 -<_ d < n, polynomials Ud, bd such that

uda =- ba mod a0,

deg bd < n d, deg ua <= d, Ud monic,

by the conversion from the ((a0), (1))-representation r=(a) of a to standard
representation with degree bound d. Then we can compute Vd FIx] such that

Vdao + Udal bd.
It follows from von zur Gathen 1984b], Lemma 2.2, that the nonzero bd of minimal
degree is a scalar multiple of at, and together with those bd for which bdCbd_l we
getmup to scalar multiplesuthe remainders of the Extended Euclidean Scheme of
(ao, al), and Vd, Ud are the "convergents". It is easy then to also compute the quotients
required for EES, and the correct scalar multipliers in depth O(log n) (see von zur
Gathen 1984b]).

Thus the two problems EES and conversion from representation to standard
coefficients are log-depth equivalent. In particular, the continued fraction decomposi-
tion (q,..., qt) of ao/a F(x) can be calculated via this conversion problem.

Remark 3.3. In this paper, we only consider algebraic complexity, using the model
of arithmetic networks over an arbitrary field F. When F is Q or a finite field, it also
makes sense to ask for Boolean circuits implementing the algorithms, with inputs now
represented in some standard fashion over the alphabet {0, 1}, say. It follows from the
results in Borodin, Cook, Pippenger 1983 (see also Eberly 1984]) that both conversion
algorithms can be performed on log-space uniform families of Boolean circuits of
depth O(log2 n) and size n. Note, however, that at the present time no (log n)
depth method is known to compute modular inverses (or even the gcd) of n-bit integers.
When F is Q or some Zp, then the above Boolean circuits use a "redundant notation"
u/v for field elements, with u, vZ, v>0, but not necessarily gcd (u, v)= 1. If F= Zp,
then we can also enforce 0 <- u, v < p, but we do not know how to replace (u, v) by the
unique w such that w -= (u/v) mod p and 0 =< w < p.

4. Relresentalfility. In this section, we discuss the questions of Representability
and Convertibility as mentioned in 2. We first provide a (large) subset S(B) F(x)
such that everyf S(B) has a unique (B, N)-representation, and then a subset T.n,d
F(x) such that on Tn.n.d, algorithms STANDARD-TO-REPRESENTATION and REP-
RESENTATION-TO-STANDARD compute functions that are inverse to each other.

Fix a base B and a precision N. If f= g/h with g, h Fix], gcd (g, h)= 1 and
gcd (b, h) 1, then f has of course no representation in base B. Namely, if r were a
representation, then

gcd bl, h)lg hrl,

and hence

gcd (b, h)lg,

contradicting the assumption.
The example (bg)/(bh) of 2 showed that the congruence condition in Definition

2.1 is too weak for unique representation. To rule out this example, we introduced the

gcd condition, which corresponds to

S(B) {f F(x): ::lg, h F[x] such thatf= g/h and gcd (b... bp, h)= 1}.

(This semilocal ring S(B) is the intersection in F(x) of all localizations F[x]q, with

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 439

q running through the irreducible factors of bl bp.) We now show that Representa-
bility holds for the elements of S(B).

TrIEOREM 4.1. Let B be a base, N a precision for B, g, h F[x] with gcd (g, h) 1,
andf gh F(x). Then the following are equivalent:

(i) (g, h) has a unique weak (B, N)-representation,
(ii) f has a unique B, N)-representation,
(iii) gcd (bl"’" bp, h)= 1,
(iv) f S(B).
Proof. We will prove "(i)==>(iv)(iii)(i)" and "(ii)<=>(iii)".
For "(i):=>(iv)", assumef $(B), and that (g, h) has a weak (B, N)-representation

r=(rlo,’’’,rp,,p_l)R(B,N). Then gcd(bl...bp, h)#l, and we take and an
irreducible polynomial q Fix] such that qlgcd (hi, h). Now change r to f R(B, N)
by replacing ri,,,_l with gi,n,-1 ri,n,-1 + bi/q. Then

hri.n,_b’-1= h?i,,_b’-1 mod bi

and # r is also a weak (B, N)-representation of (g, h).
For "(iv)(iii)", let fS(B), and write f=/h with ,hF[x] and

gcd (bl bp, h) 1. Now assume that gcd (b bp, h) 1, say that
qlgcd (b bp, h) for some irreducible q Fix]. Then from Ch g/7 we get qlgg and
hence qlg, a contradiction.

For "(iii)(i)", we have seen in Theorem 3.1 that algorithm STANDARD-TO-
REPRESENTATION with input (B, N, g, h) computes a (B, N)-representation of f,
which is of course also a weak (B, N)-representation of (g, h). So now suppose that
(g, h) has two weak (B, N)-representations r, R(B, N), and let r o-<_j<,, rb,
and similarly . Then for all i, 1 <-i -< p, we have

b,lh(r,-), gcd (b,, h)= 1,

which implies that

deg (ri- i) < n deg b,

and hence r . It follows that r , and (i) is proven.
For "(iii)(ii)", we first note that, assuming (iii), any re R(B, N) is a weak

(B, N)-representation of (g, h) if and only if it is a (B, N)-representation off. Since
(iii) implies (i), (ii) also follows.

For "(ii)(iii)", we assume that f has a (unique) (B, N)-representation, and
therefore f= ,/h with ,, h F[x] and gcd (bl bp, h) 1. Then h gh, and if
qlgcd (bi, h) for some and q F[x] irreducible, then qlg. (iii) is proven. [3

Example 4.2. For the second property of algorithms REPRESENTATION-TO-
STANDARD and STANDARD-TO-REPRESENTATION computing inverse func-
tions, consider the example p 1, B (x x), N (1), d 1 and r (x2 + 1) (and
assume char F # 2). The output of algorithm REPRESENTATION-TO-STANDARD
is (-2x, -x). Ifwe now simplifyf- -2x/-x tof- 2 and apply algorithm STANDARD-
TO-REPRESENTATION with input B, N, (2, 1), the output is (2)# r. This example
makes it clear that the second property will not hold for all r R(B, N). But we will
see that it holds for "almost all" r.

Consider the following set TB,n,d"
TB,,.d {(g, h) FIx]E: gcd (g, h)= gcd (b"" bp, h)= 1,

h is monic, deg g < n d, deg h -< d}.

440 JOACHIM VON ZUR GATHEN

Ignoring the data B, N, d, which remain unchanged throughout the algorithms (d does
not even appear in STANDARD-TO-REPRESENTATION), we now write a(g, h) r
and fl(r)- (g, h) for the functions computed by the two algorithms STANDARD-TO-
REPRESENTATION and REPRESENTATION-TO-STANDARD. For (g, h) T,n,a,
we have f=g/hS(B), and r=t(g,h) is a (B, N)-representation off.

THEOREM 4.3. Let B be a base, N a precision for B with total precision n, and d < n.
Then the functions a and fl are inverse bijections between the set Ta.n,d

_
F(x) and its

image in R B, N).
Proof. Let U a (Ta.n,d) be the image of Ta.n,d in R (B, N). It is sufficient to show

that fl a(, h)= (, h) for any (,, h) Ta,n,a, since then a" T,n,d- U is injective, and
surjective by definition. Furthermore, fl is a section of c, and hence its inverse.

So let (g, h)=fl a(g,/) (A-lag, A-ltk), using the notation of the algorithms,
np We can assume # 0, and then ak Y O. Fromand writeb bl bp.

for all i, it follows that

g hr mod b’,

g= hw mod b,

and there exists s F[x] such that

sb + hw g,

deg g + deg h < n deg b.

By the uniqueness of the Extended Euclidean Scheme (see e.g. von zur Gathen 1984b],
Lemma 2.2), there exists m {1,..., l} and u Fix] such that

, Ham, h Utm,

deg am --< deg < deg am-1.

Since deg am<-deg<n-d<-_deg ak-, we have k<-_m. But on the other hand
n -deg am-1 deg tm --< d implies that n d <_- deg am-i, and therefore m _-< k. It follows
that m--k, and

g uA-lg, / UA -1 h.

Since gcd (g,/7) 1, u F. Both h and/ are monic, therefore uA-= 1.

5. Applications. We can now reap the fruits of the work spent in setting up the
previous notation. By putting together algorithms REPRESENTATION-TO-STAN-
DARD and STANDARD-TO-REPRESENTATION (using dillerent bases) we obtain
a fast parallel algorithm for conversion from one base to another. This yields fast
parallel algorithms for a number of important problems in symbolic manipulation (and
also clarifies how these problems are related to each other).

INTERPOLATION (n) has as input a pair (a, r) where a-(a1,.", an) and
r (r,..., rn) have entries from F, and ai aj for 1 <-i<j <-n. The output are the
coefficients of the uniquef F[x] such that degf< n and f(ai) r for 1 -<_ i-<_ n. This
function is nothing but the conversion from ((x-a,...,x-an), (1,...,1))-
representation to ((x), (n))-representation. (In order to obtain the unique monic
g F[x] of degree n such that g(a) r for all i, one uses the interpolation polynomial
f for the values r a’, and g x +f.)

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 441

TAYLOR EXPANSION (n) has as input aF and the coefficients
(go," ", gn-d-l’, ho," ", hd) of

o-<_j<,-a gjxf= .o<-<-_d hx
F(x)

where ha O. The output are the Taylor coefficients fo, ",f,- F of f at a, so
that f=-Yo<_<,f(x-a) mod(x-a)". This is the conversion from coefficients to
((x a), n))-representation.

HERMITE INTERPOLATION (n) has an input of the form (a, r, , rp), where
a (a,. ., ap), r (ro, ", r,,,_), all a, ro F, and a a for 1 -<_ <j_-< p, and

n +...+ np n. The output are the coefficients of the unique polynomial f F[x]
such that degf< n and

f=- Y ro(x- ai) mod (x- ai) n’
O<--_j<ni

for l <=i<-p.
Thus the first ni coefficients of the Taylor expansion of f at ai are prescribed. If

char F 0, this is equivalent to prescribing the values of the first ni derivatives off at

ai as

(d’f.(ai)=jlrO.dx]

HERMITE INTERPOLATION (n) is the conversion from ((x-a1,’", X-ap),
(hi,’’ .,np))-representation to ((x),(n))-representation. INTERPOLATION is a
special case of this problem. Again, one can also compute the unique monic inter-
polation polynomial of degree n.

CHINESE REMAINDER ALGORITHM (n) has as input a sequence
(bl, ", b, r, ", rp) of polynomials from Fix] such that deg (b bp) n, deg ri <
deg b, the b’s are nonconstant and pairwise relatively prime. The output are the
coefficients of the unique f Fix] such that f--ri rood bi for 1 <_-i<-_p and degf< n.
This is the conversion from ((b,..., bp), (1,..., 1))-representation to ((x), (n))-
representation.

ELEMENTARY SYMMETRIC FUNCTIONS (n) has as input a sequence
(c,...,c,) with ciF. Output are the elementary symmetric functions sj=

cr(c,..., c,) for 1 <-j-<_ n. Thus

t"-slt"-+ .+(-1)"s,=(t-c) (t-c,),

where is an indeterminate. This can be viewed as a special case of the monic version
of HERMITE INTERPOLATION: Set C {c,. , c,}, p # C, {a,. , ap} C,
and ro -0 for 0_-<j < ni, where ai occurs exactly ni times among Cl, , c,. The inverse
functionroot-findingcannot be computed by a rational algorithm.

PARTIAL FRACTION DECOMPOSITION (n) has as input the coefficients of
polynomials b,. ., bp and q, and n,. ., np N such that b,. ., bp are nonconstant
and pairwise relatively prime, and degq<deg(b .b,p)=n. Output are the
coefficients of the unique polynomials si (1 <- -< p, 1 -_<j < ni) such that

q

’ b-’
<--j<---- ni

deg si; < deg

442 JOACHIM VON ZUR GATHEN

(For a slightly more general case, one would not assume deg q> n; then one first
has to perform a division with remainder to get a polynomial summand plus a problem
of the above format.) We note that for all

q=- bl" bi’--1 bi/l bpp sijb’P -j mod b

j<=n

We first convert the ((x),(n))-representation of q to the ((bl,’",bp),
(nl,...,np))-representation r, then for all i, l<=i<-_p, take ri and vi as in steps 1
and 2 of REPRESENTATION-TO-STANDARD, and compute the ((bi), (ni))-
representation (S*o,’" s.* for 1,,ni--1) of viri. Then sij s.*,.,,_ =<j

PADI APPROXIMATION (n) has as input a polynomialf Fix] of degree < n,
and d N with 0 =< d < n. The output consists of the coefficients of polynomials g, h
Fix] such that g=-fh mod xn, deg g < n-d, deg h <_-d, and h is monic. Thus g/h
fmod x is a Pad6 approximant to f (provided h(0)# 0). This is the conversion from
the ((x), (n))-representation (fo,"" ",fn-1) of f=Yfx to standard representation.
(For sequential Pad6 computations, see Gragg [1972], Geddes [1979], Brent, Gustav-
son, Yun [1980], and for an overview of the theory Baker, Graves-Morris [1981].)

CAUCHY INTERPOLATION (n) has as input dN with 0 -< d < n and a pair
(a,r) where a=(al,...,an), r=(rl,...,rn)Fn, and aia for l_-<i<j<_-n. The
output consists of the coefficients of polynomials g, h Fix] such that g(ai) h(ai)ri
for 1 <- =< n, deg g < n d, deg h -< d, and h is monic. Thusf g/h is a rational function
with prescribed denominator degree that interpolates the given values ri at ai, i.e.
f(ai) ri (provided h(ai) # 0). Cauchy [1821] had considered this problem and given
an explicit solution by a closed formula similar to the Lagrange interpolation formula.
For a modern treatment, see Gustavson, Yun [1979] and Knuth 1981, Exercise 4.7-13].
Algorithm REPRESENTATION-TO-STANDARD with base B (x a1, ",x an),
precision N (1,. ., 1), and degree bound d computes a solution.

RATIONAL HERMITE INTERPOLATION (n) has an input of the form
(d, a, rl, rp) where 0 <- d < n, a (al, at,), ri (rio,’’’, ri,n,-1), all ai, ro F,
ai a for 1 _-< <j -<_ p, and n +. + np n. The output are the coefficients of poly-
nomials g, h F[x] such that

g=- h E ro(x- ai) mod (x- ai) n’,
O<=j ni

deg g < n d, deg h -<_ d, and h is monic. Thus the initial segments of the Taylor
expansion of the rational function f= g/h at ai are prescribed, i.e.

f= Y. ro(x- ai) j mod (x- ai) n,
O<=j<

(provided h(ai) 0). This problem simultaneously generalizes HERMITE INTER-
POLATION (which has d =0), PADt APPROXIMATION (which has p= 1 and

al =0), and CAUCHY INTERPOLATION (which has nl np 1). It can be
computed by algorithm REPRESENTATION-TO-STANDARD with input B=
(x- al," ", x- ao), N= (nl," ", n) and r= (rl;" rp).

The following theorem tells us that all the above problems have a fast parallel
solution.

THEOREM 5.1. The following nine functions can be computed in depth O(Iog2 n)
and size no1 INTERPOLATION, TAYLOR EXPANSION, HERMITE INTERPO-
LATION, CHINESEREMAINDERALGORITHM, ELEMENTARYSYMMETRIC
FUNCTIONS, PARTIAL FRACTION DECOMPOSITION, PAD, APPROXIMA-
TION, CAUCHYINTERPOLATION, RATIONAL HERMITE INTERPOLATION.

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 443

Proof. Use Theorem 3.1 and the fact that all these problems can be solved by
algorithms STANDARD-TO-REPRESENTATION and REPRESENTATION-TO-
STANDARD.]

Remark 5.2. Not unexpectedly, the above general result is not the best possible,
at least in some cases dealing with polynomial problems. For a polynomial f, TAYLOR
EXPANSION can be computed by calculating binomial coefficients and evaluating
universal Taylor coefficients of f (see von zur Gathen [1984b, 6]). This can be
performed in depth O(log n), so that the corresponding statement of Theorem 5.1 is
interesting only in the case of rational functions. Reif [1983] provides less obvious
methods for interpolation and elementary symmetric functions that use only depth
O(log n) and polynomial size. These methods assume that certain roots of unity are
available in the ground field; they have been extended by Eberly [1984] to hold over
arbitrary fields.

Remark 5.3. Clearly all our computational problems can be expressed by systems
of linear equations, and these are always solvable in depth O(log2 n) (Csanky [1976],
Borodin, von zur Gathen, Hopcroft 1982], Berkowitz [1984]). However, for singular
systems over arbitrary fields only a probabilistic algorithm is known. The above results
amount to saying that in the cases considered here it is sufficient to solve nonsingular
systems oflinear equations; again this is well-known in some cases, such as interpolation
by polynomials (Vandermonde matrix).

Remark 5.4. It is well-known that in some cases the rational interpolation problem
does not have a solution. Theorem 4.3 shows that most r e R(B, N) are representations
of a rational function f- g/h with deg g < n d and deg h _-< d (g and h are poly-
nomials). However, in Example 4.2 we have seen that not all re R(B, N) are such
representations. For a general discussion of this phenomenon, let B- (bl,..., bp) be
a base, N a precision for B, n the total precision, 0-< d < n, and re R(B, N). Set
ao b...bp, and let ale F[x] be a polynomial such that deg al<n and r is a
(B, N)-representation of al. By the Chinese Remainder Theorem (or by Theorem 4.1),
al exists and is unique. Furthermore, let ak, Sk, tk e FIx] be the (unique) entries of the
Extended Euclidean Scheme for (ao, a) with deg ak n d <- deg ak-1. We then have

s’ao + tka ak,

tkal ak mod ao.
Now assume that gcd (ao, tk)= 1. Then r is indeed the (B, N)-representation of f=
ak/tk, and gcd (ak, tk) 1. The latter property follows using the fact that gcd (Sk, tk) 1.
Thus "gcd (ao, lk) 1" is a sufficient condition which guarantees that r is the representa-
tion of a rational function. Note that it is always satisfied if d =0, and then k 1,
ak a, tk l.

This sufficient condition holds "almost everywhere" in the following sense. For
fixed numbers d, p, hi," , np, ml, ", mp the set of inputs (hi,. , bp, r) for algorithm
REPRESENTATION-TO-STANDARD with deg bi mi can be considered as a subset
of Fm, where

m=p+ (n,+l)m,.

It is a Zariski-open dense subset, the only condition being that deg b= m and
gcd (b, bj) 1 for I _-< <j _-< p; the latter condition can be expressed by the nonvanishing
of a resultant polynomial. Now there exists a nonzero polynomial P in m variables
such that

P(b, bp, r) 0:=>gcd (ao, tk)= 1,

444 JOACHIM VON ZUR GATHEN

using the above notation. Thus the sufficient condition holds "almost everywhere" in
the strong sense of algebraic geometry, namely on a Zariski-open dense subset of the
input set (assuming that F is infinite). (P can be chosen so that P(bl,’", bp, r) 0
will imply that the Euclidean Scheme for (ao, a) is normal, i.e. that deg qk 1 for all
k. But in fact, a polynomial P as above exists for every subset of the input space
corresponding to some D(dl,. , dt/), using the notation from Strassen 1983, (5.3)],
and such that P does not vanish identically on the subset.)

Example 5.5. Let us now look at a "bad case" for Pad6 approximation. Let n >- 5
and r xn-l- xn-2+ 1. Then g h x2 is the only solution of the conditions

g, h F[x], g= hr modx",

deg g < n- 2, deg h =< 2, h monic.

In particular, there does not exist a Pad6 approximant f= g/h F(x) satisfying the
above conditions and gcd (g, h) 1. Algorithm REPRESENTATION-TO-STAN-
DARD with input ((x), (n)), d 2, r will output (g, h)= (x2, x2). Similarly, Example
4.2 shows that there is no f= g/h F(x) such that f(1) 2, f(0) 1, f(-1) 2, and
g, h Fix], deg g, deg h =< 1 and gcd (g, h) 1. Algorithm REPRESENTATION-TO-
STANDARD will compute (g, h)= (-2x,-x) which satisfies the conditions

g(1)=2h(1), g(0)= h(0), g(-1)=2h(-1).

This is a "fake solution" which does not yield an interpolating rational function,
while "almost all" other such interpolation problems do have a solution. This
phenomenon of nonexistence of solutions to the Pad6 approximation problem and for
rational interpolation was discovered by Kronecker, who illustrated it with an example.
In Pad6’s work [1892], this fundamental limitation does not appear. For further
examples, see e.g. Graves-Morris [1980].

Historical remark 5.6. The general idea in this paper is to reduce an algebraic
problem to systems of linear equations; for the latter we have fast parallel algorithms.
This idea is in fact quite old. Jacobi 1846] reduces the rational interpolation problem
(for the general Hermite format) to systems of linear equations, and also explicitly
describes the solutions in terms of determinants of the inputs; he has several such
descriptions. In particular, Jacobi seems to have been the first to assert the existence
of what is now called Pad6 approximations. Jacobi also realized the close connection
between the interpolation problem and general banded systems of linear equations in
the Hankel format.

Cauchy 1821] had previously stated an explicit solution to the rational interpola-
tion problem by a closed formula.

Kronecker 1881] has two methods for solving the general interpolation problem,
one via continued fractions (i.e. essentially the Euclidean Scheme) and one via systems
of linear equations. Both Jacobi and Kronecker are motivated by the elimination
problem in algebraic geometry.

In hindsight, it is almost surprising how long it took to rediscover these methods
and cast them into modern algorithms for algebraic manipulation" the subresultant
algorithms of Collins [1967] and Brown [1971] for gcd’s and the Pad6 computations
of Geddes 1979] and Brent, Gustavson, Yun 1980]. The essential ingredients of these
algorithms (and of those presented here) are already contained in the classical papers.

6. Laurent representations. The representations defined in 2 were sufficient to
describe a unified fast parallel solution to the problems in 5. Limitations of these
representations have been pointed out: not all rational functions have representations,

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 445

and representations may not be unique. In this section, we generalize the notion of
representation slightly in order to deal more successfully with these issues.

Two generalizations suggest themselves" one can either allow quotients of poly-
nomials in a representation (which would include the standard representation of a
rational function as a quotient of two polynomials), or one can allow representations
in a "Laurent format". We pursue the latter approach.

DEFINITION 6.1. Let B (b, , bp) Fix]p be a base, consisting of nonconstant
pairwise relatively prime polynomials, and N (Hi,’’ ", np) Np a precision for B,
with total precision n l<__i<__p rl deg b. A Laurent (B, N)-representative is a vector

r (ml, mp; rio, r1,,1-1; rpo, rp,np-1),
where

mi Z, ro F[x], deg r0 < deg bi

for all i,j (l<=i<-p,O<=j<ni). We write ri=o<_j<,,rob. Now let g,hF[x] with
h 0. We say that r is a weak Laurent (B, N)-representation of (g, h) if for all i, b?,
divides g (if mi -> 0), and

gb "*, =_ hri mod b’,.

We now present two fast parallel algorithms that perform the conversion between
the standard and a Laurent representation of a rational function. Later we will
strengthen the conditions on Laurent representations, and obtain a notion with the
two crucial properties of Representability and Convertibility. However, for the descrip-
tion of the algorithm it is convenient to work with the weaker notion first.

ALGORITHM STANDARD-TO-LAURENT. (Standard to Laurent representation.)
Input: A base B=(bl,..., bp), a precision N=(nl,’", np) for B, and two

polynomials g, hF[x]. All input polynomials are given by their
coefficient vectors.

Output: A weak Laurent (B, N)-representation r of (g, h).
1. If g-0, return r-(0,...,0; 0,...,0) and terminate. Else compute a=

gcd (g, h), the leading coefficient A of h, and replace (g, h) by (g/Aa, h/Aa).
(By convention, the gcd is. monic.)

2. For all i, 1-<_ i-< p, do steps 3, 4, and 5.
3. Compute mi Z as follows. If gcd (bi, h) 1, then

mi max {j N" bilg}.

Else

gcd (h, b-’,) gcd (h, b-"*’+1) #gcd (h, b-’,-1).

(Note that this condition determines mi < 0 uniquely.)
4. Compute

c,=gcd(b"*,l,h), g,- hi=--F[x].
Ci Ci

(Then ci 1 if gcd (bi, h)= 1, and gcd (gi, hi)= gcd (bi, hi)= 1.)
5. Call algorithm STANDARD-TO-REPRESENTATION with input ((bi), (Hi),

(gi, hi)) to return (rio,. ", ri, n,-).
6. Return

r= m, mp; rio,’", r,n-l;"" rpo, rp,,,p_).

446 JOACHIM VON ZUR GATHEN

ALGORITHM LAURENT-TO-STANDARD. (Laurent representation to standard.)
Input: A base B (bl,. , bp) and a precision N (hi,. ", np) for B, with

total precision n, d N, d < n, and a Laurent (B, N)-representative

Output: Polynomials g, h F[x] such that h is monic, and r is a weak Laurent
(B, N)-representation of (g, h).

1. For all i, 1 -< <- p, set ei max {0, -m,}, and compute t, u, s, t, u, F[x] such
that

bt+et. lmp+-.p

u
t,

b’,+ e,, u,
b ---’

sit U rob{ mod bT,,
O<--j < ni

deg s < n deg b.

u:b bepp,

2. For all i, 1 -< i<=p, compute the ((b), (ni))-representation s= (S,o, ", Si,ni-1)
of s as in step 4 of algorithm STANDARD-TO-REPRESENTATION. (Then
si o<-j<,, sjb and deg s < deg bi.)

3. Call algorithm REPRESENTATION-TO-STANDARD with input
(B, N, (s,. -, s), d) to compute g’, h’ c Fix] such that for all

g’= h’s mod b ’,,

deg g’ < n d, deg h’-< d, h’ monic.

4. Let/x be the leading coefficient of u, and return

g tx-lg’t,

h tx-X h’ u.

THEOREM 6.2. The algorithms STANDARD-TO-LAURENTand LAURENT-TO-
STANDARD can be performed in depth O(log2 n) and size n 1) on inputs that have
total precision at most n and (for STANDARD-TO-LAURENT) deg g + deg h < n.
They work correctly as described in "Output". In fact, the following relations hold, using
the notation of the algorithms, and ri o-<j<n, rtib"

(i) In STANDARD-TO-LAURENT, if gcd (g, h)= 1, then for 1 -< i<-p,

c=gcd (bm,l, h), gcd(,b)=l, gbc, m’ F[x],

gb m, hr mod b n’ Ci.

(ii) In LAURENT-TO-STANDARD, for 1 - - p, gb, m, F[x], and

degg<n-d+ mdegb,
l<-iNp
O<m

deg h_-< d + m, deg b,,
l<-ip

gb?m’ =- hr mod b’+e’.

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 447

Proof. The bounds on the depth and size are clear. For the correctness proof for
STANDARD-TO-LAURENT, we can assume g 0 and gcd (g, h)- 1. Obviously b m, Ig
if mi > 0. Suppose q F[x] is irreducible, and divides gcd (hi, h), say

qklbi, qk+ld’bi, ql[h, ql+ld’h,

with k, N and k, l> 0. Then (-mi)k >-_ and qllbc,m,,hence q[ci and q,t’h/ci. Therefore
gcd (bi, hi)= gcd (bi, h/ci)= 1, and

gb7m, h
gi =- hiri ri mod bi.,n

Ci Ci

using Theorem 3.1. Thus

gb 7, m’ hri mod b ’,

and r is a weak Laurent (B, N)-representation of (g, h).
For LAURENT-TO-STANDARD, clearly h is monic, and we have

degg=degg’+ (mi+ei) degbi<n-d+ Y, midegbi,
l<=ip l<--ip

O<m

deg h deg h’+ ei deg bi<-- d + (Im, deg bi).
l<-i<_p l<=i<=p

mi<O

If mi > 0, then ei 0, and therefore b’’lt and gb?m,
_
F[x]. With ri Yo<_-j<n, rijb, we

have in any case

uig’ tib ,’ =-- uih’sitib e,txuigb uig tb m’

uih’uirib,’ uh’uiri txhuiri mod b7,+e,.

Since/zui is a unit mod b n’+e’i., it follows that

) ni+egb7mi hri mod

It is clear that Definition 6.1 of "weak Laurent representation" really is too weak.
Under this notion, one function may have many representations. If B- (x), N- (2),
g-1, h-x, so that g/h= 1/x=x-(l+O. x), then we would like to have (-1; 1,0)
as (B, N)-representation of (g, h), but in fact (-1; 1, a) is a weak Laurent (B, N)-
representation of (g, h), for every a F. Not even the mi’s are uniquely determined:
any r-(m; a, b) with m-<_-2 and a, b F is a weak Laurent ((x), (2))-representation
of (1, x3). Even the somewhat stronger congruence in Theorem 6.2(i) does not com-
pletely determine the exponent mi. As an example, take p 1, B (b), N (2), g bgl,
h 1 with deg g < deg b. Then Cl 1, and both (0; 0, gl) and (1; gl, 0) are weak
Laurent (B, N)-representations of (g, h). Thus some more stringent conditions are
necessary to ensure uniqueness of representations.

DEFINITION 6.3. Let B be a base, N a precision, r a Laurent (B, N)-representative
as in Definition 6.1, and g, h F[x] with h 0. We say that r is the Laurent (B, N)-
representation off-g h if the following conditions are satisfied:

(El) gcd (g, h)- 1.
(L2) For all i, l<-_i<-p, set ci=gcd(bm,l,h). Then gb?m’F[x], and

gcd (bi, h/ci)= 1.
(L3) rio 0.
(t4) For all i, 1 =< -< p,

gb7m, =_ hri mod b" ci.

448 JOACHIM VON ZUR GATHEN

Clearly this relation between f and r does not depend on the choice of g, h, since (L1)
determines them up to a scalar factor.

LEMMA 6.4. Let B, N, r, g, h as in Definition 6.3 satisfy (L1), (L2), (L4). Then (t3)
holds if and only if the following condition holds:

(L) For all i,l<-i<-p, either (gcd(bi, h)#l and mi<0 and gcd(b-",,h)=
gcd (b-’’+, h) # gcd (b-m’-l, h)) or (gcd (bi, h)= 1 and mi>-O and b’,lg and

Proof. Note that rio 0 if and only if b does not divide ri.
"(L3)=:(L)": Fix some i, l<-i<-p. If gcd (bi, h)= 1, then c= 1 and m>=0, since

otherwise blgb", and rio=0. (L) follows in this case. If gcd (bi, h) 1, then b.rg
and mi <=0 by (L2). Define < 0 by gcd (b-, h) gcd (b-1+1, h) gcd (b--1, h)). Then
(L2) implies that

c, gcd bre,I, h gcd b’1, h)

and m -< L If mi < l, then blb,’,/c, and (L4) implies that bl(h/c)r, hence blr. Thus

mi l, and (L) follows.
"(L)=:>(L3)"" Fix some i,l<=i<-p. If m->0, then gcd(b, h)=l and

hence bq’r.
If m < 0, there exists an irreducible polynomial q Fix] with multiplicity l> 0

in ci =gcd (b-’,, h) such that q.rb7,"’-. Choose some such q and l, and let k be the
multiplicity of q in b. Then (-m-1). k < l, and the multiplicity of q in b7,",/c is

(-mi). k-l<k. Since also q,rg, we have qk;(gbm’/ci and therefore b.r(h/c)r.
Note that in Definition 6.3, mi and c do not depend on N, and as in 2, the

Laurent (B, M)-representation for M =< N is obtained by truncating the Laurent
(B, N)-representation.

In order to compare Definitions 2.1 and 6.3, let B, N be as usual, g, h Fix] with

gcd (g, h)= 1, f=g/h F(x), r=(ml, mp; ro,""", rl,n,-; "’’; rpo, rp,.np-.) a

Laurent (B, N)-representative. We assume bT"lg if m >_-0, and define ci =gcd (b",, h)
as in (L2). Let b b’.., b, c Cl"’Cp, and u Fix] such that

’’i u I-I bj-m 1 mod b’/,c, deg u < deg bc.
j

For_ sim_plicity, we assume gcd (u, h)= 1. Set =(gu/c) 1-I<_<_p b7m’, h= h/c F[x],
f=,/hF(x), and =(rlo,’",rl,n,-;’"; rpo,’’’,rp.,p_l)R(B,N). Then
gcd (, h)= 1, and we have:

1. r is a weak Laurent (B, N)-representation of (g, h) and (L4) holds
O is a weak (B, N)-representation of (, h),

2. r is the Laurent (B, N)-representation of f
O is a (B, N)-representation of f and (L) holds.

THEOREM 6.5. Let B be a base, N a precision for B, andf F(x). Then"
(i) f has a unique Laurent (B, N)-representation.
(ii) Given g, h Fix] withf= g/h and gcd (g, h) 1, algorithm STANDARD-TO-

LAURENT computes the Laurent (B, N)-representation off.
Proof. (i) Foran arbitraryfe F(x), writef= g/h with g, h F[x] and gcd (g, h)

1. Let r be the weak Laurent (B, N)-representation of (g, h) computed by algorithm
STANDARD-TO-LAURENT with input B, N, g, h. Theorem 6.2(i) guarantees that
(L), (L2), (L), (L4) hold, hence r is the Laurent (B, N)-representation off. This also
proves claim (ii).

For the uniqueness, let r(1 and r(2) be two Laurent (B, N)-representations of
f= g/h. Fix some i, 1_-< i_-<p. First note that the value of m is determined by the

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 449

condition (L). As usual, we write rlk= o_-<j<n, rb for k= 1, 2. Then

-m, hrl2) mod bi’cihr1)=- gbi =-

by (L4), and hence

hhrl__ r2 mod
i i

r1-=
since h/ci F[x] is a unit mod b, (using (L2)). Since deg rk < deg b’,, it follows that
r= r, hence r= r2.

Next we want to prove that the functions computed by the two conversion
algorithms are inverses of each other. It turns out that, unlike in Theorem 4.3, we have
to impose a condition on the base to guarantee this.

THEOREM 6.6. Let B b, ., bp) be a base. efunctions computed by algorithms
STANDARD-TO-LAURENT and LAURENT-TO-STANDARD are inverses of each
other if and only if each bi is irreducible.

Proo To be more precise, we claim the following for any base B. Let N be a
precision for B with total precision n, 0 d < n, R ZPx F" the set of Laurent
(B, N)-representatives. By Theorem 6.5, we have a mapping ps: F(x) Rs, which
associates to each f F(x) the unique Laurent (B, N)-representation p(f)R of

Let

Tn,,a {(g, h) Fix]E: gcd (g, h)= 1, h 0is monic,

p() (ml,""", mp; rio,""", r,,_;... rpo,’’’, rp,,_)R,

deg g < n d +
O<m mi<O

The bounds on the degrees of g and h are the same as those for the output of
LAURENT-TO-STANDARD. From Theorem 6.5 it is clear that STANDARD-TO-
LAURENT maps (g, h) Tn,N,d to pN(g/h) R. Let

Un,N,a PN f: l(g, h) e Tn,,a f= RN.

For (g, h) Tn,s,d, we can execute algorithm STANDARD-TO-LAURENT with input
(B, N, g, h) to get output r p(g/h) Ua,N.d. On the other hand, for r Ua,,d, we
can execute algorithm LAURENT-TO-STANDARD with input (B, N, d, r) to get
output (g, h). The claim of the theorem is that the two conversion algorithms give
inverse bijections between Tn,,d and Un,,d for all N and d if and only if each b is
irreducible.

For the implication ":=>", we can assume that b -"/)W with v, we F[x] non-
constant. Choose N (2, 0,..., 0) and d- 1 +deg v. With input g 1, h-v, STAN-
DARD-TO-LAURENT will produce r- (-1, 0,- , 0; w, 0), and LAURENT-TO-
STANDARD will yield (w, bl) (1, v).

For the implication "=", it is sufficient to show that for any B, N, d, (g, h) Tn.,d,
and r pN(g/h), algorithm LAURENT-TO-STANDARD with input (B, N, d, r)
computes (g, h). We use the notation of the algorithm, and set

tzgt-1, tzhu -1.

450 JOACHIM VON ZUR GATHEN

Our goal is to show that , h are equal to g’, h’ as computed in step 3 of
LAURENT-TO-STANDARD. First note that ,, h Fix]" If mi >-0, then ei 0 and
b?’lg by condition (L2). If mi <0, then mi+ e=0 and gcd (b-m’, h) gcd (b-m’-l, h).
Since b is irreducible, it follows that gcd (b-m,, h)= bm’, and b’lh. Therefore ulh,
and thus ,/ Fix]. Now for any i, 1 =< =< p, we have c b, gcd (bre’l, h), and

gbm’ =- hr mod b -n’+e’

utb’ tzuigb m, =- tzuhr =- Ihst h-usti utib’ h-s mod b7,+e’.

Since ui and t are units mod b7,+e,, it follows that

(1) , hs mod

As to the degrees, we have

deg=degg+ (-m-e)degb
l<_i<-p

<n-d+ mdegbi+ (-mdegb)=n-d,
0<mi 0<

degh=degh+ (-edegb)
l<_i<=p

_-< d + (Im, deg b,)+ (-Im, deg b,)= d,
mi<O mi<O

since (g, h) Tn.N.d. NOW these degree inequalities and (1) also hold for g’, h’ as
computed in LAURENT-TO-STANDARD. These were obtained as scalar multiples
of certain entries ak, tk of the Extended Euclidean Scheme of (b]’l. b,p, w), with h’
being monic, and w--si mod b’, for all i. Just as for Theorem 4.3, we now use the
uniqueness property of the Extended Euclidean Scheme to get me{I,..., l} and
v F[x] such that - vain, h =Vtm. Again the inequalities for the degrees force m k,
and gcd (g,/) 1 implies g g’,/= h’. Therefore the polynomials iz-g’t and tz-Jh’u
computed by LAURENT-TO-STANDARD equal g and h.

Remark 6.7. The "counterexample" bl--uv, g 1, h- u, where (v, bl) (g, h) is
returned by LAURENT-TO-STANDARD, is of course not very convincing, since
V/bl- g h. The obvious remedy--returning (g/a, h/a) in step 4 of LAURENT-TO-
STANDARD, with a gcd (g, h)wdoes not work as expected. It may happen that
a’-gcd (g’, h’) 1, and that

g-- h’
a’ si mod b

see 4 and 5 for examples.
Remark 6.8. Do we gain greater generality by dropping the requirement that the

base polynomials bl,’", bp be relatively prime? The answer is no, not really. For
simplicity, we consider in the following b’, as one of the base polynomials (rather
than bi), and thus assume that all exponents n are 1. Suppose that c gcd (bl, b2) # 1.
Then clearly for a representation r= (rl; rE;’’ ") off F(x), r and r2 have to agree
mod c. Continuing this process ofreplacing (bi, by) by (b/c, by/c, c) if c =gcd (b, by) # 1,
one arrives at a pairwise relatively prime basis c,..., cq. (Termination is guaranteed
by the fact that the sum of the degrees decreases with each such step.) Each Ck is in
the "gcd-closure" of b,. ., bp (as defined by this process), and there exist exponents
eik >= 0 such that b Hl<_k<=q Cekik for all i. If al, a, are the distinct monic irreducible
polynomials dividing bl’"bp, and dt is the smallest positive multiplicity of a in

REPRESENTATIONS AND COMPUTATIONS FOR RATIONAL FUNCTIONS 451

bl, , bp, then each ek is the product of some a,. In fact, if S G {1, , s} is nonempty
and such that

Vl, m S Vi<=p (a’lb, aa,,mlb,)
and maximal with this property, then I-It,s atd’ is one of the Ck’S. Conversely, every Ck
is of this form.

For i,j<=p, k<=q, let Uijk=min{eik, ejk}. Then for any r,..., rpF[x] we have

::lf F[x] Vi<-_p f =- ri mod b, cVi, k r=-- mod cok.

(For "=", simply interpolate r mod Cik.k, 1 --< k =< q, with ek.k max {ek: 1 <--j <= p}.)
It is, however, not clear how to calculate c, , Cq fast in parallel from b, , bp.

With a "logarithmic" look at exponents of the a’s, this problem is related to the
following: Given f (f, ,fs) N for 1 _<- =< p, use addition and the coordinate-
wise minimum of vectors in N to compute an "orthogonal" basis g, , go N such
that

Vi fe E gkN,
l<_k<q

Vk m min (gk, gin) (0," ", 0),

Vk gk e min-closure of f,. .,fp.

(Of course the algorithm would not know the coordinates of the input vectors f.)
Remark 6.9. The concepts presented in this paper obviously apply to more general

rings than Fix], e.g. a Euclidean valuation ring R, where one has a valuation w and
a division-with-remainder property with respect to w (see von zur Gathen [1984a,
4]). The two prominent examples are our case R Fix] with w(f) 2dey, and R Z

with w(a)=lal. The "interpolation problem" can be phrased as a "simultaneous
approximation problem"" finding g, h R such that g hri mod b’, corresponds to
simultaneously approximating each ri in the b-adic valuation with precision n (if
each b is irreducible); the degree condition for polynomials translates into upper
bounds for w(g) and w(h). For the general problem, we would be given further
valuations v, , v, on R, precisions , t2, El," ep R, and r,. , rp . R, and
want to compute g, h R such that

v(g- hri) <- e,

w(g)<--_,, w(h) _-< t2.
This question of simultaneous approximation with respect to various valuations sub-
sumes among others the usual Chinese remainder computations, solution of congruen-
ces by rational numbers (Miola [1982]), and Pad6 approximation of power series. If
we consider for v the absolute value on R Z instead of a bradic valuation (and
allow r R), then it also subsumes approximation of a real number by rational numbers.

As of now, no (log n)(parallel computation for integer Chinese remaindering
or the gcd of two n-bit integers is known. But even for sequential algorithms, it would
be interesting to have a general approximation algorithm that solves all the above
problems.

REFERENCES

G. A. BAKER AND P. GRAVES-MORRIS [1981], Pad. approximants, Encyclopedia of Mathematics and Its
Applications, vols. 13 and 14, Addison-Wesley, Reading, MA.

452 JOACHIM VON ZUR GATHEN

S. J. BERKOWITZ [1984], On computing the determinant in small parallel time using a small number of
processors, Inform. Proc. Letters, 18, pp. 147-150.

A. BORODIN, S. COOK AND N. PIPPENGER [1983], Parallel computation for well-endowed rings and
space-bounded probabilistic machines, Inform. and Control, 58, pp. 96-114.

A. BORODIN, J. VON ZUR GATHEN AND J. HOPCROFT 1982], Fast parallel matrix and GCD computations,
Inform. and Control, 52, pp. 241-256.

R. P. BRENT, F. G. GUSTAVSON AND D. Y. Y. YUN 1980], Fast solution of Toeplitz systems of equations
and computation of Padd approximants, J. Algorithms, 1, pp. 259-295.

W. S. BROWN [1971], On Euclid’s algorithm and the computation of polynomial greatest common divisors,
J. Assoc. Comput. Mach., 18, pp. 478-504.

A. CAUCHY [1821], Cours d’analyse de l’dcole royale polytechnique (Analyse algdbrique), in Oeuvres
completes, IIe s6rie, t6me III, pp. 429-433.

G. E. COLLINS 1967], Subresultants and reduced polynomial remainder sequences, J. Assoc. Comput. Mach.,
14, pp. 128-142.

L. CSANKY 1976], Fast parallel matrix inversion algorithms, this Journal, 5, pp. 618-623.
W. EBERLY 1984], Veryfast parallel matrix and polynomial arithmetic, Proc. 25th Annual IEEE Symposium

on Foundations of Computer Science, Singer Island FL, pp. 21-30.
J. VON ZUR GATHEN 1984a], Hensel and Newton methods in valuation rings, Math. Comp., 42, pp. 637-661.

1984b], Parallel algorithms for algebraic problems, this Journal, 13 (1984), pp. 802-824.
K. O. GEDDES [1979], Symbolic computation of Padd approximants, ACM Trans. Math. Software, 5,

pp. 218-233.
W. B. GRAGG 1972], The Padd table and its relation to certain algorithms of numerical analysis, SIAM Rev.,

14, pp. 1-62.
P. R. GRAVES-MORRIS [1980], Efficient reliable rational interpolation, Proc. Conf. Pad6 and Rational

Approximation, Theory and Applications, Amsterdam, pp. 28-63.
F. G. GUSTAVSON AND D. Y. Y. YUN [1979], Fast algorithms for rational Hermite approximation and

solution of Toeplitz systems, IEEE Trans. Circuits and Systems, 26, pp. 750-755.
C. G. J. JACOBI [1846], Ueber die Darstellung einer Reihe gegebner Werthe dutch eine gebrochne rationale

Function, J. Reine Angew. Math., 30, pp. 127-156.
D. E. KNUTH [1981], The Art of Computer Programming, Vol. 2, 2nd ed., Addison-Wesley, Reading, MA.
E. KRONECKER [1881], Zur Theorie der Elimination einer Variabeln aus zwei algebraischen Gleichungen,

Monatsberichte der Akademie der Wissenschaften, Berlin, pp. 535-600.
A. M. MIOLA 1982], The conversion ofHensel codes to their rational equivalents, SIGSAM Bull, 16, pp. 24-26.
H. PADt [1892], Sur la reprdsentation approchde d’une fonction par des fractions rationnelles, Annales

Scientifiques de l’Ecole Normale Sup6rieure, 3e s6rie, 9, Suppl6ment $3-$93.

J. REIF [1983], Logarithmic depth circuits for algebraic functions, Proc. 24th Annual IEEE Symposium on
Foundations of Computer Science, Tucson AZ, pp. 138-145.

V. STRASSEN [1974], Some results in algebraic complexity theory, Proc. International Congress of
Mathematicians, Vancouver, pp. 497-501.

[1983], The computational complexity of continued fractions, this Journal, 12, pp. 1-27.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
0O9

ON THE COMPLEXITY OF NONCONVEX COVERING*

WOLFGANG MAASS"

Abstract. We study the problem of covering given points in Euclidean space with a minimum number

of nonconvex objects of a given type. We concentrate on the one-dimensional case of this problem, whose

computational complexity was previously unknown. We define a natural measure for the "degree of

nonconvexity" ofa nonconvex object. Our results show that for any fixed bound on the degree ofnonconvexity
of the covering objects the one-dimensional nonconvex covering problem can be solved in polynomial time.

On the other hand without such bound on the degree of nonconvexity the one-dimensional nonconvex

covering problem is NP-complete. We also consider the capacitated version of the nonconvex covering
problem and we exhibit a useful property of minimum coverings by objects whose degree of nonconvexity
is low.

Key words. NP-completeness, computational geometry, covering, nonconvexity, polynomial time

algorithm, robotics

AMS(MOS) subject classifications. 03D15, 68C25

1. Introduction. In this paper we study the problem of covering given points in
Euclidean space with a minimum number of nonconvex objects of a given type. We
concentrate on the one-dimensional case of this problem, whose computational com-
plexity was previously unknown. We further restrict our attention to ringsmarguably
the simplest nonconvex objects (it is not difficult to extend our algorithms to other
types of nonconvex objects).

A number of researchers (see the discussion and references in Johnson [6, p. 185])
have shown that the following problem is NP-complete: Decide whether n given points
in the Euclidean plane can be covered by k discs of a given radius w. We now look
at a nonconvex variation of this problem. In the following, a ring (or annulus) of size
(r, w) is the set of points that are enclosed by two concentric circles of radius r
respectively r+ w (r and w will always be nonnegative integers in this paper). If we
substitute in the two-dimensional covering problem the discs by rings of given size
(r, w), the resulting nonconvex covering problem is still in NP. Thus the extension to
nonconvex covering objects (rings) does not change the computational complexity of
the problem: In two dimensions both the convex covering problem (with discs) and
the nonconvex covering problem (with rings) are NP-complete.

In contrast to the preceding observation we show in this paper that in the
one-dimensional case significant differences arise between the complexity of the convex
and the nonconvex covering problem. In the one-dimensional case we assume that n
points on a line are given. We assume that the covering rings have their centers on the
same line. Thus the intersection of a ring of size (r, w) with this line consists of two
closed intervals of length w which are separated by an (open) interval of length 2r in
between. In the following discussion we will refer to such a pair of intervals as a
"one-dimensional ring of size (r, w)". The one-dimensional ring cover problem is the
problem of computing for n given points on a line the positions of a minimum number
of one-dimensional rings of given size (r, w) so that all given points are covered. This

* Received by the editors December 29, 1982, and in revised form, July 1, 1984. During the preparation
of this paper the author was supported by the Heisenberg Program of the Deutsche Forschungsgemeinschaft,
Bonn.

t Department of Mathematics and Computer Science Division, University of California, Berkeley,
California 94720. Current address, Department of Mathematics, Statistics and Computer Science, University
of Illinois, Chicago, Illinois 60680.

453

454 WOLFGANG MAASS

problem contains, for r- 0 as a special case, the one-dimensional convex covering
problem. A very simple algorithm (see the beginning of 3) shows that this one-
dimensional convex covering problem can be solved in linear time. In contrast to this
we show in 2 that the one-dimensional ring cover problem is strongly NP-complete.
This intractability result comes somewhat unexpectedly insofar as almost all geometrical
problems become tractable when they are restricted to one dimension.

In 3 we close the gap between the previously mentioned two results. We identify
the quotient r/w (which may be viewed as a natural measure for the degree of
nonconvexity of a ring of size (r, w) as the key parameter that determines the complexity
of the problem of covering with rings of size (r, w. Theorem 3.1 shows that not only
for r/w-O (convex case) but also for any fixed bound on this parameter r/w the
corresponding one-dimensional ring cover problem can be solved in polynomial time.
In 4 we exhibit in addition a threshold for this parameter r/w (at r/w =1/2) where
qualitative changes in the structure of minimum coverings by rings of size (r, w take
place.

Finally we consider in 5 a capacitated version of the one-dimensional ring cover
problem. We assume here that the number of points that may be "served" by each
ring is bounded by a given capacity b. We show that for any fixed bounds on b and
rw this problem is also in P.

It is obvious that our algorithms can be generalized to cases where one covers
with other nonconvex one-dimensional objects. We mention further generalizations at
the end of 3.

Finally we would like to mention two possible practical applications of the
considered problems.. In scheduling theory one may interpret the line as a time axis
on which particular time points are given. If resources (for example work shifts) are
to be scheduled so that all given time points are covered, one arrives at a one-
dimensional covering problem. In certain realistic models where resources are only
intermittently available (for example due to lunch breaks for workers or preventive
maintenance of machines) this covering problem is nonconvex. For example one covers
with one-dimensional rings of size (1/2, 4) if every eight-hour work shift is interrupted
by a one-hour break in the middle. We refer to Bartholdi III[1] for a further discussion
of this application.

There are other possible applications if one interprets the considered line as a
line in space. We would like to mention two examples from robotics. In this area one
might want to cover given points in space by certain geometrical objects that model
the set of points which are reachable by the arm of a robot (for a fixed position of
the base of the robot). This set of reachable points may be nonconvex because of
imperfections in the robot arm (even for the human arm this set of reachable points
forms a ring-like structure). Thus if one wants to compute for a given set of points in
space the positions for a minimum number of robot arms so that all points can be
reached by some robot arm, one arrives at a (convex or nonconvex) covering problem.
Alternatively one might want to compute for one mobile robot a tour where each of
a number of given points can be reached by the arm of the robot from some stop of
the (base of the) robot. If the goal is to minimize the number of stops for the (base
of the) robot, the same covering problem as before arises.

The results of this paper serve as a basis for a series of subsequent papers with
Dorit Hochbaum, where we design polynomial time approximation schemes and fast
approximation algorithms for one-dimensional and higher-dimensional covering prob-
lems [3]-[5].

COMPLEXITY OF NONCONVEX COVERING 455

2. Nonconvex covering in one dimension is NP-complete. We refer to the first section
for a definition of the ring cover problem.

THEOREM 2.1. The one-dimensional ring cover problem is strongly NP-complete.
Proof. We first note that the considered problem is in NP. Here one uses the fact

that it is sufficient to consider positions of rings where one of the four endpoints of
the (one-dimensional) ring coincides with one of the given points.

In order to show that the considered problem is NP-complete we construct a
polynomial time computable reduction from the NP-complete problem 3SAT (see
Garey and Johnson [2]). The strategy is somewhat similar to the strategy ofthe reduction
from 3SAT to 3-DIMENSIONAL MATCHING. However one has to work harder to
construct suitable problem instances in only one dimension.

Before we define the desired reduction, we introduce an essential tool for the
construction of suitable instances of the one-dimensional ring cover problem. This tool
makes it possible to interconnect the coverability properties of various different clusters
of points in the constructed instances. Consider a sequence W, , W2k of points on
the line that are spaced 2r+ w apart. For example assume that W has the coordinate
i. (2r+ w). Obviously one can cover all points in this sequence with k rings of size
(r, w): The ith ring covers W2i_ and W2i. If Wl does not need to be covered by the
considered k rings (because it is already covered by some other ring), we can shift the
k rings over a distance 2r/ w to the right. In this case the ith ring covers WEi and
WEi+l. Further the kth ring covers only one point: W2k. Therefore we can use the other
w-interval of the kth ring to cover some other point in the neighborhood of WEk. Thus
we see that a covering advantage at the beginning W1 of the sequence causes a chain
reaction in the covering of the sequence WI," ", W2k (the possibility of shifting all
k rings to the right), which leads to a covering advantage at the last point WEk: the
kth ring has one interval free. In this sense the sequence W,..., W2k can transmit
covering advantages and therefore we call it a "wire". In the first situation (where the
kth ring has to cover W2k- and WEk), we say that the wire transmits the "signal 0".
In the second situation where the kth ring only has to cover the last point WEk, we
say that the wire transmits the "signal 1".

So far we have made no use of the nonconvexity of the covering objects. Everything
we have said remains true if we cover with (convex) intervals of length 2r / 2w instead
of rings. We now show that the nonconvexity of the covering objects allows us to run
several wires in parallel, so that each can transmit a signal 0 or 1 without mutual
interference. It turns out that the number of wires that we can run in parallel is
proportional to r w (this is the first indication of the importance of the parameter r/w
for the complexity of the ring cover problem). Consider a second wire V1," ", V2k
where point V has coordinate i. (2r/ w)/p. The "phase shift" p that occurs here is
some integer with w <p < 2r. Obviously the wire V1," , V2k has the same covering
properties as the first wire W,. ., WEk. But in addition the choice of the phase shift
p guarantees that no ring can cover two points that belong to different ones of these
two wires. This implies that the choice of a covering of one of the two wires has no
consequence for the covering ofthe other wire. In the previously introduced terminology
we can say that both wires can transmit a signal 0 or 1 without mutual interference.
In the same way we can run d wires in parallel (for any natural number d <-_ r w) that
transmit signals 0 or 1 without mutual interference. We merely have to choose for the
d wires phase shifts Pl,’’’,Pd SO that for any ij we have w<lp-pl<2r.

We now construct the desired reduction from 3SAT. Let F be an arbitrary instance
of 3SAT, let U={u,..., un} be the set of variables in F and let C ={cl,..., c,,} be

456 WOLFGANG MAASS

the set of clauses in F. Each clause cj is a disjunction of up to three (negated or
unnegated) variables from U. The conjunction of all clauses in C yields the considered
formula F. In the following we construct in polynomial time a set P of integers (which
are interpreted as coordinates for points on a line) and integers r, w, M such that all
points in P can be covered by M rings of size (r, w) if and only if F is satisfiable. The
points in P fall into four classes of components according to their intended function:
"truth-setting", "satisfaction testing", "wire" and "wire crossing".

Each truth setting component corresponds to a single variable ui U (we call it
the ui-component for this variable u). The points of each ui-component can be covered
in exactly two different ways by minimum coverings by rings of size (r, w). In this way
each u-component forces any minimum covering of all points in P to make a choice
between these two possible coverings of the u-component. This choice corresponds
to the choice between setting u true or ui false in a truth assignment to all variables
in U.

Each satisfaction testing component in P corresponds to a single clause cj C
(therefore we call it the c-component for this c). It is connected by up to three wires
to those three or less ui-components for which u or t occur in the clause c. The
number M of rings that may be used for a covering of P will be chosen so small that
a c-component can only be covered if one of the three wires transmits the signal 1 to
the cj-component. In this case the last ring that is used for the covering of this wire
can use its "free" w-interval to cover the c-component (while its other w-interval
covers the last point of that wire). According to this plan we just have to make sure
that the wire from a u-component to this c-component transmits the signal 1 if and
only if the chosen covering of the u-component corresponds to setting u- true (in
case that u occurs in c), respectively, to setting u false (in case that ai occurs in c).

We set w-- 10 and r= 100w. (4m 4- n). According to our outline up to 3m wires
are needed. We fix a numbering of these wires and we reserve for the kth wire the
"track" with phase shift Pk 100W" k. In general all points in P with a coordinate z
such that z=- Pk mod (2r4- w) will belong to the kth wire (the only exceptions are points
from "crossing components" that will be discussed below). For each u-component
we reserve a track with phase shift 100w. (3m4- i). Each point in the u-component
will have the property that it is within 3 w of the u-track. Finally each cj-component
consists of a single point y such that y-- 100. (3m4- n4-j) mod (2r+ w).

We have now assigned to each wire, ui-component and c-component a separate
"track". No ring of size (r, w) can cover points that belong to two different tracks.
Therefore the coverings of the different components are mutually independent, except
for those pairs of components where we force a dependency via a wire. Such a wire
connecting a u-component with a c-component begins on the track ofthe u-component
(this means that the first points of the wire have the same phase shift as the u-
component). Then it moves to its assigned track (see the assignment above) and stays
on this track until the end, when it moves to the track of the c-component. In order
to move a wire from one track to another, we use the fact that the points of a wire
need not necessarily be spaced 2r4- w apart. If we choose instead some distance
2r4- w4- d with d [-w, +w] between successive points of a wire, the covering proper-
ties of the wire remain unchanged. However for d < 0 the wire moves towards a track
with a smaller phase shift p. If we use this distance several times in the wire, the wire
can reach in this way any other track. Similarly if we choose d > 0 the wire moves
towards a track with a larger phase shift p.

If a wire leaves its assigned track and approaches some track that has been assigned
to some other wire, the coverings of both wires may interfere. In order to avoid this

COMPLEXITY OF NONCONVEX COVERING 457

we use in these situations a special "crossing component" that allows a wire to cross
the track of some other wire without interference.

Figure 1 provides a global picture of the construction for the case of the formula
F (ul v u2) ^ (tl v u2) ^ (u v u3). The horizontal dimension of the diagram represents
the actual line on which the points of P are located. The vertical dimension of the
diagram is used to indicate the different tracks. Of course in reality all these tracks
run along the same line (but with different phase shifts).

tracks for
wires

u2-component

u-component

crossing-components

\
,\,, \

nt
ponent

c-component

tracks for
u,-components

FIG.

We will now look at the design of ui-components, cj-components and crossing
components in more detail.

Figure 2 shows a ui-component for the simple case where ui or ai occur only in
two clauses, say u occurs in Cl and a in c2. The ui-component consists of the points
P,"" ", P8, whose coordinates are also given in Fig. 2. The figure shows in addition

u,-component:

Ul

P P

Pl-- Z

P2=z+2r
P3 z + 2r+ 2w
P4 z+4r+ w

Ps= z+4r+3w
P6 z +6r+ 2w

PT= Z+6r+w
Ps= z+ 8r+4w

R2 R Ra

P, P4 P, P,, P P.

V z + 2r- w W z +4r+4w

V2= z +4r-w W2 z +6r+w
V3= z +6r+1/2w W3 z + 8r+w
V4= z + 8r+w
Vs= z+ lOr+w

FIG. 2

458 WOLFGANG MAASS

the initial segments of two wires that are attached to this ui-component: Wire
W1, WE, leads to the cl-component and wire V, V2," leads to the c2-component.
These two wires are not attached in the same way to the ui-component. By assumption
variable u occurs positively in Cl, therefore, the wire to the Cl-component has to
transmit the signal 1 to the Cl-component if and only if the chosen minimum covering
of the u-component corresponds to setting u- true. This means that the rings of the
corresponding minimum covering of the u-component have to be able to cover in
addition also the first point W of this wire. Similarly only a covering of the ui-
component that corresponds to setting u false should be able to cover in addition
V (whereas it cannot cover in addition W), since u occurs negatively in c2. In the
total number M of allowed rings in the covering exactly four rings would be allocated
to the covering of the points P1, P8 of the ui-component of Fig. 2. The previously
mentioned two different minimum coverings of the u-component (that correspond to
setting u =true respectively ui false) are indicated in the upper respectively lower
half of Fig. 2. The coordinate z of the point P1 satisfies z-- 100w. (3m / i) mod (2r/ w)
(according to our earlier assignment of tracks).

In order to verify that the u-component in Fig. 2 has the desired properties, we
consider any covering of the points P1, , P8 by four rings R1, RE, R3, R4 (numbered
according to their location from left to right) of size (r, w). Two w-intervals from two
different ones of these rings are needed to cover the points P2 and P3 because
w < [P2-Pal <2r. The same fact holds for the pairs P4, P5 and P6, P7. Together this
implies that P1 is covered by the left interval of R1 and P8 is covered by the right
interval of R4. Further P2, P3 (P4, Ps; P6, P7) are covered by the right interval of
R1 (RE; R3) together with the left interval of RE (R3; R4).

It is obvious that no ring R can cover with one w-interval both a point P and a
point from { V2,’", Vs} or { W2, W3, W4} (because all these wire points have distance
bigger than w from every point P).

Finally assume that (like in the top half of Fig. 2) the point P2 is covered by R1.
This implies that P3 is covered by the left interval of R2. Therefore the right interval
of R2 does not cover P4 because IP3-P41 2r-w < 2r. Thus P4 is covered by R3. From
this we conclude that R3 does not cover P7 (since [P4-P7[> 2r+2w). Therefore R3
covers P6 and R4 covers P7. Altogether we see that the initial assumption that P2 is
covered by R1 forces a structure of the covering where all points P are covered by
the same rings as in the top half of Fig. 2. Further we see that in this case V cannot
be covered by R1," R4: R cannot cover V because R covers P and IP- Vii < 2r;
R2 cannot cover V because R2 covers P3 and IV1- P3] > w.

Analogously one shows that in the case where R covers P3 (instead of P2), all
points P are covered by those rings that cover them in the bottom half of Fig. 2. In
this case W cannot be covered by R1," ", R4 (the argument is the same as for V in
the previous case).

In the general case more wires may have to be attached to a ui-component. Then,
instead of just three pairs (P2, P3), (P, Ps), (P6, P7) one has to use a correspondingly
larger number of pairs (P2k, P2k+l) with IPk- P2k+l 2W and [P2k- P2k+2] 2r+ w (a
few of these distances are changed slightly as described below). For all wires that lead
to c-components such that u occurs positively in c one positions the first point W
of such wire to the right of a pair of points (P2k, P2k+) (like point W1 in Fig. 2). One
moves in this case the point P2k+3 over a distance w/2 to the left (like point P7 in Fig.
2) from its previously indicated position. This small shift ensures that no ring covers
both W and P2k+3. Similarly for all wires that lead to a c-component such that t
occurs in c, one positions the first point V of such wires to the left of a pair of points

COMPLEXITY OF NONCONVEX COVERING 459

(P2k P2k+l)- In this case one shifts the point P2(k-1) over distance w/2 to the right of
its previously assigned position. Because of this shift no ring can cover both P2(k-1)
and V. In order to avoid unexpected interferences between the locations where wires
are attached to the ui-component, one uses in the general case only every fourth pair
(P2k, P2k/l) for attaching a wire to the ui-component (by placing the first point of that
wire to the left respectively to the right of this pair). Note that in order to save space
we had to ignore this rule in Fig. 2.

Figure 3 shows a cj-component in full detail. The component itself consists only
of one point P0 at a coordinate z such that z- 100w. (3m+ n+j) mod (2r+ w). The
end segments of up to three wires U=(U1,’", Ue), V-(VI,’’’, Vf), W--
(W1," ", Wg) are attached to the cj-component. In the number M of rings that we
allow for covering all points in P, no extra ring is allocated for the covering of any
.c-component. Therefore point P0 can only be covered if the signal 1 is transmitted to
the c-component through at least one of the wires U, V, W. More precisely the lengths
e, f, g of these wires are even numbers and e/2, f/2, g/2 rings are allocated in M for
the covering of these wires. Therefore if and only if the first point U1 V1, W1) of such
a wire is covered by some other ring (necessarily a ring from the covering of the
u-component to which this wire is attached), the last one of the rings that are allocated
to this wire has to cover only its last point Ue (Vy, Wg). This last ring can cover then
with its other w-interval the point Po of the c-component. In Fig. 3 we have indicated
with broken lines the position of the last ring of each wire in the case where this wire
transmits the signal 1 to the c-component. Figure 3 also shows (with solid lines) the
case where the last ring that is allocated to a wire has to cover its last two points (this
means that the corresponding wire transmits the signal 0 to the cj-component). It is
obvious from the coordinates that are given in Fig. 3 that no ring can cover points
that belong to different wires.

cj-component:

Ue-2 z-6r-4w
Ue_l z-4r-3w

Ue z 2r- 2w

Vf_2= z-6r-w
Vf_= z-4r-w
V z- 2r-1/2w

Wg_4 g-6r- w

Wg_ g -4r

Wg_2 z 2r+ w
Wg_ z+2w
Wg z + 2r+ 2w

FIG. 3

Figure 4 shows the design of a "crossing component" for the crossing of two wires

without interference. Such components are needed because a wire that connects a

u-component with a c-component may have to cross other wires on its way to or from
its regular assigned track (see Fig. 1). Figure 4 shows the component for the crossing
of wires V and W (of these wires only the segments V-3," ", V3 and W_I, W1 are
indicated in the diagram). The crossing component consists of 12 points P-6," ", P6.
The left and the right half of the crossing component are drawn symmetrically (this
will simplify the verification). The coordinate z ofthe middle ofthe component depends

460 WOLFGANG MAASS

on the track that has been assigned to the wire which is crossed by another wire with
the help of the crossing component.

We first note that five rings R1," ", R5 can be positioned in such a way that they
cover P-6,""", P6 and in addition a given one of the two points V-l, V1 and also a
given one of the two points W-l, W1. The top half of Fig. 4 shows the positions of
five rings R1," ", R5 that cover P-6," ", P6, W1 and V_I. The bottom half of Fig. 4
indicates a way of shifting R3, R4 so that together with the (unchanged) rings R1, Rz,
R5 the five rings together now cover P-6," ", P6, W1 and V1. In the case where
has to be covered (instead of W1) we use the fact that the component is symmetrical
with respect to z. With the help of reflection at z we get from Fig. 4 the positions of
five rings that cover P-6,""", P6, W-1 and V1 (respectively V-l).

crossing component:

R R R R, Rs

P--6 P-5 P-, P-3 P-= P-, P, P P3 P, P, P6

P, z + r-1/2w V, z + r- w W, z + 5r+w
P2=z+r+1/2w V2=z+3r-w W2=z+7r+w
P3=z+r+w V3=z+5r (this point is not shown)
Pa=z+3r+w Va=z+7r
P= z + 3r+ 2w
P6= z + Sr+w
If z + d is the coordinate of point P, then
z- d is the coordinate of point P_, (analogously
for the points V_ and W_).

FG. 4

One can see from the coordinates of the points in Fig. 4 that a ring that covers
any of the points P-6," ", P6 can reach no point that belongs to wire V or W except
possibly some of the points V_I, V1, W_I, W. Further in the total number M of rings
that are allowed for the covering of all points in P only five rings are allocated for
each crossing component. If six or more rings are used to cover P-6," ", P6 then these
rings may cover simultaneously all points in the set { V_, Vx, W-l, W}. But by the
design of the other components it is then impossible to cover with M-6 rings all the
remaining points in P.

We now show that if any five rings R1,’", R5 (numbered according to their
position from left to right) cover all points P-6,"" ", P6 then either W-1 or W1 and
either V_ or V1 are not covered by these rings. Obviously all the groups {P_5, P-4},
{P-a, P-E, P-l}, {P1, P2, P3}, {P4, Ps} contain two points whose distance d lies strictly
between w and 2r. Therefore for each of these groups at least two different rings must
participate in the covering of this group. This implies that each of these groups is
covered by precisely the same rings as in Fig. 4.

Assume for a contradiction that both V_I and V are covered by R1,"’, R5
(besides P-6,""", P6). If R2 covers V_I and R4 covers V then R3 has to cover both
P_ and Pa, although IP--PI > 2r+ 2w. Thus we may assume that R. covers V_I (the

COMPLEXITY OF NONCONVEX COVERING 461

case where R covers V1 is symmetrical). Then the location of the left end of R is at
some coordinate >=z-r. Therefore the other interval of R does not cover P2. Further
V1 can only be covered by R4. Therefore the left end of R4 is located at some coordinate
-<r-w. This implies that R4 does not cover P2. Thus P2 remains uncovered, a contra-
diction.

Finally assume for a contradiction that both W_ and W are covered by R1, , R5
(besides P-6,"" ", P6). Our preceding consideration implies that only R1 can cover
W_ and that only R5 can cover W. Therefore R does not cover P-4 and R5 does
not cover P4. Thus R2 covers P-4 and R4 covers P4. This implies that R2 does not cover
P-3 and R4 does not cover P3. But R cannot cover P-3 and P3 since]P-3- P3I > 2r+ 2w.
Thus either P-3 or P3 remains uncovered, a contradiction.

We have specified for each occurring component c the number Mc of rings that
are allocated for this component among the M rings. M is then defined as the sum
of these Mc (over all components c). P is defined as the union of all components (note
that the number of components is polynomial in m and n). The preceding arguments
imply that the given formula F is satisfiable if and only if all points in P can be
covered by M rings of size (r, w) (for r and w as defined before).

Remark 2.2. In some sense it is easier to reduce PLANAR 3SAT instead of 3SAT
to the considered problem (see Lichtenstein [7])" no crossing components are needed
in this case. On the other hand one then has less control over the structure of the
(planar) graph that has to be represented. This fact makes an explicit description of
this variation of the proof very difficult.

3. Covering with rings of bounded degree of nonconvexity is in P. In order to
demonstrate why covering with nonconvex objects is more difficult than covering with
convex objects, we first give a simple algorithm for covering with convex objects in
one dimension (we cover with one-dimensional rings of size (r, w) where r w 0). In
this algorithm one places intervals of length 2w successively so that their left endpoint
coincides with the leftmost one of the given points that is not yet covered.

If one covers with nonconvex rings, one has several choices among positions of
rings that cover the leftmost point that is not yet covered. One can either place this
ring far to the right (so that its right end reaches as far as possible) or one can place
it more to the left (so that the left end of the right w-interval covers additional points).
In this way the number of reasonable choices for placing the first m rings grows
exponentially in m. Therefore we use a different approach in the following polynomial
time algorithm.

THEOREM 3.1. There is an algorithm that computes for n given points on the line
and a given ring size r, w) a covering of the given points by a minimum number of rings

of size r, w) in O(n (-rl w-)) steps respectively in O(n steps if rl w 0).
Proof. Assume n points on the line and a ring size (r, w) with r > 0 are given. The

algorithm relies on the following definition.
DEFINITION 3.2. Consider an arrangement B of rings of size (r, w) on the line,

where the leftmost ring has its center at CL and the rightmost ring has its center at

CR. We call B a block if every given point in the interval (CL + r + w, CR- r-w) is
covered by some ring in B.

LEMMA 3.3. Consider any covering C of all given points by rings of size (r, w). Let
B be a subset of rings from C. Let C be the center of the leftmost ring in B and let C
be the center of the rightmost ring in B. Assume that every ring in C whose center is
located in the interval CL, Cn) belongs to B. Then B is a block.

The proof of Lemma 3.3 follows immediately from the definition of a block.

462 WOLFGANG MAASS

LEMMA 3.4. For any block B the subset of the n given points that are covered by B
can be characterized with the help ofat most 8-r/ w-n+ 6 of the given points (independent
of the size of B).

Proof of Lemma 3.4. Let CL be the leftmost and CR be the rightmost center of
rings in B. Then all of the given points in (CL+ r+ w, CR-r-w) and none of the
given points in (-, CL--r--w) or (CR + r+ w, +) are covered by B. Within the
interval CL r w, CL+ r + w] the block B defines a set of at most 2-r/w + 1 disjoint
intervals of length ->w so that in each such interval all given points are covered by B
and any two such intervals are separated by intervals of uncovered points. Each of
these up to 2-r!w-+ 1 intervals can be characterized by the leftmost one and the
rightmost one of the given points that it covers. Together this requires up to
2. (2r-r! w-/ 1) points. We need the same amount of information to characterize the
right end of B. Finally we need two more points to describe the endpoints of the largest
interval in the interior of B where all given points are covered.

To motivate our algorithm we consider any minimum covering C of all given
points. We partition C into two blocks B and B2 where B1 consists of the 2 leftmost
rings in C and m is maximal such that 2"< CI. In the same way we partition each
of the blocks B, BE into two blocks of about half its size. After at most -log2
iterations of this step we have broken down C into its "atoms"" single rings. The
following dynamic programming algorithm reverses the described process: we look at
all possible ways of concatenating two smaller blocks so that they yield one larger
block. We can do this in polynomial time because by Lemma 3.4 there exist at most
n8-r/w-/6 different subsets S of the set of all n given points so that some block of rings
covers precisely the points in S.

ALGORITHM. We develop a table where we record for blocks of increasing lengths
the subset of the n given points which is covered by each block. In addition we record
for each block the number of rings that it uses and the locations of the centers of its
leftmost and its rightmost ring. Thus each entry in the table requires at most
O((8 r w + 9) log n bits. We also set up a list that allows us to check in O((8 r w +
9) log n) steps whether a candidate entry for the table already appears in the table.

In the first row of the table we record for all blocks of length 1 the described
data. It is sufficient to consider here only rings that are positioned in such a way that
one of their four endpoints coincides with one of the given points.

In each subsequent row we record the described data for each block that arises
as the union of two blocks from previous rows (unless we get an entry that appears
already in the table).

After we have written -log2 n-n rows we give as output the first entry in the table
where all n given points are covered such that no covering of all points with fewer
rings has been recorded in the table.

To justify the algorithm we note that one can always shift a ring--without changing
the set of given points that it covers--until one of its endpoints coincides with one of
the given points. The correctness of the algorithm follows then from our preceding
observations.

There are at most O(yl8rr/w+9) entries in the table. Thus one has to check for at
most O(n 16-r/w-+18) pairs of previously recorded entries whether they yield a new entry
in the table. For each of these pairs one needs at most O(-r/w-. log n) steps to check
whether the union of the corresponding blocks yields a new block whose characteristic
data do not yet appear in the table (and to compute the characteristic data of the new
block). In this way we arrive at an upper bound of O(Y116r-r/w+18 r-r/W-n" log n) steps
for the algorithm.

COMPLEXITY OF NONCONVEX COVERING 463

Remark 3.5. Theorem 3.1 shows that for any fixed bound on the degree of
nonconvexity r! w of the covering rings the one-dimensional ring cover problem is in
P. Easy variations of the proof show that this remains true if in addition certain parts
of the line are "forbidden" as centers of rings. Further one can associate different
costs with having centers of rings at different locations and then compute in polynomial
time a covering of minimum cost. One can also extend these algorithms to the case
where besides points on a line also certain whole intervals have to be covered.

In another possible extension one might assume that k different ring sizes
(rl, Wl)," ", (rk, Wk) are given, where rings from any of these sizes may be used for a
minimum covering. Also one can associate different costs with ditterent ring sizes and
compute a covering of minimum cost in polynomial time. Notice that this variation
includes the case where rings of a certain size may be placed not only with their centers
on the line but also at a number of different distances from the line (in our terminology
each distance gives rise to a different ring size when we consider the intersection of
such a two-dimensional ring with the considered line). In this extension the ratio
max {ri[i <-_ k}/min {wili <-k} appears in the degree of the polynomial time bound in
place of r w.

4. A property of minimum covers by rings of low nonconvexity. If one covers given
points on the line by a minimum number of intervals (i.e. rings with r! w 0), one can
assume without loss of generality that the leftmost interval of the covering is positioned
with its left end at the leftmost given point. Because of this property one can compute
in one dimension minimum covers by convex objects in linear time (see the beginning
of 3). Unfortunately this property does not hold for minimum covers by rings of size
(r, w) for any r/w > 0. We show in this section that nevertheless a more general property
holds for rings with ratio r/w <= 1/2 (and not for rings with any bigger ratio). The property
says that for rings with ratio r! w <= 1/2 one can assume without loss of generality that
the leftmost ring of a minimum cover is positioned at one of two canonical positions,
both of which are easy to compute. Thus one can answer certain questions about the
position of the first ring of a minimum cover without computing a minimum cover.
One can further use this structural property of minimum covers to design a fast
approximation algorithm for covering with rings of ratio r/w<-1/2 (see [3] and [4]).

LEMMA 4.1. The following implication holds if and only ifr w <-_ 1/2: If there exists a
minimum cover of given points by rings of size r, w) where the leftmost ring has one of
the given points in the gap between its two w-intervals, then there also exists a minimum
cover by rings of size (r, w) where the leftmost ring is positioned with its left end at the
leftmost given point.

Proof We first give a counterexample for the case r/w > 1/2. We assume that three
points a, b, c are given. We choose the distance d between b and c such that w < d < 2r
(this is possible if and only if r/w > 1/2). The locations of the points a, b, c are indicated
in Fig. 5. The two rings in the upper half of Fig. 5 form a minimum cover. The leftmost
ring has point b in its gap. On the other hand if we position the leftmost ring of a

FIG. 5

464 WOLFGANG M/kASS

covering with its left end at the leftmost given point a (as in the bottom half of Fig.
5) we need two more rings to cover b and c.

The positive result for r/w <- 1/2 follows from the following observation. Let
R1," , Rk be any minimum cover by rings of size (r, w) with r/w <-_ 1/2 (we assume that
the rings are numbered from left to right). Assume that one of the given points lies in
the inner disc 11 (of radius r) of the first ring R1. Let R be a ring that is positioned
with its left end at the leftmost given~point and let I1 be its inner disc (of radius r).
We define point L as the left end of 11. We consider two cases.

Case 1. The left end of ring R2 is at point L or to the left of L. In this case we
continue the cover that was started by/1 with a ring/2 that is positioned with its left
end at L. Since 2r_< w the rings/ and/2 together cover all points from the leftmost
given point until as far as 2r+ 2w to the right of point L. It is obvious that all points
that are covered by R1 or R2 fall into this interval.

Case 2. Otherwise. By assumption one of the given points lies in I1 and without

loss~ of generality this point is covered,by R2. Since this point is left of~the right end
of 11, the left end of R2 lies inside of 11. Therefore all given points in I1 are covered
by R2 because 2r<= w. This implies that all given points that are covered by R1 or R2
are also covered by R1 or R2.

THEOREM 4.2. Assume that points on a line and a ring size (r, w) with r/ w <= 1/2 are
given. Then there is a minimum cover of these points by rings of size (r, w) where the
leftmost ring R of this cover has at least one of the following two properties"

(1) The left end of R coincides with the leftmost given point.
(2) R is in the rightrnost possible position where it covers the leftmost given point

and has none of the given points in its gap.
Proof. Let S be the leftmost ring of a minimum cover. If one of the given points

falls into the gap of S the claim follows from Lemma 4.1. Otherwise the rightmost
possible ring R that covers the leftmost given point and has none of the given points
in its gap covers all points that are covered by S.

5. The capacitated ring cover problem. We now consider a capacitated version of
the ring cover problem. We assume that in addition to the previously considered input
data a natural number b is given, which we interpret as the "capacity" of a ring. In
addition to a covering we now also have to assign to each of the given points one of
the rings that cover this point (one says that the assigned ring "serves" this point).
This assignment has to be arranged in such a way that no ring has to serve more than
b points. The goal is again to minimize the number of rings that are used.

The capacitated version appears to be of interest for both of the possible applica-
tions that were described in the introduction. It also appears to be of some mathematical
interest because the algorithm from the previous section does not readily extend to
the capacitated problem. The reason for this difficulty is the fact that the degree of
the polynomial time bound of the algorithm from Theorem 3.1 is proportional to the
number of points that are needed to characterize which of the given points are covered
by a block. In an extension of this algorithm to the capacitated case one also has to
record for every block which of the points that it covers are served by rings in this
block. If for example n!lO points lie at the fringe of a block, this may require up to
n/lO data. Therefore even for a fixed bound on b and on r/w the resulting algorithm
is no longer polynomial in the number n of given points.

We show below that there exist among all minimum solutions of the capacitated
ring cover problem certain "normal" solutions. Normal solutions are characterized by
the fact that they can be decomposed into blocks of a particular simple structure which

COMPLEXITY OF NONCONVEX COVERING 465

we call b-blocks (see Definition 5.4). The number of data that are needed to characterize
the set of points that are served by the rings of a b-block is independent of n. Since
there exist minimum solutions that are in addition normal, it is sufficient to record in
the table of a dynamic programming algorithm only those sets of given points that are
served by a b-block. In this way we arrive again at a polynomial time algorithm.

We now show that one can "normalize" any given solution to the capacitated ring
cover problem without increasing the number of rings that are used. This normalization
process consists of two steps. First we minimize the number of rings that serve points
in both of their w-intervals. Then we change positions of rings and the assignment of
points for those rings that serve now only points in one of their w-intervals in order
to minimize the overlap of their "service areas". This second step of the normalization
process uses the same method as the proof of the following result for the convex case.

THEOREM 5.1. There is an algorithm that computes for n given points on a line, a
given interval length d and a given capacity b in O(n) steps the positions of a minimum
number of intervals of length d together with an assignment of each given point to some
interval that covers this point such that no interval serves more than b points.

Proof. We extend the simple algorithm from the beginning of 3. We place
successively the next interval so that its left end coincides with the leftmost point that
is not yet served. We assign to this interval the b leftmost points that it covers (there
may be less than b points).

One shows by induction on n that this algorithm uses the minimum number of
intervals. For the induction step consider any minimum solution C. It is possible to
change the position of the leftmost interval in C and the assignment of points to this
interval so that this interval serves the same points as the first interval that is placed
by the algorithm. We can then apply the induction hypothesis to the remaining points,
where we use the (previously slightly altered) rest of C for comparison.

The following is the desired result for the nonconvex case.
THEOREM 5.2. There is an algorithm that computes for n given points on the line,

a given ring size (r, w) and a given capacity b in O(n(-r/w-bS)) steps a minimum solution
to the capacitated ring cover problem.

Proof. According to the outline at the beginning of this section we first show that
among the minimum solutions of the considered problem there exist certain "normal"
ones. Let C be a solution ofthe considered problem. In the first step ofthe normalization
process we minimize the number of rings that serve points in both of their intervals.
Thus let t be the result of replacing--without increasing the number of rings that are
used--the maximum possible number of rings in C that serve points in both of their
intervals by rings that serve points in only one of their intervals (we change the
a.ssignment of points accordingly). Of course this has to be done in such a way that
C is also a solution of the considered problem.

LEMMA 5.3. For every real number c there are in less than ba+3b rings with
center in c, c + w] that serve points in both of their intervals.

ProofofLemma 5.3. Assume for a contradiction that there are in at least bah 3b
rings with center in [c, c + w] that serve points in both of their intervals. Each such
ring R defines a triple of numbers (XR, YR, ZR) which are the numbers of points that
ring R serves in each of the three intervals [c-r-w,c-r], (c-r, c-r+w] f3
(c- r, c + r), c + r, c + r + w]. Since the numbers XR, YR, ZR range from 0 to b there are
less than b3h- 3 different triples of numbers that occur. Thus at least b of these rings
have the same triple (x, y, z). We show that these b rings can be replaced by b rings
that serve points in only one of their intervals. We position x rings with the left end
at c-r-w and assign to them those bx points that lie in [c-r-w, c- r] and which

466 WOLFGANG MAASS

were served before by the b replaced rings. Analogously we position y, z, b-x-y-z
rings with the left end at c- r, c + r, c + r + w respectively and we assign to them those
points in the corresponding intervals (c r, c r + w] f-) (c r, c + r), c + r, c + r + w],
(c+ r+ w, c+ r+2w] that were served before by the b replaced rings.~

The possibility of this substitution contradicts the definition of C.
It may still occur that for example two rings R and R2 in (serve only points in

their left interval and R1 is left of R2, but R serves some points that lie to the right
of loints that are served by R2. Such overlap can make the description of the set of
points that are served by a block arbitrarily l.ong. Therefore we consider now the subset
S of the n given points that are served in C by rings that serve points in only one of
their intervals. Say there are k such rings in C. We apply to the points in S the algorithm
of Theorem 5.1, where we use intervals of length w. By Theorem 5.1 the algorithm
uses exactly k such intervals. We now interpret each such interval as the left interval
of a ring of size (r, w). After we have changed in this way those rings in C that serve
points in only one of their intervals, we call the resulting new covering of all n points
C’. By construction C’ uses no more rings than C. Further the properties of the
algorithm from Theorem 5.1 guarantee that:

(I) If R and R are two rings in C’ that serve points in only one of their intervals,
then both rings are positioned with the left end at the leftmost point which they serve
and if R is positioned left of R, then all points that are served by R lie to the left
of every point that is served by R2.

In addition C’ has the same rings as C that serve points in both of their intervals.
Thus C’ retains the property that was proved in Lemma 5.3 for C. Thus we have:

(II) For every real number c there are in C’ less than b4+3b rings with center
in c, c + w] that serve points in both of their intervals.

We call a solution C’ with properties (I) and (II) a normal solution. The preceding
construction shows that there always exists a minimum solution that is in addition
normal.

As in Theorem 3.1, the key for the dynamic programming algorithm is the definition
of a relatively small class of "building blocks" from which one can build via concatena-
tion an optimal solution.

DEFINITION 5.4. Consider an arrangement B of rings of size (r, w) such that no
ring in B serves more than b points. Let CL(CR) be the center ofthe leftmost (rightmost)
ring in B. We call B a b-block if we have for f(b, r/ w) (2-r/ w- + 2) (bS+3b2)+b

i) every point in (CL + r+ w, CR- r--w) is served by a ring from B,
ii) at most f(b, r w) points in C r w, C+ r + w] f3 C. r w, CR r w)

are not served by a ring from B,
iii) at most f(b, r/w) points in [CR--r--w, CR+r+w] are served by a ring

from B.
It is obvious that the relevant properties of such b-block can be described with

at most 2 f(b, r/w) + 3 data (each of which is essentially a number between 1 and n).
Besides CL, CR and the number of rings that are used in the b-block this description
includes those 2. f(b, r! w) points that are mentioned in part ii) respectively iii) of the
definition.

LEMMA 5.5. Let C be a normal solution of the considered problem. Consider a
collection B ofringsfrom C where the leftmost ring in B has its center at C, the rightmost
center in B has its center at CR and every ring in C that has its center in CL, CR) belongs
to B. Then B is a b-block.

ProofofLemma 5.5. Property i) is obvious. For property ii) we first consider those
points in I C r w, CI + r + w f3 C. r w, CR r w) which are served by rings

COMPLEXITY OF NONCONVEX COVERING 467

in C that serve points in only one of their intervals. Except for possibly the first one,
these rings have their centers in (C, CR) and thus they belong to B (we use part (I)
of the normality definition). This gives rise to at most b points in I that are not served
by rings from B. Next we consider those points in I that are served by rings of C that
serve points in both of their intervals. Unless their centers are in [CL-2r-2w, CL],
these rings necessarily belong to B. By part (II) of the normality definition there are
at most ((2r+ 2w)/w) (b4+ 3b) rings in C that have their centers in [C-2r-2w, C]
and serve points in both of their intervals. These rings serve at most (2 r/w / 2) (b /

3b2) points. Property iii) is verified analogously.
Similarly as before it is sufficient to consider in the following algorithm only

positions of rings where one ofthe given points coincides with one ofthe four endpoints
of the ring.

ALGORITHM. In the first row of the table we write down the covering properties
of all b-blocks that consists of one ring. In each subsequent row we list the characteristic
data (consisting of O(f(b, r/w). log n) bits) for each new b-block which we get by
taking the union of two b-blocks from previous rows.

After we have written down -log2 n rows we output the first b-block in the table
that serves all n given points and such that no other b-block in the table serves all n
points with fewer rings.

The correctness of the algorithm follows from the previous observations. In
particular some minimum solution that is in addition normal will appear in the table.
This ensures that the output is a minumum solution.

For the time analysis we note that there are at most 0(?12f(b’r/w)+3) entries in the
table. Thus we consider at most O(rl4"f(b’r/w)+6) pairs of b-blocks during the algorithm.
For each pair we need at most O(log n.f(b, r/w)) steps to check whether its union
forms a b-block whose characteristic data do not yet appear in the table. This leads
to an upper bound of O(n4"fb’r/w)+7 .f(b, r/w)) steps for the algorithm.

Remark 5.6. The proof of Theorem 2.1 implies that already for a fixed capacity
b-> 3 the one-dimensional capacitated ring cover problem is NP-complete.

REFERENCES

J. J. BARTHOLDI III, A guaranteed-accuracy round-off algorithm for cyclic scheduling and set covering,
Opel Res., 29 1981), pp. 501-510.

[2] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, Freeman, San Francisco, 1979.
[3] D. HOCHBAUM AND W. MAASS, Approximation schemes for covering and packing problems in robotics

and VLSI, Proc. STACS 84, Lecture Notes in Computer Science, 166, Springer, Berlin, 1984.
[4], Fast approximation algorithms for a nonconvex covering problem, submitted.
[5] ,, Approximation algorithms for covering and packing problems in image processing and VLSI,

J. Assoc. Comput. Mach. (1985).
[6] D. S. JOHNSON, The NP-completeness column: an ongoing guide, J. Algorithms, 3 (1982), pp. 182-195.
[7] D. LICHTENSTEIN, Planar formulae and their uses, this Journal, 11 (1982), pp. 329-343.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

1986 Society for Industrial and Applied Mathematics
010

LOG-LOGARITHMIC SELECTION RESOLUTION PROTOCOLS
IN A MULTIPLE ACCESS CHANNEL*

DAN E. WILLARD"

Abstract. We propose two selection protols that run on multiple access channels in log-logarithmic
expected time, and establish a complementary lower bound showing that the first protocols falls within an
additive constant of optimality and that the second differs from optimality by less than any multiplicative
factor infinitesimally greater than as the size ofthe problem approaches infinity. It is difficult to second-guess
the fast-changing electronics industry, but our mathematical analysis could be relevant outside the traditional
interests of communications protocols to semaphore-like problems.

Key words, ethernet, multiple access channel, randomized time, selection protocol, semaphore

1. Introduction. Consider a multiple access channel that resembles an ethernet
mathematically although its domain of application may be radically different. That is,
assume N nodes are connected to a medium that generates the signals of 0, 1 and e
in the respective cases where zero, one, and more than one nodes are broadcasting on
it simultaneously. If Q of these N nodes wish to broadcast on this medium, then the
purpose of a selection protocol is to issue the signal "1" in the least expected time. It
is well known [MB76] that this problem is solvable in expected time O(1) when Q’s
value is known in advance to all the participating nodes. We consider the case where
Q’s value is initially unknown and propose one selection protocol which runs in time
log log N+ O(1), and a second protocol which runs in time log log Q+ o(log log Q)
for the slightly different problem where N’s value is unknown. (Throughout this paper
log designates log2 (), and In is natural logarithm.) This paper also establishes
a lower bound log log N-O(1) which shows that the first protocol is optimal to within
an additive constant and that the second protocol differs from optimality by only the
additive amount o(log log Q).

The problem considered by us should not be confused with articles from the
previous literature such as [Ca79], [GL82], [GW84], [MaS0], [Me73], [MB76], [MTS0],
[Pi79], [SH80]. One distinction is that some of the prior articles discuss protocols
where Q’s value is known in advance, and a more important distinction is that our
protocol seeks to minimize the time for the first broadcast of "1" on the multiple access
channel, whereas most of the previous literature studies how to enable all Q seeking
nodes to serially access the communication channel in minimal time. The term conflict
resolution refers to the traditional serial access problem, and our research problem is
called selection resolution. [GW84] develops a lower bound Q log N/log Q for worst-
case conflict resolution. Taking Q 2, this theorem applied somewhat out of context
implies l)(log N) lower bounds the worst-case selection time. Our upper bound
log log N + O(1) on expected selection time shows that selection is another example
of a communications problems whose randomized time is asymptotically better than
its worst-case performance. (A classic contrast of this type is the distinction between
the randomized upper bound in [Ra80] and the lower bound for worst-case performance
in [BFJLP78].)

Our technique could conceivably have practical implications under the new emerg-
ing electronic technologies. This is because the new emerging electronic technologies

* Received by the editors September 20, 1983, and in final revised form April 10, 1985.

t Department of Computer Science, State University of New York at Albany, Albany, New York 12222,

and consultant for Bell Communications Research.

468

LOG-LOGARITHMIC SELECTION RESOLUTION PROTOCOLS 469

may soon change the mathematical implications of the communications literature by
making cost-effective the use of multiple access ethernet-like devices as semaphores.
For instance, suppose several processors wish to access a memory chip and these
processors also are connected to a communication medium resembling our (0, 1, e)
device; these processors could communicate their needs for the critical resource via
the device by a protocol that assigns the resource to the first processor responsible for
the transmission of the signal "1" on the multiple access channel. This type of
semaphore would be much faster than the methods discussed in [MFLJP78], [Di65],
[Kn66], IRa80], but it assumes a different type of hardware whose cost-effectiveness
will ultimately depend on the directions of the new emerging electronic technologies.

These techniques could also be useful in other technologies, as we indicate in 4.
The main discussion in this paper is divided into two parts, where 2 proves our
log-logarithmic upper bounds and 3 establishes the complementary lower bound.

2. The upper bounds. This section will display our two protocols which run in
log-logarithmic time. In our discussion, will denote one of the three signals of 0, 1
or e communicated on the multiple access channel, and TEST (q) an operation where
each of the Q seeking nodes attempt a broadcast with a probability of 1/q. P(q, Q, t)
will denote the probability that the resulting signal equals t; equations (2.1) through
(2.3) indicate the values of P(q, Q, t) following from Bernoulli’s theorem [Fe68]"

(2.1) P(q, Q,O)-(1-1/q)Q,
(2.2) P(q, Q, 1)-(Q/q)(1-1/q)Q-l,

(2.3) P(q, Q, e)- 1-P(q, Q, o)-P(q, Q, 1).

The protocols considered in this paper will perform a sequence of trials TEST (ql),
TEST (q2), TEST (q3),. These trials will generate a signal sequence t t213 which
terminates when some ti- 1, indicating an unique node has been assigned the critical
resource. A theme in the communications literature is that TEST (q) has a high
probability of producing the desired signal "1" when q and Q agree to within a factor
of 2, and this probability is low otherwise (these facts follow from a straightforward
analysis of equations (2.1) thru (2.3), and we will explain them more fully when we
use them later). The main challenge for a selection protocol is to try to make the ith
guess qi come as close as possible to Q by using the test data tit2"’" ti-1 to infer Q’s
likely value.

An algorithm that runs in expected time log Q is binary exponential backoff
[MB76]. There are several minor variants of this protocol. One variant initially sets
q 1, increases q’s by a factor of 2 whenever a trial produces TEST (q) e, and finally
terminates when some test produces the desired signal "1". Its expected time is log Q
essentially because q and Q’s value agree within a factor of 2 after this many trials,
and thereafter the probability is high that TEST (q) 1.

Most of this section will focus on a protocol, called super exponential binary
search (SEBS), which runs in time log log N/ O(1). A modified version ofthis protocol,
called QSEB, running in time log log Q+ o(log log Q), will be outlined at the end of
this section. It is uncertain which protocol has the more practical coefficient.

The protocol SEBS assumes that the only information initially known about Q is
that 2_-< Q-<_ N. It consists of the following two-phase search.

Phase 1. Attempt to guess which power of 2 between 2 and 2 rlg N] is the best
guess of Q’s actual value by using the procedure shown in Fig. 1 to use the data from
the trials TEST (ql), TEST (q2)," to binary search the [log N] different eligible

470 DAN E. WILLARD

A binary search to guess Q’s value to the nearest factor of 2 in time [log log N] + 1"

(1) Initially set L 0 and U [log N +
(2) WHILE UL+I DO:

(a) SET i= [(U+L)/2] and q=
(b) SET t= TEST (q).
(c) IF THEN protocol terminates with the node issuing this signal assigned the critical resource.

ELSE SET U=iift=0, andSETL=iift=e.

END OF PROGRAM.

FIG.

powers of 2 in time <_- [log log NJ / 1. If any trial during this search produced the
signal "1", then the protocol terminates immediately with the critical resource assigned
to that node generating the signal "1". Otherwise, the protocol proceeds to the next step:

Phase 2. Let off denote the final value of q tested in Phase 1. Define q* to:
(a) equal off iff TEST (qr) in Phase 1 equaled zero,
(b) and to equal 2.@ in the alternate case where TEST(off) equaled "e".

Repeatedly perform the trial TEST (q*) until the multiple access channel
emits the signal "1", indicating an unique node has been assigned to the
critical resource.

The protocol above is of course quite simple but the proof of SEBS’ expected
time log log N+ O(1) is not. This is because the value of q* in Phase 2 is determined
only by random trials in Phase 1. The proof must show that bad luck in Phase 1 is
sufficiently uncommon to guarantee Phase 2 runs in expected time O(1), a result which
will eventually enable us to prove SEBS runs in time log log N+ O(1) and is optimal
up to an additive constant.

In our discussion, h will denote the ratio Q q. Since the Poisson distribution is
the asymptotic limit of Bernoulli trials [Fe68], equations (2.1) through (2.3) certainly

lim P(q, hq, 0) e-x,

(2.5) lim P(q, hq, 1) h e-a,

(2.6) lim P(q, hq, e)= 1- e-a- h e-.
qoo

Unfortunately, the fairly standard equations above are not the inequalities we need.
We need inequalities which approximate the value of P(q, Q, t) when q is a small
number. These inequalities appear in the next several lemmas.

LEMMA 2.1. Assume q>-_2. Then P(q, Q, 1)_->h4-x.
Proof. Consider the function f(x)=[ln(1-x)]/x. This function obtains its

minimum value on the half-open interval (0, 1/2] at the point x-- 1/2. Thus all q _-> 2
certainly satisfy

(2.7) In (1 1/q) _-> -(2 In 2)/q.

(The inequality in (2.7) is tight when q- 2.) Equations (2.2) and (2.7) imply

(2.8) P(q, Q, 1)>-(Q/q) e-2(o-1)(ln2)/q.

Since A- Q/q, the lemma follows from the fact that the right side of (2.8) exceeds
h e-(2nE)a. Q.E.D.

imply

(2.4)

LOG-LOGARITHMIC SELECTION RESOLUTION PROTOCOLS 471

LEMMA 2.2. Again assume q >- 2. Then P(q, Q, O) >- 4-.
Proof. Follows by the same reasoning as Lemma 2.1. Q.E.D.
LEMMA 2.3. P(q, Q, e) < A2/2.
Proof Let X and Y denote two particular nodes that wish to broadcast on the

multiple access channel. The probability that both of them will attempt to sigr,al "1"
during the trial TEST(q) is clearly 1/q2. As there are Q(Q-1)/2 different pairs of
nodes which could try to simultaneously broadcast, the probability of the signal "e"
is <-Q(Q-1)/(2qE)<A2/2. Q.E.D.

The next lemma will explain how the quantities P(q, Q, t) are related to the
performance of Phase 2 of SEAS.

LEMMA 2.4. Assume Q >- 2 and q is a power of 2 satisfying q -< 2 [log NI+I. Then the
probability thatq* in Phase 2 of SEaS equals q will be <-MIN [P(q, Q, 0); P(q/2, Q, e)].

Proof. Our verification is divided into the three cases where 4 <- q <-2 [og N1, q 2.
and q- 2 [g 1+1. The second and third cases are boundary cases, and the first is
therefore the most important of the three cases below"

Verification for the main case where 4"<- q <- 2 [lg vl. The algorithmic definition of
SEaS implies that Phase 2 will set q* to equal q only when the trials in Phase 1 had
TEST (q) 0 and TEST (q/2) e. Since these events occur within the respective prob-
abilities P(q, Q, 0) and P(q/2, Q, e), the minimum of these numbers certainly bounds
the probability that q*= q.

Verification for the boundary case where q 2. The algorithmic definition of SEaS
implies Phase 2 sets q* 2 only when TEST (2) ----0 in Phase 1. The probability of this
event is clearly <- P(2, Q, 0). Furthermore since P(1, Q, e)- 1, this probability is also
bounded by the minimum of these two numbers.

Verification for the boundary case where q 2 [g Vl+l. The algorithmic definition
of SEaS implies Phase 2 sets q* 2 [og Vl+l only when TEST (2 [log N1) e in Phase 1.
The probability of this event is therefore bounded by P(2 [lgN1, Q, e). Lemmas 2.2
and 2.3 further imply P(2 [og m1+1, Q, 0) -> P(2 [og iv1, Q, e), implying this probability is
also less than MIN [P(2 [g m1+1, Q, 0); P(2 [lg 1, Q, e)]. Q.E.D.

In the next several lemmas, P*(q, Q, 0) and P*(q, Q, e) will denote the ratios
P(q, Q, O)/P(q, Q, 1) and P(q/2, Q, e)/P(q, Q, 1), respectively. The next several lem-
mas will show how these quantities govern the expected time of Phase 2 of SEAS:

LEMMA 2.5. Let Z(N) denote all the powers of 2 that are <- 2 [g NI+I. Then if Q
nodes wish to broadcast on the multiple access channel, the expected time of Phase 2 of
SEaS is "<’-7,qz(m MIN [P*(q, Q, 0); P*(q, Q, e)].

Proof The expected time of a particular invocation of Phase 2 depends on the
value of q* in this phase. If q*= q, then each iteration of TEST (q*) will generate the
signal "1" with a probability P(q, Q, 1). Standard probability theory [Fe68] implies
the expected number of trials will then be 1/P(q, Q, 1).

Since Lemma 2.6 indicates MIN [P(q, Q, 0); P(q/2, Q, e)] bounds the probability
that q*= q, the total contribution of all powers of 2 to the expected time is clearly <-

E MIN[P(q, Q, 0); P(q/2, Q, e)]/P(q, Q, 1). Q.E.D.

Now we present three lemmas that will enable us to bound the summand from
Lemma 2.5.

LEMMA 2.6. Assume q=2. Then P*(q, Q, 0)<- 1/A.
Proof. Follows by dividing equation (2.1) by (2.2) and using the fact A is defined

as Q/q. Q.E.D.

472 DAN E. WILLARD

LEMMA 2.7. Assume q>--2. Then P*(q, Q, e)_-<2A 4a.
Proof. Lemma 2.3 implies

(2.9) P(q/2, Q, e) <2A 2.

Lemma 2.7 then follows by substituting (2.9) and Lemma 2.1 into the definition of
P*(q, Q, e). Q.E.D.

LEMMA 2.8. There exists a constant c whose value is independent of both Q and N
such that the expected time of Phase 2 of SEBS is -<_ c.

Proof. Let Z(N) have the same meaning as in Lemma 2.5, and Z-(N) and Z/(N)
denote those q Z(N) which satisfy the inequalities q<=23/)-Q and q > 23/2Q respec-
tively. Let S1 and $2 denote the following summands:

(2.10) S1 E P*(q, Q, 0),
qZ-(N)

(2.11) s:= Z p*(q, Q, e).
q.Z+(N)

Substituting Lemmas 2.6, 2.7 and the fact that , is defined to equal Q/q into (2.10)
and (2.11), we obtain

(2.12) S1 --< Z q/Q,
qeZ-(N)

(2.13) $2 <= Z 2(Q/q)4o/q.
qZ+(N)

Since all q Z+(N) satisfy q> Q, (2.13) implies

(2.14) $2 =< Z 8Q/q.
qZ+(N)

Equations (2.12) and (2.14) imply $1 and $2 are each bounded by the summand"

(2.15) 23/2-i= 25/2.
i=0

Thus, (2.12)-(2.15) imply:

(2.16) S14- S2 <27/2.

Furthermore, Lemma 2.5 combined with (2.10) and (2.11) implies S + $2 bounds the
expected time of Phase 2. Hence, its time is bounded by the constant 27/2 Q.E.D.

Comment 2.9. A more elaborate analysis than Lemmas 2.1 through 2.8 can produce
a version of Lemma 2.8 with a substantially lower constant. We now present our first
main theorem.

THEOREM 2.10. The expected time of SEBS is log log N+O(1).
Proof. Easy, since Phase 1 of SEBS never requires more time than [log log NJ 4-1

and Lemma 2.8 shows Phase 2’s additional cost is O(1). Q.E.D.
Comment 2.11. The proof of SEBS’s time log log N+ O(1) deliberately had a

larger coefficient in the O-notation than necessary for the sake of simplifying the
presentation. The actual time of this protocol is unlikely to appear in a closed algebraic
form, and we would expect it to be crudely approximated as log log N 4- e.

Comment 2.12. Let log(1)p, log(2)p, log(a)p, be abbreviations for the terms
log p, log log p, log log log p, etc., and let log*p denote the least integer such that

< -, (log* p) iog(Slog() p 1. Define LS(p, i) to be the quantity log* p +,.,= p. Bentley and Yao
[BY76] have shown that the quantity LS(p, 1)+ O(1) upper bounds the number of

LOG-LOGARITHMIC SELECTION RESOLUTION PROTOCOLS 473

greater-than comparisons needed to determine the value of a positive integer p for the
difficult deterministic search problem where no upper bound on p’s range of allowed
values is initially known (the absence of such an upper bound makes binary search
impossible). Their algorithm is relevant to multiple access selection conflicts because
some selection problems contain no initially known upper bound N on Q’s range of
permissible values. In particular, we will use in such cases an algorithm called QSEBS,
which is the same as SEBS except that it replaces the binary search in Phase 1 of SEBS
with an application of the Bentley-Yao algorithm to guess which power of 2 best
approximates Q’s value. Following the guess that this power of 2 is say the number
q*, Phase 2 of QSEBS will use a procedure identical to SEBS, that repeatedly performs
the operation TEST (q*) until the multiple access channel issues the signal 1. The
analysis of QSEBS is similar to that for SEBS, and it shows the procedure runs in
time LS(Q, 2) + O(1).

Comment 2.13. Some possible interesting modifications of SEBS or QSEB would
be variants whose Phase 1 seeks to guess the closest power of (1 + e) (rather than of
2) approximating Q’s value. Indeed one could take the limit of this method as e

approaches zero for SEBS and thereby eliminate the need for Phase 2. Some preliminary
simulations show that both variations of SEBS are efficient and neither is preferable
for all values of Q. Both variations of SEBS can be proven to be optimal up to an
additive constant, and our discussion has focussed on the power of 2 variation because
its proof is shorter. Curiously, both variations can be proven to have distinctly subop-
timal constants (because they do not correct adequately for some repeated sequences
of "0" or "e" signals). At present the best protocol for controlling the additive constant
is not known, and it is an open question. The clearly curious aspect of SEBS is that
the next section will prove this protocol to be optimal up to an additive constant
despite the extreme simplicity of its definition.

3. A log log N lower bound. A protocol is called fair itt all nodes desiring the
channel attempt to broadcast with the same probability during each round. In general,
any protocol is "fair" itt its trial during the ith round is an operation of the form
TEST (q), for some q-> 1. All the protocols from the last section were thus fair.

In this section, we again assume that N nodes are connected to a multiple
access channel and that Q of these N nodes wish to broadcast, for some positive
integer 2_-< Q_-< N whose value is initially unknown to our protocol. For any fair
protocol A, we will show there exists some Q such that the protocol requires at least
time log log N-O(1) to produce the signal "1" when Q nodes desire the channel.
This result will show that SEBS is optimal up to an additive constant and that QSEB
differs from optimality by a quantity LS(Q, 3)+ O(1), which of course is bounded by
o(log log Q). Incidentally, the same result can be proven for protocols not necessarily
fair with a more complicated analysis.

In our discussions s will denote a sequence of "0" and "e" signals whose length
is denoted as Is]. Henceforth, A will denote an arbitrarily chosen fair protocol, and
q(s) the value of q which this protocol chooses immediately after the signal sequence
s. That is, the (]s[+ 1)st test will consist of TEST(q(s)). This notation implies that
each of the Q nodes desiring the channel will broadcast "1" with a probability 1/q(s)
during the (Is] + 1)st round, and that (2.2) gives the resulting probability of P(q(s), Q,).
The following two lemmas help establish our lower bound.

LEMMA 3.1. Assume q(s)->2. Then P(q(s), Q, 1)_-<2 Qe-Q/qs)/q(s).
Proof. Since In (1-1/q(s))<-l/q(s), (3.1) must hold

(3.1) [1-1/q(s)] < e-/qs.

474 DAN E. WILLARD

Since q(s)->_2, this inequality implies

(3.2) [1-1/q(s)]- <2 e-o/q(.

The lemma now follows by substituting (3.2) into (2.2). Q.E.D.
P(q(s),Q, 1)/Q<2.LEMMA 3.2. O=2

Proof. Lemma 3.1 implies
N N

(3.3) E P(q(s), Q, 1)/Q_-<2 Y. e-/q(S)/q(s).
Q=2 Q=2

The assertion now follows because the right side of (3.3) is clearly less than

(3.4) 2 e-x/q(s) dx/q(s) 2. Q.E.D.

In the remainder of our discussion, Z will denote the set of all sequences of the
signals "0" and "e". ZNF will denote the subset of Z whose sequences have lengths
_-< (log log N)- 1, and ZstP the remaining elements whose length is > this quantity;
in other words, (3.5) and (3.6) define the two sets

(3.5) ZNF= {s Zllsl_-< (log log N)- 1},

(3.6) ZstJP= Is zllsl > (log log N)- 1}.

If A is a protocol, Q the number of nodes desiring the critical resource and s a

signal sequence, then PROBA (s, Q) will denote the probability that A produces the

sequence s when Q nodes desire the resource. Under this notation, the probability of

transmitting the sequence s immediately followed by the signal "1" on the multiple

access channel is"

(3.7) ProbA (s, Q) P(q(s), Q, 1).

Let pNF(Q) denote the probability that A emits the signal "1" in <= [log log NJ tests

when Q nodes wish to use the multiple access channel. Equations (3.5) and (3.7) imply

(3.8) pNF(Q)= Z ProbA (s, Q). P(q(s), Q, 1).
sEZINF

Similarly, the quantity pSAUP(q) below is the probability that more than [log log NJ
tests are required.

(3.9) pua(Q)= y. ProbA (s, Q). P(q(s), Q, 1).
sEZSUP

Let EA(Q) denote the expected number of tests performed by the protocol A
when Q nodes desire the critical resource. Another consequence of our notation is that

(3.10) EA(Q) , (Isl+ 1)" ProbA (s, Q) P(q(s), Q, 1).
sEZ

Since all members of ZstP satisfy Isl + 1 _-> [log log NJ, (3.10) implies

(3.11) EA(Q)>-_ [loglog NI psAue(Q)+ ,
sEZINF

Henceforth, T,(Q) will denote the summand

(Isl/ 1)" ProbA (s, Q) P(q(s), Q, 1).

(3.12) TA(Q) , {{[loglog N] -]sl-1}. ProbA (s, Q). p(q(s), Q, 1)}.
$ZINF

LOG-LOGARITHMIC SELECTION RESOLUTION PROTOCOLS 475

Since ptJ,(Q)= 1_ pNF(Q), (3.11) and (3.12)imply

(3.13) EA(Q) >- flog log NJ TA(Q).

Equation (3.13) shows an upper bound on TA(Q)’s value will produce a lower bound
on EA(Q)’s value. The next three propositions will use this type of analysis to construct
EA(Q)’s lower bound.

LEMMA 3.3. Let T denote the aggregate defined below"

N

(3.14) T= , TA(Q)/Q.
Q=2

Then TA_-<2" flog NJ.
Proof. Since ProbA (s, Q)<_-1, (3.12) implies

(3.15) TA(Q) <- , {tloglog NJ-lsl-1). P(q(s), Q, 1).
sEZINF

Equation (3.14), (3.15) and Lemma 3.2 then imply

(3.16) T-<2 Y {[loglogNJ-lsl-1}.
$ZINF

The definition of ZINF implies
(i) if =< (log log N)-1 then ZINF has precisely 2 sequences of length i; and
(ii) ZINF has no sequences of length > (log log N)- 1.

Therefore, (3.16) implies

[log log NJ -1

(3.17) T <--2" E ([log log N]- i-1)2’ _-< 2 [log NJ. Q.E.D.
i=0

LEMMA 3.4. Let t denote the minimum defined below"

(3.18) t= MIN TA(Q).
2<=Q<__N

Then t<-2 [log NJ/(ln (S+ 1)-ln 2).
Proof. Equation (3.14) and standard techniques from calculus imply

N

(3.19) T >- , (t/Q)> t [In (N+l)-ln2].
Q=2

Since Lemma 3.3 indicated T <_-2. [log NJ, (3.18) implies t_-<
2. [log NI/[In (N+ 1) In 2]. Q.E.D.

COROLLARY 3.5. t_--<2/(ln 3-In 2).
Proof. An immediate consequence of Lemma 3.4 is that its declared value of tA

always satisfies this inequality. Q.E.D.
We now prove the main result of this section.
THEOREM 3.6. Assume it is known that 2 <-Q<-N and that A is a fair protocol

which terminates when the signal "1" is transmitted. Then there exists a constant c whose
value is independent ofA and N such that EA(Q)>-_ [log log NJ -c, for at least some Q.

Proof. Let Q* denote that particular Q with t TA(Q*). Then (3.13) and Corol-
lary 3.5 imply

(3.20) EA(Q*) >-- [log log SJ tA => [log log NJ 2/(In 3 -In 2).

The latter equation shows one constant c satisfying Theorem 3.6 is 2/(ln 3-1n 2).
Comment 3.7. A more refined analysis will show c’s value is usually much lower.

For instance, Lemma 3.4 implies limN_o t -2/ln 2, and a further factor 2 decrease

476 DAN E, WILLARD

holds as Q approaches infinity in Lemma 3.1. These refinements reduce c’s value to
1/ln 2, and other refinements were also omitted for the sake of brevity.

Comment 3.8. The combination of Theorems 2.10 and 3.6 indicate that SEBS
provides a solution for the N-bounded selection problem that is optimal up to an
additive constant. Theorem 3.6 implies that every protocol for the unbounded variant
of this problem requires time log log Q- O(1) for infinitely many different values Q.
Thus QSEB’s expected time LS(Q, 2) / O(1) differs from this criteria for optimality by
_-< LS(Q, 3) / O(1), which of course is asymptotically << both log log Q and LS(Q, 2).
It is likely that our techniques could be combined with [BY76] to show that QSEB
differs from optimality by a slightly smaller asymptote proportional to log* Q. Both
[BY76] and the subsequent literature (for instance [Ri84], [RVS0], [StS0]) reported
quantities at least as large as o(log* i) separating the known upper and lower bounds
for the deterministic unbounded search problem, and it is therefore unclear whether
QSEB falls within precisely an additive constant of optimality.

4. Extensions. There are four possible generalizations of the results from 2
and 3.

First, consider using p multiple access devices in parallel to connect the N nodes.
These parallel devices could collectively constitute a hardware semaphore device that
performs selection resolution in time (log log N)/logp. This improvement in time
would probably not justify many additional lines because log p is a very slowly growing
function.

The second possibility would be a stripped communication device that only
transmits two signals of "0" and ".". The latter signal would mean the system is either
in the state "1" or "e". It would be impossible to resolve conflicts with 100% certainty
with such a device. However, they could be resolved in time (log log N)+ O([log el)
with certainty 1 e.

Finally, consider p devices hooked in parallel, each with the communication ability
{0, .}. Then the time for achieving the certainty 1-e would be (log log N)/log p+
O[llog el As a mathematician, I cannot predict whether electrical engineers will
ever use such a technology. However, parallel communication lines are certainly more
tempting in the third case than in the first.

It may be useful to apply our protocols to an environment where various different
processors compete for a resource by stating the priority of their request in the form
of an integer between I and M. An easy generalization of 2 shows the priority problem
can be resolved in time log (M. log N).

Acknowledgment. I warmly thank my Bell Labs supervisor, B. Gopinath, for
suggesting I study applications of randomized algorithms to semaphore-like problems.

REFERENCES

[BFJLP78]

[BY76]

[Ca79]

[Di65]

[Fe68]

J. BURNS, M. FISCHER, P. JACKSON, N. LYNCH AND G. PETERSON, Shared data requirements

for implementing mutual exclusion using test-and-set primatives, Univ. Washington report
F8-08-08, Seattle, WA, 1978.

J. BENTLEY AND A. YAO, An almost optimal algorithm for unbounded search, Inform. Proc.
Lett., 5 (1976), pp. 82-87.

J. CAPETAANNKIS, Tree algorithmsforpacket broadcast channels, IEEE Trans. Inform. Theory,
IT-25 (1979), pp. 505-515.

E. DIJKSTRA, Solutions ofa problem in concurrent programming control, Comm. ACM, 9 (1965),
p. 569.

W. FELLER, Introduction to Probability Theory, John Wiley, New York, 1968.

LOG-LOGARITHMIC SELECTION RESOLUTION PROTOCOLS 477

[Gr83]

[GL83]

[GW85]

[Kn65]

[Ma80]

[Me73]

[MB76]

[MT80]

[Pi79]

[Ra80]

[Ri84]

[RV80]

[SH80]

[St80]

A. GREENBERG, Efficient algorithmsfor multiple access channels, Ph.D. thesis, Univ. Washing-
ton, Seattle, WA, 1983.

A. GREENBERG AND R. LADNER, Estimating the multiplicity of conflicts in multiple access
channels, 24th IEEE Symposium on Foundations of Computer Science, 1983, pp. 323-392.

A. GREENBERG AND S. WINOGRAD, A lower bound on time needed in the worst case to resolve

conflicts deterministically in multiple access channel, J. Assoc. Comput. Mach., to appear.
D. KNUTH, Additional comments on a problem in concurrent control, Comm. ACM, 9 (1966),

p. 321.
J. L. MASSEY, Collision resolution algorithms and random communications, Tech. Report
UCLA-Eng-8016, Univ. California, Berkeley, 1980.

R. METCALFE, Steady state analysis ofslotted and controlled Aloha systems with blocking, Proc.
6th Hawaii Conference on System Sciences, 1973, pp. 375-380.

R. METCALFE AND D. BOGGS, Ethernet: distributed packet switching for local computer
networks, Comm. ACM, 19 (1976), pp. 395-404.

V. A. MIKHAILOV AND B. S. TSYBAKOV, Upper bound for the capacity of a random multiple
access system, Problomy Peredaihi Informatsii, 17 (1981), pp. 90-95; translated into English
in Problems of Information Transmission.

N. PIPPENGER, Bounds on the performance ofprotocols on multiple-access broadcast channels,
IBM report RC7742(33525), 1979.

M. RABIN, N-process synchronization by 4 log N-valued shared variables, 21st IEEE Symposium
on Foundations of Computer Science, 1980, pp. 407-410.

J. RISSANEN, Universal coding information, prediction and estimation, IEEE Trans. Inform.
Theory, IT-30 (1984), pp. 629-636.

J. RAOULT AND J. VUILLEMIN, Optimal unbounded search strategies, 7th International Col-
loquium on Automation and Computing and Programming, 1980, pp. 512-529.

J. SHOCH AND J. HUPP, Measured performance of an ethernet local network, Comm. ACM,
23 (1980), pp. 711-721.

Q. STOUT, Improved prefix encodings of natural numbers, IEEE Trans. Inform. Theory, IT-26
(1980), pp. 607-610.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

() 1986 Society for Industrial and Applied Mathematics
011

EFFICIENT ALGORITHMS FOR GEOMETRIC
GRAPH SEARCH PROBLEMS*

HIROSHI IMAVf AND TAKAO ASANO’*

Abstract. In this paper, we show that many graph search problems can be solved quite efficiently for
a geometric intersection graph ofhorizontal and vertical line segments. We first extract several basic operations
for depth first search and breadth first search on a graph. Then we present data structures for the intersection
graph in terms of which those operations can be implemented in an efficient manner. The data structures
enable us to solve various graph search problems besides depth first search and breadth first search. Specifying
the results obtained in this paper for an intersection graph of n horizontal and vertical segments with m
pairs of intersecting segments, we obtain algorithms with the following complexity, where N=
min m, n log n}.

(i) Depth first search and breadth first search can be executed in O(n log n) time and O(N) space.
(ii) The biconnected components can be found in O(n log n) time and O(N) space.
(iii) A maximum matching and a maximum independent set can be found in O(x/ N) time and O(N)

space when no two horizontal (vertical) segments intersect.
(iv) The connectivity k can be found in O(kn3/2N) time and O(N) space.

Our algorithms can be applied to various practical problems such as the problem of finding a minimum
dissection of a rectilinear region, which arises in the manipulation of VLSI artwork data, and the problem
of determining whether there is a Manhattan wiring on a single layer, which arises in the design automation
of digital systems.

Key words, computational geometry, segment tree, orthogonal segment intersection search, intersection
graph, graph algorithms, depth-first search, linear-time set union algorithm

1. Introduction. In most graph algorithms, graphs are represented by adjacency
lists (e.g., see [1]), and the complexity of each algorithm is estimated on the basis of
them. However, for graphs with some prescribed properties, it may be possible to
design efficient graph algorithms by employing other data structures which make use
of those properties. In this paper, we show that this is the case for some geometric
intersection graphs, where an intersection graph of objects in the plane is obtained by
identifying each object with a vertex, and connecting two vertices by an edge iff their
corresponding objects intersect. Specifically, we consider problems for an intersection
graph of horizontal and vertical line segments. In Fig. 1.1, an example is shown.

We first extract several basic operations for a graph which are required in executing
depth first search and breadth first search. The operations are mainly to find, for a
vertex, an arc emanating from it (this operation is called LIST1), and to delete the
incoming arcs incident to the vertex (this is called DELETE). These are a bit different
from ordinary implementations in deleting arcs coming into a vertex from the graph
in place of labeling the vertex. That is, in ordinary implementations for depth first
search and breadth first search, a vertex which has been searched is labeled (or, marked)
so that the vertex will never be searched again. However, in our implementations, we
delete arcs coming into the vertex from the graph for this purpose.

We then present efficient data structures for the intersection graph so that the
basic operations can be executed quickly. Our data structures are based on those for
intersection problems of horizontal and vertical line segments in computational
geometry, where the segment tree as introduced by Bentley [2] plays an important

* Received by the editors December 8, 1983, and in revised form December 28, 1984.

" Department of Mathematical Engineering and Instrumentation Physics, Faculty of Engineering,
University of Tokyo, Tokyo, Japan 113., Current address. Department of Mechanical Engineering, School of Science and Technology, Sophia
University, Tokyo, Japan 102.

478

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 479

v7

h53-hh4

h2
v5

v
v2 vI

hI

(a) Horizontal and vertical segments.

v1
hI

v2
h2

v
h3

v4
h4

v5
h5

v6
h6

v

(b) Intersection graph.

FIG. 1.1. An example.

role, and further on a linear-time set union algorithm developed by Gabow and Tarjan
11]. For an intersection graph of n horizontal and vertical segments, our data structures
enable us to execute, on-line, a sequence of O(n) LISTI’s and DELETE’s in O(n log n)
time and space.

We can develop efficient algorithms not only for depth first search and breadth
first search but also for various other graph problems. Specifying the results obtained
in this paper for an intersection graph of n horizontal and vertical segments with m
pairs of intersecting segments, we have the following, where N min {m, n log n}.

(i) Depth first search and breadth first search can be executed in O(n log n)
time and O(N) space.

(ii) The biconnected components can be found in O(n log n) time and O(N)
space.

(iii) A maximum matching and a maximum independent set can be found in
O(x/-ff N) time and O(N) space when no two horizontal (vertical) segments intersect.

(iv) The connectivity k can be found in O(kGrl3/2N) time and O(N) space.
These results can be applied to various practical problems, among which the

following two practical problems are taken up in the paper.
(I) The problem of finding a minimum dissection of rectilinear region which

consists of sides and may have holes (Lipski et al. [16], Ohtsuki [20]). This problem
arises in manipulation of VLSI artwork data. By applying our maximum matching
algorithm, we can solve the problem in O(l3/2 log l) time and O(l log l) space (in fact,
we can solve the problem a bit more efficiently as discussed in 7.1).

(II) The problem of determining whether or not a set of n point pairs can be
wired in Manhattan fashion on a single layer (Masuda et al. [17], Raghavan et al.
[21]). We can solve this problem in O(n log n) time.

2. Extracting basic operations for depth first search and breadth first search. We
first consider, as an example, the depth first search of a directed graph G (V A)
with vertex set V and arc set ac Let n and m Ia l. An undirected graph
G (Vc,, E) with vertex set V and edge set E is regarded as a directed graph
obtained from G by replacing each edge by two reversely-oriented arcs which connect
the same vertices. In Fig. 2.1, we give a procedure SEARCH for finding a depth first
spanning forest, which is represented by p(), and computing dfnumber((Tarjan
[24]).

480 HIROSHI IMAI AND TAKAO ASANO

procedure SEARCH;
procedure DFS (u);

begin
dfnumber (u) := k; k := k + 1;
while there is an arc (u, v)eA with v W do

begin
remove v from W; p(v):= u;
DFS (v)

end
end;

begin
k:= 1; W:= V;
while W do

begin
take an element w out of W; p(w):= nil;
DFS (w)

end
end;

FIG. 2.1. The procedure SEARCH.

In ordinary implementations of the procedure, a vertex removed from W is labeled
(or, marked), and, in DFS (u), we scan each arc (u, v) going out of u and check
whether v is labeled or not. If this technique is employed and the graph is represented
by adjacency lists, the procedure can be executed in O(m) time and space.

We can implement the procedure in a different way. For this purpose, several
procedures are introduced. For W___ V, we denote by G(W) the graph obtained from
G by deleting arcs coming into vertices in V- W. A data structure representing G(W)
for W V is kept in the course of the algorithm. For v W, DELETE (v, W) is a
procedure which makes W:= W-{v} and updates the data structure for G(W). For
u V, LIST1 (u, W) is a function which returns a vertex v such that (u, v) is an arc
in G(W) if such v exists, and returns nil otherwise. Also, for u V, LIST_DEL (u, W)
is a function which returns a set {vl(u,v) is an arc in G(W)} and executes
DELETE (v, W) for each v in the set.

The procedure SEARCH can be executed by DELETE and LIST1. That is, in the
main part of the procedure, we execute DELETE (w, W), and, in DFS (u), we execute
v := LIST1 (u, W) and DELETE (v, W). LIST1 and DELETE are executed O(n) times
and.the other parts of the procedure take O(n) time. Hence, we obtain the following.

PROPOSITION 2.1. Suppose that a sequence of O(n) LISTI’s and DELETE’s can
be executed, on-line, in gT-(n, m)(=(n))time and gs(n, m)(=(n)) space. Then, the
depth first search can be executed in O(gr(n, m)) time and O(gs(n, m)) space.

Of course, LIST1 and DELETE can be executed by representing (3 with adjacency
lists. In such a case, we trivially have gr(n, m), gs(n, m)= O(m). However, if G has
some prescribed properties, it may be possible to make gT(n, m) and gs(n, rn) smaller.
In 3, we show that this is the case for an intersection graph of horizontal and vertical
segments.

Similar techniques can be applied to the breadth first search. The problem we
consider is to execute a breadth first search on G from a set S of vertices (S Vo),
which computes, for each v V, the length d(v) of a shortest directed path from S
to v in G. Here, the length of a directed path is the number of arcs contained in it.
Note that d(s)=0 for s $, and d(v) =oo if there is no directed path from a vertex
in S to v. In Fig. 2.2, a procedure BFS is given, where Q is a queue consisting of
vertices in

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 481

procedure BFS;
begin

for each s s S do d (s) := 0;
let Q be a queue consisting of all vertices in S; W := V- S;
while Q do

begin
take an element u out of Q; Vu := LIST_DEL (u, W);
for each v s Vu do begin d(v) := d (u) + 1; insert v into Q end

end
end;

FIG. 2.2. The procedure BFS (breadth first search from the set S of vertices).

Then, we have the following, where it is noted that a sequence of O(n) LIST_DEL’s
can be executed by sequence of O(n) LISTI’s and DELETE’s.

PROPOSITION 2.2. Suppose that a sequence of O(n) LISTI’s and DELETE’s can
be executed in gT(n, m)(=gl(n)) time and gs(n, m)(=l(n)) space. Then, the breadth
first search can be executed in O(gr(n, m)) time and O(gs(n, m)) space.

3. The data structures. Let H (resp. V) be a set of horizontal (resp. vertical) line
segments in the (x, y)-plane. Let o--IvI and n= nh+ no. We denote by
Gs(H, V) th ntersection graph of these horizontal and vertical segments. We say that
Gs(H, V) is geometrically bipartite (abbreviated as g-bipartite) if there are no pair of
intersecting horizontal segments and no pair of intersecting vertical segments. Gs(H, V)
is an undirected graph, and, if Gs(H, V) is g-bipartite, Gs(H, V) is a bipartite graph.

In this section, we present efficient data structures for Gs(H, V), which are based
both on the data structures for a special kind of one-dimensional range search problem
and on segment trees, so that LIST1 and DELETE introduced in 2 can be executed
quickly. We first consider the problems for g-bipartite graph Gs(H, V), and then
consider the general case.

3.1. A special kind of one-dimensional range search problem. Suppose that, on the
x-axis, a set S of points Pi =(xi) (i= 1,...,p) and a set I of intervals (ranges)
Rk=[lk, rk] (k=l,’" ",q) are given. It is also supposed that xi (i=l,...,p) are
distinct, and that the values of x, lk and rk are given in a sorted order by O((p+
q) log (p + q))-time preprocessing. Further, for brevity, we provide dummy points Po
and Pp+l in S such that Xo--- and Xp+l =- +o. For these points and intervals, we are
concerned with the problem of executing the following procedures DEL and L1
efficiently. For Pi s S, DEL (P, S) is a procedure which removes Pi from the set S. For
Rk I, LI(Rk, S) is a function which returns a point P in S contained in the interval
Rk if such a point exists, and returns nil otherwise. In fact, LI(Rk, S) given below
returns a point which is leftmost among points included in Rk.

By means of the set union algorithm developed by Gabow and Tarjan 11], we
can execute a sequence of O(r) Ll’s and DEL’s in O(p+q+ r) time as follows. We
keep the set S of points P by a doubly linked list L in increasing order with respect
to their x-coordinates. For P S, let Pp<) be the predecessor element of Pi in the list
L. Pp) is a point that is rightmost among points in S lying in the left side of P. Then,
define R(P) to be a set of all intervals Rk I whose left endpoints lie in the interval
(xp<i), xi] (i.e., lk (Xp<), x]). By definition, R(P)’s (Pi S) are disjoint sets. For a pair
of consecutive points Pi and P in the list L, consider a procedure UNION (P, P)
which makes R(P) := R(P) J R(P) and R(Pi) := . For Rk I, consider a function
FIND (Rk) which returns a point P S such that Rk R(P), where Pi is uniquely
determined (recall that we consider dummy points Po and P+I). Then, DEL and L1
can be executed as in Fig. 3.1.

482 HIROSHI IMAI AND TAKAO ASANO

procedure DEL (Pi, $);
begin

let Ps(i) be the successor element of Pi in the list L;
remove P from the set S (i.e., the list L);
UNION (Pi,

end;
function LI(Rk, S): an element in S;

begin

P := FIND (Rk); (recall R I/k, rk])
if X > rk then return nil

else return Pi
end;

FIG. 3.1. The procedure DEL and the function L1.

In Fig. 3.2, an example is given. The validity of DEL and L1 is evident. Since we
know the structure of the UNION’s in advance (i.e., the union tree is a path, which
is the simplest case; see [11]), and UNION and FIND are executed O(r) times in the
sequence, we can execute UNION and FIND in O(p+q/ r) time in total, with
O(p + q) preprocessing time (Gabow and Tarjan [11]). Hence, we obtain the following.

THEOREM 3.1. A sequence of O(r) Ll’s and DEL’sforp points and q intervals can
be executed in O(p/ q+ r) time, using O(p/ q) preprocessing time.

PO P1 P2 P3

R1 R4
R2

(a) Points and intervals.

P4 R(P1)={R1}
+ R(P2)={R2,R3}

R3 R(P3)={R4
R(P3)={R2’R3"R4}

R(P4)= 0

LI(R3,S)=P2 LI(R3,S)=P3
LI(R4, S)=nil

(b) R(Pi) and L1.

FIG. 3.2. An example.

(e) After DEL (P2, S).

3.2. Segmentation. Our data structure below is essentially based on the partitions
of segments as induced by segment trees (Bentley [2]), which are now outlined with
a slight modification.

We first normalize the y-coordinates of segments in the following way. We shorten
vertical segments as much as possible so long as, for each vertical segment, the set of
intersecting horizontal segments does not change. Supposing that there are ny distinct
y-coordinates of endpoints of segments, we then normalize the y-coordinates of
segments by replacing them by their ranks from 1 to ny in the set (there, of course,
may be ties). Similarly, the x-coordinates of segments are normalized.

For an integer interval [a, b], a segment tree T(a, b) consists of a root r with
interval [a, b], and in the case of b-a >- 1, of a left subtree T(a, [(a + b)/2J) and a
right subtree T([(a+ b)/2J + 1, b); in the case of b-a=O, the left and right subtrees
are empty. In Fig. 3.3, the tree T(1, 6) is depicted, where each node is labeled with
its associated interval. We call an interval which equals interval i, j] associated with
some node of T(1, ny) a standard interval, and denote it by /j. The partition of a
segment [a, b] (1 _-< a _-< b _<- ny) is a collection of standard intervals contained in a, b]
such that

(i) each of a, a + 1, a + 2,.-., b is in exactly one standard interval in the collec-
tion, and

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 483

FIG. 3.3. The segment tree T(1, 6).

(ii) for each standard interval in the collection, which is associated with node
in T(1, ny), a standard interval associated with a father of nr in T(1, ny) is
not contained in [a, hi.

In Fig. 3.4, the partitions of vertical segments depicted in Fig. 1.1(a) are shown. The
partition of a segment consists of O(log ny) standard intervals, and can be obtained
in O(log ny) time.

v7

3 h3 I

2 h2 I.
v5 v3 v2

1 hl
vI v4

FIG. 3.4. The partitions of vertical segments given in Fig. 1.1(a).

3.3. Executing DELETE, LISTI and LIST_DEL. Since a sequence of O(n)
LIST_DEL’s can be replaced by a sequence of O(n) LISTI’s and DELETE’s, we only
consider arsequence of O(n) LISTI’s and DELETE’s in the following. We first consider
how to execute LISTI(h, H U V) for h H and DELETE (v, H D V) for v V in
g-bipartite Gs(H, V). LIST1 for v V and DELETE for h H can be executed
similarly. Consider the partitions of all the vertical segments in V. Then, with each
standard interval Ii,j, we can associate a set V (Iij) of vertical segments whose partitions
contain the standard interval Iij. (In Fig. 3.4, V(I4,6)= {vs, v7}.) For each horizontal
segment h, consider a set IH(h) of standard intervals Iij such that the y-coordinate
of h is contained in the standard interval Ij. (In Fig. 3.4, IH(h2) {I1,6, I1,3, 11.2, I2,2}.)
For a standard interval Ij, consider a set H(Ij) of horizontal segments h H such
that the y-coordinate of h is contained in the standard interval Ij. (In Fig. 3.4,
H, (I4,6) { h,, hs, h6}.)

For each standard interval Iij, by projecting the set V(I,) of vertical segments
and the set H(Ij) of horizontal segments on the x-axis, we can identify each vertical
segment with a point and each horizontal segment with an interval on the x-axis.
Therefore, we can consider DEL(v, V(Iij)) for v Vl(li,j) and Ll(h, Vi(Ii,j)) for
h HI (Ij) in an obvious way. For each standard interval Ij, we keep the data structure,
which is discussed in 3.1, for the set V (Ij) of points and the set H(Iij) of intervals
in order to execute DEL (v, V(Lj)) and L1 (h, V(Lj)). The data structure can be

484 HIROSHI IMAI AND TAKAO ASANO

constructed in O(n log n) time, and takes O(n log n) space in total. Then, DELETE
and LIST1 can be executed as in Fig. 3.5.

procedure DELETE (v, H U V);
begin

for each Ii, such that v V(Ii, j) do DEL (v, V(li, j))
end;

function LIST1 (h, H U V): an element of V;
begin

while In (h) do
begin

let li, be an element of In(h);
v:= L1 (h, V,(I,,));
if v nil then return v

else In(h):= ln h li,
end;

return nil
end;

FIG. 3.5. DELETE and LIST1.

Let us evaluate the time complexity to execute a sequence of O(n) LISTI’s for
h H and DELETE’s for v V given in Fig. 3.5. First, note that, in LIST1, IIH(h)l
O(log n) and, in DELETE, I(I,. lv O(log n). Suppose that, in the sequence,
L1 and DEL concerning Vi(Ii,j) and HI(Ii,j) are executed n(I,)times for each standard
interval Ii,. Then, the total complexity required by the whole LISTI’s and DELETE’s
is the complexity for executing a sequence of O(n(I,)) Ll(h, V1(I,))’s and
DEL (v, Vl(Ii,j))’s for all standard intervals I,. For each I,, the sequence of Ll’s and
DEL’s can be executed in time by Theorem 3.1. Since

log n) where the summation is taken over all
standard intervals I,, the total complexity to execute the whole Ll’s and DEL’s is
O(n log n). Thus, the sequence of O(n) LISTI’s for hH and DELETE’s for v V
can be executed in O(n log n) time and O(n log n) space. By considering partitions
of horizontal segments, a sequence of O(n) LISTI’s for v V and DELETE’s for h H
can be executed similarly in O(n log n) time and O(n log n) space.

Next, consider the case Gs(H, V) is not g-bipartite. In this case, we must find
pairs of intersecting horizontal segments and of intersecting vertical ones. Here, we
consider the problem for horizontal segments only. First, note that two horizontal
segments intersect only if their y-coordinates are the same. The set of horizontal
segments is partitioned into disjoint subsets so that two segments are in the same subset
iff their y-coordinates are the same. Then, we have only to find pairs of intersecting
segments in each subset. The problem for each subset is just the one-dimensional
interval intersection problem, for which efficient data structures such as a tile tree in
McCreight [18] and an interval tree in Edelsbrunner [6], [7] have been developed.
Given a set I of p intervals on a line, these data structures report a set I’ of all intervals
in I that intersect a query interval in O(log p+ II’1) time, and delete an interval in I
from the data structure in O(log p) time (in fact, in our case, we can delete it in a
constant time). The data structures take O(p) space.

Thus, we obtain the following.
PROr’OSlTION 3.1. A sequence of O(n) LIST_DEL’s, LISTI’s and DELETE’s for

Gs(H, V) can be executed in O(n log n) time and O(n log n) space.
The above algorithms may be worse than naive algorithms in case, for instance,

m O(n) (m is the number of arcs in Gs(H, V)). However, by processing Gs(H, V)

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 485

in advance, we can design an algorithm, which is never worse than usual ones in any
cases, and is quite efficient in almost all cases.

Given the set of horizontal and vertical segments, we first compute the number
rn of pairs of intersecting segments, which can be done in O(n log n) time and O(n)
space (Bentley and Ottmann [3]). If m <- n log n, the intersection graph Gs(H, V) is
constructed by enumerating all pairs of intersecting segments, which can be done in
O(n log n + m) time and O(n + m) space [3], and then the problem is solved by ordinary
adjacency lists as the data structures. Otherwise, the problem is solved by the data
structures given above. Thus, we obtain the following.

THEOREM 3.2. A sequence of O(n) LIST_DEL’s, LISTI’s and DELETE’s for an
intersection graph of n horizontal and vertical segments with m pairs of intersecting
segments can be executed in O(N) time and O(N) space with O(n log n) preprocessing,
where N min {m, n log n}.

4. Simple graph search problems. In the following 4-6, we consider that, for a
graph G with n vertices and m edges, a sequence of O(n) LISTI’s and DELETE’s
can be executed in gT-(n, m) time and gs(n, m) space (gr(n, m), gs(n, m) f(n)), and
estimate the complexity of algorithms for various graph problems. In this section,
simple graph search problems are investigated. By Theorem 3.2, for an intersection
graph Gs(H, V) of n horizontal and vertical segments with rn pairs of intersecting
segments, gT-(n, m), gs(n, m) O(N) when O(n log n) preprocessing is done in
advance, where N min {m, n log n}.

4.1. Depth first search, breadth first search and the connected components. By
Propositions 2.1 and 2.2, depth first search and breadth first search for the graph G
can be executed in O(gr(n, m)) time and O(gs(n, m)) space. Hence, we obtain the
following.

THEOREM 4.1. Depth first search and breadth first search for Gs(H, V) can be
executed in O(n log n) time and O(N) space.

As is well known, the connected components of G can be found by executing
depth first search or breadth first search, hence we obtain the following.

COROLLARY 4.1. The connected components of Gs(H, V) can be found in
O(n log n) time and O(N) space.

However, concerning the problem of finding the connected components of
Gs(H, V), an O(n log n)-time and O(n)-space algorithm is known (Edelsbrunner et
al. [8], Imai and Asano [14]) which employs the so-called plane-sweep techniques.

4.2. The biconnected components. We first show that the biconnected components
of an undirected graph G Vc,, E) with vertex set V and edge set E can be found
in O(gT-(n, m)) time and O(gs(n, m)) space (by the biconnected components, we here
mean the decomposition of the vertex set obtained by decomposing G into the
biconnected components). We suppose that G is connected. By executing depth first
search for the graph, a depth first spanning tree represented by p(and the values
of dfnumber (u) for u V are found, which takes in O(gT(n, m)) time and O(gs(n, m))
space. Then, the main problem for the biconnected components is to compute low(u)
for each vertex u defined as follows (Tarjan [24]).

low(u) min {{dfmin(u)} U {low(s)ls V, p(s) u}}, where

dfmin(u)=min {dfnumber(v)lv=u or {u, v} is an edge in G with vp(u)}.

If the values of dfmin(u) for all u can be computed, we can find in O(n) time and
space the values of low(by traversing the tree in postorder, and then we can find

486 HIROSHI IMAI AND TAKAO ASANO

the biconnected components in O(n) time and space [24]. So, the problem is to find
the values of dfmin(u) for all vertices u. In Fig. 4.1, an algorithm for this problem is
given. Note that each edge {u, v} of G is considered to be two reversely-oriented arcs
(u, v) and (v, u) in the procedure.

procedure COMPUTE_DFMIN;
begin
W:= V; let u be a vertex with dfnumber(u)= 1;
dfmin(u):= 1; DELETE (u, W);
for i:=l to ndo

begin
let v be a vertex with dfnumber(v)= i; U:= LIST_DEL(v, W);
far each u U do if v=p(u) then dfmin(u):= dfnumber(u)

else dfmin(u) :=
end

end;

FIG. 4.1. The procedure COMPUTE_DFMIN.

Since it can be considered that the values of dfnumber(u) for u V have been
sorted in executing depth first search, we obtain the following.

PRO,OSIa’ION 4.1. The biconnected components of G can be found in O(gr(n, m))
time and 0(gs n, m)) space.

Then the following is obtained by applying the proposition to graph Gs(H, V).
TIqEOREI 4.2. The biconnected components ofGs(H, V) can befound in O(n log n)

time and O(N) space.

5. Maximum flow algorithms. In this section, we consider the problem of finding
a maximum flow in a directed graph G (Vc, A) with unit capacities such that, for
each vertex, there is at most one arc that emanates from it or at most one arc that
comes into it. We estimate the complexity of Ford and Fulkerson’s and Dinic’s
algorithms for this problem, based on the complexity to execute the basic operations,
LIST1 and DELETE, for graphs obtained by modifying the original graph G in the
course of the algorithms.

Let S and T be disjoint subsets of Vc,, where it is supposed that, for each vertex
in S (resp. T), there is the only one arc emanating from (resp. coming into) it. We
consider the problem of finding a maximum (integral) flow from S to T in the graph
G with unit capacities. This problem is equivalent to that of finding a maximum
vertex-disjoint directed paths from S to T in G. Note that the value of a maximum
flow is at most n/2.

We first describe the basic part of the maximum flow algorithms. Let f be an
integral flow on G, that is, for each arc aAc,, f(a)=0 or 1, and, for each vertex
v V-(St.J T), a=(u.v)af(a)=Y’.a=(.u)Af(a). Define an auxiliary graph G(f)
with vertex set V and arc set A[=AoUIA1 by Ao ={alaA, f(a)=O}, A1=
{a’[a Ac,,f(a) 1, a’: reorientation of a}. Let S(f) ={s[s S, there is an arc emanating
from s in G(f)} and T(f) { tit T, there is an arc coming into in G(f)}. If, in G(f),
there is a directed path P from S(f) to T(f), we can augment the flow by letting
f(a) := 1 (a P f’l Ao), f(a) := 0 (a’ P f’l A1, a: reorientation of a’).

In the maximum flow algorithms, we must execute the basic operations, LIST1
and DELETE for auxiliary graphs G(f). Since G(f) can be obtained by slightly
modifying the original graph G, those operations for G(f) can be executed by those
for G (it should be noted that, for each vertex v, there is at most one arc a emanating
from (coming into) v with f(a)= 1 in the graph G). Hence, we have the following.

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 487

PROPOSITION 5.1. Suppose that a sequence of O(n) LISTI’s and DELETE’s for
the graph G can be executed in gT-(n, m) time and gs(n, m) space. Then a sequence of
O(n) LISTI’s and DELETE’s for the auxiliary graph G(f) can be executed in
O(gT(n, m)) time and O(gs(n, m)) space.

5.1. Ford and Fulkerson’s algorithm. This algorithm 10] starts with an appropriate
integral flow f, which may be zero flow, and iterates to find a directed path from S(f)
to T(f) in G(f) and to augment the flow f until there comes to be no directed path
from S(f) to T(f) in G(f). Since the value of a maximum flow is at most n/2 in this
graph G, a maximum flow can be found by solving the problem of finding a directed
path in the auxiliary graph at most n/2 times. Since the path-finding problem can be
solved by executing depth first search or breadth first search, from Proposition 5.1, we
obtain the following.

PROPOSITION 5.2. Ford and Fulkerson’s algorithm finds a maximum flow in the
graph (3 in O(ngT-(n, m)) time and O(gs(n, m)) space.

5.2. Dinic’s algorithm. Dinic’s algorithm [5] (see also Even and Tarjan [9] and
Hopcroft and Karp [13]) consists of phases, where the number of phases is O(x/-ff) for
this type of graph G [9] (see also [13]). Each phase consists of two steps. The first

step is to determine the layer of each vertex of G(f) by breadth first search. The second
step is to find a maximal set of vertex-disjoint directed paths in the layered G(f) by
depth first search.

The first step is to execute breadth first search on G(f) from S(f) and compute
d(v) for each v as in 2. If d(t)- for each T(f) (i.e., there is no directed path
from S(f) to T(f) in G(f)), f is a maximum flow. This breadth first search can be
done in O(gr(n, m)) time and O(gs(n, m)) space by Propositions 2.2 and 5.1.

The second step is subtler than the first step, and is executed as follows. Let
d*=min{d(v)lv T(f)}, which is assumed to be finite. Define Ta(f) to be {tlt
T(f), d(t)= d*}. Then, the second step of the phase is to find a maximal set of
vertex-disjoint directed paths of length d* in G(f) from S(f) to Ta(f), where a set
is maximal with a given property if it is not properly contained in any set that has the
property. For this purpose, we need a new graph G(f, d), which is defined to be a

directed graph with vertex set V6 and arc set {(u, v)l(u, v) is an arc in G(f), d(v)=
d(u)+ 1}. A maximal set of such directed paths in G(f) as mentioned above can be
found by executing the depth first search on G(f, d) (for details, see [5], [9], [13]).
Then, from the arguments in 2, we see that the problem is to execute the basic
operations, LIST1 and DELETE, for the graph G(f, d). Since, concerning the structure
of a graph, G(f, d) is quite different from G, we cannot generally obtain a proposition,
similar to Proposition 5.1, for this graph G(f, d). Considering the complexity to execute
those basic operations for G(f, d) as well as that for the original graph G, we obtain
the following.

PROPOSITION 5.3. Suppose that O(n LISTI’s and DELETE’sfor the graph G(f, d)
can be executed in hT-(n, m) time and hs(n, m) space. Then, Dinic’s algorithm finds a
maximum flow in the graph G in O(v/-ff(gT.(n, m)+ h.(n, m))) time and O(gs(n, m)+
hs(n, m space.

That is, it is a little complicated to implement Dinic’s algorithm, since it requires
data structures for executing a sequence of LISTI’s and DELETE’s not only for the
graph G but also for the graph G(f, d).

5.3. A maximum matching. In this section, we consider the problem of finding a
maximum matching of g-bipartite Gs(H, V). Gs(H, V) is considered to be a directed

488 HIROSHI IMAI AND TAKAO ASANO

bipartite graph (H, V; A) with left vertex set H, right vertex set V and arc set

A c H x V. For this Gs(H, V), construct a directed graph G by adding copies H’
and V’ of H and V, respectively, to Gs(H, V), and making an arc (h’, h) for each
h e H and an arc (v, v’) for each v e V. As is well known, the problem of finding a
maximum matching of Gs(H, V) is equivalent to that of finding a maximum integral
flow from H’ to V’ in G with unit capacities, hence the arguments in 5.1 and 5.2
can be applied.

Concerning the time and space complexities gT(n, m) and gs(n, m), respectively,
for executing a sequence of O(n) LISTI’s and DELETE’s for this G, by using the
data structure for Gs(H, V) presented in 3, we have gT(n, rn), gs(n, m)= O(N) with
O(n log n) preprocessing. (Thus, by Ford and Fulkerson’s algorithm with the data
structure in 3 and from Proposition 5.2, we can find a maximum matching of Gs(H, V)
in O(nN) time and O(N) space.)

Concerning the time and space complexities hr(n, m) and hs(n, m), respectively,
for executing a sequence of O(n) LISTI’s and DELETE’s for G(f, d) obtained from
this G, we can no more use the data structure in 3 directly, because it cannot handle
the condition on d efficiently. However, we can modify it, in the following way, so as
to work well even for the graph G(f, d). For each standard interval Ii,j, let D(Ii.j)=
{d(h)lh H1(Ii.#)}. For each k e D(Ii,#), define H(k, I.) and V(k, Ii,j) by

Hi(k, Ii,j)= {hlh Hi(Ii,j), d(h)= k},

H(k, I,)’s (resp. V1(k, I,j)’s) for all k e D(L,) are disjoint sets. Hence, a sequence
of O(n) LISTI’s for he H and DELETE’s for ve V on G(f, d) can be executed in
O(n log n) time and space by providing, for each standard interval I, and k D(L.g),
the data structure given in 3.1 for V(k, I,) and H(k, I,). We can construct the
data structure in O(n log n) time (in partitioning H(I,) and V(I,) into H(k, L,)’s
and Vl(k, Ii,)’s (k e D(I,)), we use a technique similar to the so-called bucket sort).
Concerning LIST1 for v e V and DELETE for h e H, since there is at most one arc
going out of v in G(f, d) owing to the bipartite structure of Gs(H, V), we can execute
each LIST1 and DELETE in a constant time. Then, concerning hr(n, m) and hs(n, rn),
applying the arguments similar to Theorem 3.2, we have hr(n, m), hs(n, rn) O(N).
Then, the following is obtained from Proposition 5.3.

THEOREM 5.1. A maximum matching of g-bipartite Gs(H, V) can be found in
O(x/n N) time and O(N) space by Dinic’s algorithm with the data structures presented
above.

5.4. The connectivity. For Gs(H, V), consider the directed graph G obtained by
splitting each vertex u to u- and u+ and making arc (u +, u-), and making arcs (u-, u)
and (u-, u-) iff there is an edge {ui, u} in Gs(H, V). The connectivity k of Gs(H, V)
can be found by solving the problem of finding a maximum flow in the graph G
repeatedly. Further, in solving the maximum flow problem on G by Dinic’s algorithm,
we can execute DELETE and LIST1 for G by those for Gs(H, V), and we can apply
the data structures developed here to this problem. That is, we can solve the maximum
flow problem on this graph G with unit capacities in O(xfff N) time and O(N) space.

Even and Tarjan’s algorithm [9] solves O(k6n) times the maximum flow problem
on G for Gs(H, V). Thus, we can find the connectivity k of Gs(H, V) in O(kna/EN)
time and O(N) space. Also, by applying Galil’s algorithm [12], we can find k in
O(kx/-ff N max {k, ,fif}) time and O((k2 + n)n) space (note that, since vertex-disjoint
directed paths are concerned, the information of each phase in Dinic’s algorithm can
be kept in O(n) space not by (R)(m) space).

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 489

Stating the former result as a theorem, we have the following.
TI-IEOREM 5.2. The connectivity k of Gs(H, V) can befound in O(kon3/2N) time

and O(N) space.

6. An independent set.
6.1. A maximum independent set of g-bipartite Gs(H, V). As is well known, a

maximum independent set of a bipartite graph can be found by any bipartite matching
algorithm which finds a minimum cover of the graph, hence we obtain the following.

THEOREM 6.1. A maximum independent set of g-bipartite Gs(H, V) can be found
in O(x/- N) time and O(N) space.

6.2. Determining the existence of an independent set of maximally possible size. Let
G (V, E) be a graph with n vertices as in 4. Let X be a matching of G. For each
u V, we define mate(u) to be v if there is an edge { u, v} X and to be nil otherwise.
A vertex u with mate(u) nil is called unmatched. Apparently, the size of a maximum
independent set of G is at most n- IxI. Further, if there is an independent set S of
G of size n- [X], then, for each edge { u, v} X, exactly one of { u, v} is an element of
S, and each unmatched vertex is an element of S.

Masuda et al. 17] gave an O(m)-time and O(m)-space algorithm for determining
whether or not there is an independent set of size n- IX I. Their algorithm executes
the depth first search on G by stretching alternating paths (an alternating path is a
path of edges which are alternately in X and not in X). In this section, we give an
efficient implementation of their algorithm, which solves the problem for G in
O(gT(n, m)) time and O(gs(n, m)) space.

Following their algorithm, we color vertices as follows. A vertex v that is found
to be in every independent set (resp. no independent set) of size n-IX[is colored
green (resp. red). A vertex v contained (resp. not contained) in the current candidates
for such an independent set is colored blue (resp. orange). The other vertices v that
are unsearched are colored white. In Fig. 6.1, a procedure INDEPENDENT_SET for
the problem is given.

The outline of the algorithm is as follows. Since unmatched vertices must be in
every independent set of size n-]X], we first color these vertices v green. If vertex v
is colored green (in such a case, the procedure GREEN (v) is called), a set Vo of
vertices adjacent to v must be colored red. Then, for each w Vv, vertex mate(w) must
be colored green, and so, coloring mate(w) green, we apply this procedure recursively.
It should be noted that, after the execution of GREEN (v) for unmatched vertices v,
all vertices colored white are matched. Then we take a vertex v colored white as a
candidate, and color v blue. Starting with v, we execute the depth first search (the
procedure BLUE (v)). If a vertex u adjacent to v is still colored white, we color u
orange and vertex u’= mate(u) blue, and recursively execute depth first search from
u’. If a vertex u adjacent to v is already colored blue, there is a path u Uo, ul,

u2, ", U2k-, U2k V such that u2i mate(u2i_), color (u2)--blue and color(u2i_)--
orange (this is because BLUE essentially executes the depth first search). If u Uo is
in an independent set $ of size n-IxI, cannot be in S, and then u2 must be in
S,. ., and U2k V must be in S. However, there has been found an edge connecting
u and v, which contradicts the fact that S is an independent set. Thus, in this case,
we see that u cannot be in any independent set of size n-Ixl, and we color u red,
and u’= mate(u) green, and execute GREEN (u’).

In the procedure, we consider operations, LIST_DEL and DELETE, for the set
S on (3, and operations, LIST1 and DELETE, for the set T on (3 (we must treat them
separately). In the course of the algorithm, V- S is a set of vertices colored red, and,

490 HIROSHI IMAI AND TAKAO ASANO

procedure INDEPENDENT_SET;
procedure GREEN (v);

begin
Vv := LIST_DEL (v, S); U := ;
for each w e Vv do

begin
if color(w) green then

begin
report "There is not an independent set of size n-]X]"; halt

end;
u := mate(w); color(w) := red; color(u) := green; U := U U u};
if w T then DELETE (w, T); if u T then DELETE (u, T)

end;
for each u U do GREEN (u)

end;
procedure BLUE (v);

begin
u := LIST1 (v, T);
if u nil then

begin
DELETE (u, T); u’:= mate(u);
if color(u) blue then

begin
color(u’) := green; color(u) := red;
DELETE (u, S); GREEN (u’)

end
else begin color(u) := orange; color(u’) := blue; BLUE (u’) end;
if color(v) blue then BLUE (v)

end
end;

begin
S:= V; T:= V; for each v V do color(v := white;
for each unmatched vertex v do begin color(v):= green; DELETE (v, T) end;
for each unmatched vertex v do GREEN (v);
while there is a vertex colored white in T do

begin
let v be a vertex colored white in T; v’:= mate(v); DELETE (v’, T);
color(v’) := orange; color(v) := blue; BLUE (v)

end;
report "There is an independent set of size n-

end;

FIG. 6.1. The procedure INDEPENDENT_SET.

for each u V S, vertex mate(u) is colored green. T is a set of vertices colored blue
or white. If the algorithm reports "There is an independent set of size n- Ixl," then
{vlcolor(v) green or blue} is an independent set of size -Ixl at the end of the
algorithm.

Next, consider the complexity of the procedure. Since BLUE essentially executes
the depth first search, LIST1 and DELETE for T and DELETE for S in BLUE are
executed O(n) times. Hence, we can execute all the BLUE’s except GREEN’s in them
in O(gT(n, m)) time and O(gs(n, m)) space. GREEN is executed at most once for
each v Vc Hence, the total complexity to execute all GREEN’s is the complexity to
execute a sequence of O(n) LIST_DEL for S and DELETE for T. The other parts of
the algorithm obviously take O(n) time and space. Thus, we obtain the following.

PROPOSITION 6.1. Let G be a graph with n vertices and m edges, to which a matching
of size k is given. Then, we can determine whether or not there is an independent set of
size n-k in O(gT(n, m)) time and O(gs(n, m)) space.

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 491

7. Applications.
7.1. Minimum dissection of rectilinear region. In manipulation of VLSI artwork

data, there arises the problem of dissecting a rectilinear region into a minimum number
of nonoverlapping rectangles (Lipski et al. [16], Ohtsuki [20]). Here, rectilinear regions
are polygonal regions bounded only by horizontal and vertical edges which may have
"holes." In Fig. 7.1, an example is given.

(a) Rectilinear region
and effective chords.

@ (R)
v2

v3

(b) Intersection graph
of effective chords.

FIG. 7.1. An example.

(c) A minimum dissection.

This problem can be solved as follows. Let R be a rectilinear region with edges.
A chord of R connecting two concave vertices whose x- or y-coordinates are the same
is called an effective chord. Let H (resp. V) be the set of horizontal (resp. vertical)
effective chords, where n IHI/IvI and there are m pairs of intersecting effective
chords. An intersection graph Gs(H, V) of those chords is g-bipartite. Let $ be a
maximum independent set of Gs(H, V). We first dissect the region by chords in S into
subregions (note that each subregion has no effective chords). We then dissect each
subregion by horizontal chords connecting concave vertices and points on edges. The
above algorithm yields a minimum dissection [16], [20].

We now evaluate the complexity ofthe above algorithm. Given a rectilinear region,
we can easily find all effective chords in O(l log l+ n) time and O(l) space by the
plane-sweep algorithm. A maximum independent set of Gs(H, V) can be found in
O(x/-ff N) time and O(N) space by Theorem 6.1 (N=min {m, n log n}). Finally, all
the subregions can be dissected by such horizontal chords totally in O(l log l) time
and O(l) space by the plane-sweep algorithm. Thus, a minimum dissection of the
rectilinear region can be found in O(x/-ff N+ log l) time and O(l+ N) space. This
improves the previous time bound O(n5/2 + log l) in [20], and O(n3/2 log n log log n +
/log l) in 15], 16].

7.2. Manhattan wiring problem. We have the following problem in the design
automation of digital systems (Masuda et al. [17], Raghavan et al. [21]). On the grid,
n pairs of points are given. The Manhattan wiring problem is to connect all the pairs
of points by wires along grid lines so that the wires do not intersect one another and
no wire has more than one bend. Such a wiring is called a Manhattan wiring [17],
[21]. Then the problem we consider is to determine whether there is a Manhattan
wiring for given n pairs of points.

There are two rectilinear segments connecting the pair of points and bent at most
once (in the case two points have the same x- or y-coordinates, there is the only one),
each of which is called an M-wire of the pair of points. Then, there is a Manhattan
wiring iff there is an independent set of size n in an intersection graph GM of all the
M-wires. In Fig. 7.2, an example is given.

492 HIROSHI IMAI AND TAKAO ASANO

w v v w
(a) Four pairs ofpoints

and their M-wires.

w4 o -o(
(b) Intersection graph

of M-wires.

FIG. 7.2. An example.

o o-

(c) A Manhattan wiring.

Let nl be the number of pairs of points which have the only one M-wire, and
/12 --rl- r/1. The number of M-wires is nl + 2n2. Since GM has a trivial matching of
size t/E, the problem of determining the existence of an independent set of size
(n + 2n2)-r/2 --n can be solved by the algorithm in 6.2. Apparently, LIST_DEL,
LIST1 and DELETE for the graph GM can be implemented by those for an intersection
graph of horizontal and vertical segments of which M-wires are composed. Let m be
the number of edges in GM, and N min {m, n log n}. Then, by Proposition 6.1, we
can solve the problem in O(n log n) time and O(N) space. Our result is an improvement
compared with an o(na)-time algorithm in [21] and an O(n log n / m)-time algorithm
in [17].

8. Concluding remarks. On the intersection problem of horizontal and vertical
segments, and rectangles with sides parallel to the axes, efficient data structures have
been developed. For the static problem of reporting all the intersections of a family
of given n horizontal and vertical segments with an arbitrary horizontal or vertical
query segment, an optimal algorithm due to Chazelle [4] is known. His algorithm takes
O(n log n) preprocessing time, O(n) space and O(logn+k) query time, where k is
the number of reported intersections. However, for our purpose, the operation to delete
a segment from the family is necessary, so that such a static algorithm does not work.
McCreight’s priority search tree 19] can be applied to this problem. His data structure
is a dynamic one, and takes O(n) space, O((log n)2+ k) query time and O((log n)2)
update (deletion or insertion) time. By his data structure, a sequence of O(n) LISTI’s
and DELETE’s for Gs(H, V) can be executed in O(n(log n)2) time and O(n) space.
In this paper, by utilizing the special structures of our problems, we have given the
data structure which decreases a factor log n in respect to the time complexity with
increasing the same factor in respect to the space complexity.

It is straightforward to generalize the arguments in the paper for intersection
graphs of horizontal and vertical segments to the problems for intersection graphs of
n rectangles with sides parallel to the axes (and further for graphs of arbitrary boxicity
k, where the boxicity of a graph G is the smallest k such that G is the intersection
graph of hyperrectangles with sides parallel to the axes in k-dimensional space [22]).
By employing the general data structure developed by Edelsbrunner [7], a sequence
of O(n) LIST_DEL’s, LISTI’s and DELETE’s for the graph of rectangles can be
executed in O(n(log n)2) time and O(n log n) space. (It may be possible to execute
the sequence in O(n log n) time and space by taking advantage of special properties
of the sequence.) Hence, we can also solve the simple graph search problems for the
graph of those rectangles in an efficient manner. For instance, the biconnected com-
ponents of an intersection graph of n rectangles with sides parallel to the axes can be
found in O(n (log n)2) time and O(n log n) space (again, by counting the number of

ALGORITHMS FOR GEOMETRIC GRAPH SEARCH PROBLEMS 493

pairs of intersecting rectangles in advance, and enumerating those intersecting rec-
tangles if necessary, the above complexities can be modified, where the algorithms in
Edelsbrunner [6], McCreight [18] and Six and Wood [23] may be used).

In 15], Lipski independently developed an algorithm for the problem of finding
a maximum matching of g-bipartite Gs(H, V) with n vertices, and claimed that the
time and space complexities are O(n3/2 log n log log n) and O(n log n), respectively.
His algorithm is rather complicated and a little worse with respect to the time complexity
than our maximum matching algorithm. Furthermore, it seems that the data structures
in [15] only would not be enough to execute the bipartite-matching algorithm in [13]
correctly.

Finally, we remark that it is a challenging problem to develop an algorithm for
executing a sequence of O(n) basic operations, LIST1 and DELETE, for the intersec-
tion graph of horizontal and vertical segments in O(n log n) time, using O(n) space.

Acknowledgments. The authors wish to thank Professor Masao Iri of the University
of Tokyo and Professor David Avis of McGill University for their valuable discussions
and comments on the paper.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Welsey, Reading, MA, 1974.

[2] J. L. BENTLEY, Solutions to Klee’s rectangle problems, unpublished note, Dept. Computer Science,
Carnegie-Mellon Univ., Pittsburgh, 1977.

[3] J. L. BENTLEY AND T. A. OTTMANN, Algorithms for reporting and counting geometric intersections,
IEEE Trans. Comput., C-28 (1979), pp. 643-647.

[4] B. CHAZELLE, Filtering search: A new approach to query-answering, Proc. 24th Annual IEEE Symposium
on Foundations of Computer Science, Tucson, AZ, 1983, pp. 122-132.

[5] E. A. DINIC, Algorithm for solution of a problem of maximum flow in a network with power estimation,
Soviet Math. Dokl., 11, 5 (1970), pp. 1277-1280.

[6] H. EDELSBRUNNER, A time- and space-optimal solutionfor the planar all intersecting rectangles problem,
Report 50, Institut fiir Informationsverarbeitung, Technische Universitit Graz, 1980.

[7],Dynamic data structuresfor orthogonal intersection queries, Report 59, Institut fiir Informations-
verarbeitung, Technische Universifiit Graz, 1980.

[8] H. EDELSBRUNNER, J. VAN LEEUWEN, TH. OTTMANN AND D. WOOD, Connected components of
orthogonal geometric objects, Report 72, Institut fiir Informationsverarbeitung, Technische Universi-
t/it Graz, 1981.

[9] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975),
pp. 507-518.

10] L.R. FORD, JR. AND D. R. FULKERSON, Flows in Networks, Princeton Univ. Press, Princeton, NJ, 1962.
11] H. N. GkaOW AND R. E. TARJAN, A linear-time algorithm for a special case ofdisjoint set union, Proc.

15th Annual ACM Symposium on Theory of Computing, Boston, 1983, pp. 246-251.
[12] Z. GALIL, Finding the vertex connectivity of graphs, this Journal, 9 (1980), pp. 197-199.
[13] J. E. HOPCROFT AND R. M. KARP, An n5/2 algorithm for maximum matchings in bipartite graphs, this

Journal, 2 (1973), pp. 225-231.
[14] H. IMAI AND T. ASANO, Finding the connected components and a maximum clique of an intersection

graph of rectangles in the plane, J. Algorithms, 4 (1983), pp. 310-323.
[15] W. LIPSKI, JR., Finding a Manhattan path and related problems, Networks, 13 (1983), pp. 399-409.
16] W. LIPSKI, JR., E. LODR, F. LuccIo, C. MUGNAI AND L. PAGLI, On two dimensional data organization

II, Fund. Inform., 2 (1979), pp. 245-260.
[17] S. MASUDA, S. KIMURA, T. KASHIWABARA AND T. FUJISAWA, On the Manhattan wiring problem,

Papers of the Technical Group on Circuits and Systems, CAS 83-20, Institute of Electronics and
Communication Engineers of Japan, 1983. (In Japanese.)

18] E. M. MCCREIGHT, Efficient algorithms for enumerating intersecting intervals and rectangles, CSL-80-9,
Xerox PaiD Alto Research Center, PaiD Alto, CA, 1980.

19], Priority search trees, CSL-81-5, Xerox Palo Alto Research Center, 1982; this Journal, 14 (1985),
pp. 257-276.

494 HIROSHI IMAI AND TAKAO ASANO

[20] T. OHTSUKI, Minimum dissection of rectilinear regions, Proc. 1982 IEEE International Symposium on
Circuits and Systems, Rome, 1982, pp. 1210-1213.

[21] R. RAGHAVAN, J. COHOON AND S. SAHNI, Manhattan and rectilinear wiring, Technical Report 81-5,
Computer Science Dept., Univ. Minnesota, Minneapolis, 1981.

[22] F. ROBERTS, Graph Theory and Its Applications to Problems of Society, CBMS Regional Conference
Series in Applied Mathematics, 29, Society for Industrial and Applied Mathematics, Philadelphia,
1978.

[23] H. W. Six AND D. WOOD, Counting and reporting intersections of d.ranges, IEEE Trans. Comput.,
C-31, 3 (1982), pp. 181-187.

[24] R. E. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.
[25] V. K. VAISHNAVI AND D. WOOD, Rectilinear line segment intersection, layered segment trees, and

dynamization, J. Algorithms, 3 (1982), pp. 160-176.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
012

PLANAR MULTICOMMODITY FLOWS,
MAXIMUM MATCHINGS AND NEGATIVE CYCLES*

KAZUHIKO MATSUMOTO’I’:I:, TAKAO NISHIZEKI* AND NOBUJI SAITO:I:

Abstract. This paper shows that the multicommodity flow problem on a class of planar undirected
graphs can be reduced to another famous combinatorial problem, the weighted matching problem. Assume
that in a given planar graph G all the sources can be joined to the corresponding sinks without destroying
the planarity. Then we show that the feasibility of multicommodity flows can be tested simply by solving,
once, the weighted matching problem on a certain graph constructed from G, and that the multicommodity
flows of given demands can be found by solving the matching problem O(n) times if G has n vertices.
Efficient algorithms are also given for detecting negative and minimum cycles in planar undirected graphs.

Key words, algorithm, cut condition, feasibility, max flow-min cut theorem, minimum cycle, maximum
matching, multicommodity flows, negative cycle, network, planar graph, planar separator theorem

1. Introduction. The network flow problem and its variants have been extensively
studied. The most basic theorem of flow theory is the max flow-min cut theorem of
Ford and Fulkerson which holds for single commodity and two-commodity flows [6],
[12]. There are efficient algorithms for finding a maximum single-commodity flow; the
O(IEIIvl log [v[) time algorithm of Sleater and Tarjan is the theoretically best known
one for sparse graphs, where V is the set of vertices and E the set of edges in a graph
[21].

In the multicommodity flow problem, one would like to (1) test the feasibility,
that is, decide whether a given graph G has multicommodity flows, each from a source
to a sink and of a specified demand, and (2) then actually find them if G has. In
contrast with the case of the single- or two-commodity flow problem, no efficient
algorithm is currently known for the multicommodity flow problem on general graphs,
although it can be applied to many practical problems such as the control ofcommunica-
tion or traffic networks and the routing of VLSI. In fact the two-commodity integral
flow problem is indeed NP-hard [5]. Several algorithms have been reported only for
restricted classes of (planar) graphs [3], [17], [19], [22]. For example we have shown
that if all sources and sinks lie on the boundary of the outer face of a given undirected
planar graph then the multicommodity flows can be found by applying, O(I V[) times,
a shortest path algorithm to the dual of a given planar graph [17].

This paper deals with the multicommodity flow problem on another class of planar
undirected graphs. Join all the sources of a given planar graph G to the corresponding
sinks. Denote the resulting graph by Ga. We deal with the class of planar graphs G
having planar Ga. We show that the multicommodity flow problem on such planar
graphs can be reduced to a famous combinatorial problem, the maximum weighted
matching problem, which is known to be polynomial-time solvable but looks apparently
unrelated to our problem. More precisely, we reduce testing the feasibility of multicom-
modity flows in G to detecting a negative cycle in the dual G* of G, whereas we
reduce finding the multicommodity flows in G to finding, O(n) times, a minimum
cycle passing through a specified vertex in G* or its variants. We then reduce detecting
the negative and minimum cycles in a graph to finding a maximum weight matching

* Received by the editors October 10, 1983, and in revised form July 10, 1984.
f Department of Electrical Communications, Faculty of Engineering, Tohoku University, Sendai 980,

Japan.
Current address: System Development Laboratory, Hitachi Ltd., Ohzenji, Asou-ku, Kawasaki 215,

Japan.
495

496 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

in a certain graph constructed from the graph. Thus the feasibility can be tested by
solving, once, the weighted matching problem, and the multicommodity flows of given
demands can be found by solving the matching problem O(n) times. Furthermore we
give an O(n3/2 log n) algorithm which finds a maximum matching in the graphs
appeared in our reductions and hence detects the negative and minimum cycles in any
planar undirected graph. The algorithm is based on both Lipton and Tarjan’s planar
separator theorem [16] and Galil, Micali and Gabow’s matching algorithm [9]. Con-
sequently the feasibility can be tested in O(n3/2 log n) time and the multicommodity
flows can be found in O(n5/2 log n) time. Throughout this paper n denotes the number
of vertices in a graph.

If k 1 in our problem, that is, a planar graph G has exactly one pair of source
and sink, both of which are on the same face-boundary, then the well-known algorithm
of "top-most" augmenting path can find efficiently a single-commodity flow in G 11],
13]. However the method cannot be adapted directly to our problem. Recently Seymour

has shown that the max flow-min cut theorem holds true for the case ofmulticommodity
flows in the same planar graphs as ours [20]. Our algorithm for testing feasibility uses
his result. However our algorithm for finding multicommodity flows is completely
different from his proof although its correctness depends on his theorem.

This paper is organized as follows. In 2 we give O(n3/2 log n) algorithms for
detecting the negative and minimum cycles in planar graphs. In 3 we give an algorithm
for testing feasibility of multicommodity flows. In 4 we first present algorithm
MULTIFLOW for finding multicommodity flows and then verify the correctness. In
5 we first give the details of the implementation and then analyze the complexity.

Section 6 is a conclusion.

2. Negative and minimum cycles in planar graphs. In this paper we denote by
G (V, E) a finite undirected simple graph with vertex set V and edge set E, and
denote by n the number of vertices of G. Assume that a real-valued weight is assigned
to each edge. A cycle means the so-called simple nontrivial cycle, in which there are
at least two vertices and a same vertex or edge does not appear more than once. Thus
a single vertex is not a cycle. A circuit means a union of edge-disjoint cycles. The
weight of a subset of E (or a subgraph) is the sum of the edge weights. A cycle is said
to be negative if the weight is negative. A cycle is said to be minimum if the weight is
minimum. In this section we first show that a negative cycle in any planar graph G
can be detected in O(n3/2 log n) or O(kn log n + k3) time if G has k negative edges.
We then show that a minimum cycle passing through a specified vertex can be detected
in O(n3/ log n) time if G has no negative cycle. For a directed graph one can easily
detect a negative cycle by applying shortest path algorithms [14]. However it is not
the case for undirected graphs, because a false "negative cycle" may be detected that
passes through a single negative undirected edge twice, once in each direction [23].

2.1. Negative cycle. A matching M c E of a graph G is a set of pairwise nonadja-
cent edges of G. If MI n/2, then M is called a complete matching of G. In this
section we give two algorithms for detecting a negative cycle in G. The first one reduces
detecting a negative cycle in G to finding a maximum weight matching in a certain
graph rather directly constructed from G. Replace each vertex v V of G by a "star"
[24] depicted in Fig. 1. Let G’= (V’, E’) be the resulting graph. (See Fig. 2.) Define
the edge weights of G’ as follows: the surrogate of each edge e E has the same weight
as e; and all new edges in stars have zero weights. Similar constructions have appeared
in [7], [14], [24]. We have the following lemma.

PLANAR MULTICOMMODITY FLOWS 497

1

e4
v e
e3

e

Vv, e2

e3 v3

FIG. 1. The star substituting a vertex of degree four.

LEMMA 1. Let M c E’ be a maximum complete matching of G’= (V’, E’). Then
G (V, E) has a negative cycle if and only if the weight ofE-M is negative.

Proof. Let M c E’ be any complete matching of G’. If M contains edge (v’, v")
in a star substituting a vertex v of G, then M must contain all the edges incident to
v in G and hence v has degree 0 in the subgraph of G induced by E- M. (Edge
(v’, v") is drawn by a thick line in Fig. 1.) On the other hand, if M does not contain
(v’, v"), then v has degree 2 in the subgraph. Thus E-M is a vertex-disjoint union
of cycles in G. Furthermore one can easily observe from the construction of G’ that
the converse is also true: if C e E is a vertex-disjoint union of cycles in G then there
exists a complete matching M of G’ such that C E-M (see Fig. 2). Clearly the
weight of E-M is minimum if and only if the weight of M is maximum. The claim
follows immediately from these facts. Q.E.D.

(a) G

2

(b) G’

FIG. 2. Graphs G and G’. The edges in M of G’ and the edges in E M ofG are drawn by wavy lines.)

498 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

If G" is a graph same as G’ except for each weight being added the same large
constant, then a maximum weight matching of G" is a maximum weight complete
matching of G’ [14]. A maximum weight matching can be found in O(IEIIVI log IvI)
time for a general graph having. V] vertices and IEI edges by Galil, Micali and Gabow’s
algorithm [9]. (See [8] for the exposition of their algorithm and [2] for an alternative
algorithm.) Since v’l- O(IEI) and IE’l- O(IEI), a negative cycle in G can be detected
in O(IEI2 log n) time. (Using Gabow’s recent result [7], this bound can be improved
to O(nlEI log n),) If G is planar, then IEI-O(n) by a corollary of Euler’s formula
10]. Therefore a negative cycle can be detected in O(n2 log n) time for a planar graph.

The bound O(n2 log n) above can be further improved to O(n3/2 log n) as follows.
Lipton and Tarjan gave the following planar separator theorem 16].

LEMMA 2 (planar separator theorem). Let G be any planar graph with nonnegative
vertex costs summing to no more than one. Then the vertices of G can be partitioned into
three sets A, B, C, such that no edge joins a vertex in A with a vertex in B, neither A
nor B has total vertex cost exceeding 2/3, and C contains no more than 2(2n) 1/2 vertices.
Furthermore A, B, C can be found in O(n) time.

In this paper we say that a graph G has a good separator if there exist two positive
constants c1(<1) and c2 satisfying:

The vertices of G can be partitioned into three sets A, B, C, such that no edge
joins a vertex in A with a vertex in B, neither A nor B contains more than cln
vertices, and C contains no more than C2tl

1/2 vertices.
In the special case of equal-cost vertices, Lemma 2 becomes.

LEMMA 3. Any planar graph has a good separator with Cl 2/3 and c2 2(2) 1/2.
Lipton and Tarjan 15, pp. 624-625] gave an O(/’/3/2 log n) algorithm for finding

a maximum weight matching in a planar graph, using a "divide and conquer" method
based on Lemma 3. In our case G’ is not always planar although G is planar. Therefore
their algorithm cannot be directly applied to our case, but their techniques are adaptable
to our problem. It may be assumed without loss of generality that every vertex of G
has degree at least three. We first transform the planar graph G into a planar cubic
graph G3 with every vertex having degree three. A well-known transformation in graph
theory [10, p. 132] may be used to generate G3 from G. Consider a plane embedding
of G. For each vertex v, where Wo, , Wd-1 is a cyclic ordering of the vertices adjacent
to v in the plane embedding and d(>-3) is the degree of v, replace v with new vertices
Vo,’’’, Vd-I. Add edges {(vi, vi+)mod d)" i=0,..., d-l}, each of weight 0, and
replace the edges {(w, v)" 0,. ., d 1} with {(wi, vi)" 0,. , d 1}, of corre-
sponding weights. Let G be the resulting graph. (See Fig. 3(a).) From a corollary of
Euler’s formula [10], the number of vertices in G3 will be less than 6n. Clearly zero
cycles newly appear in G3. However one can observe the following lemma.

LEMMA 4. G contains a negative cycle if and only if G does.
Thus a negative cycle in G can be detected by finding a maximum weight complete

matching in the graph G, constructed from G by replacing each vertex with a star.
We furthermore have the following lemma.

LEMMA 5. The class of graphs G’3 constructed from planar cubic graphs G3 have

good separators.
Proof. Let n and n’ denote the numbers of vertices in G and G, respectively.

By Lemma 3 the vertices of the planar graph G can be partitioned into three sets A,
B, C, such that no edge joins a vertex in A with a vertex in B, neither A nor B contains
more than (2/3)n vertices and C contains no more than 2(2n)/2 vertices. Since each
vertex of G3 is replaced by a star having five vertices, G has n’= 5n vertices. The
partition A, B, C naturally induces a partition of the vertices of G into three sets A’,

PLANAR MULTICOMMODITY FLOWS 499

B’, C’, such that no edge joins a vertex in A’ with a vertex in B’, neither A’ nor B’
contains more than (2/3)n’ vertices, and C’ contains 5.2(2n) 1/2= 2(10n’) 1/2 vertices.
Thus the class of graphs G constructed from planar graphs G3 have good
separators. Q.E.D.

Similarly, we can show that the subgraphs of G induced by A’ and B’, their
subgraphs partitioned by their separators and so on, all have good separators. The
following recursive algorithm finds a maximum matching in G which is the same as
G except for each weight being added the same large constant.

Step 1. If G contains a few vertices, say at most vertices, find a maximum
weight matching G by the algorithm in [2] or [9].

Step 2. Otherwise, apply Lemma 5 to G. Let A, B, C, be the resulting vertex
partition and let GA, Ge be the subgraphs of G induced by the vertex sets A, B,
respectively. Apply the algorithm recursively to find maximum weight matching MA
in GA, Me in Ge. Let M Ma I,.J Me, S A [.J B.

Step 3. Add C one vertex at a time to S. Each time a vertex is added to S, replace
M by a maximum weight matching in Gs, the subgraph of G induced by the vertex
set S. (This can be done in O(n log n) time per vertex in C [15, p. 62511.) Stop when
S=At_J B.

Similarly as in [15] we can analyze the running time of the algorithm above. If
T(n) is the running time of the algorithm on graph G having n vertices, then

T(l)=a ifn>-l,

T(n)<-max{T(nl)+ T(n2)+bn3/2logn: nl+n2<-n, nl, n2<-_cn} ifn>l,

where a, b, c(<l) and are suitable positive constants, since ICI 0(nl/2) An inductive
proof shows that T(n)= O(n3/210g n). Thus a negative cycle can be detected in
O(n3/2 log n) time.

We now give the second algorithm for detecting a ne3ative cycle, which is a
modification of Tobin’s algorithm for detecting a nonpositive cycle [23]. Denote by
G- the subgraph of G induced by the negative edges. Assume that G- consists of J
connected components. Denote by Gab the graph same as G except for the weights
being replaced by the absolute values. Let Ko Vo, Eo) be the complete graph on the
vertices having odd degrees in G-; the weight of edge (u, v) is the length of the shortest
path between vertices u and v in Gab. Let Koj, 1 <-j _-< J, be the subgraph of Ko induced
by the vertices in the jth component of G-. We have the following lemma.

LEMMA 6. There exists no negative cycle in an undirected graph G if and only if
(a) G- is a forest, that is, it has no cycle;
(b) For any two vertices u and v contained in the jth component of G-, 1 <-j <-J,

there exists in Gab a shortest path joining u and v all the edges of which have negative
weights in G; and

(c) Ko contains a minimum complete matching which is a union of (minimum)
complete matchings of Koj, 1 <-j <- J.

Proof. Omitted since one can verify the claim almost similarly as in [23]. Q.E.D.
Assume that G contains k negative edges, then G- contains at most 2k vertices.

Obviously, one can check condition (a) above in O(IEI) time. Condition (b) is checked
as follows: compare the two distances between u and v; one in Gab;. the other in the
subgraph of Gab induced by the edges which have negative weights in G. Thus, using

The details of this claim are not found in H. Gabow’s technical paper (An efficient implementation of
Edmonds’ algorithm for maximum weight matching on graphs, Univ. of Colorado, CU-CS-075-75, 1975) cited
by[15]. However the claim is later proved partly in [9] and completely in [2].

500 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

the Dijkstra’s algorithm 1], [4], one can check condition (b) for all u, v in O(k]E] log n)
time. Clearly Ko can be constructed in O(klEI log n) time. A minimum complete
matching can be found in o(IvI time in a general graph having IvI vertices
Therefore minimum complete matchings in Ko and Koj, 1 -<j -<_ J, can be found in O(k3)
time in total. Thus one can check condition (c) in O(k3) time. Hence the second
algorithm can detect a negative cycle in a general graph G in O(klE[log n + k3) time.
In the case of planar graphs this algorithm has an advantage if k 0(nl/2).

We now have the following theorem.
THEOREM 1. A negative cycle in a planar undirected graph G can be detected in

O(n3/2 log n) or O(kn log n + k3) time if G has k negative edges.

2.2. Minimum cycle. Assume that graph G has no negative cycle and a vertex v
is specified in G. In this section we show how to find a minimum cycle Z passing
through v in G. Replace every vertex of G except v by a star, and replace v by a star
not having edge (v’, v"). Let G’o be the resulting graph. Then one can easily obtain the
following lemma.

LEMMA 7. Assume that M E’ is a complete matching of G’ (V’, E’). Then M
is maximum ifand only ifE M is a vertex-disjoint union ofa minimum cycle Z passing
through v and possibly some zero cycles in G (V, E).

Proof. Since G’o does not contain edge (v’, v"), M does not contain (v’, v").
Therefore vertex v has degree 2 and each of the others has degree 2 or 0 in the subgraph
of G induced by E- M. That is, E-M is a vertex-disjoint union of cycles of G
including a cycle passing through v. The converse is also true. Now the claim is
immediate. Q.E.D.

Thus, applying Galil, Micali and Gabow’s matching algorithm to graph G’o, one
can find Z in O(IEI2 log n) time for a general graph G and in O(n2 log n) time for a
planar graph G.

Using the planar separator theorem (Lemma 2), we can improve the bound
O(n2 log n) above to O(n3/2 log n), similarly as the case of the negative cycle detection.
However, the transformation of the case is not applicable to this case since a new zero
cycle appears in place of v in the planar cubic graph G3, which may be detected as a
false minimum cycle passing through a surrogate of v. Therefore we replace each vertex
of G except v by a zero cycle, but leave v as it is. Denote the resulting graph by G3v.
(See Fig. 3(b).) Clearly G3v is planar, and all the vertices except v have degree three.
Noting that G has no negative cycle, one can observe the following lemma.

LEMMA 8. The weight of a minimum cycle in G passing through v is equal to that
of G3o.

Replace each vertex of G3o except v by a star and replace v by a star not having
(v’, v"). Let Go be the resulting graph. Then we have the following lemma.

LEMMA 9. The class ofgraphs G’3o, constructedfrom planar graphs Go, have good
separators.

Proof. Let n be the number of vertices of Go, and let d be the degree of v. Then
Go have n’= d + 2 + 5(n- 1) vertices. Apply Lemma 2 to the planar graph G3v with
assigning cost (d + 2)In’ to vertex v and cost 5In’ to each of the other vertices. Then
the vertices of G3o can be partitioned into three sets A, B, C, such that no edge joins
a vertex in A with a vertex in B, neither A nor B has cost more than 2/3 and C
contains no more than 2(2n) 1/2 vertices. This partition naturally induces a partition of
the vertices of Go into three sets A’, B’, C’, such that no edge joins a vertex in A’
with a vertex in B’, neither A’ nor B’ contains more than (2/3)n’ vertices. Thus it
suffices to show that [C’I O(n’/2).

PLANAR MULTICOMMODITY FLOWS 501

2

(a) G3

2

(b) G3v
FIG. 3. (a) Planar cubic graph G3 and (b) planar graph G3,,, both constructed from planar graph G in

Fig. 2(a). (The edges with no number have weight 0.)

Consider first the case vC. Then C’ contains no more than 5.2(2n)/2-<
2(10n’)/2 vertices. Thus A’, B’, C’ is a desired partition of Gv in this case.

Consider next the case v C. Then Ic’l=d+2+5(Ic[-1). Thus Ic’l is not
necessarily O(n ’1/2) if d is large. However we can construct a desired partition A",
B", C" as follows. Assume that each edge et incident to v in G3v is replaced by the
surrogate edge (wt, vt) in G, where 1,. ., d and assume that vt is a vertex in the
star of v. Let A" be A’ plus all the vertices vt such that ws A’, let B" be B’ plus all
the vertices vt such that wt B’, and let C" be the remaining vertices of G. Clearly
no edge joins a vertex in A" with a vertex in B". Since IA"l<-iA’[+ d, IA’i<-(2/3)n’ and
d<-n’/6, we have IA"l<-(5/6)n ’. Similarly we have IB"l<-(5/6)n ’. Let r(<-d) be the
number of edges of G3 joining v and vertices in C, then clearly r<-[CI Therefore

IC"l r+ 2 + 5(ICI- 1) <= 6lcI O(n"/’).
Thus we have shown that G has a good separator in this case, too. Q.E.D.

Similarly one can easily prove that the subgraphs of Gv induced by A’ and B’
(or A" and B"), their subgraphs and so on, all have good separators. Using a "divide
and conquer" method based on the separator above, we can find a maximum complete
matching of G in O(n3/2 log n) time similarly as in 2.1. Note that G has O(n)
vertices if the given planar graph G has n vertices. Thus we have:

THEOREM 2. If there exists no negative cycle in a planar undirected graph G, then
a minimum cyclepassing through a specified vertex in G can befound in 0(n3/2 log n) time.

3. Feasibility of multicommodity flows. A ow) network N (G, P, c) is a triplet,
where:

(i) G (V, E) is a finite undirected simple graph.
(ii) P is the set of source-sink pairs (si, ti), where source s and sink ti are

distinguished vertices in G.

502 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

(iii) c: E--> R+ is the capacity function. (R (or R+) denotes the set of (positive)
real numbers.)

Each source-sink pair (si, ti) of N is given a positive demand d > 0. Although G
is undirected, we orient the edges of G arbitrarily so that the sign of a value of a flow
function can indicate the real direction of the flow in an edge. A set of functions
{f,f2,"" ,fk} with each f: E--> R is k-commodityflows of demands dl, d2,""", dk if
it satisfies"

(a) the capacity rule: for each e e E
k

If/(e)l -<- c(e),
i=l

where If,(e)l denotes the absolute value of a real number f(e);
(b) the conservation rule: each f satisfies

IN (f, v)=OUT (f, v) for each v V-{s, t},

and

OUT (f, s)- IN (f, si) IN (f, t)-OUT (f, t) d,

where IN (f, v) is the total amount of flow f entering v, that is, IN (f, v)=
f(e)-f(e’), the first sum being over all the edges e oriented to enter v
and with f(e)> 0, and the second over all the edges e’ oriented to emanate
from v and with f(e’) < 0; and OUT (f, v) is the total amount off emanating
from v.

Denote by G, the graph obtained from a given planar graph G V, E) by adding
a new edge ea (si, t) to G for each i, 1-<i <- k, as depicted in Fig. 4. We call eai a
demand or negative edge. (This terminology will be justified below.) In this paper we
assume that G is connected and Ga is planar, and hence k O(n).

Let X c V. Then E(X) denotes the set of edges with one end in X and the other
in V-X. E(X) is called a cut of G. Especially E(X) is called a cutset of G if
G-E(X) has exactly two connected components. We denote by c(X) the sum of
capacities of all the edges in E(X) and call it a capacity of cut E(X). We also denote
by d(X) the sum of the demands of all source-sink pairs with a source or sink in X
and the other in V-X. We say that a network N satisfies the cut condition for the
given demands if c(X)>= d(X) for every X c V. It is known that N satisfies the cut
condition if and only if c(X)>= d(X) for every cutset E(X) of G, where G is not
necessarily planar [18]. Seymour [20] has shown that network N with planar Ga has
multicommodity flows of given demands if and only if N satisfies the cut condition.
Thus we shall show how to test the cut condition for a planar network.

Define a new capacity function ca: Ea --> R for Ga V, Ea) as follows:

c(e) if eE,
ca(e)=

-di ife=eai.

Thus only eai, 1 <=i <- k, have negative capacities in Ga. Also define Ea(X) and ca(X)
in a way similar to E(X) and c(X), respectively. Then clearly ca(X)= c(X)-d(X).
Consider the dual G* of the planar graph Ga. (Precisely Ga and Ga* are not "graphs",
but "multigraphs", that is, they may have multiple edges. However this does not affect
the arguments in what follows.) The graph in Fig. 2(a) is indeed the dual of Ga in
Fig. 4(b). We denote by e* the edge of G* corresponding to an edge e of Ga. We
interpret ca as a weight function of G*. If E(X) is a cutset of G, then Ea(X) is a

PLANAR MULTICOMMODITY FLOWS 503

2

$1 s

d:].=2
d =3

(a) G

(b) Ga
FIG. 4. Planar graphs (a) G and (b) Ga.

cutset of Ga and hence corresponds to a cycle of Ga*. Thus the Seymour’s result [20]
implies that network N has multicommodity flows of given demands if and only if
O* has no negative cycle. Hence the feasibility can be tested simply by checking the
existence of negative cycles in Ga*. Therefore by Theorem 1 we have:

THEOREM 3. The feasibility of the k-commodity flows in a planar undirected graph
can be tested in O(n3/2 log n) or O(kn log n + k3) time.

4. Algorithm MULTIFLOW. In this section we first give an algorithm MULTI-
FLOW which finds multicommodity flows in planar networks satisfying the cut condi-
tion. Then we verify the correctness.

4.1. Algorithm. Each demand edge eai, 1-< i-< k, adjoins two faces F and Fi2 of
the planar graph Ga. Let QI be the path joining s and t on the boundary of Fil
without passing through ea. Similarly define Qi2 with respect to F2. MULTIFLOW is
outlined as follows. Choose an appropriate path Qj among 2k ones; push appropriate
units D of flow f through Q0; reduce by D the demand d and the capacities of edges
in Qij; and delete saturated edges if any. Repeat this operation until k-commodity
flows of given demands are obtained.

Of course, D can exceed neither d nor c(e) for every e Qij. However we wish
to choose D as large as the resulting network does not violate the cut condition. (It
is the crucial part of the algorithm.) Thus we decide D as follows:

(1) D=min {-Ca(ea,),min {ca(e): e Qi}, ca(Qi)/2}.

504 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

Here ca(Qij) is the minimum capacity of cutsets of Ga containing exactly two edges
of Qij. That is, if ca(e, e’) is defined for two edges e and e’ of Qo as follows:

(2) ca(e,e’)=min{ca(X):Ea(X)isacutsetof GaandEa(X)Qo={e,e’}},
then

ca(Qo)=min {ca(e, e’): e, e’ Qi}.

We define ca(Qo)= o if [Q[1, i.e., Q is a single edge joining s and t.
We are now ready to present MULTIFLOW.

procedure MULTIFLOW;
begin

for each e E and i(1 <_- <_- k) do f(e) :- 0; {initialization
while Ga has a demand edge {there remains an unsatisfied flow} do

begin
choose path Q with positive D;

{1 <- <= k. j 1, 2. Qo contains no demand edges.}
{push D units of flow f through Qo}
for each e Qo flo

begin
fi(e):=f(e)+/-D;
{the sign +/- depends on both the orientation of
edge e and the direction of path Qi}
Ca(e) := Ca(e) D; {residual capacity}
if Ca(e)= 0 {e is saturated}

then Ga := Ga-e {delete e}
end

Ca(ea) := ca(eai)+ D; {decrease d -C(eai) by D}
if Ca(ea)=0 {flow f has been satisfied}

then Ga := Ga- ea. {delete demand edge
end

end

4.2. Correctness. The following two lemmas must hold if algorithm MULTIFLOW
above correctly finds multicommodity flows.

LEMMA 10. If the original network N (G, P, c) satisfies the cut condition, then the
new network N’-(G’, P’, c’) also satisfies the cut condition when D units offlowf have
been pushed through Q.

Proof. We may assume that neither ea nor edges of path Q are deleted and hence
G’ Ga. (The proof for the other case is almost similar.) Let C’a(e) be the capacity of
edge e in G’. Then C’a(e)=ca(e)-D (>0) for every edge e on Qi, and C’a(eai)
c’(ea)+D (<0). Let Ea(X) be any cutset of G’. Since QitA{e} is a boundary of a
face, we have

lEa(X) f’l (Q (.J {ea,})[0 or 2.

Therefore

ca(X 2D if lEa(X) fq Qi[2,
Ca(X) otherwise.

Since D satisfies (1), clearly D <- ca(X) if lEa(X)fq Q0[2. Thus we have c’(X)>-_
0. Q.E.D.

PLANAR MULTICOMMODITY FLOWS 505

LEMMA 11. If network N G, P, c) satisfies the cut condition, then Ga has at least
one Qo with positive D among 2k paths.

Proof. Assume to the contrary that there is no Q0 with positive D, that is, any
units of flow can be pushed through none of 2k paths. Then each Qo satisfies one of
the following:

(a) Q0 has a negative edge, that is, a demand edge;
(b) Q0 has two "blocking" edges e and e’ with ca(e, e’) =0.

Since N satisfies the cut condition, Seymour’s theorem implies that N has a set of
k-commodity flows satisfying given demands. For each Q0 of 2k paths we define a
route (path) R of flow f as follows. As shown in Fig. 5, let R be a path of Ga joining
si and ti such that positive units of flow f pass through R and the region bounded
by Ri t.J Qo contains a minimum number of faces in the interior. The assumption implies
that the region contains at least one face.

FIG. 5. Illustration of route R offlow f. (R is drawn by wavy lines. An arrow of an edge indicates the
direction off through the edge. No flowf passes through edges having no arrows.)

Among 2k paths and all possible sets of k-commodity flows, we now choose a
path Q0 and a set of k-commodity flows for which region R t.J Q0 contains a minimum
number of faces. If region R U Qo consists of nonempty connected components L1,
L2, Lh, then choose any one of them, say Lb, 1 <-_ b <- h. (In the case of Fig. 5 h 2.)
The planarity of Ga implies that if a source (or sink) lies in the proper interior of Lb

then the corresponding sink (source) lies in the interior of Lb. Clearly Q0 and the
boundary of Lb share a common edge through which flow fr other than f passes. Then
source-sink pair (s, tr) lie in Lb: otherwise, by interchanging routes of f and f as
shown in Fig. 6, one can construct another set of k-commodity flows for which region

fcEe
$i

Sr tr

face 0it s t

Sr tr
FIG. 6. Alternation of a route offlow f. (A route off, is drawn by dashed lines.)

506 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

R

face face

FIG. 7. Alteration of route Rr offlow f. Rr is drawn by dashed lines.)

Ri U Qo contains fewer faces, a contradiction. Furthermore we may assume that route

Rr of flow fr is contained in Lb" otherwise, i.e., if R intersects with Ri, then one can
construct another set of k-commodity flows for which R is contained in Lb, as shown
in Fig. 7. However, in this case region R U Qj, (j’= 1 or 2) contains fewer faces than
Lb, contrary to the assumption. Q.E.D.

These two lemmas imply that MULTIFLOW correctly finds multicommodity flows
satisfying given demands. However, to this point, it is not clear that MULTIFLOW
terminates in polynomial-time or even finitely.

5. Refinement and complexity. In this section we first refine MULTIFLOW and
then analyze the complexity.

5.1. Refinement. Suppose that the part ofMULTIFLOW choosing Q0 with positive
D is modified slightly as follows" choosing Q0, one by one, in cyclic order, check
whether D of Qo is positive; and select the first one with positive D. Then Lemma 11
implies that we can find Q0 with positive D among the first 2k paths. Furthermore it
can be proved that the sign of D is checked O(kn) times in total during one execution
of MULTIFLOW, and hence MULTIFLOW runs in polynomial time.

However a sophisticated method can improve the bound O(kn) above into O(n).
Consider each ofthe three terms in the right-hand side of (1). The first term -ca(ea) d
is always positive. The second term min {ca(e): e Q0} may be negative. The second
is positive if and only if path Qu contains no negative (i.e. demand) edge. Denote by
u0 the vertex of G* corresponding to the face of Ga bounded by Qo U ea. Then the
dual edge e* of G* has two ends Uil and u2. The negative edges of G* always induce
a forest F because G* contains no negative cycle. (See Fig. 8.) A path Q0 of G contains

s s5

t S4

FIG. 8. Planar graph G, and the forest F induced by the negative edges in G*a. (The demand edges are

drawn by dashed lines, F by wavy lines, and QI by thick lines.)

PLANAR MULTICOMMODITY FLOWS 507

no negative edge if and only if vertex uo is a leaf in F, that is, uo has degree one. Thus
it suffices to evaluate the value D only for Q0 such that u0 is a leaf in F. Finally the
third term ca(Q0)/2 of (1) is always nonnegative by Lemma 10. Each ca(X) in the
right-hand side of (2) corresponds to a cycle in G* passing through vertex u but not
edge e*, that is, a cycle in G*- e* passing through u0. (For a graph G and an edge
e, (3-e denotes the graph obtained from G by deleting e.) Thus we have the following
lemma.

LEMMA 12. Assume that u is a leaf in forest F. Then D of Qo is positive if and
only if there exists, in G*- e*, no zero cycle passing through uj.

In Lemma 11 and its proof we implicitly assumed that Ga is connected. However
the lemma can be generalized to the case in which Ga is not necessarily connected. It
should be noted: if (3a is disconnected, then a face boundary is not necessarily a cycle
but is a circuit (i.e. a union of edge-disjoint cycles), and hence Qi is not necessarily
a path but is a union of a single path and cycles. One can prove the generalized result
almost similarly as the proof of Lemma 11 except for choosing an innermost connected
component having a negative edge. Combining the result and Lemma 12, we immedi-
ately have the following lemma.

LEMMA 13. Forest F has a leafuo such that D of Qig is positive, that is, all the cycles
passing through uo are positive in G*a- e*a.

Consider now what changes occur in graphs Ga and G* when D(=>0) units of
flow f are pushed through path Qj. All the saturated edges of Qig are deleted in new
Ga. The negative edge ea is also deleted if flow f is satisfied. The deletion of an edge
in a primal graph corresponds to the "contraction" of the dual edge in the dual graph,
in which the dual edge is deleted after its two ends are identified into a single vertex.
Therefore all the saturated dual edges, which must be incident to ug, are contracted
in new Ga*, and the negative edge e* is also contracted in Ga* if flow f is satisfied.
Thus two or more trees in forest F may be merged into a single tree, and hence leaves
may become "interior vertices" (i.e. vertices having degree two or more) in new F. To
the contrast a tree is never split into two or more trees. Furthermore one can observe
the following lemma.

LEMMA 14. When D units offlow f are pushed through Qo, at most one interior
vertex becomes a leaf in F. Furthermore this case occurs only if e*i is contracted.

For example see Fig. 8. At present u is a leaf and Ul is interior in F. If d units
off are pushed through QI, then only Ul can newly become a leaf in F.

Once it is known that Ga*- e* contains a zero cycle passing through leaf u0 of
F, it is not necessary to check the sign of D for Q as long as uo continues to be a
leaf in F. This is guaranteed by the following lemma.

LEMMA 15. Let uo be a leaf in F, and assume that there exists a zero cycle Zpassing
through uo in G*- e*. Then there remains such a zero cycle in G*- e* as long as uo
continues to be a leaf in F.

Proof. It is clear from the proof of Lemma 10 that for any X V ca(X) does not
increase during the execution of MULTIFLOW. Therefore the weight of any cycle (or
circuit) in G* does not increase. Hence the weight of Z remains zero. However cycle
Z may become a circuit.

Suppose first that Z is contracted into a circuit consisting of two or more cycles.
Then all of them must be zero cycles since there exists no negative cycle in Ga* and
the weights of these cycles in Z total zero. Thus in this case there remains a zero cycle
passing through u,..i in G*- e*. Note that the zero cycle is possibly different from Z.

Suppose next that Z is contracted into a single vertex in G*, that is, all the edges
of the cut corresponding to Z are deleted in Ga. Consider the situation of G* just

508 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

before the pushing flow is done that makes Z a single vertex. Then there must exist
a zero cycle Z’ passing through % in G*- ea*. Since % continues to be a leaf in F,
Z’ must contain at least three edges including exactly one negative edge e* not incident
to u. Clearly, the pushing flow must be done for path Qtl or Q, say Qtl. Then all
the edges contracted by the pushing flow are incident to ut in G*. However exactly
two of them including e*t are contained in cycle Z’. Therefore at least one positive
edge remains in Z’, that is, Z’ cannot become a single vertex after the pushing flow,
contrary to the supposition. Hence this case does not occur.

Thus we have shown that there remains a zero cycle passing through % in G*- e*
as long as % continues to be a leaf in F. Q.E.D.

If the existence of a zero cycle is known for a leaf %, we will not check a zero
cycle for the same % until it becomes once interior and then a leaf again. Thus
MULTIFLOW is refined as follows.

procedure MULTIFLOW;
begin

for each e E and i(1 =< =< k) do f(e) := O;
let % be an arbitrary leaf of F;
while G has a demand edge do

if either D-< 0 or e is deleted then
let % be another leaf of F which has never been
chosen during the period it has continued to be a leaf

else {D > 0. Push flow f through Q}
begin

for each e Q do
begin
f(e) := f(e) +/- D;
c(e):=c(e)-D;
if c (e) 0 then G := Ga e

end
c,(eai):=c,(eai)+D;
if c (ea) 0 then G := G. e

end
end

Using Lemmas 13 and 15, one can easily verify the correctness of the refined
MULTIFLOW. Furthermore we have the following lemma.

LEMMA 16. The sign of D is checked for at most O(n) paths in total during one
execution of MULTIFLOW, that is, the while loop of MULTIFLOW is repated O(n)
times.

Proof. When the sign of D is checked for Q and subsequently D(->0) units of
flow f have been pushed through Q, one of the following must occur:

(a) an edge of Q is saturated and hence deleted;
(b) flow f is satisfied, and hence demand edge e is deleted; or
(c) the value D of Q is known zero or newly becomes zero. (In this case G* e*

has a zero cycle passing through %.)
Clearly (a) occurs at most 3n times, and (b) at most k times. We claim that (c) occurs
at most 3k times. If so, this lemma follows immediately since k O(n).

A vertex % of F continues to be a leaf during several time periods; each of the
periods consists of consecutive passes of the while loop in MULTIFLOW. Once
MULTIFLOW chooses a leaf u, MULTIFLOW continues to choose the same u until

PLANAR MULTICOMMODITY FLOWS 509

either (i) case (a) occurs and uo becomes interior, (ii) case (b) occurs, or (iii) case (c)
occurs. If case (c) occurs, then MULTIFLOW will never choose the same uo during
the current period. Thus (c) occurs at most once for the vertex uo in each of the periods.
Initially F has at most 2k leaves. Interior vertices may become leaves, and leaves may
become once interior and then leaves again. However the number of such vertices is
at most k in total since the deletion of a negative edge can make at most one interior
vertex a leaf by Lemma 14. Consequently the sum of the numbers of time periods,
over all vertices of F, is at most 2k + k 3k. Hence (c) occurs at most 3k times during
one execution of MULTIFLOW. Q.E.D.

Remark. One can slightly strengthen the claim of Lemma 16 as follows. The
number of times that (c) occurs but neither (a) nor (b) does is at most the number of
leaves in initial F. Consequently the while loop is repeated at most that number plus
the number of edges of G.

5.2. Time and space. By Lemma 16 the while loop in algorithm MULTIFLOW is
repeated O(n) times. The bookkeeping operations required for maintaining flow
functions, capacities and leaves of F are all done in O(n) time per pass of the loop.
Thus the most time consuming operation in the loop is the computation of D. The
problem is to compute ca(Qo). Clearly ca(Qo) is the weight of a minimum cycle Z in
planar graph G*- e*i passing through vertex u0 if Qo contains at least two edges, and
is infinite otherwise. Therefore by Theorem 2 the value D for Qo can be computed in
O(n3/2 log n) time. Thus MULTIFLOW finds multicommodity flows of given demands
in O(n5/2 log n) time.

All the graphs appearing in the algorithm are represented by adjacency lists, which
clearly uses O(IE I) space. Each flow function is represented by an array of length [E I.
Therefore the k-commodity flows can be represented in O(kn) space. Furthermore the
algorithms for the maximum weighted matching in [2, 9] use O([E I) space. Thus
MULTIFLOW uses O(kn) space.

Thus we have the following theorem.
THEOREM 4. If Ga is a planar graph of n vertices, then MULTIFLOW finds

k-commodity flows satisfying given demands in O(n/2 log n) time, using O(kn) space.

6. Conclusion. In this paper we first gave algorithms which find both a negative
cycle and a minimum cycle passing through a specified vertex in a planar undirected
graph in O(r/3/2 log n). Then, using the algorithm we showed that the feasibility of
multicommodity flows can be tested in the same time for any planar network having
planar Ga. Finally we gave algorithm MULTIFLOW which finds multicommodity flows
in O(/15/2 log n) time.

It is interesting that MULTIFLOW finds multicommodity flows whose values are
half-integers if the capacities and demands are all integers. In particular, if the weights
of all edges incident with each vertex of Ga total to an even number, then MULTIFLOW
finds integral multicommodity flows.

Another interesting fact implied by Lemma 16 is that any multicommodity flows
found by MULTIFLOW can be decomposed into O(n) "path flows".

In the implementation of algorithm MULTIFLOW, although a maximum matching
is known for a graph, we compute a maximum matching "from scratch" in a new
graph for each time. Ball and Derigs [2] and Weber [25] have given efficient methods
to update a maximum complete matching when a few edge weights are altered. We
conjecture that the bound on MULTIFLOW can be improved, say to O(n2 log n), if
one uses their updating methods and the techniques in [2], [9]. The detail is left to
the ambitious reader.

510 K. MATSUMOTO, T. NISHIZEKI AND N. SAITO

Acknowledgments. We would like to thank Hiroshi Imai for suggesting the possibil-
ity of the improvement mentioned in the Conclusion and providing a relevant reference,
and the referees for their comments which improved the presentation of the paper.

REFERENCES

A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] M.O. BALL AND U. DERIGS, An analysis ofalternative strategiesfor implementing matching algorithms,
Networks, 13 (1983), pp. 517-549.

[3] n. DIAZ AND G. DE GHELLINCK, Multicommodity maximumflow in planar networks The D-algorithm
approach), CORE discussion paper No. 7212, Center for Operations Research and Econometrics,
Louvain-la-Neuve, Belgium, 1972.

[4] E.W. DIJKSTRA, A note on two problems in connexion with graphs, Numer. Math., (1959), pp. 269-271.
[5] S. EVEN, A. ITAI AND A. SHAMIR, On the complexity of timetable and multicommodity flow problems,

this Journal, 5 (1976), pp. 691-703.
[6] L. R. FORD AND O. R. FULKERSON, Maximum flow through a network, Canad. J. Math., 8 (1956),

pp. 399-404.
[7] H. N. GAaOW, An efficient reduction technique for degree-constrained subgraph and bidirected network

flow problems, Proc. 15th Annual ACM Symposium on Theory of Computing, Boston, 1983, pp.
448-456.

[8] Z. GALIL, Efficient algorithms for finding maximal matching in graphs, Tech. Rept., Dept. Computer
Science, Columbia Univ., New York, 1983.

[9] Z. GALIL, S. MICALI AND n. GABOW, Priority queues with variable priority and an O(EVlog V)
algorithm for finding a maximal weighted matching in general graphs, 23rd Annual Symposium on
Foundations of Computer Science, Chicago, 1982, pp. 255-261.

[10] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[11] R. HASSIN, Maximum flow in (s, t) planar networks, Inform. Proc. Lett., 13 (1981), p. 107.
12] T. C. Hu, Integer Programming and Network Flows, Addison-Wesley, Reading, MA, 1969.

[13] A. ITAI AND Y. SHILOACH, Maximum flows in planar networks, this Journal, 8 (1979), pp. 135-150.
14] E. L. LAWLER, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New

York, 1976.
[15] R. J. LIPTON AND R. E. TARJAN, Applications of a planar separator theorem, this Journal, 9 (1980),

pp. 615-627.
16] ., A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979), pp. 177-189.

(1979), pp. 177-189.
17] K. MATSUMOTO, T. NISHIZEKI AND N. SAITO, An efficient algorithmforfinding multicommodityflows

in planar networks, this Journal, 14 (1985), pp. 289-301.
[18] H. OKAMURA AND P. D. SEYMOUR, Multicommodity flows in planar graphs, J. Combin. Theory B,

31 (1981), pp. 75-81.
[19] M. SAKAROVITCH, The multicommodity flow problem, Doctoral thesis, Operations Research Center,

Univ. California, Berkeley, 1966.
[20] P. O. SEYMOUR, On odd CUtS and planar multicommodityflows, Proc. London Math. Soc., (3)42 (1981),

pp. 178-192.
[21] D. D. SLEATOR AND R. E. TARJAN, A data structure for dynamic trees, J. Comput. System Sci., 26

(1983), pp. 362-390.
[22] D. T. TANG, Bi-path networks and multicommodity flows, IEEE Trans. Circuit Theory, CT-11 (1964),

pp. 468-474.
[23] R. L. TOalN, Minimal complete matchings and negative cycles, Networks, 5 (1975), pp. 371-387.
[24] W.T. TUTTE, A short proofofthefactor theoremforfinite graphs, Canad. J. Math., 6 (1954), pp. 347-352.
[25] G. M. WEBER, Sensitivity analysis of optimal matchings, Networks, 11 (1981), pp. 41-56.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
013

RELATIVIZATIONS OF UNAMBIGUOUS AND
RANDOM POLYNOMIAL TIME CLASSES*

JOHN GESKEt AND JOACHIM GROLLMANN

Abstract. We study relationships between P, NP, and the unambiguous and random time classes, U,
and R. Questions concerning these relationships are motivated by complexity issues in public-key cryptosys-
terns. We prove that there exists a recursive oracle A such that pA# UA# NpA, and such that the first
inequality is "strong," i.e., there exists a pA-immune set in UA. Further, we construct a recursive oracle B
such that Us contains an RB-immune set. As a corollary, we obtain PB # Rs NPB and both inequalities
are strong. By use of the techniques employed in the proof that pA UA # NpA, we are also able to solve
an open problem raised by Book, Long and Selman Quantitative relativizations ofcomplexity classes, SIAM
J. Comput. 13 (1984), pp 461-487].

Key words, relativized complexity classes, oracles, random computations, unique solutions, immunity,
polynomial time

1. Introduction. Valiant [10] introduced the notion of an unambiguous Turing
machine--a nondeterministic Turing machine that has at most one accepting computa-
tion for any input. Let U

_
NP be the collection of languages accepted by unambiguous

Turing machines in polynomial time. Ux is the relativization of this class with respect
to some oracle X. Rackoff [7] showed that there is a recursive oracle A such that
pA uA= NpA and that there is a recursive oracle B such that pB=UB Np. A
natural question that arises is: Does there exist an oracle C such that pC Uc # Npc ?
We answer this in the affirmative.

The proof of the result for U involves a combinatorial argument for which we
have developed a pebbling game. This technique is of interest in itself, and a natural
generalization of this game is used in solving an open problem of Book, Long and
Selman [4].

The question of whether U NP is closely related to the question of whether there
exist NP-hard public-key cryptosystems (PKCS). Even Selman and Yacobi [5] have
shown that if promise problems associated with such systems do not exist then U NP.
Since the promise problem for a PKCS and sets in U are very similar, and any algorithm
solving the cracking problem of the PKCS should need more than polynomial time
for all sufficiently large codes, we, in addition, want pX-immune sets to exist in Ux.
Recall that for an arbitrary class of languages C, an infinite set A is C-immune if no
infinite subset of A is in C. Given arbitrary classes X and Y such that X Y, we say
that the inequality is strong if there exists an X-immune set in Y.

The class R NP, the common class of problems having efficient randomized
algorithms, was defined by Adleman and Manders [1]. A set A belongs to R if and
only if there exists a nondeterministic polynomial time-bounded Turing machine M
such that A L(M) and for each x A, M accepts x with probability at least 1/2. Rackoff
showed, analogous to the results for U, that there is a recursive set D such that
pO RD= Npo, and there is a recursive set E such that pC= Re Npe. Again the
question arises" Is there a recursive oracle F such that pF RF NpF? Such an oracle

* Received by the editors November 17, 1983 and in revised form November 20, 1984. Funding for this
research was provided by the National Science Foundation under grants MCS81-20263 and DCR84-02033.

f Computation Center, Iowa State University, Ames, Iowa 50011.
t Lehrstuhl Informatik I, Universit/it Dortmund, 4600 Dortmund 50, West Germany. This research was

performed while this author visited the Computer Science Department, Iowa State University, Ames, Iowa
50011.

511

512 JOHN GESKE AND JOACHIM GROLLMANN

is provided by Sipser’s construction [9] of a recursive set X such that Rx contains no
complete set.

A secure cryptosystem should not be susceptible to cryptanalytic attack by efficient
randomized algorithms. It should not even be "crackable" by an efficient randomized
algorithm infinitely often. Hence, we would like to know whether a language in U
exists which is R-immune. In fact, we will show that both inequalities in pF RF UF

are strong for some oracle F. Therefore, for this oracle, pF:RFNp and both
inequalities are strong.

Rackoit’s results and ours, taken together, indicate that it will be hard to prove
P U NP and P R NP. Intuitively, one believes P U NP and P R NP.
Since existence of an oracle X such that pX Ux Npx is a necessary condition for
PUNP, the separation results obtained here support our intuition about the
nonrelativized world. The same can be said for the P R NP question.

We conclude this short introduction with some remarks about the notation used.
The models of computation that will be used will be the oracle Turing machines as
described by Baker, Gill and Solovay [2]. We assume the tape alphabet of all machines
is E-{0, 1, and all languages are subsets of E*. We will use the notation n
(respectively, En) for the set of all strings in E* of length at most n (respectively,
exactly n). We fix enumerations {Pi)ir({NPi)ir) of polynomial time-bounded deter-
ministic (nondeterministic) oracle Turing machines. We assume that pi(n) hi+ is a
strict upper bound on the length of any computation by Pi (or NP) with oracle X.
pX and NPx denote query machines using oracle X.

In an inductive construction of a set X, X(i) denotes the finite set of strings placed
into X prior to stage i. Let (.,.) denote a fixed polynomial time computable pairing
function with polynomial time computable inverses.

2. Maia results. Let U
_
NP be the collection of languages accepted by unam-

biguous Turing machines in polynomial time. A characterization of U is that L belongs
to U if and only if there are some polynomial time computable predicate P(x, y) and
constant k such that L (x" there exists a y such that lYl Ixl k and P(x, y) (x" there
is a unique y such that lYl Ixl k and P(x, y). R

_
NP is the collection of languages L

such that for some polynomial time computable predicate P(x, y) and a constant k,
L {x: there exists a y such that [y[[xl k and P(x, y)} {x" there exist at least 2 Ixl-I

values of y such that lY[--Ix] and P(x, y)}.
We say that a nondeterministic Turing machine M is unambiguous on E<=" if on

each accepted input of length n or less, M has a unique accepting path. Conversely,
a nondeterministic Turing machine M is ambiguous on <=" if on some accepted input
of length n or less, M has more than one accepting path.

Before we state and prove our theorems we must first introduce some terminology
and state a combinatorial lemma. A board is an m x m matrix over {0, 1}. A square of
the board is an element, bi, of the matrix, where i,j <-m. There are m2 squares for
every m x m board.

We describe a very simple pebbling game. Given a pebble, we may place it on
any square of the board that does not already have a pebble on it. We denote a pebble
on a square by a "1". The board is covered if the following two conditions are met
for all <_- m and all j <_- m"

(1) bii-- 1.
(2) b,j 0- bj, 1.

The object of the game is to cover the board.

RELATIVIZATION OF UNAMBIGUOUS AND RANDOM CLASSES 513

LEMMA 2.1. At least [m2/2] pebbles are necessary to cover an m x m board.
The proof is trivial.
DEFINITION 2.1. For any oracle X,
Lo(X) {0n" there exists a y X such that lY[n and n is odd},
LI(X) {0n" there is a y X such that lyl n and n is even}.
THEOREM 2.1. There is a recursive oracle A such that pAp uA NpA.
Proof. For every oracle X, pX

_
Ux

_
Npx. Therefore, it is sufficient to construct

an oracle A containing at most one string of length n, for each odd n, such that
Lo(A) pA and LI(A) UA. (Note that Lo(A) UA and LI(A) NpA.) We build A in
stages. Initially m 0 and A .

Stage i. If is odd we look at the least element j not already examined in the
enumeration of polynomial time-bounded deterministic oracle Turing machines. Once
a machine P is examined it will never be examined again. Machine P has polynomial
time-bound pj(n). Pick an odd integer n, n > m, so large that pj(n)< 2n. Run P with
oracle A(i) on input x =0n. If pj(i accepts 0n, add nothing to A(i) at this stage.
Otherwise, if pj(o rejects 0n, add to A the least string of length n not queried during
the computation of P(on input 0n. (We know such a string exists.) We have thus
added a single string of odd length to A. Finally, set m 2 and go to the next stage.

If is even we look at the least element k not already examined in the enumeration
of polynomial time-bounded nondeterministic oracle Turing machines. Again, once
machine NPk is examined it will never be examined again. Machine NPk has polynomial
time-bound pk(n). Pick an even integer n, n> m, so large that pk(n)<2n-. If NP’
is ambiguous on E=n we add nothing to A(i) at this stage, set rn 2n, and go to the
next stage.

If NPi is unambiguous on En, run NpAk on input Xk =0n. If NP’ accepts
0n, add nothing to A(i) at this stage. If NP rejects 0 then add one or more strings
of length n to A(i) such that NPk either still rejects 0n, or accepts 0 ambiguously.
We will show that such strings can always be found. Now we set m 2 and go to the
next stage.

Claim. A nonempty subset X
_
E exists such that NP’()Ux either rejects 0 or

accepts 0 ambiguously.
Proof of claim. We can, by exhaustive search, determine whether there exists a

nonempty X

E such that NP’(i)Ux rejects 0n. If we find such an X, then we are

finished.
If such a subset cannot be found, then it must be the case that for all nonempty

subsets X of En, NP’()Ux accepts 0n. In particular, NP’() does not accept 0n, but
for each string x E", NP’(does accept 0n. An accepting path of NP(tx on
input 0 is called a critical path for x. Note that every string x of length n has a critical
path. If for some x E there exists more than one critical path, then NP(itx is
ambiguous on 0n. In this case take X {x} to settle our claim. Hence, we assume that
there exists exactly one critical path for each string x. Therefore, there exist at most
2 critical paths.

Denote cr (x) as the set of queries of length n made in the critical path for x.
Clearly x cr (x). Any change in an answer to a query in cr (x) may affect the resulting
computation. If we place a string y E into the oracle and y cr (x), then the addition
of y to the oracle is oblivious on the critical path for x. Therefore, if we can find strings
x, yE" such that x cr (y) and y cr (x), then by placing both x and y into A(i)
there will exist two distinct computation paths that accept 0". We show that such strings
can be found by reducing this problem to the board covering game described earlier.

514 JOHN GESKE AND JOACHIM GROLLMANN

Fix an ordering, xl, x2, x3," ", of the strings of X". The success, or failure, in
finding strings xi cr (xj) and xj cr (xi) is equivalent to determining whether a 2" x 2"
board can be covered with a given number of pebbles. The "pebbles" in this game are
the queries of length n made in each critical path of a string in ", i.e., b 1 ,x
cr (xi). If the board is covered, then for each xcr(x) (b0=0) we have xicr (xj)
(b 1). If the board is not covered, either for some i, x cr (x)(b, 0), which can
never happen, or for some and j, x cr (x) and x cr (x) (b 0 and bj 0). If this
is the case, then we have found suitable strings.

Each critical path is of depth at most pk(n). Since there exist at most 2" critical
paths, there are at most pk(n)2" pebbles, and since

p(n)2" < 2"-12" 22"-1,
it follows from Lemma 2.1 that we cannot cover the board. Therefore, there must be
strings x and xj such that x cr (xi) and x cr (xj), and this proves our claim.

To complete the proof of the theorem we need only to show Lo(A) pA and
LI(A): Ua. Lo(A)Pa by the usual argument (cf. [2]). Suppose L(A) UA, then
L(A) is accepted by some unambiguous NPi. At some stage k, and for some integer
n, NP is run with oracle A(k). By assumption NPiAk) is unambiguous on <-". But
O" L(A) if and only if 0" is rejected by NPiAk) or 0" is accepted ambiguously. Since
we assumed NP is unambiguous, we have a contradiction; LI(A)-UA.

THEOREM 2.2. There exist a recursive oracle B and a language L(B such that L(B
is Pn-immune and L(B UB.

Proof The construction is basically the same as the one given in the proof of the
Immunity theorem in [8]. However, our theorem does not follow from the Immunity
theorem, and so we give a straightforward proof here.

We build the oracle B in stages. T(i) is a finite set of indices at stage i. Initially
T(i)- B(i)= and m =0.

Stage i. Let T’(i + 1) T(i) LI {i}. Choose an integer n > m such that 2"-1 _->

ZjT’(i+I) (nJ+J) Check whether there exists an index ja T’(i+I) such that 0"
L(P)). If an index exists, take the smallest such index j, define T(i+l)=
T’(i + 1) {j}, m 2", add nothing to B at this stage and go to the next stage. If such
an index does not exist, choose a string of length n that is not queried by any of the
machines P),j T’(i+ 1), on input 0". (We have chosen a sufficiently large n so that
such a string does exist.) Add this string to B, define T(i + 1) T’(i + 1), m 2" and
go to the next stage. Note for each n, B contains at most one string of length n.

Let L(B)= {0"" there exists a y B and lyl n}. Clearly L(B)Un. We have to
show that L(B) is PB-immune. First, IIL(B)II =az. Suppose L(B) were finite; then B
would also be finite. Therefore, after some stage io, we must always have, in stage
i> io, the case that 0" L(P) for a given n and some je T’(i+ 1). Therefore, j is
removed from T’(i + 1). This means that, from stage io on, all T(i) have a constant
length. Therefore, only a finite number of sets L(P) (those whose indices are never
removed from any T(i)) do not contain some element 0" for some n. But, there are
infinitely many j with L(P)=, and so we have a contradiction, and L(B) must be
infinite.

Now we show that no infinite subset S of L(B) is equal to some L(P). Suppose
S= L(P), S_ L(B) and S infinite. Ifj is removed from T’(i+ 1) at some stage i, then
0" L(P)) and 0" L(P). Therefore, 0" S and 0" L(B). But if 0" L(P)) at
stage i, we add no strings of length n to B, therefore, 0" L(B). This is a contradiction,
so j must stay in T(k) for all stages k>j. Therefore, for all but a finite number of
chosen, 0" L(P). But in L(B) we only have elements x, where x 0" for some chosen

RELATIVIZATION OF UNAMBIGUOUS AND RANDOM CLASSES 515

n, and by assumption, L(P]) L(B). Therefore, L(P) must be finite. This is also a
contradiction.

COROLLARY 2.1. There exist a recursive oracle C and a language L(C) such that
pC Uc Npc, L(C) is pC-immune, and L(C) Uc.

Proofi For the proof we only need to replace the odd stages in the proof of
Theorem 2.1 with the corresponding stages in the proof of Theorem 2.2, mutatis
mutandis.

Let {Pr}jN be a recursive enumeration of polynomial time-bounded oracle Turing
machines that compute predicates of two variables. We define for any oracle X, each
k N, and for each Pr, j N, the following language:

L(Pr:, k)= {x" there exists a y such that lyl Ixl and Prj(x, y)}.

(Prj, k) is random if and only if L(Pr], k) {x" there exist 2 Ixlk-1 distinct y X such
that [yl- Ixl and Pr(x, y)}. Note that L Rx if and only if there exists a j and k
such that (Pr, k) is random and L= L(Pr], k). We assume that (Ixl /ly[) /j is the
time bound of Pr on input (x, y). Thus, on input (x, y), where [Yl Ixl , runs for
at most Ixl +j steps.

THEOREM 2.3. There are a recursive oracle D and a language L(D) such that
L(D) Uo and L(D) : Ro.

Proof Let L(X)={0"" there exists a yX such that lyl= n}. To show that
L(X) Rx, it is sufficient to show:

Vj, k N(Pr], k) random L(X) L(Pr], k).

We build the oracle D in stages. Initially D and m 0.
Stage i. We look at (Pr9(i), k) where (j, k)= i. Choose an integer n > m such that

_-<n2"-1 > n kj +j. Determine whether (Pr(i), k) is random on If it is not random, set
m 2", add nothing to D at this stage and go to the next stage. If it is random, and
0" L(Pr](, k), set m 2", add nothing to D at this stage and go to the next stage.

If 0" L(Pr]9(, k), we must find a string x, Ixl n, such that 0" is not accepted
by (PrJ9()Ux), k) with probability =>1/2. Such a string exists. Add x to the oracle, set
m 2" and go to the next stage.

Claim. If 0" L(Pr9(), k), a string x " exists such that 0" is not accepted by
(pr()Utx, k) with probability => 1/2.

Proofofclaim. For each y, ly} n, a (deterministic) path of Prf() on (0", y) leads
to a reject state. There are 2 such paths; along each path there may be oracle queries
of the form "x e D?," where Ix[n, that are answered "no." If adding any x to the
oracle causes the machine to accept 0" with probability >= 1/2, then "k-there are 2 paths
such that the machine queries the oracle about x on these paths; the corresponding
changes in the responses causes the machine to accept. We say these are critical queries
for x. For the 2" strings of length n we have at least 2"2"-1 critical queries. The length
of any path is limited by nk+j. The total number of possible critical queries is
(n kj +j)2" < 2"2"-1. A string x, Ixl n, such that 0" is not accepted by (Pr), k)
with probability >-1/2 must exist.

From the construction it follows that L(D) R. L(D) U since for every length
n there is at most one string of length n in D.

COROLLARY 2.2. There exists a recursive oracle E such that P#R# U, R
contains a P-immune set and U contains an R-immune set.

Proof Let Lo(X) and LI(X) be as defined in Definition 2.1. We build E in stages.
At the odd stages we "slowly diagonalize" Lo(E) out of P. That is, we proceed as in
the proof of Theorem 2.2, but instead of adding one string of length n to the oracle,

516 JOHN GESKE AND JOACHIM GROLLMANN

add 2"- strings to the oracle. Hence, Lo(E) Re. In the even stages, we slow down
the construction in the proof of Theorem 2.3 so that L1(E) is Re-immune. I-]

Balcizar and Russo [3] contain a variety of relativization results of probabilistic
complexity classes, and some of these results overlap with Corollary 2.2. They indepen-
dently prove the existence of a recursive oracle Eo such that Ro contains a Po-immune
set, and they prove the existence of a recursive oracle E such that NP,fqco-R,
contains an R,-immune set.

The following corollary shows that each of the classes P, R, U and NP can be
made distinct. Its proof is a simple extension of Corollary 2.2. Rather than diagonalize
in two stages, we diagonalize in three stages, and in the third stage diagonalize NP
out of U via the technique used in Theorem 2.1.

COROLLARY 2.3. There exists a recursive oracle F such that pF RF UF NpF,
RF contains a P-immune set and UI contains an RF-immune set.

We raise the following open questions:
(1) Is there an oracle X such that NPx contains uX-immune sets?
(2) Are there an oracle X and a language L(X) such that L(X) Rx and L(X)

Ux ?
Now we will apply our combinatorial technique to solve an open problem raised

by Book, Long and Selman [4] which studies properties of restricted forms of relativiz-
ations of NP.

DEFINITION 2.2. Let M be an oracle machine. For any set X and any input string
x of M, let QA (M, X, x)= {q: in some accepting computation of M relative to X on
input x, the oracle is queried about q}.

DEFINITION 2.3. Let X be a set. NP.ACC.DEPx is the class of languages L such
that L NPx is witnessed by a machine M such that for some polynomial q, and for
all x, IIQA (M, X, x)ll _-< q(Ixl).

Obviously for all sets X we have Ux
_
NP.ACC.DEPx

_
NPx.

THEOREM 2.4. There exists a recursive oracle Fsuch that pF # UF # NP.ACC.DEpF.
Theorem 2.4 follows from a simple modification of the proof of Theorem 2.1.

Namely, we may ensure that in the even stages of the proof we always add at most
two strings of any even length to the oracle. Hence LI(F)6 NP.ACC.DEPF.

Book, Long and Selman raised and left open the question of whether there exists
an oracle X such that NP.ACC.DEPx NPx. This is so, and to prove this fact we first
describe a generalization of the pebbling game defined earlier.

A board is a c-dimensional m-element matrix (i.e. rn entries in each dimension)
over {0, 1}, where c and rn are positive integers. A square of the board is an element,
b<i,,...,ic, of the matrix, where i, , ic =< m. A c-dimensional m-element board contains
m squares. Let I {(il, ", i): il,..., i-< m} be the set of all ordered c-tuples. A
c-tuple is denoted by i. Let ij if and only if (i, , ij,. , i), i.e., i is a component
of the c-tuple i. We say that is pairwise disjoint if for all i, ik i, j k implies i # ik.

The pebbling game is played as described earlier. Namely, given a pebble, denoted
by a "1", we may place it on any square not already covered by a pebble. The object
of the game is to cover the board with a given number of pebbles. The board is covered
if the following conditions hold:

(1) b 1 for all that are not pairwise disjoint.
(2) For all pairwise disjoint there is a permutation 7r such that b=i)= 1.
LEMMA 2.2. ()+m-m!/(m-c)! pebbles are needed to cover a c-dimensional

m-element board.
Proof Let A {i: is not pairwise disjoint}. If the board is covered, then for each

A, bi 1. Also, if the board is covered, then for each I- A, b=)= 1 for some

RELATIVIZATION OF UNAMBIGUOUS AND RANDOM CLASSES 517

permutation r. There are c! permutations for each i, and III-All=m!/(m-c)!.
Therefore, the total number of pebbles needed to cover the board is

m! m!
(m-c)!c! (m-c)!

which proves our claim, l1

TH.OREM 2.5. There exists a recursive oracle G such that NP.ACC.DEPG NP.
Proof. Let L(G)= {0"" there exists a y, y G and lyl n}. G is constructed in

stages such that L(NP) L(G) for all L(NP) NP.ACC.DEP6. Initially m 0 and

Stage i=(j, k). We examine NP (with polynomial time bound p(n)) and
polynomial p(n) n + k. Choose an integer n, n > m, so large that pa(n)<2"/3-1
and p(n)<2". At this stage we will ensure that either L(NP) L(G) or
IIQA (N, G, 0")11 is not bounded by pk(n). Run NP’ on E". If NP’ accepts
any string x, Ixl n, and IIQA (N, G(i), x)ll > p(Ixl), then we add nothing to G(i)
at this stage, set m 2", and go to the next stage.

Iron each accepted string x, Ixl n, IIQA (N, G(i), x)ll
on input 0". If NP accepts 0, then we add nothing to G(i), set m 2" and go the
next stage.

If NP rejects 0", then we add X E" to G(i) such that either NPx still
rejects 0" or iIQA(N, G(i)UX, O")l>pk(n). We will show that such strings can
always be found. Now set m 2" and go to the next stage.

Claim. A nonempty subset X E" exists such that NPUx either rejects 0" or
accepts 0" but IIQA (N, G(i)U X, 0)ll > pk(n).

Proof of claim. We can, by exhaustive search, determine whether there exists
X E such that NP(ux rejects 0". If we find such an X, then we are finished.

If such a subset cannot be found, then it must be the case that for all nonempty
subsets X of E", NP(ux accepts 0. In paicular, NP does not accept 0", but
for each string x E, NP(does accept 0". QA (NP, G(i) U {x}, 0") is the set of
queries made on the accepting paths ofN with the oracle G(i)U {x}. In this context
we denote this set QA (x). To every string x of length n there exists a nonempty set
QA (x). Obviously, there exist no more than 2" such sets. If IIQA (x)ll > pk(n) for some
x E", then take X {x}, and the claim is proved. Hence, we can assume without loss
of generality that [[QA (x)ll p(n) for each

Clearly x QA (x). Any change in an answer to a query in QA (x) may affect the
resulting computation. If y QA (x) and y is placed in the oracle, then the addition
of y to the oracle is oblivious on accepting computation paths of NP(ux. Therefore,
if we can find a set of strings X in E" such that Ilxll 1 and for all x, y X,
x y implies xQA (y), then IIQA (N, G(i)U X, 0=)11 > p(n). We show that such
strings can be found by reducing this problem to the generalized board covering game.

Fix an ordering, Xl, x2, x3," ", of the strings of E". Let us see that the success,
or failure in finding a suitable X is equivalent to determining whether a (pk(n)+
1)-dimensional 2"-element board can be covered with a given number of pebbles. We
will pebble the board in the following way: We place a pebble on every I which is
not pairwise disjoint, because x QA (Xr) for each x E". Now let us assume that
x QA (x), r s. Then, for each maximal subset S of I whose elements contain r
and s, are pairwise disjoint and identical up to permutation, we choose one of the
elements of S, say i, and set b 1.

If the board is covered, then for each I there exists a permutation w such that
b(1. But if b(1, then it must be the case that for some r, s i, x QA (x).

518 JOHN GESKE AND JOACHIM GROLLMANN

Therefore, if the board is covered, then a subset X, as described above, does not exist.
Conversely, if the board is not covered, then there exists a pairwise disjoint such that
bi 0 and for all permutations r, b(i)= 0. For such an to exist it must be the case
that for all r, s i, r s, we have Xr QA (xs). The set X {xr: re i} is a suitable set.

Now we count the pebbles on the board. There are

2"!(2.).>’
(2"--pk(n)--l)!

pebbles on the board for those elements in I that are not pairwise disjoint. Furthermore,
since there are at most 2" sets QA(x), and since for every x, IIQA(x)ll<-_pk(n), it

follows that there exist at most pk(n)2" queries x e QA (x,), r# s. For each such query,
the number of pebbles placed on the board is the number of different subsets S of I
as given above. There are

such subsets. Hence there are at most

(2")P{"+l-2"t/(2"-p(n)- 1)’+p(n)2" (2"-2)kpk(n)-I

pebbles on the board.
By Lemma 2.2, it is sucient to show that this number is smaller than

2") + (2,)pk(,)+
pk(n)+ 1

2"!
(2"--pk(n)--l)!"

But this is equivalent to

p2k(n)(p,(n)+ 1)<2" 1.

Since we have chosen pk(n)<2"/3- 1, this inequality is fulfilled. So it follows that the
board cannot be covered. There must be a suitable subset X

__
" such thatxQA (xs)

for all xs, x e X, r s, and this proves the claim.
It follows from the usual argument that L(G)NP.ACC.DEPa and L(G)e

NP. [3

COROLLARY 2.4. There is a recursive oracle H such that Pu U
NP.ACC.DEPu NP, and the first inequality is strong.

We do not know whether Corollary 2.4 can be strengthened so that all inequalities
are strong.

3. Concluding remarks. Here we wish to make some remarks about the existence
of one-way functions in a relativized setting. Recall that a one-way function is a 1-1,
honest function that is computable in polynomial time but whose inverse is not
polynomial time computable. One-way functions are known to play a critical role in
complexity issues surrounding public-key cryptosystems. It is observed in Grollmann
and Selman [6] that one-way functions exist if and only if P U, so the results of
Rackoff, as well as those herein, show that there do exist relativized worlds in which
one-way functions exist.

It is also of interest to know whether there exist one-way functions with range
belonging to P. Indeed, Grollmann and Selman show that this existence question is
equivalent to whether P U f co-U. Using the techniques developed in this paper, it

RELATIVIZATION OF UNAMBIGUOUS AND RANDOM CLASSES 519

is not hard to prove the existence of a recursive oracle A such that pA . uA co.UA

NPA, and therefore, relative to oracle A, there exist one-way functions with easy to
recognize range.

Acknowledgments. We would like to thank Tim Long for pointing out several
errors in earlier versions of this paper. In addition, we wish to thank Alan Selman for
his guidance and many helpful conversations.

REFERENCES

[1] L. ADLEMAN AND K. MANDERS, Reducibility, randomness, and intractibility, Proc. 9th ACM Sym-
posium on Theory of Computing, 1977, pp. 151-153.

[2] T. BAKER, J. GILL AND R. SOLOVAY, Relativization of the P= ? NP question, this Journal, 4 (1975),
pp. 431-442.

[3] J. L. BALC.ZAR AND O. RUSSO, Immunity and simplicity in relativizations ofprobabilistic complexity
classes, manuscript, 1984.

[4] R. BOOK, T. LONG AND A. SELMAN, Quantitative relativizations of complexity classes, this Journal,
13 (1984), pp. 461-487.

5] S. EVEN, A. SELMAN AND Y. YACOBI, The complexity ofpromiseproblems with applications to public-key
cryptography, Inform. and Control, 61 (1984), pp. 159-173.

[6] J. GROLLMANN AND A. SELMAN, Complexity measures ofpublic-key cryptosystems, Proc. 25th IEEE
Symposum on Foundations of Computer Science, 1984, pp. 495-503.

[7] C. RACKOFF, Relativized questions involving probabilistic algorithms, J. Assoc. Comput. Mach., 29
(1982), pp. 261-268.

[8] U. SCHNING AND R. BOOK, Immunity, nondeterminism, and relativization, this Journal, 13 (1984),
pp. 329-337.

[9] M. SIPSER, On relativization and the existence ofcomplete sets, Automata, Languages, and Programming,
Lecture Notes in Computer Science 140, Springer-Verlag, Berlin 1982, pp. 523-531.

10] L. VALIANT, Relative complexity of checking and evaluating, Inform. Proc., 5 (1976), pp. 20-23.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
014

PROBABILITIES RELATED TO FATHER-SON DISTANCES IN
BINARY SEARCH TREES*

CARL E. LANGENHOP" AND WILLIAM E. WRIGHT

Abstract. We present some properties of a random variable called father-son distance, which is defined
on binary search trees formed naturally from an insertion sequence X, , Xn of independent identically-
distributed continuous random variables. If Xi is the key in a node in such a tree and Xj is the key in a
son of that node, then the father-son distance between the nodes is defined to be j- i. We obtain a general
formula for the probability that a path from the root with specified successive father-son distances will be
contained in a randomly generated tree.

Key words, binary search tree, internode distance, father-son distance, independent identically-
distributed continuous random variables, order statistics, path length, inter-record times

1. Introduction. In this paper we derive formulas for the probabilities of certain
events associated with the process of building a binary search tree by the insertion of
a sequence of keys drawn at random from some ordered population such as the real
numbers. A description of the insertion algorithm is given by Lynch [3] and by Knuth
[2, p. 424]. If Xi denotes the value of the ith key to be inserted in the tree, then for
n -> 1 we call X1, X2, , X, the insertion sequence. The first key X1 is placed in the
root node. Then each succeeding key is placed in a new node determined by that key’s
natural order relative to the keys already placed. (We assume Xi # X if i# j.) This is
done by searching the tree in normal fashion and then making the new node a left or
right son, as appropriate, of the last node in the search path. No balancing is performed
on the tree.

Given n different key values the tree that is constructed depends on the sequence
in which these keys are inserted. The usual assumption, see Knuth [2, p. 427], is to
assume all sequences are equally likely so the tree resulting from any specific sequence
is assigned the probability 1/n !. However, two different sequences can result in the
same tree structure with the nodes containing precisely the same keys. This phenomenon
is illustrated in Fig. 1 by the trees generated from the insertion sequences .3, .8, .5, .1,
.7, .4 and .3, .1, .8, .5, .4, .7.

3

(a) Insertion sequence: .3, .8, .5, .1, .7, .4.

2

(b) Insertion sequence: .3, .1, .8, .5, .4, .7.

FIG. 1. Randomly generated binary search trees with father-son distances.

We introduce the notion of a father-son distance function defined on the branches
of a binary search tree. Suppose for such a tree that the key Xi is located in node v

and the key X is located in a son ,’ of this node. Then we must have j > and we

* Received by the editors August 31, 1982, and in revised form December 10, 1984.
Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901.

Department of Computer Science, Southern Illinois University, Carbondale, Illinois 62901.

520

FATHER-SON DISTANCES IN BINARY SEARCH TREES 521

define the father-son distance ofthe branch from u to u’, denoted d u, v’), by the relation

(1.1) d(u, u’) =j-i.

In Fig. 1 the numbers associated with each branch of the trees shown are the father-son
distances determined by the respective insertion sequences. It is clear that if one is
given a tree and the father-son distances for each branch, then one can recover the
insertion sequence of the key values appearing in the nodes regardless of what these
key values are. In fact, the structure of a binary search tree merely specifies the
numerical or linear order of the key values in the nodes of the tree while the associated
father-son distances specify the order in which those keys were inserted.

Disregarding the values of the keys we shall refer to the binary trees of n nodes
with associated father-son distances as distanced binary search trees with n nodes or,
more briefly as distanced trees. We denote by S, the collection of all such distanced
trees. Clearly there are n! elements in the set Sn, a distinct element being generated
by each of the n! permutations of a given set of n keys used as the insertion sequence.

Ordinarily we may suppose that the nodes of a binary search tree are stored
sequentially in a computer memory as the tree is generated by the input of a sequence
of keys. In this case the distance function d gives the number of cells in memory from
a father node to a son. Comparison searching for a particular key in an already
generated binary search tree requires moving along a unique path from the root node
to the node containing that key or to the corresponding null link when that key is not
yet in the tree. For each node in the path except the last one (or corresponding null
link), it is necessary to select the right or left branch and then move to the selected
right or left son. In some applications the "cost" of moving from a father to a son
may depend on the corresponding father-son distance. Thus probability distributions
associated with the father-son distance function d are of potential utility.

Aside from such applications, the father-son distances in certain cases, but with
different terminology, have already been recognized as of some interest in statistics.
The cases considered correspond to paths through the extreme right nodes (or paths
through the extreme left nodes) of a binary search tree. In the statistical terminology
the keys in the extreme nodes are "record values"; each is larger (or smaller) than
any preceding it. The father-son distances between these nodes are the "inter-record
times". (See Chandler [1] or Siddiqui and Biondini [4].) We shall say more about this
application later.

It is our purpose to derive formulas for the probabilities of certain subsets in Sn.
A subset of the type considered is denoted Q(el," ", e.k’, hi," ", hk) to indicate the
set of all trees in S, having the father-son distances hl,. , hk along the path el,. ek
from the root to a node k levels below the root. Here el, , ek is a sequence of zeros
and ones specifying the path, with ej--0 denoting that the jth branch of the path is a
left branch and ej- 1 denoting that it is a right branch, 1 _-<j_-< k. The h are positive
integers specifying the father-son distances along the successive branches in the path.
Regardless of their values, the keys in the successive nodes along this path, beginning
with the root, are X, X+h, Xl+h+h2, etc. Observe that for such trees in S, we must
have 1 + h +. + hk <= rl. In case 1 + h +. + hk > n we must interpret Q(el, , ek;

hi,""" hk) as the empty subset of S,.
For both trees in Fig. 1 the path from the root to the node containing .7 as key

is specified by (e, e2, e3)= (1, 0, 1). However, the tree in Fig. l(a) belongs to the set
Q(1, 0, 1; 1, 1,2) while that in Fig. l(b) belongs to Q(1, 0, 1;2, 1,2).

As another example consider the set Q(1, 1; 3, 5) in S, with n ->_ 9. We can describe
this set using the statistical terminology. It consists of all trees with new upper "record

522 CARL. E. LANGENHOP AND WILLIAM E. WRIGHT

values" at times 4 and 9. Each such tree is produced by an insertion sequence
X1, X2," , X, satisfying the properties:

X<X4<X9 Xi<X fori=2,3, Xi<X4 fori=5,6,7,8.

The value X is a "record" by convention and X4 and X9 are subsequent new "records";
the "inter-record times" are 4-1 3 and 9- 4 5.

Suppose now that 1 + h +. + hk <---- s and s + hk/l <= n and suppose T is a tree in
the subset Q(el," ’’, ek; hi," ", hk) of Ss. If the tree T has been generated by the
insertion sequence of keys X,..., Xs, then it will be converted to some tree T’ in S,
by the subsequent insertion of keys X,+, , X,. Whether the resulting tree T’ is then
in the subset Q(e, ., ek/; h,..., hk/l) on S, is determined by how the values of
the keys X/I, , X, are ordered relative to those of the keys X,. ., X already in
T. For example, we have seen that the tree T in Fig. l(a) is in the subset Q(1, 0, 1;
1, 1, 2) of $6. In order for it to be converted into a tree in the subset Q(1, 0, 1, 0;
1, 1, 2, 2) of S, with n => 8 the key X7 must satisfy either X7 < X3 (= .5) or X7 > X5
(= .7) and then X8 must satisfy X3 < X8 < Xs.

In order to determine the probabilities of the sets Q(e, -, ek; h,. ., hk) we
have found it expedient to adopt a model in which the actual keys are observations
of a sequence of independent random variables with a common uniform distribution
on the interval [0, 1]. As in the example just mentioned, one may then consider
conditions on Xs+l, X such that a tree generated by observations of X,. , X
and in the subset Q(el," ", ek; h,..., hk) of Ss may be converted into a tree in the
subset Q(e,...,ek, ek/; h,.. ",hk, hk/) in S,. In our approach the particular
observed values of the keys are of no concern and only the distanced tree structure is
attended to. Nevertheless, our method associates the probability 1/n! with each tree
in S,, just as when one fixes the n keys ahead of time and uses the n! permutations
of these as insertion sequences to generate the n! elements in S,.

2. Probabilities of distanced paths. For each positive integer s let Z(s)=
{ 1, 2,. , s} and let X1, X,. be independent random variables uniformly distributed
on [0, 1]. Let u be a permutation on Z(s) and consider the event

(2.1) 0 < Xu() <" < Xu() < 1.

That is, if Xl," ", Xs are observed values of X,. ., X, then (2.1) occurs if and only
if

(2.1a) 0 < xu<l) < < x,,(s) < 1.

If the numbers x, , x are used as insertion sequence, a tree in Ss will be determined
which we denote by T(s, u). Conversely, given a tree in S we may place s numbers
from [0, 1] as keys in the nodes consistent with the tree structure. The father-son
distances then determine the insertion sequence Xl, , xs ofthese numbers to generate
the tree. When they are ordered in size as in (2.1a), a unique permutation u on Z(s)
is thereby specified. For this u the numbers x, , x represent observations for which
the event (2.1) occurs. Thus, obtaining the tree from observations of the variables
X,..., X corresponds to the event described in (2.1). The probability of this event
is given by

Iotf x.(, fx-(2, l
dx,,() dx,()

ao ao

FATHER-SON DISTANCES IN BINARY SEARCH TREES 523

Hence, as we claimed earlier, our model for generating binary search trees gives

(2.2) P(T(s,u))=l/s!

as the probability of obtaining any given tree T(s, u) in Ss. In fact, one would get the
same result so long as the random variables X1, X2," are independent and have the
same continuous distribution, i.e. F(x)= P(Xi <-x) is a continuous function of the
real variable x.

Along with the independent random variables X1," ", Xs it is helpful to consider
the corresponding order statistics which we denote by X, 1 =< r<= s. Here X is the
minimum of {X1,’’’, X}, X denotes the next smallest of {X1,..., X,}, etc., with
X denoting the maximum of {X,..., X}. It will be convenient notationally to
introduce constant random variables X 0 and X/ 1 for each s >= 1. With probabil-
ity one we have

(2.3) X<Xl<. .<Xs+l

since the probability is zero that any two of X1, X are equal or that one of them
is equal to zero or one. We note that the event (2.1) corresponding to the tree T(s, u)
can be described by the relations X Xu(r), 1-< r <- s. That is,

(2.4) IT(s, u)]=[X=Xu(,), l <=r<-s]

where we use brackets,], to denote the event described therein.
The relations (2.3) indicate that the random variables X1,"’, X divide the

interval (0, 1) into successive random intervals (X, X/I), O<=r<=s. Moreover, with
probability one, Xs+ must fall into one of these random intervals; otherwise X+I 0, 1
or Xi for some i, 1-< i-< s, and these events have probability zero. Relative to binary
search trees in S, with n >- s, observations of the random intervals (X, X/I), 0 <= r < s,
correspond to the null links in the subtree generated by the observations of the first s
members of the sequence X,. ., X,. If for this tree we have X Xi and X/I X
for some r in the range 1 <= r <- s-1, then (X, X+)= (X, X) corresponds to a null
right link of the node with key Xi when >j and to a null left link of the node with
key X when <j. If the tree is such that X X, then (X, X) (0, X) corresponds
to a null left link of the node with key X and if X X, then (X, X+I)= (X, 1)
corresponds to a null right link of the node with key X. In Fig. 2 the correspondence
between null links and the observed intervals (X, X/I) is illustrated for the case in
Fig. l(a) where the observed sequence X,..., X6 is .3, .8, .5, .1, .7, .4.

If Xl, X generate the tree T(s, u) and the event X<X+ <X+ occurs for
a specific r, 0 <-- r --< s, then a unique tree T(s + 1, u’) in S/1 is determined. This tree is

(.3,.4) (.4,.5) (.5,.7) (.7,.8)

FIG. 2. Correspondence between intervals (X, X+) and null links.

524 CARL. E. LANGENHOP AND WILLIAM E. WRIGHT

described by

X+I X,,(,), l<=r=<s+l,

where, by virtue of (2.4), the permutation u’ on Z(s+ 1) is given by

u’(r) u(r), 1-< o’-< r,

(2.5) u’(r+l)--s+l,

u’(r) u(r- 1), r+2<-r=<s+l.

Indeed, if I (X, X+1), then we have

(2.6) T(s, u)] C) [Xs+l I] T(s 4-1, u’)].

Clearly T(s + 1, u’) is produced only in this way for if one deletes from T(s + 1, u’)
the node with the key Xs/l, then T(s+ 1, u) remains since r and u are determined
,uniquely from (2.5).

Since P(T(s, u)) I/st for all positive integers s (and all permutations u on Z(s)),
it follows from (2.6) that if I (X, X[+I) for some r, 0=< r=< s, then

1/(s+1)! 1
(2.7) P(Xs+I liT(s, u))-

l/s! -s+ 1"

Note that this is independent of u as well as the value of r. Later we shall need to use
the obvious fact

(2.8) P(X1 e (0, 1)) 1

and to recognize the event X1 (0, 1) as the one tree in $1 consisting merely of the
root node. Denoting this tree by T(1, 1), we may write

(2.9) [X1 (0, 1)] T(1, 1)].

We wish to extend the relation (2.7). If we denote by the set of ordered pairs
(X, X+I), 0=< r <- s, corresponding to the successive null links in the trees in S, then
I is a key assumption leading to (2.7). Consider now ordered pairs I (A, B) in
which A and B can be any of the random variables X1," X, X 0, or X 1s+l

Some of these will be of the form (X, X+I) for some trees T(s, u) and not for some
others. For example, I (X2, X1) corresponds to a null link in the tree generated by
X1, X2, X3 in the case X2 < X1 < X3 or X3 < X2 < X1 but not when X1 < X2 < X3 nor
when X2 < X3 < X1, etc. Some ordered pairs ! (A, B) cannot be ofthe form (X, X+1)
for any tree; the pairs (1, X2), (X2, X2), and (X1, 0) are examples of this.

In any case we shall let J denote the set of all ordered pairs I (A, B) in which
A and B are from the set of random variables X1, , X, 0, 1. Given I (A, B) J,
then [I 0] is an event consisting of all trees T(s, u) for which (A, B) corresponds
to a null link. In particular, if A Xi and B X with 1 =< i, j =< s and j, then I s
if and only if Xi X and X X+I for some r, 1-< r -< s-1. Using (2.4), we see that
T(s, u) is in the event [Is] if and only if u(r)= and u(r+ 1)=j for some r,
1 <= r<=s 1. Similar identifications can be made in the case I =(0, X) with 1 <=j<=s
or in the case I (X, 1) with 1 -<_ =< s. For all other cases the event [I] is empty.

For ! =(A, B)Js we shall use the notation ff(I)= g’s(A, B) for the class of all
subevents of [I]. That is, M g’(I) if and only if

(2.10) M= LJ [T(s, u)]

FATHER-SON DISTANCES IN BINARY SEARCH TREES 525

for some set R of permutations u on Z(s) such that for some r, 0 <- r <= s, we have

(2.11) (A, B) (X, X+,)

by virtue of the relations X X,), 1 <- tr <_- s, along with X 0 and X+ 1.
If 1 (A, B) J, then by [X+ 1] we mean the event that A <X+ < B. Our

extension of (2.7) is the following:
LEMMA 2.1. For any s >-- 1, if I J and M (1), then

1
(2.12) P(X+IIM)-

s+l

and

S
(2.13) P(Xs+,c-IIM)- s+l"

Proof Using (2.10), we have

(2.14) P(M f’)[Xs+l e I])= E P([T(s, u)] f’)[X+I I]).

Now for each u R we have I e s. Hence we may use (2.7) in (2.14) to get

1 1
P(M tq [X+I I]) Z P([T(s, u)]). P(M).

,ca s+l s+ 1

Relation (2.12) now follows and (2.13) is an immediate consequence of (2.12).
Remark. The assumption M (I) is essential here. For example, suppose I

(X, X2) and T(3, u) is generated where X < X3 < X2. Then T(3, u) [I 3]. In fact,
[T(3, u)] [X4 I] is the event that X4 enters either the null link (X, X3) or the null
link (X3, X2) for T(3, u). The corresponding term in the right side of (2.14) would
thus be double what it would be if T(3, u) were in [I 3]. On the other hand, if
I =(X2, X1) and T(3, u) is the same as before, then I does not correspond to any
nontrivial union of null links in T(3, u). In this case, T(3, u)] [X4 I] has probability
zero since [X46 I] requires X2 < X4<X which is incompatible with the relations

X < X3 < X2 characterizing the tree T(3, u).
In (2.12) and (2.13) the events M [X+ I] and M [X+ I] are impoant.

For these we have the following:
LEMMA 2.2. Suppose s 1 and I (A, B) J. IfM (I), then

(2.15) M [X+, e I] W+I(A, X+,) +I(X+,, B)

and, if we ignore an event ofprobability zero,

(2.16) M 0 [X+ I] e +1(I).

oof Suppose T(s, u) is represented in M through (2.10). Then MW(1)
implies that 1 (A, B) is a null link in this tree. This tree together with [X+ I] yield
a tree for which both (A, X+I) and (X+I, B) are null links. This is true for every tree
in the event M and (2.15) is thus seen to be valid. Similarly, if T(s, u) is represented
in M and X+ L then the key X+ must be inseed into some other null link of
T(s, u) or it must equal X, , X, 0, or 1. These latter possibilities all have probability
zero. Hence, except for an event of probability zero, [T(s, u)] and [X+ I] yield one
or more trees in S+ for which I remains a null link, i.e., for which I +. Since
this is the ease for each T(s, u) represented in M, the asseion (2.16) is seen to be
valid.

526 CARL. E. LANGENHOP AND WILLIAM E. WRIGHT

The results in Lemmas 2.1 and 2.2 enable us to obtain the probabilities of the
events Q(el, , ek; hl,. , hk). Consider first the events 0(e; h) when n -> 1 + h.
If e =0, we define I1 =(0, X) and if e2 1, we define I =(X, 1). We then have
I=(X,X) when el=0 and I=(X,xl) when e= 1. If we take MI=[T(1, 1)]=
[XI (0, 1)] as in (2.9), then in either case we have M ff(I). Also in either case
we may write

(2.17) Q(ex; h,) M, n n [I1] n [Xh,+l I1].
j=2

Applying (2.16) inductively, we conclude that

(2.18) M M, [I,] e ff(I,)
j=2

for 1 p h. But for 2 p h we have Mp Mp_ 0 [Xp I] so, using (2.13), we get

(2.19) P(Mp)= P(Mp_I) p-1.
P

But P(M)= 1 by (2.8) so (2.19) implies

2-1 3-1 hi-1 1
(2.0) P(M) 1

By (2.18) we can write (2.17) as

2 3 hi h"

(2.21) Q(e,; h,) Mh, Cl [Xh,+, e Z,].

Since Mh, Vh,(I1) we may apply (2.12) to get

1 1
(2.22) P(Q(el; hi))= h--" hi + 1

in light of (2.20).
It may be noted that although M1 T(1, 1)] consists of just one tree, the events

Mp defined in (2.18) consist of more than one tree when p_->3. For example, in the
case e 1 for which I1 (X1, 1) the set M2 consists of the one tree determined by the
relation X<X1 but M3 consists of two trees, namely, the one generated by the
conditions X3 < X2 <X and the other generated by the conditions X2 < X3 < X. Thus
Lemma 2.1 which extends the basic relation (2.7) is a key ingredient in our analysis.

In (2.21) we have I1 (A, B) with A 0, B X1 for the case el 0 and A X,
B 1 for the case e 1. Moreover, Mhl E dfh,(I) SO by (2.15) it follows that Q(e; h)
h,+(I2) whether we take I=(A, Xh,+) or I2=(Xh,+,B). For Q(e, e2; h,h) we
make the first choice in the case e2 0 and the second choice in the case e2 1. We
can then define Q(el, e2; hi, h) by proceeding from Q(e; h) similarly to the way
Q(e; hi) is given in (2.17) proceeding from M1 IT(l, 1)].

We give an inductive definition for the events Q(e, , ek; h, , hk). For this
the notations

(2.23) s(k)=hl+" "+hk, k>-l,

and

(2.24) Ms(k)+l Q(el, ek; hi,’’’, hk),

FATHER-SON DISTANCES IN BINARY SEARCH TREES 527

are convenient. Assume that Ik (Ak, Bk)E Js(k) and that

(2.25) Ms(k)+, s(k)+l(Ak, Xs(k)+l) f’l s(k)+,(Xs(k)+,, Bk).

If ek+l =0, we take Ik+l (Ak, Xs(k)+) and if ek+ 1, we take Ik+ (Xs(k)+l, Bk). In
either case (2.25) implies

(2.26) Ms(k)+ s(k)+(Ik+).
Now define

)(2.27) M n n
j=s(k)+2

for s(k)+2<-_p<-s(k+ 1)= s(k)+ hk+l. Then (2.26) and (2.27) imply Mp Xp(Ik+l) for
such p by virtue of (2.16) in Lemma 2.2. Finally then, we have

(2.28) Q(e, ek+,; h,, hk+l) Ms(k+l)[")[Xs(k+l)+l Ik+l]"

Since Msk+l)sk+l)(Ik+), we see by (2.15) and (2.24) that (2.25) holds with k
replaced by k + 1. We chose 11E J1 and verified (2.25) for the case k 1, so (2.25) and
hence also (2.26) hold for all k => 1.

We may now prove our main result.
THEOREM 2.3. Let el," ", ek be any sequence ofzeros and ones and let hi," ", hk

be any sequence ofpositive integers. If s(k)+ 1 <-n, then in S, we have

(2.29)
P(Q(el, ek; hl, hk))

1 k 1

s(k) + 1 ,Ill s(i)

h,(hl + hE) (h, +" "+ hk)(hl +. "+ hk + l)

Proof. For k 1 this reduces to (2.22) which was established above. Assume then
that (2.29) holds for some k_-> 1. Now for Mp as in (2.27) we saw above that Mp
Xp(Ik+l) for s(k)+l<-p<-s(k+l). It follows then from (2.27) and (2.13) in Lemma
2.1 that (2.19) holds for s(k)+2<-p<-_s(k+l). Hence, by virtue of the inductive
hypothesis (2.29) we get

s(k+l) p- 1
P(Mk+,)) P(Msck)+,) 1-I

p=s(k)+2 p
(2.30)

_--(1 i s/))s(k)+l_ki]l1_s(k)+ l ,=l s(k+ l) ,=is(i)

Finally by (2.28), (2.30) and (2.12) in Lemma 2.1 we get

P(Q(el,’’’,ek+l; h,,...,hk+,))
i=1 s(k+l)+l

which is (2.29) with k replaced by k + 1.
Remark. We mentioned earlier that there has been some interest in statistical

theory in the events corresponding to our sets Q(e, , ek; hi, , hk) in which each
e 1 (or each e 0). The probabilities for these cases are known and, of course, they
agree with our result in (2.29). See, for example, K. N. Chandler [1 eq. (4)] where
u1-1 there is our s(j-1) and where n- 1 there is our k. Other cases, i.e. when there
are both zeros and ones among the e’s, evidently have not been considered previously
in statistical theory. A significant feature of our result in Theorem 2.3 is that the

528 CARL. E. LANGENHOP AND WILLIAM E. WRIGHT

probability of Q(e,..., ek’, h,..., hk) does not depend on the path el,’’ ", ek but
only on the father-son distances h,..., hk along this path. These distances are the
analogues of the "inter-record times" for the extreme paths. Thus known properties
of the probability distributions of "inter-record times" can be applied directly to
father-son distances along any other path of potential interest.

3. Averages related to the father-son distance. Here we consider the computation
of some averages using the probabilities in (2.29). The term "average" is often used
in connection with some feature of binary search trees. One should be careful, however,
to distinguish between a random variable which is an average defined on each tree in
S, and the expectation of that random variable over all trees in S,.

Consider, for example, the "average path length of a tree" in S,. Let us define
A(,) k if node u in a tree T in S. is k levels below the root. That is, A(,) is the
"path length" to node , in the tree T with the convention that h(;,)=0 if v is the
root node. If the nodes in T are indexed ,, , u,, then A(T)-i= h (ui)/n is the
average length for T and A is a random variable on S,. The expected value of A is
what is usually meant by "the average path length of a tree" in S,. This is a known
quantity and denoted by C, in Knuth [2, p. 427]. We may write it as

C =1 A(T)

since P(T)= 1/n! for each T in S,. It is the case (see Knuth [2, p. 427]) that

(3.1) C,=2(I+I/n)H,-3

where

(3.2)
1 1 _"

H,=I++’" "+-=) k-1.
n k=l

The numbers C, are related to numbers C’, called the average number of com-
parisons made in an unsuccessful search for a key in a tree in S,. The relation is (see
Knuth [2, p. 427])

(3.3) C,=(I+I/n)C’,-1.

Let us indicate how C’, can be computed using our formula (2.29).
To this end let k and s denote integers such that l<-_k<-s<=n-1 and let F(s, k)

denote the set of all trees in S, having a path of k links with total father-son distance
s. Now for each tree T in S, there is one and only one path whose total father-son
distance is s, namely, the path to the node containing the key Xs+ if T is generated
by the insertion sequence X,. ., X,. This path will have k links for some integer k
satisfying 1 <- k _-< s. Note that the sets F(s, k) for 1 _-< k _-< s are disjoint and their union
is S. Accordingly there is a random variable on S, which we denote by Ls which is
defined by L(T) k if T F(s, k).

If T F(s, k) is generated by the insertion sequence X,. ., X then in building
the tree k comparisons with the keys X,..., X are required to place the key X/
in the tree. Thus Ls(T) is the number of comparisons made in an unsuccessful search
for the key X/ in the subtree of s keys X,. ., Xs. Thus

(3.4) C’ Exp (Ls)= kP(F(s, k)).
k=l

FATHER-SON DISTANCES IN BINARY SEARCH TREES 529

Now F(s, k) consists of all events Q(el," ", ek’, hi," ", hk) such that

(3.5) s(k)=hl+" "/hk=S.

There are 2k different choices for the path el," ", ek SO, using (2.29), we may write

2k k 1
(3.6) P(F(s’k))=s+l ,= s(k)

where the summation is over all sequences hi," ", hk of k positive integers satisfying
(3.5). The substitution of (3.6) into (3.4) then gives an explicit formula for the numbers
C’s. We have verified directly that this agrees with the result described in Knuth [2,
Prob. 6, p. 448]. The verification is somewhat involved so we do not give the details
here since this does not seem to be an efficient procedure for computing the C’s.

In the remainder of this section we indicate how the formula (2.29) may be used
in some other situations of potential interest. First, for n _>-2 let K,,(el) denote the set
of all trees T in S, for which the root has an el-son. That is, T K,,(el) if and only
if T Q(el; hi) for some hi, 1 _-< hi --< n- 1. The events Q(el; hi) are disjoint for different
hi so, using (2.29), we get

-1 1 "1(1 1)n-1(3.7) P(K(el))=
nh,=h(l+hl) h,=l hi hi+l

On K,,(el) we can define a random variable D1 by the condition D(T)=hl if
T Q(el; hi). Using (2.29) and (3.7), we can compute the conditional expectation of
the distance to the el-son of the root given that there is such a son. The result is

,,-1 1 n n
(3.8) Exp [D, IK,,(el) E hi

h,=l hl(l+hl) n-1 n-l[H"-l]
with H. as given in (3.2). In the statistical terminology this can be described as the
average time to set a new record (considering the first observation X as a record)
given that a new record is set within the time interval n- 1. Analogous but more
involved subpopulations of trees and random variables dealing with a specific path
el," ", ek by time n can be handled similarly.

As a final example of the use of the formula (2.29) consider for k >-1 the set
Q*= Q(el,’", ek; hi,’", hk) for a fixed path el,’’ ", ek and fixed father-son dis-
tances hi, , hk. Let s s(k) hi +" + hk. Now consider a tree in S, generated by
the insertion sequence X1, , X,. If n _-> 1 / s, then the last node in the path el, ek
for the tree contains the key XI+,. If n > 1 / s, this path in T may be extended in the
e (- 0 or 1) direction with a father-son distance of h on the extending link provided
1 _<- h _-< n 1 s. The quantity h may be interepreted as the waiting time for extending
the given path e,..., ek in the e direction from the last node of this path. For
convenience let Q*(e; h) Q(el, ", ek, e; h, , hk, h). Then for n > 1 + s we define
this waiting time by W,*(T) h if T S, f’] Q*(e, h). Since Q*(e; h) c Q*, then for
n > 1 / s we get from (2.29) that

l+s
(3.9) P(W*.=h)=P(O*(e; h)[Q*)=(s+h)(l+s+h),, l<=h<=n-l-s.

The events Q*(e; h) are disjoint for different values of h. Summing (3.9), we get

"-- l+s
(3.i0) E P(W.* h) 1

h=l

530 CARL. E. LANGENHOP AND WILLIAM E. WRIGHT

for the probability that the path of Q* is extended in the direction e by the time the
tree contains n nodes (the time the key Xn is put in the tree). Thus there is the
probability (1 + s)/n that the path will not be extended in the e direction by the time
the tree has n nodes.

If we choose not to limit the length of the insertion sequence X1, X2, , we may
consider the class Q*= Q(el,"" ", ek; hi,’’’, hk) of all binary search trees T with
infinitely many nodes which contain the path el," ", ek from the root with father-son
distance hi,. ., hk. With Q*(e; h) related to Q* as before, we define the waiting time
W* by W*(T) h if T Q*(e; h). But regardless of h we may take any n => 1 + s + h
and consider the subtree Tn of T consisting of the first n nodes (including the root)
of T. For any such n we have Tn Q*(e; h) when T Q*(e; h) and, using (2.29), we
get

l+s
(3.11) P(W*=h)= h>-I

(s+h)(l+s+h)’

as in (3.9). Now, however we allow any h _>- 1 and we note that

, P(W*=h)=l.
h=l

Thus (3.11) is the probability distribution for the wating time W* which takes on
integer values h-> 1. Note that

, hP(W* h) o;
h=l

that is, the waiting time has infinite expectation. For the special case when all ej- 1,
1 _-<j _-< k, this corresponds to the known fact that the "inter-record times" have infinite
expectation. The feature of interest here is that the distribution of W* given in (3.11)
is independent of the path el,’", ek and the direction of the extension. It is also
independent of the particular father-son distances h,..., hk SO long as jk= h- s.

REFERENCES

[1] K. N. CHANDLER, The distribution andfrequency ofrecord values, J. Roy. Statist. Soc. Ser. B, 14 (1952),
pp. 220-228.

[2] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Addison Wesley, Reading, MA, 1973.
[3] W. C. LYNCH, More combinatorial properties of certain trees, Comput. J., 7 (1965), pp. 229-302.
[4] M. M. SIDDIQUI AND R. W. BIONDINI, The joint distribution of record values and inter-record times,

Ann. Probab., 3 (1975), pp. 1012-1013.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
015

NEGATION IS POWERLESS FOR BOOLEAN SLICE FUNCTIONS*

L. G. VALIANT

Abstract. It is shown that for any slice function of n variables the monotone circuit complexity exceeds
the circuit complexity over a universal basis by at most a multiplicative constant factor and an additive term
of order O(n(log n)2).

Key words. Boolean circuits, circuit complexity, monotone circuits

1. Introduction. The question of determining how much economy the universal
basis (^, v, 7} provides over the monotone basis (^, v } has been a long standing open
problem in Boolean circuit complexity. In 1981, S. Berkowitz [3] made a striking
observation which showed that, when suitably formulated, this problem does have a
simple solution. For a Boolean function f(xl, , x,) he defines the kth slice function
of f to equal

(i) f(x,,. ., x,) if exactly k of the inputs are one,
(ii) 0 if fewer than k of the inputs are one, and
(iii) 1 if more than k of the inputs are one.

Clearly, for most purposes, the function f is well represented by its n + 1 slices. Now
suppose that g(x,..., x,) is any slice function (i.e. for some k) and suppose that
circuit X(x,..., x,,) computes it over the basis {^, v,-q}. It is known that X can be
transformed to a monotone circuit X*(Xl, , x,, z, , z,) having at most twice as
many gates [6] such that X* computes g if gj is substituted for each zj. It is also known
[1] that there exist O(n log n) size monotone circuits for Boolean sorting and hence
for computing any threshold function Thk (x, , x,). Here Thk is the function that
takes value one if and only if at least k of the inputs are ones. The surprising discovery,
whose correctness the reader can easily verify, is the following:

BERKOWITZ’ LEMMA. If g is a kth slice function then X*(Xl,’", x,, Z1,’’" Zn)
will compute g(xl, x) iffor 1 <-j <-n, zj is set to Thk (Xl,""", xj_, Xj+l," x,).

Let C^. and C^.. be the minimal circuit size complexity measures over the two
bases. Then the following is an immediate consequence:

COROLLARY 1. If g is any slice function then

C^,v(g) --< 2C^,v,-(g) + O(n2 log n).

The purpose of the current paper is to improve the additive term to O(n(log n)2)
by showing how 1,"" ", 2, can be computed simultaneously by a monotone circuit
of that size.

DEFINITION. A monotone (k, n)-inverter is a monotone circuit with inputs
Xl,’’ ", x, and outputs y,..., y, with the properties that:

(a) If exactly k inputs are 1 then y for 1 =<j =< n.
(b) If more than k inputs are 1 then y 1 for 1-<j_<-n.
(c) If fewer than k inputs are 1 then yj 0 for 1 -<_j <= n.
THEOREM. There is a constant a such that for all n and k there is a monotone

(k, n)-inverter with fewer than an(log2 n)2 gates.

* Received by the editors July 16, 1984 and in revised form January 28, 1985. This work was supported
in part by the National Science Foundation under grant MCS-83-02385.

f Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.

531

532 L.G. VALIANT

The main shortcoming of Corollary 1 as stated is that it is too weak to be relevant
to known lower bounds for monotone complexity. The reason for this is that the latter
are all of order O(n2), and this growth is swamped by the additive term of 0(n2 log n)
in the corollary. In contrast to this, our theorem can be applied meaningfully to the
problems such as matrix multiplication and convolution that have been analyzed in
the literature [4], [7]-[11], [13], [15]. For example, in the case of Boolean matrix
multplication for m x m matrices it is known that any monotone circuit requires m3

gates while over a universal basis O(mTM) or even O(m25) are sufficient [5], [12]. A
corollary of our theorem is that the slice function that corresponds to matrix multiplica-
tion when, for example, exactly one half of the 2m2 inputs are one can be computed
by a monotone circuit with O(mTM) or O(m25) gates. Intuitively this appears to say
that the known lower bounds arguments for monotone circuits say as much about the
formulation of the problem computed as about the model of computation or the
problem itself.

We shall state our improved corollary for sets of functions since that is the only
case for which nonlinear lower bounds are currently available.

DEFINITION. A slice function set F is a set fl(x," ’’, x.),. ,fr(x,’’’, x.) of
Boolean functions each of which is a kth slice for the same k.

COgOLLAg 2. For all slice function sets F over {x,’’’,xn} C^,v(F) <-

2C^,v,-(F) + O(n(log n)2).
Further results on slice functions have been obtained recently by Wegener [14].

2. The construction. The construction is based on monotone subcircuits that can
merge two sorted lists of length m in O(m log m) gates. Batcher’s odd-even merge
suffices here [2].

As a first simplification we note that it is sufficient to construct an inverter that is
correct when exactly k of the inputs are 1. From the outputs {Yi} of such a circuit the
correct outputs {y*} can be computed by letting

y/* (y, ^Thk (x,," ", x.)) vThk+l (x,," ",

for each i. Clearly the y* outputs will be all zero if Thk --0 and will be all one if

Thk+ 1. This adds only O(n(log n)2) gates to the overall complexity if Batcher’s
sorter is used, or O(n log n) if 1] is used.

As a further simplification we consider only the case k <- n/2. To obtain a (k, n)-
inverter for k> n/2 it is sufficient to construct a (k, 2n)-inverter and set half of the
inputs to zero. For similar reasons we can also assume that n is an exact power of 2.

The circuit we construct will have depth 0((log n)). We distinguish the gates at
2 log2 n of the levels and call these distinguished levels layers. The layers are numbered
{il0_--< i<log2 n}l..J{2 log2 n-ilo<=i<log2 n}. Layers and 21og2 n-i consist of n/2
lists each containing 2 gates. Each list A spans a subset span (A) c_ {Xl, , x} indexed
by {r2 + 1, r2 + 2, , r2 + 2} for some r (0 -< r < n/2). Level 0 consists of n singleton
lists, consisting of the inputs x, , x,, respectively. Level 2 log2 n also consists of n
singleton lists, consisting of the outputs Yl,"" ", Y,, respectively. The span of the list
consisting of yj is {xj}. The complement of a list A, denoted by A, is the concatenation
of all the lists other than a that are in the same layer as A.

Above we have defined the items in the lists to be gates or input variables. When
the inputs are given Boolean values these items take on values (i.e. the values of the
inputs or the values computed by the gates.) We shall, for convenience, identify these
lists with the list of Boolean values they take. The construction will ensure that each
such list is sorted in increasing order. This is ensured simply because the only subcompu-

BOOLEAN SLICE FUNCTIONS 533

OUTPUTS

layer 2 log2 n Y Y2 Y3
Yn

layer log2 n + 3
D

layer log2 n + 2

layer log2 n +

layer log2 n-

layer log2 n 2

layer log2 n-3 F

layer 0
X X2 X3

INPUTS

FIG. 1. Schematic diagram of the construction.

tations performed are merges of sorted lists. A schematic view of the construction is
given in Fig. 1.

We denote lists by A, B, C, and their layer numbers by layer (A),. etc. The
description of the circuit is as follows’,

(i) If layer (A) 0 and span (A) {xj} then A is the input xj.
(ii) If layer(A)=/ and 1-<i<log2 n then A=merge (B, C) where layer(B)=

layer (C) 1 and span (A) span (B) LI span (C).
(iii) If layer (D)= log2 n+ 1 then D is the concatenation of the last k bits of (3

with a list of (n/2-k) l’s where layer (G)=log2 n-1 and span (G) span (D). [N.B.
(3 and D both have size n/2 and have complementary spans.]

(iv) If layer (D)=2 log2 n-i and 0-< i<log2 n-l, then D is the middle 2 bits
of the 3.2 length value of merge (E, F) where layer (E) 2 log2 n- i- 1, layer (F)
and span (E) span (D) U span (F).

(v) If layer (D) 2 log2 n and D {y} then y is the output corresponding to x
(l_--<j_--< n).

534 L.G. VALIANT

3. Proof of correctness. It is evident that the first log: n layers constitute a sorting
algorithm. In particular, if layer (A)= and 0_<-i<log n then A is a sorted list for
span (A). Let 4# a(A) denote the number of a’s in A where a 0 or 1. The main point
of the construction can be expressed as follows"

CLAIM. If layer (D) 2 log2 n and 0 <_- < log2 n then the number ofzeros in D
is k-

Note that the validity of the claim for layer 2 log2 n is enough to establish the
theorem since in that case if D {yj} then span (D) is the set of all inputs other than
xj, and hence y will be made zero if and only if x is indeed one.

ProofofClaim. The proof proceeds by induction down from log2 n 1 to 0.
The base case, log2 n-1, corresponds to layer log: n + 1. By part (iii) of the

construction and since 4# (G) _-< k

4#1(D) # (G) + n/2 k).

Since 4#l(G) 4#(D) and #0(D) n/2- 4#(D) it follows that

4#o(D)= k- 4#,(D).

For the induction step assume that the claim holds for some (0 < _-< log2 n- 1)
and deduce that it must hold for i- 1 also. Consider the result of merge (E, F) in step
(iv). By the inductive assumption

4#o(E)= k- 4#,(E).

Since F is just a sorted list of span (F),

4#o(F) 2’ 4# (F).

Hence

4#o(D) 2’+ k- 4#,(/) 4#,(F)= 2’+ k- #,(/)).

Since span (/))= span (/)U span (F), it follows that merge (E, F) consists of 2 zeros,
followed by a further k- # (D) zeros, followed by l’s. Since there are k l’s altogether
4#(/3)->k-2 and hence k-4#(/))-<2. It follows that the middle 2 bits of
merge (E, F) have exactly k- # (D) zeros as desired.

REFERENCES

M. AJTAI, J. KOMLOS AND E. SZEMERIDI, An O(n log n) sorting network, Proc. 15th ACM Symposium
on Theory of Computing, 1983, pp. 1-9.

[2] K. BATCHER, Sorting networks and their applications, AFIPS Spring Joint Computing Conference, 32,
1968, pp. 307-314.

[3] S. J. BERKOWlTZ, Personal communication (1981). Also, On some relationships between monotone and
non-monotone circuit complexity, manuscript, University ofToronto, Computer Science Department.

[4] N. BLUM, An II(N4/3) lower bound on the monotone network complexity of N-th degree convolution,
Proc. 22nd ACM Symposium on Foundations of Computer Science, 1981, pp. 101-108.

[5] D. COPPERSMITH AND S. WINOGRAD, On the asymptotic complexity of matrix multiplication, Proc.
22nd ACM Symposium on Foundations of Computer Science, 1981, pp. 82-90.

[6] M. J. FISCHER, The complexity of negation-limited networks, Lecture Notes in Computer Science 33,
Springer-Verlag, Berlin, 1974, pp. 71-82.

[7] E. A. LAMAGNA AND J. E. SAVAGE, Combinational complexity ofsome monotonefunctions, Proc. 15th
IEEE Symposium on Switching and Automata Theory, 1974, pp. 140-144.

[8] K. MEHLHORN AND Z. GALIL, Monotone switching circuits and Boolean matrix product, Computing,
16 (1976), pp. 99-111.

BOOLEAN SLICE FUNCTIONS 535

[9] M. S. PATERSON, Complexity ofmonotone networksfor Boolean matrix product, Theoret. Comput. Sci.,
(1975), pp. 13-20.

10] N.J. PIPPENGER AND L. G. VALIANT, Shifting graphs and their applications, J. Assoc. Comput. Mach.,
(1976), pp. 423-433.

11] V. R. PRATT, The power of negative thinking in multiplying Boolean matrices, this Journal, 4 (1975), pp.
326-330.

[12] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
13] I. WEGENER, Boolean functions whose monotone complexity is of size nE/log n, Theoret. Comput. Sci.,

21 (1982), pp. 213-224.
[14] On the complexity of slice functions, Lecture Notes in Computer Science 176, Springer-Verlag,

Berlin, 1984, pp. 553-561. (Also Theoret. Comput. Sci., to appear.)
[15] J. WEISS, An (na/2) lower bound on the monotone complexity of Boolean convolution, Inform. and

Control, to appear.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
016

ON THE LAGARIAS-ODLYZKO ALGORITHM FOR THE
SUBSET SUM PROBLEM*

A. M. FRIEZE’

Abstract. We give a simple analysis of an algorithm for solving subset-sum problems proposed by
Lagarias and Odlyzko [2].

Key words, complexity, lattice algorithm, random problems

Suppose e (el, e2, e,) {0, 1}", B1, BE, , B, are positive integers and Bo
Y’,i=l Bier. Then clearly e is a solution of

(1) Bixi Bo, xi O or 1, i-1,2,...,n.
i=1

The following problem arises in cryptography [4]: given Bo, B1," ", B,, find e by
solving (1).

Solving (1) is a well-known NP-complete problem and Lagarias and Odlyzko [2]
describe an algorithm which almost surely finds e assuming

(2) B1, B2,... B, are independently chosen at random from 1,..., B 2c"2,
c sufficiently large.

In this paper we show that c 1/2+ e, e > 0 is sufficient. The main point of this
paper is to give a simple proof of their result.

In the following analysis e is fixed and B1, BE,’’ ", Bn are randomly generated.
We note that we can assume

(3) Bo >- B/2
i=1

for if not, we can put yi 1- x and try to solve

(4) BO’ Bi- Bo, y 0 or 1,
i=1 i=1

i-- 1,2,. ., n.

Now let p [n2"/2], Z be the set of integers and

bo (pBo, 0,. , 0) Z"+1,

bl (-pB1, 1, 0,’",0),

b, (-pB,,, O, 0,..., 1).

Let L={z==osCibi": Z,i=0,1,’’’,n} be the lattice
bo, hi," bn.

Let ,=(O,e,e2,.. ",e,)=bo+=l eibiL. Note that 11611<-n
euclidean norm. Thus 6 is a "short" vector of L.

generated by

1/2, using the

* Received by the editors April 24, 1985, and in revised form February 15, 1985.

" Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania
15213. Current address, Department of Computer Science and Statistics, Queen Mary College, London E1
4NS, England.

By almost surely (a.s.) we mean with probability tending to 1.

536

LAGARIAS-ODLYZKO ALGORITHM 537

Let I[x*ll min ([[xll "x 0, x e L). It is not known at present whether it is possible
to find a shortest nonzero vector in L, in polynomial time. However, using the Basis
Reduction Algorithm (BRA) of Lenstra, Lenstra and Lovfisz [3], we can in polynomial
time find L, # 0 satisfying

(s) I111 -< 2"/11* II-<-2"/1111 -< m 2’/:Zn ’/’.

Thus we can try to solve (1) by applying BRA to L and seeing if it produces +.
There is of course the possibility that there is more than one solution to (1); however
the analysis below shows this to be unlikely.

So let be the shortest vector produced by BRA and assume that B1, B2," ", Bn
are distributed as in (2). We will show

(6) Pr (+) _-< (4m + 1)(2m + 1)"/B O(2-2/2) if B _-> 2(1/2+)’-.

If x (Xo, Xl," , x,) L, then we have

x Xbo+ xlb +. + x.bn

Let Lo {x L: Xo 0}. It follows that

(7) x L- Lo implies Ilxll >- P-

Thus (5) and (7) imply that Lo. The lattice used in [2] has p 1. Taking p large
allows us to restrict our attention to Lo. It also allows us to solve one lattice problem
in place of the two solved in [2]. We can prove (6) by showing

(8) Pr (Ao) -<- (4m + 1)(2m + 1)/B
where Ao {x Lo: Ilxll m, x k6 for any k Z}. (Note that k6 for k Z implies
k + 1 if is part of a basis.)

But if x Ao then

(9) [noxl-

and so Ixl-<_ 211xll -< 2m, using (3). So if Ao there exist x (x1, x2, ", Xn) Z

Ilxll m, lyl2m,

xke for anykZ,

(10c) Bx yBo.
i=l

Consider now afixed , y satisfying (10a) and (10b) and let A {x e Z" Ilxll m}.
We will prove that

(11) Pr (, y satisfy (10c)) _-< 1/B

and then

Pr (=Ix, y satisfying (10)) _-< (4m + 1)lAll!B <- (4m + 1)(2m + 1)"/B

and (8) follows.
To prove (11), note that (10c) is equivalent to Y__ B =0 where x-ye.

Since (10b) holds, we can assume, without loss of generality, that z 0. Letting

and y Z satisfying

(10a)

(10b)

538 A.M. FRIEZE

denote -(E" Biz,/z)i=2

Pr B,z, =0 Pr (B, sc) E Pr (B, =jls =j) Pr (so=j)
i=1 j=l

E Pr (s=j)
j=l

as B1 and : are independent

1

This completes the proof of the main result.
Schnorr [5] has recently built on the ideas in [3] and Kannan [1] to construct a

family of basis reduction algorithms, so that for any tr > 1 there is an algorithm BRA
in the family which runs in polynomial time (the degree of the polynomial depends
on tr) which guaranteed to find a vector of length no more than - llx*ll. Using BRA,
in place of BRA means that we can take c tr + e in (2) and still a.s. solve the problem.

Now Lagarias and Odlyzko also show that if B 2"", where c > Co 1.54725, then

(12) is a.s. the shortest vector of L.

It is not difficult to see first that B 2 gives (12) for some c > 0 assuming we proceed
exactly as above. Let rn n 1/2 and x* be the shortest vector of L. If x* # + then (10)
again holds. It is easy to show that IAI <--2 for some c > 0 and this c will suffice.

To get c as small as Co, we have to assume that Y." ei < n/2. This is true for onei----1

of the problems (1) and (4) and so, as in [2], we solve both of these. We can now take
m =(n/2)/2 in our analysis.

We cannot assume (3) for the problem in which = en/2 but as Bo
min {B" 1, 2,- , n} B/n2 a.s. we can assume this instead. Using this in (9) gives
Ixol n2m and so we take lyl n2m in (10a). Theorem 3.2 of [2] is that IA112cn and
so (12) holds as

Pr ((12) fails) -< Pr ((10) holds) + Pr (Bo < Bn2).

(i) Problems with r > 1 constraints. Here one replaces c by c/r in the theorems.
By multiplying the ith constraint by B- and then adding all these constraints together
we have a subset sum problem in which the coefficients are very close to being randomly
chosen uniformly from 1,. ., B r.

(ii) Bo an independent random variable. Suppose that instead of e being an a priori
solution, Bo is randomly generated in 1,. , [AnB where 0 < A -< 1 is some constant.
It is not difficult to show for B 2*"2, c > 1/2, that if (1) has a solution then it is a.s.
unique and this approach a.s. finds it.

Acknowledgment. I am grateful to Ravi Kannan for interesting discussions on this
topic.

REFERENCES

1] R. KANNAN, Improved algorithms for integer programming and related problems, in Proc. 24th IEEE
Symposium on Foundations of Computer Science, 1983.

[2] J. C. LAGARIAS AND A. M. ODLYZKO, Solving low density subset sum problems, Proc. 25th Annual
IEEE Symposium on Foundations of Computer Science, 1983, pp. 1-10.

LAGARIAS-ODLYZKO ALGORITHM 539

[3] A. K. LENSTRA, H. W. LENSTRA, JR. AND L. LovAsz, Factoring polynomials with rational coefficients,
Math. Ann., 26 (1982), pp. 515-534.

[4] R. C. MERKLE AND M. E. HELLMAN, Hiding information and signatures in trap-door knapsacks, IEEE
Trans. Inform. Theory, IT-24 (1978), pp. 525-530.

[5] C. P. SHNORR, A hierarchy ofpolynomial time basis reduction algorithms, Proc. Symposium on the Theory
of Algorithms, Pe’cs, Hungary, 1984, to appear.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
017

CONSTANT TIME GENERATION OF FREE TREES*

ROBERT ALAN WRIGHTS’, BRUCE RICHMONDt, ANDREW ODLYZKO
AND BRENDAN D. MCKAY

Abstract. An algorithm of Beyer and Hedetniemi [SIAM J. Comput., 9 (1980), pp. 706-712] for
generating rooted unlabeled trees is extended to generate unlabeled free trees. All the nonisomorphic trees
of a given size are generated, without repetition, in time proportional to the number of trees.

Key words, free tree, unrooted tree, nonisomorphic trees, constant time generation, constructive enumer-
ation, lexicographic order, loop-free algorithm

1. Introduction. In 1], Beyer and Hedetniemi exhibit an algorithm for generating
all rooted trees of a given size. The method uses a successor function to traverse an
ordered set of integer sequences which represents the objects being generated. This
method is based on one introduced by Ruskey and Hu [7]. In this paper the technique
of Beyer and Hedetniemi is refined to produce only one member of each equivalence
class of rooted trees under isomorphism of the underlying free (unrooted) trees.

Previous algorithms for generating these trees have been given by Read [6], Dinits
and Zaitsev [2] and Kozina [3]. Our algorithm has an advantage over each of these,
in that it only requires O(n) space and constant average time per tree (independently
of n). An algorithm for the corresponding random generation problem has been given
by Wilf 8].

2. Representing trees by level sequences. The notation T, z) is used here to denote
the rooted tree with underlying free tree T and root vertex z. The level of a vertex v
in a rooted tree (T, z) is one more than the distance from the vertex to the root. The
root z is assigned level value 1. A level sequence is defined as a sequence of integers
produced by listing the level of each vertex of a rooted tree in preorder. Since a
preorder traversal may visit the subtrees at a given vertex in various orders, level
sequences for a rooted tree are, in general, not unique. The notation L(T, z)=
[11, 12,’’’, ln] will be used for any level sequence of a rooted tree (T,z) on n
vertices.

In order to have a unique level sequence representation for a given rooted tree,
the rules for the preorder traversal must be refined slightly. For a level sequence to be
canonical, the traversal must visit the roots of adjacent subtrees in nonincreasing
lexicographic order of the canonical level sequences of those subtrees. A simpler (and
equivalent) formulation of this canonicity criterion is the requirement that the canonical
sequence for a given rooted tree be the sequence which is the lexicographically greatest
of all level sequences describing that same tree. A more complete discussion of
canonicity (with proofs and examples) may be found in [1]. The canonical level
sequence of a rooted tree (T, z) will be denoted by L*(T, z).

3. Generating all canonical level sequences of given length. Beyer and Hedetniemi
have described in [1] an algorithm which generates all canonical level sequences of

* Received by the editors March 4, 1983, and in revised form February 6, 1985.

" 1948d Adams Avenue, Costa Mesa, California 92626.
Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada

N2L3G1.
AT&T Bell Laboratories, Murray Hill, New Jersey 07974.
Computer Science Department, Australian National University, Canberra ACT 2601, Australia.

540

CONSTANT TIME GENERATION OF FREE TREES 541

given length in lexicographic order. Their method involves an iterative algorithm which
has as its basis a successor function, which when given any canonical level sequence,
will generate the next canonical sequence, with respect to lexicographic order. The
precise definition is this: Let L= L*(T, z) be a canonical level sequence of length n.
Let p be the largest integer such that lp # 2 and let q be the largest integer such that
q < p and lq lp-1. The successor s(L)= [Sl, s2,’", s,] of L then is given by:

i, for l<=i<p,
Si

si_(p_q), for p _<- i-< n.

In 1] it is proved that this function transforms any canonical level sequence other
than 1, 2, 2, , 2] into the next canonical level sequence, in decreasing lexicographic
order.

We now will extend these results by deriving an algorithm which generates a
subset of the canonical level sequences corresponding to the set of free trees on a
given number of vertices.

4. Extracting a nonisomorphic subset of rooted trees by root selection. The objective
here is to place requirements on the root vertex, which may only be satisfied by one
rooted tree with a given underlying tree. First we will require that the root be an
element of the center of the tree, which is defined to be the set of vertices whose
maximum distance from the other vertices is least. Since all trees have either one vertex
or two adjacent vertices in the center, we now need only refine this rule for the bicentral
case. Let T be a bicentral tree, and consider the subtrees T1 and T2 remaining when
the edge joining the two candidate roots, z and z2, is deleted. Two rooted trees, T1, z)
and (T2, z2) are formed in this way. Either these two trees are isomorphic, in which
case the rooted trees (T, zl) and (T, z2) are isomorphic, or they can be distinguished
by their size, or by the precedence of their canonical level sequences (when they are
the same size). The root selected for T will be zl if T has fewer vertices than T2 or
if they have the same order and L*(T, zl) is lexicographically less than L*(T2, z2).
Otherwise we select z2.

We will call the root uniquely selected by the above criteria the primary root of
the tree T, and denote it by (T), or just . Then for any given tree T of size n, there
is exactly one member of the set of all rooted trees on n vertices with root meeting
the above criteria, namely (T,). A level sequence L(T,) will be called a primary
level sequence of T, and L*(T,) will be called the primary canonical level sequence
of T.

With the above criteria, a maximal set of nonisomorphic free trees may be extracted
from the set of all rooted trees of a given size by choosing only trees whose roots are
primary. But we need to apply these criteria not to the trees per se, but to their canonical
level sequences.

5. Refining the canonicity criteria to obtain only primary level sequences. We will
now translate the previously established rules for primary root selection to conditions
sufficient for a canonical level sequence to be primary. Let T, z) be the tree in question,
and let L L*(T, z). The first requirement was that z be in the center of the tree. We
will need to use the fact that z is in the center of T if and only if it is in the center of
every path of maximum length in T. The position of z in such a path can be readily
checked for a canonical level sequence. To do this, consider the structure of L when
viewed as the level number of z (namely 1) concatenated with the level sequences of
each of the components remaining when z is deleted from T. These component level
sequences, which we will call the principal subsequences of L, begin with level 2, instead

542 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

of 1, but otherwise are canonical level sequences themselves, due to the recursive
definition of canonicity. These subsequences are, moreover, ordered in L by height,
so the position of z within one path of maximum length can be determined by looking
at the height of the first two principal subsequences, which we will call S and $2.
This is given precisely by the highest level numbers in those respective subsequences.
We will identify the position of the first occurrence of the highest level number in the
ith principal subsequence by the subscript hi. The height of S then is lh,- 2, and the
height of $2 (if it exists) is lh2--2. We then conclude that the maximum length of a
path in T is lh, + 12- 2, and z is in the center of T if and only if h2 exists and lhl lh
is either 0 or 1. In addition, if lhl- lh 0, then T is unicentral, and hence L is known
to be primary without further checking.

In the bicentral case, we must be able to compare L L(T1, z) and L2 L(T2, z2).
The two central vertices are those which are represented by level numbers l and 12,
so if we let z2 z, and Zl be the vertex corresponding to 12, then L1 is the same as $1
(though level numbers will be greater by 1), and L2 is the same as L with L removed.
Size comparison of L and L2 can be accomplished trivially if we know the position
of the start of the second principal subsequence" if the level number at this position
is denoted l,, then the size of L1 is m-2, and that of L2 is n-m + 2 (where n is the
length of L). Finally, by checking lexicographic precedence of L=
[/2-1, 13-1,..., l,_l- 1] and L2- [/, l,,, l,/, , ln], we have that L is primary for
T if and only if L is identical to L2, or L has lower precedence than L2. This can
be summarized as follows:

Let (T, z) be a rooted tree with n vertices and a canonical level sequence L=
[l, 12,"" ", l,]. Then using the definitions of h, h, m, L and L2 given above, we
have that L is the primary canonical level sequence of T if and only if all of the
following hold for L:

(i) h2 (and hence m) exists,
(ii) lh >- lh 1,
(iii) if equality holds in (ii), then m 2 _-< n m + 2,
(iv) if equality holds in (iii), then either L L2, or L is shorter than L2, or L

has the same length as L2 but precedes L2 lexicographically.
Now we are ready to derive an algorithm for generating all such primary canonical

level sequences for a given value of n.

6. Generating all primary canonical level sequence of a given size. We wish to derive
a successor function which, if given an appropriate starting sequence, will efficiently
generate all primary canonical level sequences of the same size. It is not obvious at
first that such a successor function follows naturally from the one defined by Beyer
and Hedetniemi. However, due to certain choices made in the definition of the primary
canonical level sequences, the previously defined function will usually yield a primary
canonical level sequence when it transforms a sequence which is primary and canonical.
Thus our goal becomes to detect the cases where the s function will fail and to take
alternate action for those cases. As it turns out, the alternate action is trivial, although
it has a significant effect on the length of the algorithm. To determine the "failure
cases" for s, we will examine what the input sequence must look like in order to cause
s to produce a sequence violating one of the conditions for primary sequences.

The first case we will look at is the case where s transforms a primary canonical
sequence L into a sequence s(L) for which the condition (ii) is violated. (Note that
condition (i) can never be violated in this way). In this case, the value of lh is changed
from lh,- 1 to lh,- 2, which means that the p value for L is h2, and li- 2 for p < i-< n.
Hence this type of failure will occur if and only if lh- lh,- 1 and p h, with the one

CONSTANT TIME GENERATION OF FREE TREES 543

exception being L 1, 2, 3, 2, 2, , 2], which is not a problem since in this case s(L)
is the last sequence to be generated.

The second case where s will fail is when s(L) violates rule (iii) but not rule (ii).
This occurs when L1 is larger than L2 in the converted sequence. For this to happen,
lhl must be equal to lh2, and p must be equal to h2 (since lh2 must change). In addition,
we must have m 2 > n m + 2 for L1 to end up larger than L2. It should also be clear
that these conditions are sufficient for a failure to occur as well.

The final kind of failure with which we must deal occurs when condition (iv)
alone is violated. But this happens precisely when L1 L2, since the precedence of L2
is always diminished when L remains unchanged (and when L1 does change, this
failure cannot occur). Hence this failure condition can be detected by comparison of
L and L2.

We are left with the question of what to do when we encounter one of these failure
cases. Once again, the definition ofthe primary canonical sequences has been so chosen
as to make this easy. Very simply, to get the next primary canonical sequence from a
sequence L which satisfies one of the failure conditions described above, we first set
p to m- 1, apply s to get s(L), and if l,,_l > 3 (with the old value of m), we replace
the final h 1 elements of s(L) with 2, 3, , h. The reason for this is straightforward:
l,,-1 must change (i.e. L1 must change), since changes beyond m- 1 will only result
in L2 having lower precedence, which can never result in all of conditions (i)-(iv)
being satisfied again. Now, when L does change, there are two cases to consider.
Either l,,_ was a 3, in which case the action of s on L will result in copies of L being
made starting at l,, and repeating through ln, or l,_ > 3, in which case no L2 sequence
will occur in s(L). In the former case, s(L) is primary, and so we are done, but in the
latter case, we must correct the fact that L2 has been eliminated. By replacing the last
hi 1 level numbers with 2, 3, , hi, we replace the fewest number of level numbers
that we can (L2 must have the same height as L), and the replacement is the highest
sequence of its length which retains canonicity. Thus we necessarily have the primary
canonical sequence of highest precedence which has lower precedence than the value
of L which we started with.

7. Generating trees in lexicographic order. In order to be able to check the failure
conditions described in the previous section, and to do so without increasing the
complexity ofthe succession algorithm, the values of h, h2, p, etc., are to be maintained.
In addition, an index c to the first element of L2 which is not the same as the
corresponding element of L1 must be kept, so that it will be apparent when L L2
(to facilitate detection of the third kind of failure condition described above). Lastly,
a sequence W w, w2, , w,] will be kept such that wi is the subscript of the level
number in L corresponding to the parent of the vertex corresponding to li in the tree
represented by L.

The procedure below will accept any primary canonical level sequence other than
[1, 2, 2,..., 2] and produce the next primary canonical level sequence in canonical
order. The parameters are as we have defined except for r, which is one less than m.
The value of c is occasionally set to c when it will not be needed at the next
iteration.

The first primary canonical level sequence is that of a path rooted at its center.
To find its parameters (for n >=4), let k= [n/2J + 1. Then L=[1, 2, , k, 2, 3, , n-
k+l], W=[0,1,...,k-l,l,k+l,...,n-1],p=n (except thatp=3whenn=4),
q n- 1, hi k, h2 n and r k. Correct operation is assured if c is initialised to o
for odd n and n + 1 for even n. The last tree has been generated when the procedure
returns with q 0.

544 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

procedure nexttree (L, W, n, p, q, hi, h2, c, r)
fixit false
ifc=n+l orp=hEand(lh=lh2+l and n-hE>r-hior

lhz lh2 and n hE + 1 < r- hi) then
if lr > 3 then
p r; q wr
if hi r then hi hi 1 endif
fixit true

else
pr; rr-1; q,-2

endif
endif
needr - false; needc - false; needh2 - false
if p _-< h then h - p- 1 endif
if p <- r then needr - true
elseif p _-< hE then needh2 - true
elseif lh: lh- 1 and n hE r- h then

if p -< c then needc - true endif
else c -endif
oldp - p q p oldlq - lq oldwq - Wq p -for i-oldp to n do

li <-- li+a
if li 2 then W <-" 1
else
pi
if li oldlq then q - oldwq
else q w+
endif
w-q

endif
if needr and l 2 then

needr - false; needh2 - true; r - 1
endif
if needh2 and l _-< li-1 and i> r + 1 then

needh2 <-- false; hE - 1
if lh lh- 1 and n hE r- h then needc - true
else c
endif

endif
if needc then

if 1 lhl-h+- 1 then needc false; c -else c - +
endif

endif
endfor
if fixit then
r-n-hl+l
for ir+l to ndo

li-i-r+l; wi-i-1
endfor

CONSTANT TIME GENERATION OF FREE TREES 545

Wr+le- 1; h2-n pn; qp-1; co
else

if p then
if loldp_ 2 then p - oldp 1
else p - oldp 2
endif
q---Wp

endif
if needh2 then
h2-n
if lh2 lh,- 1 and h r then c - n + 1
else c -endif

endif
endif

endprocedure.

8. Proof of the constant time property. Let t, and T, denote the number of free
and rooted unlabeled trees of order n, respectively. A fundamental tool in our analysis
is the following result of P61ya [5] and Otter [4].

THEOREM 1. T, Cn-3/2p and t, C2n-5/2p as n -> o, where C 0.4399,
C2 0.5349 and p 0.3383.

To begin, we must establish that the total number of steps taken to do all simple
successions does not exceed O(t,). (That is, we are not yet counting the steps used in
recovering from any of the three failure conditions which can be encountered.) The
number of steps in each of these conversions is of the order of n p + 1, i.e. the number
of elements of the sequence which change. Hence we must sum all of the n-p + 1
values for arbitrary n. Since the number n-p is just the number of leaves adjacent to
the root, if we denote the number of trees of size n with exactly k root-adjacent leaves

n--1 (k + 1) t, k Observing that tn,k <: tn-k, we then haveby tn,k, the desired sum is then Ek=O
n-1 (c’h- 1)tn-k <=4t,.that the above sum is no more than Yk=O

We now need only count the steps used in correcting failure conditions. To do
this, we note that the number of steps needed to correct a single instance of a failure
condition is no more than O(n), and show that the number of failure cases becomes
so small compared to t, for large n that they are not significant. We will handle the
three kinds of failure conditions separately.

The third kind of failure can be dispensed with easily, since it occurs only when
L L2, which means that the tree is symmetric about a central edge, and thus there
are at most Tn/2 instances of this failure for given n. By Theorem 1, T,//t,-0
exponentially fast, which finishes this case.

For the first kind of failure condition, the starting sequence must have the form

L= [1,2, 3,..., lhl,’’’,/,, =2, 3,..., lh2 lh l, 2, 2, ,2].

In addition, hi < m < a, where a [(n+ 1)/2J, and so clearly the sum of all such cases
for given n does not exceed Ta, which behaves the same as the sum did for the third
kind of failure condition.

The second kind of failure condition occurs with greatest frequency. For this kind
of failure to occur, the starting sequence must have the form

L= [1, 2, lh, lm 2, 3, lh lh, 2, 2, ",2].

Also, 3 -<_ hi <-- n m 2 for n/2 =< m =< n 3 so if we denote the number of rooted trees

546 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

of height h and size n by The, and the number of rooted trees of height no more than
h and size n by Sh, the number of sequences of the above form is no more than

n--3 n--m--1 n/2

E E r-< E s_.
re=n hi=2 k=l

The latter sum can be divided into two sums

n/2 t3 log nJ n/2

E s_ X S._+ E S.-.
k=l k=l k= [3 log n]+l

The second sum is much less than nT,_13og,], which is o(n-lt,), by Theorem 1. To
handle the remaining sum, we just need the following.

TrEOREM 2. There is a constant > 0 such that uniformly for <-h <-n we have

S’ O(T,n3/2 exp (-8,/h2)).
The proof of Theorem 2 will follow from several auxiliary results. We first prove

the known fact that T(p)= 1. We define

J(x, y) x exp y+ k-I T(xk) y.
k=2

The functional equation satisfied by T(x) states that J(x, T(x))= O. Since T(x) has
a singularity at x p, and J(x, y) is analytic in both x and y separately in a neighborhood
of (p, T(p)), it follows that we must have

which says that

OJ(x,y)
y x=p

y=T(p)

=0,

()l=pexp T(p + E k-’ T(pk) T(p).
k=2

LEMMA 1. Define Xh > 0 by Sh (Xh)= 1. Then there exists a constant C such thatfor
all h >= 1,

S’h(Xh) <- Ch.

Proof. Since x > x2 >" ", we see that Xh <- 3p/2 for all h ->_ 1. Let

C max 4, 0- + 2 (30/2)- T’((30/2))
k=2

Since 3p/2 < 0.55, the series above converges. Since S[(x) 4, the lemma clearly holds
for h 1. Suppose that the lemma holds for h. Then

S,+l(X)= l+x E S’h(xk)xk- exp k-’Sh(Xk)
k=l =1

)+ E s’(x)x-’
k=l

Hence, using Sh+l(Xh+l)--" T(p)= 1, we find

Sth+I(Xh+I)ND-l’ E (3p/2)k-lT’((3p/2)k)+Sh(Xh+l)<=C+Ch= C(h+ l),
k=2

which proves the lemma by induction.

CONSTANT TIME GENERATION OF FREE TREES 547

LEMMA 2. There exists a constant K such that for all h >-_ 1,

1-Sh(p)>-K/h.

Proof. Clearly the lemma is true for 1 =< h =< 2 and some K < 1/2. Suppose the lemma
holds for h _-< H- 1, H-> 3. Now

()Sn(p)= p exp SH_,(p)+ Y k-’Sn_,(p k)
k=2

()p exp T(p)+ _, k-lT(pk)+Sl_l_,(p)- T(p)+ Y k-l(Sn_,(pk) T(pk))
k=2 k=2

()T(p) exp SR-I(p)- T(p)+ E k-’(SH-I(pk) T(pk))
k=2

()=exp Sn_,(p)-l+ E k-’(SH-I(pk) T(pk))
k=2

Now, since SH_I(p k) T(pk), the induction hypothesis yields

K) K K2

_-<1-+
)2

Sn(p) <exp
H-1 H-1 2(H-1

1-+K H-1
4

g2

2(H- 1)2

=I-+K 2(H_l)
1) K

H(H-I)
< 1 --.

Thus the lemma follows by induction for all h.
We can now prove Theorem 2. From Lemma 2,

K
Sth(Xh)(Xh p) Sh(Xh) Sh(p) 1 Sh(p) >:.

Now Lemma 1 gives

K K C
Xh --p

Sh(Xh)h- Ch2-- h2,

or

Finally for any x, 0 < x < 1,

ST,<-_&(x)x-",

SO

S, <- Sh(Xh)X- <--_ pn(1 + C2h-2) O(T,n3/2 exp (-Sn/ h2)).
9. Concluding remarks. The algorithm described in this paper has been imple-

mented in BLIS10 on a DEC-System-10 (KL) at Vanderblit University. The program
generates trees at the rate of 15-20 thousand trees per second, irrespective of n.

548 R. A. WRIGHT, B. RICHMOND, A. ODLYZKO AND B. D. MCKAY

REFERENCES

[1] T. BEYER AND S. M. HEDETNIEMI, Constant time generation of rooted trees, this Journal, 9 (1980),
pp. 706-712.

[2] E.A. DINITS AND M. A. ZAITSEV, Algorithmfor the generation ofnonisomorphic trees, Avtomat. Telem.,
4 (1977), pp. 121-126; Automatic and Remote Control, 38 (1977), pp. 554-558.

[3] A. V. KOZINA, Coding and generation ofnonisomorphic trees, Kibernetika, 5 (1979), pp. 38-43; Cyber-
netics, 15 (1975), pp. 645-651.

[4] R. OTTER, The number of trees, Ann. Math., 49 (1948), pp. 583-599.
[5] G. P(LYA, Kombinatorische Anzahlbestimmungen fiir Gruppen, Graphen und chemische Verbindungen,

Acta Math., 68 (1937), pp. 145-254.
[6] R. C. READ, How to grow trees, in Combinatorial Structures and their Applications, Gordon and Breach,

New York, 1970.
[7] F. RUSKEY AND T. C. HU, Generating binary trees lexicographically, this Journal, 6 (1977), pp. 745-758.
[8] n. S. WILE, The uniform selection offree trees, J. Algorithms, 2 (1981), pp. 204-207.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
018

BOUNDS FOR WIDTH TWO BRANCHING PROGRAMS*

ALLAN BORODINf 6, DANNY DOLEVt 4, FAITH E. FICH4 AND WOLFGANG PAUL

Abstract. Branching programs have been studied as a fundamental model for space bounded computa-
tions and, in particular, as a model in which to try to establish nontrivial space lower bounds and time-space
trade-offs. At present, there still do not exist any results for single output functions. We consider a class of
severely constrained programs (those having width 2) and establish characterizations as well as lower bounds
for some Boolean functions computable within this model.

Key words, computational complexity, branching programs, lower bounds, Boolean formulae, Boolean
circuits

AMS(MOS) subject classification. 68Q05

1. Introduction. Branching programs for the computation of Boolean functions
were first studied in the Master’s thesis of Masek [10]. In a rather straightforward
manner they generalize the concept of a decision tree to a decision graph. Formally,
they can be defined as labelled acyclic digraphs with the following properties.

1. There is exactly one source.
2. Every node has outdegree at most 2.
3. For every node v with outdegree 2, one of the edges leaving v is labelled by

a Boolean variable xi and the other edge is labelled by its complement i.
4. Every sink is labelled by 0 or 1.
Let P be a branching program with edges labelled by the Boolean variables

xl,’’’, xn and their complements. Given an input a- (al,""", an) {0, 1} n, program
P computes a function valuefp(a) in the following way. The computation starts at the
source. If the computation has reached a node v and if only one edge leaves v, then
the computation proceeds via that edge. If two edges, with labels xi and i, leave v,
then the computation proceeds via the edge labelled x if a-1, and via the edge
labelled otherwise. Once the computation reaches a sink, the computation ends and
fp(a) is defined to be the label of that sink.

The nodes of P play the role of states or configurations. In particular, sinks play
the role of final states or stopping configurations. We call sinks accepting if they are
labelled 1 and rejecting otherwise.

The length of program P is the length of the longest path in P. Following Cobham
[3], the capacity of the program is defined to be the logarithm to the base 2 of the
number of nodes in P. Length and capacity are lower bounds on time and space
requirements for any reasonable model of sequential computation. Clearly, any n-
variable Boolean function can be computed by a branching program of length n/f the
capacity is not constrained. (For example, consider a complete binary tree with 2
leaves, one for each input.) Since space lower bounds in excess of log n remain a
fundamental challenge, we consider restricted branching programs in the hope of
gaining insight into this problem and the closely related problem of time-space trade-
otis.

* Received by the editors March 18, 1983, and in final revised form June 17, 1985.
f University of Toronto, Toronto, Ontario, Canada M5S 1A4.
Hebrew University, Givat Ram, 91904 Jerusalem, Israel.
University of Washington, Seattle, Washington 98195.
IBM Research Laboratory, San Jose, California 95193.

This work was done while this author was a visitor at IBM, San Jose, California.

549

550 A. BORODIN, D. DOLEV, F. E. FICH AND W. PAUL

We call a digraph levelled if its nodes can be partitioned into levels Lo, L,.
such that, for all i, an edge leaving a node in level Li ends at a node in level Li/l. The
width of such a graph is the maximum number of nodes at any level. Every branching
program can easily be transformed into a levelled program that computes the same
function, has the same length, and has at most twice the capacity of the original
program [2]. Therefore, if we are interested in asymptotic bounds on length and
capacity, then, without loss of generality, we can assume branching programs to be
levelled. In this way, the level of a node represents the time needed to reach the node
starting from the source.

For any node v in a branching program P, let Ip(v) be the set of inputs a such
that the computation of P given a reaches v. If P is levelled, then, for each i, the
system of sets {I,(v): v Li} is a partition of the input that mirrors the knowledge (or
lack of knowledge) about the input at the level Li.

The notation # S is used to denote the cardinality of the set S. For a s {0, 1}", let
S(a)_ {1,. ., n} be the set of indices such that a= 1. The weightw(a) of a is #S(a).

A parityfunction is a function of the form x@. "@xn where n >- and x, , x,
are Boolean literals associated with distinct variables. (A Boolean literal is either a
Boolean variable or the complement of a Boolean variable.) A Boolean function is a
parity function if and only if it changes value when one of its arguments changes value.

The n-ary functions ET,,k are defined by

E,,k(a) 1 if and only if h <= w(a) <-_ k.

We write E, for Ek and drop the superscript n if the number of arguments is
clear from the context. En/2], is called the majority function and En/2 is called the
exactly-halffunction. Masek 10] made two observations concerning the latter function.

1. Suppose that during any computation each input variable is examined only
once. Then, for _-< n/2, level L must contain + nodes. Hence, a branching program
of minimum length, n, must have capacity at least 2 log2 n + a constant. This lower
bound can be achieved by a branching program which counts the number of input
variables that have value 1.

2. By modular counting, the capacity requirement could be reduced at the expense
of increased time.

In fact, both the exactly-half function and the majority function possess algorithms
which simultaneously achieve capacity O(log n) and length O(n). However, if we
severely restrict the width ofthe programs, we begin to observe some potentially strange
behavior. This we hope gives insight into how computations become confused (and
hence prolonged) if we do not allow enough states.

Independently, Furst, Saxe and Sipser [7] were led to the study of such functions
in trying to establish the relativized NP-hierarchy. They proved a very nontrivial lower
bound: constant depth circuits computing a parity function of n variables must be of
size greater than any polynomial in n. Similar lower bounds were established for other
functions (including the majority function) based on suitable reductions of parity
functions to these functions. We note that Boolean (^, v,)-circuits with unbounded
fan-in of depth d and size s can be simulated by branching programs of width d / 1
and length s d.

Clearly a parity function of n variables can be computed by branching programs
of width 2 and length n. But what about the majority function? It has recently been
shown by Chandra, Furst and Lipton [4] that the majority function cannot be computed
in bounded width and linear length. We would like to show that this function or the
closely related exactly-half function cannot be computed in bounded width and

BOUNDS FOR WIDTH TWO BRANCHING PROGRAMS 551

polynomial length. In fact, we conjecture that, in these cases, bounded width implies
exponential length. Thus far we have only been able to establish much weaker results,
dealing with branching programs of width 2. Even so, we found that width 2 branching
programs offer some surprises and challenges. This is unlike the situation for depth 2
circuits which are characterized by disjunctive normal form and conjunctive normal
form.

Hong-Jai Wei [16] first examined the computation of the exactly-half function
using restricted width 2 branching programs. In this paper, we obtain an exponential
lower bound on length for computing both exactly-half and majority using a less
restricted class of width 2 branching programs. We also prove an f(n2/log n) lower
bound on the length of arbitrary width 2 branching programs which compute
majority.

Based on the preliminary version of this work [1], some very exciting progress
has been made. For a restricted class of width 2 branching programs, Plumstead and
Plumstead [12] obtained an exponential lower bound on the length necessary to
compute parity functions. Shearer [14] proved that any width 2 branching program
that determines whether the weight of the input is divisible by 3 must have length
(()"). Yao [17] has shown that the length of width 2 branching programs comput-
ing majority grows faster than any polynomial in the number of variables. Pudlfik
[13] showed that any branching program for the majority function requires
(n log log n/log log log n) nodes and hence the same lower bound applies to the
length of any constant width branching program for majority. As Pudlfik notes,
branching programs are a special case of contact networks and therefore Neciporuk’s
11 f(n2/log2 n) lower bound applies to the number of nodes required for the specific

function given in Neciporuk’s paper. However, the Neciporuk technique cannot yield
nonlinear lower bounds for symmetric functions.

The formula size of a Boolean function is the minimum number of occurrences
of literals in any Boolean formula (over the basis of all binary operations) which
describes the function. Although most Boolean functions of n variables have formula
size f/(2"/log n), the best lower bound for specific examples is (n2/log n) due to
Neciporuk [11]. Fischer, Meyer and Paterson [6] have shown that most symmetric
Boolean functions, including Ek,, for k,n-k=fl(n/log n) have formula size
I(n log n). In fact, every symmetric Boolean function has polynomial formula size
[9],[15].

We will show that lower bounds for formula size directly translate into two lower
bounds for the length of bounded width branching programs. Precisely because
bounded width branching programs constitute a more restrictive model, there is hope
that better lower bounds can be more easily achieved.

2. Strict width 2 branching programs and their characterization. In order to under-
stand branching programs of width 2 (henceforth called W2-programs), it is useful to
study even more restrictive models of computation. Specifically, we can. require that
accepting or rejecting nodes occur only at the last level of the program.

We call a width 2 branching program monotone if it has exactly one rejecting
node. A strict width 2 branching program has exactly one accepting node and exactly
one rejecting node. Without loss of generality, these nodes will occur at the last level.

In monotone programs no intermediate rejecting nodes are allowed. In strict
programs neither intermediate accepting nodes nor intermediate rejecting nodes are
allowed. Any W2-program with sinks can be decomposed into t- 1 strict W2-programs
in an obvious way.

552 A. BORODIN, D. DOLEV, F. E. FICH AND W. PAUL

By considering disjunctive normal form, it is clear that every Boolean function is
computable by a monotone W2-program. The usual counting argument establishes the
existence of functions whose branching programs have length exponential in n if the
width is bounded by a polynomial in n. However, we are looking for lower bounds
for effectively defined functions. (A sequence of n-ary Boolean functions f,, n 1, 2,
is effectively defined if U,f(1) NP.)

It is not a priori clear whether strict W2-programs are powerful enough to compute
every Boolean function. Let SW2 denote the class of functions computable by strict
W2-programs. In this section we give a characterization of SW2 and use it to show
that some simple functions are not in SW2. For instance E is not in $W2. It is somewhat
surprising that E3 and E24 are in SW2. The lower bounds which we derive later are
based on the results and techniques developed here. Our characterization reveals some
of the subtleties and the power of strict W2-programs. It is not surprising that parity
should play a prominent role here. We will occasionally abuse notation and identify
Boolean formulas and the Boolean functions defined by the formulas.

THEOREM 1. $W2 is the smallest class fig ofBooleanfunctions containing the constant
functions 0 and 1 which has the following closure properties: if a and b are literals or
constants and f then

(R1) f^a.
(R2) f^ (aO) b) fig.

(R3)
Proof The constant functions are obviously in SW2. Let f be computed by a strict

Wz-program P with accepting node u and rejecting node v. In order to compute f ^ a,
f^ (aO)b), and fO)a, extend P by the program segments shown in Figs. I(i), l(ii),
and l(iii), respectively. Thus SW has the desired closure properties.

(i) (ii) (iii)

FIG.

It remains to show SW2 fig. Clearly fig contains all functions that can be computed
by strict W-programs of length 0. Now suppose fig contains all functions that can be
computed by a strict W2-program of length n. Consider any function g computed by
a strict W_-program P of length n + 1. The last two levels (i.e., levels n and n + 1) of
P are illustrated in Fig. 2, with a and b denoting (not necessarily distinct) literals or

constants.
For convenience, we also allow the edges leaving a node of outdegree two to have

the labels 0 and 1. The intended interpretation is that the node has outdegree one, the
edge labelled 0 is absent, and the edge labelled 1 is present (and unlabelled).

Let f be the function computed by the program obtained from P by deleting level
n + 1, making u accepting and v rejecting. Then g If ^ (a

BOUNDS FOR WIDTH TWO BRANCHING PROGRAMS 553

FIG. 2

The proof of Theorem 1 gives a constructive procedure for obtaining a formula
for the Boolean function computed by a strict W2-program, given the program. This
enables us to relate the two complexity measures, formula size and program length.

THEOREM 2. Any Booleanfunction that can be computed by a W2-program oflength
L has formula size at most 3 L.

Proof Any W2-program P can be uniquely decomposed into strict W2-programs
Q1," ", Q,. The proof proceeds by induction on t.

If 1 then P is strict and the result follows directly from the second part of the
proof of Theorem 1. Now suppose > 1.

Let v be the sink of Q1 which is also a sink of P and let u be the other node of
P at the same level. Consider the W2-program P’ obtained from P by deleting all of
Q1, except for the node u. Let f’ be the function computed by P’ and let f be the
function computed by Q.

If v is labelled by 0, let f fl ^ f’ and if v is labelled by 1, let f flv f’. Clearly,
f is the function computed by P. By the induction hypothesis, fl and f’ have formula
size at most three times the length of Q and P’, respectively. Therefore the formula
size off is at most three times the length of P.

More generally, any Boolean function computed by a constant width branching
program has polynomial formula size. The proof is essentially an application of the
divide and conquer technique used to compute transitive closure fast in parallel. One
recursively constructs formulae which are true if, for the given input, the branching
program starting at node in level k eventually reaches node j in level /.

Hoover [8] showed that constant width polynomial length branching programs
compute exactly the same class of functions as constant width polynomial size Boolean
circuits with one output. He also obtained a machine characterization for uniform
constant width polynomial size Boolean circuits with one output.

Theorem 1, the fact that f=fq)aq)a, and deMorgan’s laws enable us to find
more closure properties of SW2. Specifically, if f SW2 and a, b are literals, then
f, f v a, and f v (a 0) b) are in SW2. Notice that

E3(x,, x2, x3)= [(x, ^ x3) v (Xl(x2)](X3,

E3o,l(xl, X2, X3) [(Xl()3) V (Xl(X2)](X3,

E(x1, x2, x3, x4) [((Xl(x3) V (Xl(X2) ^ (X3(94)](Xl(X2,

E(x, x) ^ ^ ^
En(Xl, Xn)’--X1AX2A’’AXn and

E?,n_l(Xl,’’’, Xn)= (Xl(X2) V (Xl(X3) V’’’V (Xl(Xn).

Thus all these functions are in SW2.
Now consider any function g SW2. By Theorem 1, g is either a constant function

or can be obtained from one of these by repeated applications of rules R1 through

554 A. BORODIN, D. DOLEV, F. E. FICH AND W. PAUL

R3. Notice that if only rule R3 is applied, then the resulting functions are constant or
parity functions. Recall that a parity function has the form xil" "xi, where
xi,,..., xi, are Boolean literals.

Therefore, if g is not a constant or parity function, then either

g=(f^ a)) c, or g=(f^ (ab))O)) ci
i=1 i=1

where m _> 0, f SW2, and a, b, and c, for 1 -< -< m, are literals.
In the first case, substituting 0 for a turns g into a constant or parity function,

namely)m-_l C, while in the second case, identifying a and b turns g into a constant
or parity function. This observation yields the following result.

LEMMA 3. Let g SW2. Then one of the following conditions holds:
1. g is a constant or parity function.
2. There is a literal a such that substituting 0 for a turns g into a constant or parity

function.
3. There are two literals a and b such that identifying a and b turns g into a constant

or parity function.
Lemma 3 is useful for showing that certain functions are not in $W2. Consider

the following example. The function E14 is not a constant or parity function. Let
f(x, x3, x4) E4lx_-o. Since f(0, 0, 1)= 1 and f(0, 1, 1) 0, f is not constant. Also,
notice that f(1, 1, 1)=0 and, hence, f is not a parity function. Similarly, let
g(x2, x3, x4) El=o. Then g(0, 0, 0) 1 and g(0, 0, 1) g(0, 1, 1) 0. If h(xl, X3, X4)
EIx,=x, then h(0, 0, 0) h(1, 0, 0) 0 and h(0, 1, 0) 1. Finally, let k(xl, x3, x4)
El=x2. Then k(1, 0, 0) 1 and k(1, 1, 0) k(1, 1, 1) 0. Thus g, h and k are all neither
constant nor parity functions. Since E is a symmetric function, it follows from Lemma
3 that E4 $W2.

Together with similar arguments one can show that E.k SW2 if and only if one
of the following conditions is true.

1. n-<_3.

2. n=4andh=k=2.
3. h=k=0.
4. h=k=n.
5. h<-_l and k>=n-1.
We are also able to show that all functions in SW2 can be computed by short

strict W2-programs.
LEMMA 4. If g SW2 is a Boolean function of n variables, then there is a strict

W2-program of length O(n2) that computes g.
Proof By induction on n.
All Boolean functions of 1 variable can be computed by strict W2-programs of

length 1. If g is a constant or parity function, then g can be computed by a strict
W2-program of length 0 or n, respectively. Therefore we may assume that n-> 2 and
either

g=(f^a)O) ci or g=(f^(a0)b))0))c,
i=1 i=1

where rn _-> 0, f SW2, and a, b and c, for 1 -< -_< m, are literals.
Consider the function)%1 c. If it is the constant 0 function (which is the case

when m =0), then g=f^ a or g =f^ (aO)b). When)__1 ci is the constant 1 function,

BOUNDS FOR WIDTH TW’O BRANCHING PROGRAMS 555

a program to compute g can be obtained from a program to computef^ a orf ^ (a 0) b)
by interchanging the labels of the two sinks. Now suppose ()7’=1 ci is not constant.
Since cO) c 0 and cO) C" 1, it is unnecessary to have ci cj or c for 1 _-< # j =< m.
In particular, this implies m -< n. Therefore the length of the shortest strict W2-program
that computes g exceeds the length of the shortest strict W2-program that computes f
at most n + 2.

Finally, we may assume, without loss of generality that neither a nor ti appear
in f. Otherwise, in the first case, by replacing all occurrences of a and ti by 1 and 0,
respectively, we could obtain a new function f’ containing neither a nor ti such that
f’ ^ a =f^ a. Similarly, in the second case, all occurrences of a and ti can be replaced
by b and b, respectively.

Sincef contains at most n 1 variables, it follows that there is a strict W2-program
of length O(n2) that computes g.

Our next result shows that, in a geometric sense, the functions computed by strict
W2-programs are not too complicated. We have to introduce some notation.

A cube is a subset of {0, 1}" of the form

{xlx, al, xir at}

where al," , ar {0, 1 } and 0 <= r <- n. The dimension of the cube is defined to be n r.
A striped cube is a subset of {0, 1}" of the form {xlx, al," ", x.= a and xj.
x, b} where 0 =< r, _-__ n and al," , a,, b e {0, 1}. As above, n r is called the dimension
of the striped cube. Let Z, be the smallest number such that, for all n-ary functions

f SW2, the set of accepted inputs f-l(1), can be represented as a disjoint union of
Z, striped cubes.

LEMMA 5. Z. <= 4 x 2"/2- 2.
Proof. By induction on n. The theorem is clearly true for n- 1. Consider any

n-ary Boolean functionf SW2 and let Z be the smallest number such that f-l(1) can
be represented as a disjoint union of Z striped cubes. One of the cases of Lemma 3
applies.

If f is a constant or parity function, then Z _-< 1.
If there is a literal a such that substituting 0 for a turns f into a constant or parity

function f, then f (fl ^ ti) v (f2 ^ a) where f2 is a function of n 1 variables. In this
case Z _-< 1 +

Finally suppose there are two literals, a and b which, when identified, turn f into
a constant or parity function. Then f (fl ^ a ^ b) v (f2 ^ t ^ b) v (f3 ^ a ^ b) v
(f4 ^ t ^ b) where fl and f2 are constant or parity functions and f3 and f4 depend on
at most n- 2 variables. In this case Z-< 2+ 2Z,_2.

Since f was arbitrary, we have Z, -< max { 1, 1 + Z,_I, 2 + 2Z,_2}.
Now consider .the Boolean function

f(xl, x.)= (x,x.) ^ (X3 X4) ^’’" ^ (Xn-lXn).

From Theorem 1 it is easy to see that f SW2. Each accepted input contains
exactly n/2 variables with value 1. Therefore if $ Gf-l(1) is a striped cube, then
#S _<-2. In particular, this implies that Z, => 2"/2-1.

3. Lower bounds for monotone W2-programs. Lemma 5 can be used to obtain
lower bounds on the length of W2-programs and monotone W2-programs.

556 A. BORODIN, D. DOLEV, F. E. FICH AND W. PAUL

Let 5e be a system (i.e. collection) of subsets of {0, 1}". For example, might be
the system of cubes or the system of striped cubes. An 5e-program is a sequence

(S1, al) ($2, a),..., (S,,,, a.,)

where S, O and a, {0, 1} for all i. The length of the program is m. This program
computes an n-ary function f in the following way: Let b {0, 1}". If b t.Ji Si then
f(b) 0. If b Si Uj<i S., then f(b) a,. For any Boolean function f, the 5e-complexity
Ce(f) off is defined to be the length of the shortest 0-program that computes f

By Lemma 5, for any function g computable by a strict W2-program, g-(1) can
be represented as a disjoint union of at most 4 x 2"/2- 2 striped cubes. Therefore, if
5e is the system of all striped cubes, then Ce(f)/(4 x 2"/2 2) is a lower bound for the
number of strict W2-programs comprising any W2-program that computesf and, hence,
the length of any W2-program that computes f

If 5e is the system of all cubes, then Plumstead and Plumstead [12] have shown
that 2(3/2)"-<- Cse(xO)" "0)x,)_-< 5 "/3.

We call an 5e-program (S, a),..., (S,,, a,,) monotone if a- 1 for all i. For any
Boolean function f, the monotone 5e-complexity MCse(f) is defined as the length of
the shortest monotone 9-program that computesf By Lemma 5, MCe(f)/(4 x 2"/2- 2)
is a lower bound for the length of any monotone W2-program that computes f

THEOREM 6. Every monotone W2-program that computes E, or E" has length atk,

least (,)/((4x2"/2-2)n).
Proof Let S {xlx al," ", x- a, and xj 9. "09 x, b} be any striped cube

occurring in a monotone 5e-program for E, or E,,,. It is easily seen that at least k- 1
of the a’s are 1. Otherwise the 5e-program would accept an input in which fewer than
k variables have value 1. Hence the number of inputs x, such that x S and w(x)= k
is at most n-r<=n. Thus MCse(E,), MCse(E,,,)>=(,)/n.

Let { $1," , S,,} be a system of sets. is called a A-system if Si f3 S f3 ’__ Sh
for all iS j. Stated alternatively, any element in U h"=l Sh is either contained in every
set or is contained in exactly one set.

Erd6s and Rado [5] showed that, for all natural numbers p and k, if is a system
of more than F(k,p)=k+kk(p-1)
contains a subsystem of p sets which is a A-system. We will use this fact in order to
derive lower bounds for the length of monotone W2-programs that compute the
functions E,.

THEOREM 7. Let P be a monotone W2-program that computes E,. Then the length
of P is at least n(,)/F(k, 4).

Proof Suppose that the input a {0, 1}" is accepted by P at some accepting node
v. Among the strict W2-programs comprising P, let Q be the one which contains v.
Recall that any W2-program can be uniquely decomposed into strict W2-programs.

If the length of Q is less than n, then some variable xi would not be tested during
the computation of Q on input a. Let a’ be the input obtained from a by changing
the value of its ith component. Then a’ Io(v). Recall that Io(v) is the set of inputs
which cause the computation of Q to reach vertex v. Also note that w(a’) k and
therefore a’ is not accepted by P. Since P is monotone, the computation of P on input
a’ must reach the source of Q. It will continue from there to v, thereby accepting a’.
Hence the length of Q is at least n.

Next we show that # Ip(v) <- F(k, 4). Suppose, to the contrary, that Ip(V)>
F(k, 4). Let {S(a)[a Ip(t)}. Then contains a A-system {D1, D2, D3, D4}.
Let G f3 4= D and H I.J 4= D.

BOUNDS FOR WIDTH TWO BRANCHING PROGRAMS 557

A new strict WE-program Q’ can be obtained from Q by the following modifications.
For all j G, delete all edges labelled and delete all occurrences of the label xj. This
corresponds to fixing the value of the variable xj to be 1. For all j H, delete all edges
labelled x and delete all occurrences of the label . This corresponds to fixing the
value of the variable x to be 0. For 1, 2, 3, 4, choose a new variable Yl. Then, for
each j Di- G, replace the labels x and by yi and , respectively.

Let b (bl," ", b4) {0, 1}4. ThenfQ,(b) =fQ(c) where c 1 ifj G, cj =0 ifj H,
and c b if j Di G. Notice that w(c)
D2 #D3 #94 k > G, it follows that w(c) k if and only if b 1 for exactly
one value of i. In this case $(c) D . Thus Ea1(b) 1 implies c Ip(v). If E(b) =0,
then P does not accept c and the computation of P on input c does not reach the
accepting node v. However, since P is monotone, the computation does reach the
source of Q. It follows that fo,= E41. This contradicts the fact that Q’ is a strict
WE-program.

Therefore P must be comprised of at least (7,)IF(k, 4) strict WE-programs, each
of length at least n.

A similar argument can be used to show that the length of any program which
computes E,k is at least ()(n-k+h)/F(k, 4) for O<-_h<-k<-n.

4. A lower bound for W-programs. The following lower bound relies on the
similarity between the majority function and its complement.

THEOREM 8. Every W-program P that computes En/E],n has length O(nE/log n).
Proof. Decompose P into strict WE-programs Q1, Q2," such that, for all l, the

nodes in Qt are closer to the source of P than the nodes in Qt+. For 1, 2,... let
v be a sink of P which is also a sink of Qt.

Consider the border region B= {x {0, 1}HI In/2] -2-< w(x) <- In/2] + 1} and, for
1, 2, , let "r d<-t #(Ip(Vd) fq B). We want to find a recurrence relation for the

numbers r.
By Lemma 5, Io,(vt) can be represented as a disjoint union of striped cubes

S, , S,, where m =< 4 x 2n/2- 2. Consider any such striped cube

S-- {x x a ", Xir a and x 03" "0)x, b}

We can assume that {i,...,i,}Vl{ji,...,j,}=f and tl. Let on(S)=
#(Ip(vd) f’) B f’) S).

First suppose that vt is an accepting node of P. When 1, no inputs have yet
been rejected. Therefore, at least n/2 1 of the a’s are 1 and tr(S) #(S f’) B) <= n 2.
Hence rl =Eh=l trl(Sh) <- n2(4x2"/2-2).

More generally, if at least In/2] -2 ofthe a’s are 1, we have trl(S) <= #(S f’) B) <= n3.
Now consider the case when fewer than [n/2]. -2 ofthe a’s are 1. Let x Ip(Vl) f-) B f) S.

Since w(x)= In/2] or In/2]+ 1, there exist at least three indices q#-{il,’", i,.}
such that Xq 1. Among these indices, at least two, say q and qE, must both be elements
of {jl, ,j,} or both be elements of the complement of this set. In either case, let x’
be obtained from x by changing both Xql and Xq2 to 0. Then x’ S. However, x’ Ip(vt)
because v is an accepting node and w(x’)= In2 or [n/2]- 1. It follows that x’
was rejected previously and thus x’ t-Jd< (Ip(Vd)fqBfqS). On the other hand every
such x’ can be obtained in this way from at most () vectors x. Therefore

558 A. BORODIN, D. DOLEV, F. E. FICH AND W. PAUL

Since the cubes S,..., S., are disjoint,

h=l

<= z,_ + Y n3+ , # Ip Od f’] B f"l Sh
h=l d<!

d<! h=l

2
<2n/++-"

Similarly, if v is a rejecting node, then the same inequalities concerning can be
derived. Thus

Let L= (5n/16-4)/(2 log n- 1). Then z <213n/16 for all <- L. Therefore P must

be composed of more than L strict W2-programs.
Let A=min{length(Qd)ll<=d<=L}. If A<=n/8 the theorem is proven. Thus,

assume A < n/8.
Consider Q where 1 <= l-< L and length (Qt) A. On any path from the source of

Q to v at most A variables are examined. Therefore Io,(v) can be represented as a

union of striped cubes of dimension at least n- A. (This follows directly from the

proof of Lemma 5.) Consider any such striped cube

S {xlxi al," ", xi a and x,. .x, b}

where r <- A. Assume v is an accepting node of P. Let a be the number of ai’s that
are 1 and let/3 be the number of ai’s that are 0. We want to estimate, from below, the
number of vectors in $ that have weight [n/2]- 1 or In/2]- 2. We first consider

Then,

C ={xlx,,= al,...,x,.= a, and w(x)= [n/2]-I or [n/2]-2}.

#C=
[n/2]-l-a rn/2]-2-a

_(n+l-r)[n/2]-l-a

_(+’--t)[n/2]+(1-a-/3)/2-(3+a-fl)/2

(n+l-a-)[(n+l-a-fl)/2]-(c+a-[3)/2

BOUNDS FOR WIDTH TWO BRANCHING PROGRAMS 559

where c {2, 3, 4}. This is minimized if/3 =0 and a r. Hence

#C=> (n+l-r)[n/2]-l-r

>_(n+l-A)
=\3n/8] n

(7n/8)7n/8/((3n/8)3n/a(n/2)n/20(n3/2))
2nt70og 7-3)/8+3(3-1og 3)/8+1/2]/O(n3/a)

> g122n(-14/8+39/8+l/2)

t12213n/16.

Next we show that any vector x C can be obtained from some vector x’ in C (q S
2by changing at most two bits of x’. From any x’ C f’l S, we can obtain fewer than n

vectors x in this way. Therefore n2# (S C)=> #C.
Let x C $. We construct x’. We first assume that w(x) In/2] -2. If Xq =0 for

some q {jl," ",j,}, set Xq 1. If xjl xj, 1 find a component q {al,. ", at}
such that Xq 0; this is possible since A =< n/8. Set xl 0 and xq 1. The case w(x)=
n/2 1 is handled similarly.

Recall that v is assumed to be an accepting node of P. Hence all elements in
$ f’)C must have been rejected previously. Thus

213n/16 < /(S C) "/’1-1 < 213n/16.

If v is a rejecting node of P, the same contradiction is derived using analogous
arguments.

5. Conclusions. Obviously, we are just beginning to understand the limited power
of constant width branching programs. The few examples given (both positive and
negative) all concern counting. In some cases (e.g. E24) we observe nontrivial ways of
counting.

Of course, we need not restrict ourselves to counting functions. However, counting
is a basic component in many computationally nontrivial problems, and eventually we
hope to understand the extent to which bounded width branching programs can count.

Acknowledgments. The authors would like to thank Michael Fischer, for helpful
discussion, and Ron Graham, for giving us reference [5].

REFERENCES

[1] ALLAN BORODIN, DANNY DOLEV, FAITH E. FICH AND WOLFGANG PAUL, Bounds for width two
branchingprograms, Proc. 15th Annual ACM Symposium on Theory of Computing, 1983, pp. 87-93.

[2] A. BORODIN, M. FISCHER, O. KIRKPATRICK, N. LYNCH AND M. TOMPA, A time-space tradeofffor
sorting on non-oblivious machines, Proc. 20th Annual Symposium on Foundations of Computer
Science, 1979, pp. 319-327.

[3] A. COBHAM, The recognition problem for the set of perfect squares, Research Paper RC-1704, IBM
Watson Research Center, Yorktown Heights, NY, April 1966.

[4] A. K. CHANDRA, M. L. FURST AND R. J. LlrON, Multi-party protocols, Proc. 15th Annual ACM
Symposium on Theory of Computing, 1983, pp. 94-99.

560 A. BORODIN, D. DOLEV, F. E. FICH AND W. PAUL

[5] P. ERD6S AND R. RADO, Intersection theoremsfor systems ofsets, J. London Math. Society, 35 (1960),
pp. 85-90.

[6] MICHAEL J. FISCHER, ALBERT R. MEYER AND MICHAEL S. PATERSON, l(n log n) lower bounds
on length of Boolean formulas, this Journal, 11 (1982), pp. 416-427.

[7] M. FURST, J. SAXE AND M. SIPSER, Parity, circuits and the polynomial-time hierarchy, Proc. 22nd
Annual Symposium on Foundations of Computer Science, 1981, pp. 260-270.

[8] J. HOOVER, On circuit width, unpublished manuscript.
[9] V. M. KHRAPCHENKO, The complexity ofrealization ofsymmetricalfunctions byformulae, Mat. Zametki,

11, (1972), pp. 109-120; Math. Notes ofthe Academy of Sciences ofthe USSR, 11 (1972), pp. 70-76.
10] W. MASEK, A fast algorithm for the string editing problem and decision graph complexity, M.Sc. Thesis,

Massachusetts Institute of Technology, Cambridge, May 1976.
[11] E. I. NECIPORUK, A Boolean function, Soviet Math. Dokl., 2, 4 (1966), pp. 999-1000.
[12] B. R. PLUMSTEAD AND J. B. PLUMSTEAD, Bounds for cube coloring, SIAM J. Alg. Discr. Meth., 6

(1985), pp. 73-78.
13] PUDLAK, A lower bound on the complexity ofbranching programs, in Lecture Notes in Computer Science

176, M. P. Chytil and V. Koubek, eds., Springer-Verlag, Berlin, 1984, pp. 480-489.
[14] JAMES B. SHEARER, private communication.
[15] B. VILFAN, The complexity offinite functions, Ph.D. Thesis, Dept. Electrical Engineering Tech. Report

97, Project MAC, Massachusetts Institute of Technology, Cambridge, 1972.
[16] HONG-JAI WEI, private communication.
[17] A. YAO, Lower bounds by probabilistic arguments, Proc. 24th Annual Symposium on Foundations of

Computer Science, 1983, pp. 420-428.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986 019

ON THE PROBABLE PERFORMANCE OF HEURISTICS
FOR BANDWIDTH MINIMIZATION*

JONATHAN S. TURNERS"

Abstract. Most research in algorithm design relies on worst-case analysis for performance comparisons.
Unfortunately, worst-case analysis does not always provide an adequate measure of an algorithm’s effective-
ness. This is particularly true in the case of heuristic algorithms for. hard combinatorial problems. In such
cases, analysis of the probable performance can yield more meaningful results and can provide insight
leading to better algorithms. The problem of minimizing the bandwidth of a sparse symmetric matrix by
performing simultaneous row and column permutations, is an example of a problem for which there are
well-known heuristics whose practical success has lacked a convincing analytical explanation. A class of
heuristics introduced by Cuthill and McKee in 1969, and referred to here as the level algorithms, are the
basis for bandwidth minimization routines that have been widely used for over a decade. At the same time,
it is easy to construct examples, showing that the level algorithms can produce solutions that differ from
optimal by an arbitrarily large factor. This paper provides an analytical explanation for the practical success
of the level algorithms, by showing that for random matrices having optimal bandwidth no larger than k,
any level algorithm will produce solutions that differ from optimal by a small constant factor. The analysis
also suggests another class of algorithms with better performance. One algorithm in this class is shown to
produce solutions that are nearly optimal.

Key words, bandwidth minimization problem, heuristic algorithms, approximation algorithms, probable
performance, probabilistic analysis, NP-completeness

1. Introduction. Let M be a symmetric matrix and let k be the largest integer for
which there is a nonzero entry M[i, + k]; k is called the bandwidth of M. It is often
possible to reduce the bandwidth of a matrix by performing simultaneous row and
column permutations. Most common matrix operations can be performed more
efficiently if the matrices are in small bandwidth form. The matrices can also be stored
more efficiently in this form. The matrix bandwidth minimization problem is usually
re-cast as a graph theory problem; for any matrix M, the graph corresponding to M
has an edge joining vertices and j if and only if M[i, j] is nonzero.

Let G (V, E) be a graph with V {1, 2,. , n}. A layout of G is a permutation
on {1, 2,..., n}. Define the bandwidth of G with respect to a layout " by b(G)=
maxtu,v The bandwidth of G is defined by b(G)=minb(G). The
bandwidth minimization problem (for graphs) is to determine for a graph G and an
integer k if b(G) -< k. Papadimitriou [9] first showed that the bandwidth minimization
problem is NP-complete. Garey, Graham, Johnson and Knuth [7] later strengthened
this result, showing that the problem remains NP-complete when restricted to free
binary trees. Several heuristic algorithms for bandwidth minimization were proposed
in the late sixties and early seventies. More recently, Saxe [10] has found a dynamic
programming algorithm which can determine if a graph has bandwidth k in time
O(n k/l) for any fixed value of k, Monien and Sudborough [8] showed how to reduce
the time bound to O(nk). One of the most successful heuristic algorithms is one
discovered by Cuthill and McKee [5] which is a member of a class of algorithms which
are referred to here as the level algorithms. An algorithm is classified as a level algorithm
if for all graphs G (V, E) the layout z produced by the algorithm satisfies

Vu, v V d(’-l(1), u)< d(r-(1), v)=:>-(u) < ’(v)

Received by the editors March 5, 1984, and in revised form February 28, 1985. A preliminary version
of this paper appeared in the Proceedings of the Fifteenth Annual ACM Symposium on the Theory of
Computing, Boston, Massachusetts, April 1983, (C) 1983, Association for Computing Machinery, Inc.

f Computer Science Department, Washington University, St. Louis, Missouri 63130.

561

562 JONATHAN S. TURNER

where d (x, y) denotes the length of the shortest path connecting vertices x and y. The
level algorithms are reasonably fast and have proved to be quite successful in practice.
On the other hand, one can easily construct examples in which the ratio ofthe bandwidth
of the layout produced by a level algorithm to the actual bandwidth of the graph is
arbitrarily large. Consequently one must resort to probabilistic analysis to gain insight
to their practical success.

Let G (V, E) be generated by the following random experiment.
Let V={1,2,...,n},E=.
For each {u, v}, 1 _-< u < v _-< n, add the edge {u, v} to E with probability p.

The probability distribution defined by this experiment is denoted Fn(p) and the
notation G Fn(p) means that G is a random graph generated in this way. In 2 it
is shown that for almost all G Fn(p), nb(G) <- 1 + e when p _>- (c Inn)/ n and e > 0,
c > 0 are fixed. (We say that a property holds for almost all graphs if the probability
of the property holding approaches one as the number of vertices gets large. This
notion is often described by the phrase "in probability".) Consequently, if r is any
layout at all, b(G)/ qb(G) <- l + e) for almost all random graphs GF,(p). This
makes it pointless to compare the probable performance of bandwidth minimization
algorithms on random graphs in F, (p). Therefore another class of probability distribu-
tions is introduced and used for most of the results given here. Let G- (V, E) be
generated by the following random experiment.

Let V={1,2,...,n},E=.
For each {u, v}, 1 <_-u < v-<_ n such that lu- vl -<_ include the edge {u, v} in E
with probability p.

The probability distribution defined by this experiment is denoted xlt(q, p). Now,
let G xIt (, p) and randomly re-number the vertices of G. The resulting distribution
is denoted ln(,p). Note that if Gln(g/,p) then (G)<-p. Also, if H is a graph
with 4(H)_-< q, then H can be generated by 1(, p). Furthermore, in 2 we show
that for large enough , almost all G (,p) satisfy /(G)<_-1 + e for any fixed
e > 0. The use of (q, p) allows us to explore properties that are common to most
graphs having bandwidth _-< , but rare for unrestricted graphs. Heuristics like the level
algorithms exploit such properties to produce good layouts for most graphs.

It is shown in 3 that if A is any level algorithm and A(G) is the bandwidth of
the layout produced by A on the graph G then A(G)< (1 + e)(3-p)d(G)..for almost
all G 1(q, p), where e > 0, 0 < p < 1 are fixed, and Inn o(q). If in addition b < n/2,
then (1- e)(2-p)d(G)< A(G). The analysis leads to a new class of algorithms called
the modified level algorithms, for which it is shown that A(G) <= 2d(G) + O(log n) for
any modified level algorithm A and G l(,p). In 4, a specific modified level
algorithm, MLA1 is studied and it is shown that MLA1 (G)= 4(G)+ O(log n) for
almost all G l(,p) when < n/4. 5 presents several other modified level
algorithms, discusses running times and summarizes empirical studies comparing their
performance. 6 shows how to improve the running times of the above algorithms
through more careful selection of the "starting vertex". Finally, 7 contains several
results concerning properties of random graphs. Conditions are given for connectivity
of random graphs in Itn(, p) and probable upper bounds are given for the diameter
of random graphs in F (p) and (, p).

A word ofcaution. All but a few of the results proved in this paper are probabilistic
in nature. That is, they hold for almost all graphs under some probability distribution.
The statements of lemmas and theorems include the phrase "almost all" and specify
the probability distribution, but to avoid being tedious, the proofs assert various
properties without repeating this qualification.

HEURISTICS FOR BANDWIDTH MINIMIZATION 563

2. Bandwidth of graphs in Fn(p) and aPn(b, p). The following results demonstrate
that almost all random graphs in the usual model, have bandwidth nearly as large as
the number of vertices.

Define A,(c) -ln n/ln c. Note that An(c) > 0 when 0< c < 1 and n > 1, cxn<c) 1/n
and limn_.o An(c)= for c fixed 0<c<l. We will usually write A(c) for A,(c).

THEOREM 2.1. Let 0<p<l be fixed. For almost all GF,(p), (G)>
n-4A(1-p).

THEOREM 2.2. Let e >0, c>0 be fixed, p=(c In n)/n. For almost all GF,(p),
O(G)n(1-e).

For G V, E), the notation uv means { u, v} E and uv means that { u, v} E.
Similarly if U V and W V then UW means that some veex in U is adjacent
to some veex in The proofs of Theorems 2.1 and 2.2 require the following lemmas.

LEMMA 2.1. Let G=(V, E) be a graph on n vertices. (G)n-2kV, V2 V
such that Vll IV21 k and VV2.

Proof If (G) n-2k then there is a layout z such that
-2k. Let V {z-(1), z-(k)} and V={z-(n-k+l), z-(n)}. If VV
hen there are veices u V and v s V such that uv. But by the definition of V
ind V, z(u) k and z(v) n- k + l; hence Iz(u)-z(o)l> n- k, which contradicts
the definition of z.

LEMMA 2.2. Let 0 < p < 1 and G E) F, p).

Proo By Lemma 2.1, e((a-e(,, such that
VV). Since there are k potential edges" joining and V, all of which must be
absent if VV, this last probability is

(l-p)k< (1 p)k _p)k/2
k

--(1

Proof of Theorem 2.1. Applying Lemma 2.2 with k 2A(1 -p) gives

en)4A(1--p)P(b(G) < n-4A(1-p)) < (l-p)al-p)
2A(1-p)

(e) 4x(1-p)

-->O.
2A(1 -p)

Proof of Theorem 2.2. Applying Lemma 2.2 with k en/2 gives

e(4,(G- n(-- (-p/ e-/
en/2

n-ec/4 O.

Theorems 2.1 and 2.2 show that even for sparse random graphs G e Fn(p), (n/qb(G))
1. Consequently, even the most trivial algorithms (for example, the algorithm that
always outputs the identity layout) can produce layouts having bandwidth close to
b(G) as n gets large. If one is to make meaningful distinctions among algorithms
based on their probable performance, some other probability distribution is required.
The distributions Iln(@,p) and n(@,P) are used here. Obviously, any structural
property of a graph occurs with the same probability in both distributions. It is clear

564 JONATHAN S. TURNER

that if G n(q/, P) then b(G) -< q/. The following theorem gives a probabilistic lower
bound on b(G).

THEOREM 2.3. Let 0 < p < 1 be fixed, In n <- q/ < n. For almost all G , p),
b(G) > -4A(1 -p).

Proof. Let G’_ G be the subgraph induced by vertices {1, 2,. ., b}. Note that
G’ is a random graph with distribution F(p). Applying Theorem 2.1, b(G’)>
-4A,(1 -p). The theorem follows from the fact that b(G) -> b(G’).
An immediate consequence of this result is that as gets large, it comes within

a factor of 1 / e of b(G), for any fixed e > 0. While Theorem 2.3 is sufficient for the
results proved here, it is interesting to consider a tighter relationship between , and
(G).

CONJECTURE. Let 0<p < 1 be fixed. There is some constant c c(p) > 0 such that
if c In n _-< q/-< n c In n then for almost all G , p),

3. Probabilistie algorithms for bandwidth minimization. Before proceeding we need
the following definitions. Let G V, E) and define V(u) {vld(u v) i} for all u V.
Also let V= V(1). Next, define/i(u) =min V(u) and ri(u) =max V(u). Let l=/i(1)
and r ri(1). Note that v, I--< l,. Define

level (G) min max V u
V iO

LEVEL (G)= min max V(u) (.J V+l(u) 1.
V i>--_O

Note that if A is any level algorithm at all

(1) level (G) <-_ A(G)

and if A makes the best possible choice for z-1(1)

(2) A(G) _-< LEVEL (O).

In the next few sections, we will consider only algorithms that do always make the
best choice. We can satisfy this requirement by trying all possible choices for z-l(1),
at a cost of a factor of n in the running time. In 6, we will relax this restriction.

Consider the tree T in Fig. 1. It is not difficult to see that b(T) 2 and level (T) -4.
The example is readily extended. For any integer k > 0 one can construct a tree Tk

FIG. 1. Tree demonstrating poor worst-case performance of level algorithms.

such that b(Tk) 2 and level (Tk) k. (This result can be improved. There is a similar
but more complicated construction which gives trees Tk with n vertices, level (Tk)=
fl(n/log n) and b(Tk)= o(log n).) This implies that the worst case performance of
the level algorithms can be arbitrarily poor. In spite of this, the level algorithms perform
quite well on random graphs.

THEOREM 3.1. Let e > 0, 0< p < 1 be fixed, < n, In n o(@). For almost all
G fl,(d/, p), LEVEL (G) < (I + e)(3-p)qb(G).

HEURISTICS FOR BANDWIDTH MINIMIZATION 565

The theorem is proved by deriving probable upper bounds on {V{ and then using
the definition of LEVEL. These bounds are contained in the following lemma.

LEMMA 3.1. Let e>0, 0<p<l be fixed, <n, In n=o(). For almost all
I,(,, p),

IV2I< (1 + e)(2-p)b,

Iv,l<(+),, fori>=3.

The proof of Lemma 3.1 appears in 3.1 along with several technical lemmas
required for its proof. We now use it to prove Theorem 3.1.

oof of eorem 3.1. By Lemma 3.1 there exists a veex u for which
maxo IE(u) U E+(u)l- 1 <(1 + e’)(3-p) for any fixed e’>0. Hence,
LEVEL (G) < (1 + e’)(3-p)ff for any fixed e’> 0. By Theorem 2.3, < (1 + e’)(G).
Selecting e’ so that (1 + e’)2 (1 + e) yields the theorem.

In Lemma 3.5, it is shown that Iv=l> (1- e)(2-p) when In n o() and $ < n/2.
is result is easily extended to show that for all u e V, Iv=(u)l> (1-e)(2-p) and
hence level (G)> (1- e)(2-p)$. The details are left to the reader. A consequence of
this is that the level algorithms are not capable of near optimal performance. However
a related class of algorithms, called the modified level algorithms is. We will now
describe the class of modified level algorithms. In the next section, we describe a
specific member of this class that achieves near optimal performance. Define

V2(u) if V3(u)
V(u)

V2(u) {v[vw e V3(u)} if V3(u)

Vi(u) (V(u) t V(u))- V(u),

V(u) V(u), i=0, i->3.

Also, let V[= V[(1), /[(u)=min V[(u), r[(u)=max V[(u), /[=/[(1), r=r(1). For-
mally, A is a modified level algorithm, ifthe layout - produced for the graph G V, E)
satisfies

Let

Vtt, VE V uE V(’r-l(1))A VE V+l(’r-l(1)):::>’r(u)< 7"(v).

level’ (G) min max
V iO

LEVEL’ (G)= min max IV(u)t_J vl+(u)l- 1.
V i>--O

If A is any modified level algorithm then level’(G)<-A(G) and if A makes the best
possible choice for the starting vertex then A(G) <- LEVEL’ (G). For the modified level
algorithms, we can show that for almost all G,(,p), Iv l< ,+ O(log n) for all
i>=0 when In n o(), <-(1-e)n/2. From this we obtain the following result.

THEOREM 3.2. Let 0 <p < 1 befixed, In n o(), < n. For almost all G 11 ,, p)
LEVEL’ (G)= 2b(G) + O(log n).

The proof of Theorem 3.2 is contained in 3.2. This result shows that the class
of modified level algorithms is capable of better performance than the class of level
algorithms. In 4, we focus on a specific modified level algorithm and show that it
produces nearly optimal layouts.

566 JONATHAN S. TURNER

3.1. Technical lemmas. The following lemmas are used in the proof of Lemma 3.1.
LEMMA 3.2. Let e > O, 0 < p < 1 be fixed, a (1 + e)h (1 p2) <_ < n. For almost

all G alt, , p), there exists a path oflength two between every pair of vertices u, v such
that]u v <= 2 a.

Proof. Let u, v s V with lu v =< 2ff a. Let i=2 -Iu v[. The probability that
d(u, v)> 2 is -< (1 _p2)i. Since for each there are no more than n such pairs, the
probability that any pair is not joined by a 2-path is

2-1
-< n(1-p2)i< n(1-p2)a . (1-p2)i =p-2n-e)O.
i=rl i=o

LEMMA 3.3. Let e > 0, 0 < p < 1 be fixed, a (1 + e)h (1 p2) 1 < n. For almost
all G alt,(, p), r 3 <_ r_3 < l (2 a), for all i>-3.

Proof. The shortest path from 1 to r must pass through some u e V-3. Clearly
r-u<=3p; hence ri-3=< u<=r_3. To see that ri-3 </-(2-a), assume otherwise.
Then there is some vertex v on the shortest path from 1 to r_3 such that l-(2- a)<-
v < l and d (1, v) =< 3. By Lemma 3.2 there is a 2-path from v to l, giving d (1, l) -<

i-1, which is a contradiction. I1
LEMMA 3.4. Let e > O, 0 < p < 1 be fixed, a (1 + e)h (1 p2) <= < n. For almost

all G alt,(, p), ri l < tl, + a, for all i>-_3.

Proof. By Lemma 3.3 ri --< r_3 + 3q and li > r_3 + (2 a). Hence,

ri li < ri 3 -1- 3 ri -1- 2 ot -t- ot. l"1

From Lemma 3.4, we conclude that V[< 4, + a for i-> 3, but the lemma says nothing
about the size of V1 and V2. As we shall see, these cases differ from the rest and will
be handled in Lemma 3.5. First however, we need a proposition concerning the binomial
distribution, B(n, p). By definition if x s B(n, p) then P(x= k)=(,)pk(1--p) "-k. The
following proposition is from Angluin and Valiant 1].

PROPOSITION 3.1. Ifx B(n, p) thenfor any e, 0< e < 1, P(x <- (1 e)np) < e-e2np/2

and P(x >= (1 + e)np)< e-e2np/3.
LEMMA 3.5. Let e > O, 0 < p < 1 befixed, v -(1 + e)/ln (1 p2), a c In n <- < n.

For almost all G ,(, p), (1 e)pb <lv, < (1 + e)p and v=l < (1 + e)(2 p). Also,
if<n/2 then (1-e)(2-p)g/-a<[V2[.

Proof. [V[is a binomial random variable in B(, p). By Proposition 3.1,

P(I vl <(1- e)p < e-"P*/2 -> O,

P(I > (1 + e)p) < e-"g’/3 -->0.

This establishes the bounds on

Iv=l < 2-(1- e)p < (1 + e)(2-p).

When @ < n/2, Lemma 3.2 gives

Iv l>= > (2-(1 + e)p),-a > (1- e)(2-p),-a. D

Proof of Lemma 3.1. Immediate from Lemmas 3.4 and 3.5. [3

3.2. More technical lemmas. The following lemmas are used in the proof of
Theorem 3.2.

LEMMA 3.6. Let e > O, 0 < p < 1 be fixed, (1 + e)h (1 p2) <_ g/ < n. For almost all
O= (V, E) ,(q,p), u v^l{u-,..., u+}fl VI_-> (1 + e)A(1-p)=>u--V.

HEURISTICS FOR BANDWIDTH MINIMIZATION 567

Proof. By Lemma 3.2, any pair of vertices u, v with u -v[<- ,, is joined by a
2-path and hence Id(1, u)-d(1, v)l-_<2. Thus, for each vertex u there are at most five
sets V such that I{u-ql,..., u+ }fq El>= 1. Hence, the probability that for any
G,(q,,p), the assertion is not true is <=5n(1-p)<+)a<-P)=5n--->0.

LEMMA 3.7. Let e > O, 0 < p < 1 be fixed, t (1 + e)A (1 p2) <= , < n. For almost
all G ,(tp, p) there exists a path of length three between every pair of vertices u, v
such that lu v <-3 a.

Proof Let u, v Vbe such that i--3O--lu-vl>-. Let xj=u+-j for 0<-j<- i,
as illustrated in Fig. 2. Clearly any 3-path connecting u and v must pass through one
of Xo," ", xi. The probability that no 3-path joins u and v is

P(no 3-path ^ u-C-Xo ^" ^ u-C-xi)

+ P(no 3-path ^ u--/-Xo ^’" ^ u--/--Xj_l ^ u--x)j=0

(1 -p)+P(no 3-pathlu-C-Xo ^ ^ u-C-x)

+ p(1-p)P(no 3-pathlu--/--Xo ^ ^ u-C-x_ ^ u--x)j=0

<(l-p)i+

+p (1-p)JP(no 3-path[u-/--Xo ^ ^ u-C-x_ ^ u--x ^ u-Z-X+l ^’" ^ u-C-xi)
j=0

--(1-p)’+’+p Y. (1--p)J(1--p2) i-j+’

j=O

=(1-p)’+l+p(l+p)(1-p)’+’ Z (l+p)j
j=O

(1 -p)’+ +p(1 +p)(1 -p)’+ (1 +p)’+ 1

P

< (1 +p)(1-p2)’+1

Since for each value of there are at most n vertex pairs u, v such that]u- v] i, the
probability that any pair u, v with]u- v] _-< 3-a is not connected by a 3-path i8

3,-1

p2)i+l pE)a i= 1 +p=< n(1 +p)(1- < n(1 +p)(1- (1-p2) 7n-e--->O. I’-]
i=[al i=0

FIG. 2. Definition of xs.

568 JONATHAN S. TURNER

LEMMA 3.8. Let e>0, 0<p<l be fixed, a=(l+e)A(1-p2), =(l+e)A(1-p)
and max (a, 2fl)<=O<=(n-fl)/2. For almost all Gq’(,,p)lVl<-,/ for i>=O.

Proof. The result follows from Lemma 3.4 for i-> 3 and is immediate for i= 0.
Before proving the theorem for 1-<_i=<2 we first need to show that V3f’l
{+2,...,2,+ [fl]}l->fl. Let A={+2,... ,20+1}. By Lemmas 3.4 and 3.7 A___

V2 LI V3. Let x [A fq V31. Clearly if x->/3 then we are done. Assume then that x </3
and let B {2,+2,. .,2+ ([/3 x) + 1} and let y Inl. If u B, then I{u
if,... ,2,+l}f’l V21>=O-fl. Since 0->2/3, uBl{u-O,..., u+C,}fq V21->_/3. Thus
by Lemma 3.6 B

V3. Since x +y =>/3 we have that IV [’] {I//- 2,. ., 2+ [/3]}1-->/3.

Now, by Lemma 3.3, 13 -> 2 a + 1. This implies that l[-> a + 1 and since
r<-2O+ 1, it follows that as claimed. Finally, note that if u A and
u-> +/3 then using Lemma 3.6, one can show that umV3 and hence u V. Thus, + < , as claimed. [3

Proof of Theorem 3.2. If > (n-2h(1-p))/2, then since LEVEL’ (G)<n

LEVEL’ (G) <2+2A (1 p) 2+ O(log n) 2b(G) + O(log n).

If tp<=(n-2A(1-p))/2 then we can apply Lemma 3.8 giving

LEVEL’ (G) <2+4X (1 _p2) 2, + O(log n) 2b(G) + O(log n).

A similar analysis yields level’ (G) c(G) + O(log n).

4. Obtaining nearly optimal layouts. In this section a specific modified level
algorithm denoted MLA1 is described and analyzed. It is shown that MEAl is capable
of producing nearly optimal layouts for random graphs in ,(, p).

For a graph G (V, E), we define the grandchildren of v with respect to u by

gc,(v)= V2(v)fq V+2(u) Vv V(u)

and the grandparents of v with respect to u by

gp.(v)= Vz(v)n v[_:(u)

Also let gc(v)= gcl(v), gp(v)= gp(v). The algorithm we will analyze is based on the
observation that for G ,(k, P) if u, v s V[and v u is not too small, then with high
probability Igc(u)l<lgc(o)l and Igp(u)l> Igp(o)l. algorithm MEAl is described in
Fig. 3. Define MEAl (G) as the bandwidth of the layout produced by MEAl on graph
G.

For each u e V
Let - be any layout that satisfies the following conditions for all x, y V.

(a) x V[(u) ^ y V+(u) =:> z(x) < r(y)
(b) l<-i<-_2^x, ye V$(u)^lgc(x)l<lgc(y)lr(x)<
(c) >- 3 ^ x, y V[(u) ^ Igpu(x)l > Igp,(y)l z(x) < r(y)

Output the layout having minimum bandwidth.

FIG. 3. Modified level algorithm 1.

THEOREM 4.1. Let 0 < p < 1 be fixed, In n o(0), --< n/4. For almost all G
l’ln(0, p) MEAl (G)= b(G) + O(log n).

The key fact used in the proof of Theorem 4.1 is contained in the following lemma.
LEMMA4.1. Lete>O,O<p<l befixed, a=(l+e)A(1-p2),ln n o(), O<-_n/4.

For almost all GaIn(O,p), Iz(u)-ul<-4a, where ue V and is the layout produced
by MEAl for which (1) 1.

HEURISTICS FOR BANDWIDTH MINIMIZATION 569

Proof of Theorem 4.1. By Lemma 4.1, MLA1 will compute a layout in which no
vertex is more than 4a from the "right position". This implies that the bandwidth of
the layout output by MLA1 is at most ,+8a b(G)+O(log n). I-1

The proof of Lemma 4.1 requires the following technical lemmas.
LEMMA 4.2. Let e < O, 0 < p < 1 be fixed, a (1 + e A (1 p:), 2a <- < n. For

almost all G alt, , p)

l] =2,

r- 2a < l-< r + 1,

ri-1- a < li r_l + 1,

r + q c =< r r + ,
+_< ’<r_ r r_ + for 3.

Proof. For 1-<, 2 the result is implicit in the proof of Lemma 3.8. For i=> 3,
+ 2,- a. Since r-iLemma 3.3 gives 1> ri-3 --ri-3-1-2d/, li> ri- oz. By Lemmas 3.2

and 3.7 {r_3++ 1,..., r_3+2- t}_ V_ and {r_3+2+ 1,..., r_3+3-a}_
-I: 1 V’" henceV and { [.J V. This impliesri_ 4r 2, a + 1, , ri_ -I- 2} Vi_

r_ + 1. For 3, r r_ + is immediate and r r_ +-a follows from
Lemma 3.7 and r_ ti_3 + 2.

A conse uence of Lemma 4.2 is that at least 6-a of the veaices in V are found
in a region ontaining only veices in V.’ The regions associated with V and V+’
are separated by a transition region containing at most 2a veices.

LEMMA 4.3. Let e>0, 0<p<l be fixed, a=(l+e)A(1-p2), 4an/4. For
almost all G,(,p) li2A u, vs V[A u-v4lgc(u)l>lgc(v)l.

oof Lemmas 3.2 and 4.2 imply that if u, v s V and u v a then gc(v) gc(u).
It remains only to show that there is some veaex x gc(u) gc(v). Let x u +2 [a].
If u v 4a, Lemma 4.2 yields,

r+= r_+2<l+2+2a v+2+2a < u+2-2a <x.

Thus x V+ and also by Lemma 4.2, x Vj for any j i. Since, by Lemma 3.2, there
is a 2-path from u to x, x gc(u). Since x> v+2ff, x gc(v).

LEMMA 4.4. Let e>0, 0<p<l be fixe< a=(l+e)A(1-p2), 4an/4. For
almost all G,(ff, p) i3 u, v VIA u-v4algp(u)l<lgp(v)l.

oof Lemmas 3.2 and 4.2 imply that if u, v V[and u v a then gp(u) gp(v).
It remains to show that there exists some veaex x in gp(v) gp(u). Let x v 2ff + [a].
If u-v 4a, Lemma 4.2 yields

-2a > ’-2-2a > -2-2 > -2+2a x.l[_ > r-2 r u a v >

Thus x Vi_ and also by Lemma 4.2, x V for any j >- i. Since, by Lemma 3.2, there
is a 2-path from v to x, x gp(v). Since x < u-2, x : gp(u). 1

Proof of Lemma 4.1. By Lemmas 4.2 to 4.4, if u v > 4ct then z(v) < z(u). Con-
sequently, for any u there can be at most 4c vertices v such that u > v and z(u) < z(v).
Similarly, there can be at most 4a vertices w such that u < w and z(u) > z(w). Hence,
I(u)-ul-<_4. t

5. Pragmatics. This section reports on the results of empirical studies of several
modified level algorithms, including MLA1, described in the previous section. It also
contains some implementation details and analyses of the algorithms’ running times.
Four modified level algorithms were studied. They are denoted here as MLA1 through
MLA4. An implementation of MLA1 is shown in Fig. 4. This procedure returns a
layout z, with u as the starting vertex. The strategy for ordering the vertices within
levels is the one described in the previous section. The procedure shown calls several

570 JONATHAN S. TURNER

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(11)

(13) end;

procedure MLA1 G V, E), u, z)

make_mod_levels(G, u, V’,..., V’,_I);
count_gc(G, u, V’o, ", V.-I, ngc, 1, 2);
count_gp(G, u, V’o, ", V’_, ngp, 3, n 1);
for I1, 2]- sort(V, ngc(x) < ngc(y)) rof;
for 613, n 11 sort(V, ngp(x) > ngp(y)) rof;
next :- 1; {next position in layout}
fori6lO, n-li

for x V z(x):- next; next := next + 1 rof;
rof;
return;

FIG. 4. Implementation details for MLA1.

others. Make_mod_levels (G, u, V,. ., V’,_I) computes V(u) and returns it in the
list V for 0 -< i=< n-l, using breadth-first-search. The procedures count_gc and
count_gp count the number of "grandchildren" and "grandparents" for vertices in the
levels specified by the last two arguments. (For example, the call to count_gc in line
(4) counts the grandchildren of all vertices in the first two levels and returns the results
in the array ngc.) The procedure sort (L, R(x, y)) sorts the list L so that x precedes y
in the sorted list if and only if x is related to y under R. For example, sort V, ngc(x) <
ngc(y)) sorts V so that if ngc(x)< ngc(y) then x precedes y in V. The running time
of MLA1 is dominated by the count_gc and count_gp functions. A straightforward
implementation of these gives a running time of O(nq2). The procedure
make_rood_levels can be implemented to run in O([EI)= O(nO) time, and the sorting
steps in lines [6] and [7] require at most O(n log n).

There are other possible strategies for arranging the vertices within each level.
Cuthill and McKee [5], who first suggested the level algorithms, arranged the vertices
within levels according to the order in which they were visited by a breadth-first search
algorithm. This results in an arbitrary ordering of the first level and arranges each
vertex in subsequent levels based on the position of its "leftmost" neighbor. Cheng
[2], [3] refined this strategy by ordering the vertices in the first level in increasing order
of the number of neighbors in the next level. Adapting this algorithm to the modified
level strategy gives the algorithm MLA2, which is shown in Fig. 5. MLA2 calls the
procedure count_ch, which counts the number of neighbors each vertex has in the
"next level". As with count_gc and count_gp, the calculation is done only for those
levels specified by the last two arguments (in this case, just the first level). This can
be done in O(2) time, while the remainder of MLA2 can be done in O(nO) time.

The procedure MLA3, shown in Fig. 6 is a cross between MLA1 and MLA2. It
uses the strategy of MLA1 to order the vertices in the first level, then reverts to the
strategy of MLA2 for all subsequent levels. Computing ngc for the vertices in the first
level requires O(3) time. The remainder of MLA3 can be done in O(n).

MLA4 is a refinement of MLA3 designed to improve the running time when the
bandwidth is fairly large. Instead of using the number of "grandchildren" to order the
vertices in the first level, it uses the number of paths to grandchildren. This can be
computed more quickly, since it eliminates the necessity of throwing out duplicates.
The total running time of MLA4 is O(n0).

MLA2 through MLA4 are more difficult to analyze than MLA1 because decisions
made in ordering each level affect the ordering of subsequent levels. Consequently,

HEURISTICS FOR BANDWIDTH MINIMIZATION 571

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(2o)
(21)
(22)
(23) end

procedure MLA2(G V, E), u, z)

make_mod_levels(G, u, V’o,"’, V’.-1);
count_ch(G, u, V’o, ’’, V’._I, nch, 1, 1);
sort(V, nch(x) < nch(y));
for x V--> z(x) := 0 rof; {0 denotes undefined}
r(u) := 1;
next := 2; {next position in layout}
for x V -+ r(x) := next; next := next + 1 rof;
left := 2; {left end of V in layout}
right := next- 1; {right end of V in layout}
for e 12, n 11 +

do left <- right -+

x := r-’(left);
for {x, y} E -->

if r(y) 0--> r(y) := next; next := next + 1 fi
rof;
left := left + 1;

od;
right := next- 1;

rof;
return

{right end of V}

FIG. 5. Implementation details for MLA2.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(2o)
(21)
(22)
(23) end

procedure MLA3(G V, E), u, r)

make_mod_levels(G, u, V’o,’", V’._);
count_gc(G, u, V’o, V’.-1, ngc, 1, 1);
sort(V, ngc(x) < ngc(y));
for x V--> r(x) := 0 rof; {0 denotes undefined}
r(u) := 1;
next := 2; {next position in layout}
for x V + r(x) := next; next := next + 1 rof;
left := 2; {left end of V in layout}
right := next- 1; {right end of V in layout}
for e 12, n- 11+

do left <- right -+

x:=r-i(left);
for {x, y} e E ->

if r(y) O--> r(y) := next; next:= next+ 1 fi
rof
left := left + 1;

od;
right := next 1;

rof;
return

{right end of V}

FIG. 6. Implementation details for MLA3.

572 JONATHAN S. TURNER

one might expect that errors made in ordering the early levels could accumulate and
cause large errors further on. Experimental results suggest that in fact this does not
happen, that the process is self-limiting. However, straightforward analytical techniques
for bounding the error give unsatisfactory results.

Figures 7 through 9 summarize the results of a series of experiments that were
undertaken to verify the theoretical performance bounds described in the previous
sections for MLA1, provide tighter bounds for graphs of moderate size and compare
MLA1 to the other modified level algorithms. For each of the data points shown in
Fig. 7, ten random graphs in ,(n/4, 1/2) were generated and each of the algorithms
was run. For each algorithm, these ten results were averaged and the difference between
these averages and n/4 were plotted. The results show that all the algorithms produce
good layouts. All of the results are within 20% of n/4 and the best are within 2%.

25

20

15

(/4)- MLA(G)

MLA2

GE(n/4,1/

MLA4

MLA1

MLA3

L,,
200 400 600 800 1000 n

FIG. 7. Performance of modified level algorithms.

Figure 8 shows the measured execution times for these runs. (The algorithms were
coded in the C programming language and run on a VAX 11/750 under Unix.) Here,
MLA2 and MLA4 enjoy a substantial advantage. Of course, this speed advantage is
directly related to the large value of @ relative to n. For smaller values of the
differences would be less.

One last set of results is shown in Fig. 9. This shows how the performance of the
algorithms deteriorates as becomes large relative to n. MLA1 deteriorates first, when
-n/4. This is because the strategy used to order the levels becomes less effective

when V becomes much smaller than @. MLA3 is not affected by this phenomenon
until @ n/3 since the "grandchildren" strategy is used only to order the first level.
MLA2 and MLA4 are more robust, maintaining their good performance until n/2.
At this point all four degenerate from modified level algorithms to level algorithms.

Unix is a trademark of AT&T.

HEURISTICS FOR BANDWIDTH MINIMIZATION 573

500

400

300

Time (see)

200

100

MLA1 MLAS

MLA4 MLA ’2

GeCn/4,1/2)

600 800 1000 1200 1400

FIG. 8. Running time of modified level algorithms.

MLA MLA8

0 G ,oo(, 1/2)

MLAx(G)

40

2O

MLA4

50 100 150 2OO

FIG. 9. Deterioration of modified level algorithms as grows.

6. Selection of starting vertices. Up until this point we have largely ignored the
question of how one selects a good starting vertex in the modified level algorithm. Of
course, the brute force solution is simply to try all possibilities and pick the best result.
This adds a factor of n to the running times quoted in the previous sections, but does
ensure the best possible choice. In this section, we consider strategies that permit us
to select small sets of candidate starting vertices, that with high probability, contain a
good choice.

574 JONATHAN S. TURNER

The most obvious strategy (suggested by Cuthill and McKee) is to concentrate
on vertices with small degree. For G xPn(,, p) it is reasonable to expect the degree
of vertex 1 will be smaller than the degree of most other vertices. The following lemma
puts a probable upper bound on the number of low degree vertices that need to be
tried to obtain near optimal performance. For G (V, E), define the set of low degree
vertices by ld (G) {v V[d (v) <-_ d 1 }.

LEMMA 6.1. Let e > 0, 0.< p < 1 be.fixed, 12(1 + e)(1/p) In n <= , < n. For almost
all G n(d/, p), Ild(G)l < 44(3/p)(1+ e)/ In n.

Proof Let 0< c <_- d/p/2. By Proposition 3.1

P(d(1) >_- p+ a) < e-a2/3qp.

For v V such that (2alp)< v<n-(2t/p)

P(d(v) <- p+) < e-/-*p.

Letting c x/3(1 + e)p Inn yields

P(d(v)<d(1))<2 e-2/a*p=2n-1+.

Since there are <n such vertices v,

P(::lvl(2t/p) < v < n (2c/p) ^ d(v) < d(1)) <2n -0.

Consequently there are at most 4t/p vertices in/d(G).
Lemma 6.1 gives us a way of ensuring a good starting vertex. The cost is an added

factor of O(x/ In n) in the running time.
The next theorem suggests another method for identifying a good starting vertex.

Let Lx(G) be the layout z of G produced by MLA1 for which z(x)= 1 and let

MLAlx (G) be the bandwidth of G with respect to Lx(G).
THEOREM 6.1. Let 0<p<l be fixed, In n=o(b), d/<-n/16. For almost all

(O, p) (x V^ z= Lx(G) ^ y= z-(n))=C,MLAly (G)= qb(G)+ O(log n).
The procedure suggested by Theorem 6.1 is this. Pick an arbitrary vertex x and

run MLA1 with x as the starting vertex. Let y be the "rightmost vertex" in the resulting
layout. Now, re-run MLA1 with y as the starting vertex. Theorem 6.1 states that the
resulting layout is close to optimal. The proof of Theorem 6.1 requires the following
lemmas.

LEMMA 6.2. Let e > O, 0 < p < 1 be fixed, a (1 + e)A (1 p2), In n o(), <_-

n/16. For almost all Galt(O,p) (x V^ z=Lx(G)^ y=z-(n)):=>(y<4av y> n-
4a).

Proof. Let x V, -= Lx(G) and y----(n). Also let Gt be the subgraph induced
by {1,2,..., x} and let Gr be the subgraph induced by {x,..., n}. Note that
x(O,P) and Gr ,-x+(O,p). Next, let zt=Lx(G), -r L(G) and let yt z-(x),
y- --(n-x + 1). The analysis now divides into several cases.

Case 1. x < n/4. For any z {1,. , x}, Lemma 3.2 implies

x n n -x 3n
d(x, z) <_- 2--< and d(x, n)>_->

2 4

Thus, d (x, z) < d (x, n) for any z < x. This implies that y {x,. , n}. In fact, y
To see this, first note that for i_-> 0, V(x, G,)_ V(x, G) (the notation for the vertices
belonging to each level has been extended to distinguish between the two graphs).
Furthermore, if z V(x, G) where i->_4 then gpx(z, G)= gp(z, G) (the notation for

HEURISTICS FOR BANDWIDTH MINIMIZATION 575

the grandparents of z has been similarly extended). Consequently, y y,. Applying
Lemma 4.1 to Gr yields y > n-4a.

Case 2. n/4<-x<-3n/4^y{x,..., n}. By the same argument used in case 1,
y y, and applying Lemma 4.1 to G, yields y > n-4a.

Cases 3, 4 are symmetric with 1, 2.
Proof of Theorem 6.1. Let x V, z= Lx(G) and y-z-(n). By Lemma 6.2, either

y < 4a or y > n -4a. Since the two cases are symmetric, we will only discuss the former.
Let or= Ly(G), G, be the subgraph induced by {y,..., n} and tr, Ly(Gr). Note that
the restriction of cr to {y,..., n} is the same as tr, By Lemma 3.2, every vertex in
(1,. , y- 1} is connected to y by a 2-path and no vertex in {1,. , y- 1} is adjacent
to any vertex in V’a(y). Consequently, {1,..., y-1}_ V(y). Let {u, v} E, and con-
sider the following three cases.

Case 1. {u, v}_ {y,. ., n}. By Lemma 4.1, Icr,(u)-cr,(v)l <- O+Sa. Consequently,
Itr(u)- tr(v)l _-< + lEa.

Case 2. {u, v} {1,..., y-1}. Since {u, v} V(y) and by Lemma 3.8, Iv(y)l_-<
4a+(+a)=+5a, it follows that

Case 3. u { 1, , y 1 }, v {y,. , n}. Because u < y, v < y + . By Lemma 4.1,
Ir(v)-vl-<4, giving tr(v)<y+d/+4a<+8a. Since u V, tr(u)-<+5a. Thus,
Io-(u)- + + 8,+.

In all three cases above, we conclude that Itr(u) tr(v)l -< 0 + 12a 0 + O(log n)
tk(G)+ O(log n). [3

The method for selecting a starting vertex outlined above can be refined in several
directions. One way is to run MLA1 several times, each time using the rightmost vertex
from the previous run as the starting vertex for the next run. This extends the
applicability of the method to larger values of . Another refinement is to run MLA1
several times as just described, but then take the 4a rightmost vertices from the last
run and use these as a set of candidate starting vertices. With high probability, either
vertex 1 or vertex n is in this set. The results obtained in this way may be somewhat
closer to optimal, but the cost is an extra O(log n) factor in the running time.

7. Properties of random graphs. This section is largely independent and examines
several properties of random graphs, particularly graphs in n(, P). The following
theorem is a special case of a result proved in Erd/Ss and Renyi in [6].

THEOREM 7.1. Let -l<e<l be fixed, p=(l+e)(lnn)/n, GU,(p). If e>O, G
is almost always connected. If e < O, G is almost always disconnected.

The following is a similar result for random graphs with small bandwidth.
THEOREM 7.2. Let -1 <e<l be fixed, 0<p<l, d/=(l+e)A(1-p)/2, O-c. If

e > 0 then almost all G air, (2, p) are connected. If e < 0 then almost all G air, , p)
are disconnected.

To prove Theorem 7.2, we need to introduce another probability distribution and
prove two lemmas. Let n and be positive integers, < n, 0 < p < 1, and let G V, E)
be a random variable defined by the following experiment.

Let V={1,2,...,n}.
For each pair u, v, 1 =< u < v =< n and]u v] _-< v lu v] _-> n include the edge
{u, v} in E with probability p.

The probability distribution defined by this experiment is denoted ,(@, p).
LEMMA 7.1. Let -l<e<l be fixed, 0<p<l, ,=(l+e)A(1-p)/2, l<=d/<=n/2,

G (d/, p). If e > 0 then G almost always contains no isolated vertex. If e < 0 then G
almost always contains at least one isolated vertex.

576 JONATHAN S. TURNER

Proof. First part e > 0. Let

Xv={10 if visisolated,
if v is not isolated,

X X,+X2+...+X,,

tz E(X)= E E(Xv)= n(1 _p)2,.
t=l

Then,

P(X >- 1)-<_/z n(1 -p)2.= n -0.

This completes the proof of the first part.
Second part -e < 0. Let X, X,..., X, be defined as before.

E(X2)= E(XuXv) P(u and v are both isolated)
u=l v=l u=l v--1

n(1 _p)2 + 2gn(1 p)4-1 + n(n 2g 1)(1 p)4.

By Chebyshev’s inequality,

tr
2 E(X2)-/z2 1 2gp 1 plnn

P(X=0)<----i //,2 -t---<n+(l+e)
/x /z n(1-p) n n(1-p) In (1/(1-p))

The function p/((1-p)ln(1/(1-p))) gets large as pl. However, 1<=<
(l + e)A(1-p)=C,p <= l n-(+). Hence,

P(X=O)<n+(l+e)
In n

l+en Inn
=2n’0. l-]

Let D(G) denote the diameter of G.
LEMMA 7.2. Let 0 < e <= p < 1 where e is fixed, and let G r. (p). Then

P(D(G)> 2)<=(n2)(1-e2)"-2.

Proof. Let u and v be any two vertices in G. The number of possible 2-paths
between them is n-2 and the probability that any one of them is absent is l-p2.
Hence the probability that u and v are not connected by a 2-path is (l-p2)"-2.
Consequently, the probability that any pair of vertices is not connected by a 2-path is

Proof of Theorem 7.2. First part -e > 0. G is connected if the first 2g vertices
induce a connected subgraph and all other vertices have at least one edge to a lower
numbered vertex. By Lemma 7.2, if p > a for some a > 0 then the probability that the
first 2g vertices induce a subgraph of diameter greater than two is

Hence, if p is bounded below, the first 2g vertices almost always induce a connected
subgraph. If on the other hand p0 we must use Theorem 7.1 to establish that the
first 2 vertices induce a connected subgraph. This requires that we show that there

HEURISTICS FOR BANDWIDTH MINIMIZATION 577

exists some y>0 such that p>=(l+y)(ln(2d/))/(20). From the hypothesis of the
theorem

p(20) p In n
=(l+e) > (l+e/2)
In (20) In (1/(1-p)) In (20)

for large enough n since p-> In (1/(1-p)) as p-->0 and n> 20. Now, the probability
that any of the remaining vertices have no edges to lower numbered vertices is
<n(1 _p)2, n- ->0. This completes the proof of the first part of Theorem 7.2.

Now let e<0 and let G’(,p). Clearly, P(G is connected)<-P(G is con-
nected) and since by Lemma 7.1, G’ is almost always disconnected, it follows that G
is almost always disconnected.

A simple lower bound for the bandwidth of any connected graph is given by

()>- o,(G)
(G)

since the first and last vertices in any optimal layout are connected by a path of length
at most D(G) and hence at least one edge in this path has length-< to(G). Chvatal [4]
was apparently the first to notice this. A more general lower bound is given by

6(G) >= to*(G) max to (G’)

where G’ ranges over all connected subgraphs of G. The graph shown in Fig. 10 shows
that to*(G) b(G) in general. It is natural to ask if there is any constant c such that

(G) 3 ’(G) 2

FIG. 10. Graph showing to*(G) # qb(G).

for all connected graphs 4(G)_-< cto*(G). Ronald Graham has pointed out that this is
not the case. The argument is given in [11]. In spite of this result however, we can
show that if In n o(), then for almost all G ,(0, P),

D(G)<(I+e) +5.
(G)

THEOREM 7.3. Let e > O, 0 < p < 1 befixed, a (1 + e)A (1 p2) <_ < n. For almost
all G*.(,,p), D(G)<n/(O-a/3)+5.

Proof. By Lemma 3.7, there exists a path Q (Vo,." ", v3r) that satisfies

vo=l, v3r-->n-3O, v3i+l)-->v3i+3O-a, 0_-<i_-<r.

Since n=> v3 and v3> 3d/r-ar, 3r<n/(d/-a/3).
By Lemma 3.2, any vertex u < v3 is connected by a 2-path to some vertex in

{vl," ", v3}, and any vertex u > v3r is connected by a 4-path to v3, Thus, every pair
of vertices is joined by a path of length at most 3r+ 5.

By Lemma 7.2, if p => e > 0 then for almost all G [’,(p), D(G) 2. When p is
allowed to approach zero as n gets large the diameter can become larger. By Theorem
7.1, when p is much less than (In n)/n the graph is likely to be disconnected. We now
consider the probable diameter of random graphs in F,(p) when p=(c In n)/n and

578 JONATHAN S. TURNER

c is a constant. We do this by examining the probable size of V1, V2, Let
Clearly,

no- 1,

n2B(n-l,p),

naB(n-(nl+l), 1- (1 -p)n),

nk+B(n--Sk, 1--(l--p)")

where Sk=Y’.jk=onj. Define o 1, k+,=(n--k)(1--(1--p)), where k =Ejk=o . We
can use k as an estimator for nk. Figure 11 gives values of k for particular values of
n and p. The sequence grows very rapidly until a large fraction of the vertices in the
graph has been "captured". Then the remaining vertices are taken in the last step. The
figure also gives values ofthe function (rip) k. For k <= 3, (np) k gives an excellent estimate
for k"

k tSk

28
763

20,850
428,450
549,910

(np)

28
763

21,096
582,890

FIG. 11. Comparison ofk with (rip)k for n= 106, p=(21n n)/n.

Let k* be such that Sk* n. In the following we show that for k -< k* 2, nk > (np/8)k
with high probability. We can use this to get a probabilistic upper bound on k* and
hence on D(G). The main results are

THEOREM 7.4. Let c > 8 befixed, p c In n)/ n, y np/8. For almost all G lr,(p),
1 <-_ k <- k*--2nk > yk.

THEOREM 7.5. Let c > 8 befixed, p (c In n)/n, 3/= np/8. Foralmost alI G I’,(p),

D(G) __< 2([ln (l/p)] +2).In y

The proof of Theorem 7.4 is contained in the following lemmas.
LEMMA 7.3. Let c> 8 be fixed, p=(c In n)/n, y= np/8. For almost all G [’,(p),

1 <-_ k <-_ k*-2 ^ nk-1 lip ^ Sk-1 <- n/2 nk Ynk-.
Proof. Since nk B(n Sk-1, 1 --(1 --p)"-’),

n np
fig E(nk) (n- Sk_)(1 --(1 --p)-)--> pnk-(1-pnk_/2) >--nk_ 2ynk_.

By Proposition 3.1

P(nk <---- ynk-1) <- P(nk <= fk/2) < e-/8 < e-vn-#4.

Let Ak denote the event n <-_ "Ynk-. The probability that there exists a k satisfying the

HEURISTICS FOR BANDWIDTH MINIMIZATION 579

hypothesis of the lemma, such that Ak holds is

<-- P(A1) + P(A21)+"" + P(A*-I, .-3)
<-- e -’/4 d- e -y2/4-- q- e -yk*-2/4--> O.

LMMA 7.4. Let c>8 be fixed, p=(c ln n)/n. For almost all Gl",,(p), l=<k=<
k* 2atSk_l <= n/2::::> nk-1 < 1/p.

Proof. Assume that nk-1 >= 1/p. Then since nk B(n Sk-1, 1 --(1 --p)"-),

k"- E(nk)=(n-sk-)(1-(1-P)"-)<--(1-1/e) > n/4.

By Proposition 3.1

P(nk <= n/8) <- P(nk <= k/2) < e-’/8 < e-n/32 ->0.

Hence, assume nk > n/8. Then the probability that any of the remaining vertices is not
adjacent to something in Vk is

--<_ (n- Sk)(1 --p)"k < n e-"p/8= n 1-c/8->0.

This implies that k*=< k+ 1 which is a contradiction.
LEMMA 7.5. Let c > 8 be fixed, p (c In n)/n. For almost all G F, (p), 1 <= k <=

k*--2Sk-1 <- n/2.
Proof. Assume that Sk- > n/2 and let k’ be the smallest integer such that Sk,> n/2.

By Lemma 7.4, nk,- < lip and by Lemma 7.3, for all k <= k’, nk > 3,nk-1, where 3’ np/8.
Since for large n, 3, > 2, we have Sk > 2Sk- for k -< k’. Consequently nk,= Sk,--Sk’- >
Sk,/2 > n/4. Now, the probability that any of the vertices in V-(Vo t_J V1 [.J""" t_J Vk,)
is not adjacent to some vertex in Vk, is

< (n- Sk,)(1--p)nk’< rl e-np/4-- rI 1-c/4 -->0.

This implies that k*_-< k’/ 1 which is a contradiction.
This establishes Theorem 7.4.

Proof of Theorem 7.5. Note that D(G)<-2k*. Let k’ be the smallest integer such
that 3,k’>--_l/p. Clearly k’= [ln(1/p)/ln 3,]. If k’> k*-2, we are done. If k’<-k*-2
we can apply Theorem 7.4 giving nk,>- lip. By the argument used in the proof of
Lemma 7.4, this implies k* -< k’ + 2.

$. Conclusions. The work reported here is part of an ongoing research effort aimed
at developing better methods for evaluating the performance of heuristic algorithms
for hard combinatorial problems. This is an area where the usual analytical tools often
fail us, and the available results are unsatisfying. To be useful, a performance evaluation
method must satisfy two basic criteria. First, it must be able to explain the practical
success of popular algorithms and the differences observed between competing
algorithms. Second, it should provide insight suggesting new and better algorithms,
and supply a basis for making predictions about their success in practice. The ultimate
utility of such a method depends on how accurately it predicts the performance of
algorithms in real applications.

Worst-case analysis is inadequate for evaluating the performance of heuristics for
bandwidth minimization, precisely because it fails to satisfy the criteria given above.
As shown in Theorems 2.1 and 2.2, even probabilistic analysis can be of little use if
one is naive in choosing the probability distribution. The key to the work reported
here is in the choice of distribution. Because ,(,, p) generates only graphs having

580 JONATHAN S. TURNER

bandwidth -< , we can explore properties that are common to most such graphs, even
though they may be rare among unrestricted graphs. The success of heuristics like the
level algorithms is due to the fact that they exploit these properties.

The methods used in this paper at least partially satisfy the criteria outlined above.
They provide the first satisfactory analytical explanation of the practical success of
the level algorithms and they provide insight leading to methods, which at least in
theory are better. If the modified level algorithms fare as well in practice as they do
on paper, the utility of these methods will have been demonstrated.

Acknowledgments. I want to thank my good friend and Ph.D. advisor, Hal Sud-
borough, who supervised the research reported here. I also wish to thank two anony-
mous referees whose careful reading and thoughtful comments uncovered several errors
in an early draft and led to significant improvements in the presentation.

REFERENCES

D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithmsfor Hamiltonian circuits and matchings,
J. Comput. System Sci., 18 (1979), pp. 155-193.

[2] K. Y. CHENG, Minimizing the bandwidth of sparse symmetric matrices, Computing, 11 (1973), pp.
103-110.

[3] ., Note on minimizing the bandwidth ofsparse symmetric matrices, Computing, 11 (1973), pp. 27-30.
[4] V. CHVATAL, A remark on a problem of Harary, Czechoslovak Math. J., 20 (1970), p. 95.
[5] E. CUTHILL AND J. MCKEE, Reducing the bandwidth ofsparse symmetric matrices, in ACM National

Conference Proceedings, 24, 1969, pp. 157-172.
[6] P. ERDOS AND A. RENYI, On random graphs I, in Publications Mathematicae, (1959), pp. 290-297.
[7] MICHAEL R. GAREY, R. L. GRAHAM, DAVID S. JOHNSON AND D. E. KNUTH, Complexity results

for bandwidth minimization, SIAM J. Appl. Math., 34 (1978), pp. 477-495.
[8] B. MONIEN AND I. H. SUDBOROUGH, Bandwidth problems in graphs, in Proc. 18th Annual Allerton

Conference on Communication, Control, and Computing, 1980, pp. 650-659.
[9] CHRISTOS H. PAPADIMITRIOU, The NP-completeness ofthe bandwidth minimization problem, Comput-

ing, 16 (1976), pp. 263-270.
10] JAMES B. SAXE, Dynamicprogramming algorithmsfor recognizing small-bandwidth graphs in polynomial

time, Technical Report, Carnegie-Mellon Univ., Pittsburgh, 1980.
11] JONATHAN S. TURNER, Bandwidth andprobabilistic complexity, Ph.D. thesis, Northwestern University,

Evanston, IL, 1982.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

1986 Society for Industrial and Applied Mathematics
020

THE COMPLEXITY OF THE MEMBERSHIP PROBLEM
FOR TWO SUBCLASSES OF POLYNOMIAL IDEALS*

DUNG T. HUYNH"

Abstract. This paper shows that the membership problems for two subclasses of polynomial ideals are
NP-hard. The first subclass is defined by bounding the number of variables (-<_ 4), whereas the second is
defined by considering polynomials of the form Y-M, where Y is a variable and M is a monomial.

Key words, computational complexity, NP-hard, algebraic manipulation, membership problem, poly-
nomial ideal, commutative semigroup

1. Introduction. One of the currently active areas of research in "Symbolic and
Algebraic Manipulation" is the design and analysis of algorithms for computational
problems concerning polynomial ideals, specifically for testing membership for poly-
nomial ideals. The earliest algorithms for problems in polynomial ideal theory have
been provided by Hermann [6], and subsequently improved by Seidenberg [14].

Concerning the intrinsic complexity of the membership problem for polynomial
ideals, there is still no "exact" classification. Indeed, this has been stated as an open
question in [12]. The best lower bound that is known is the exponential-space lower
bound obtained by Cardoza, Lipton, Mayr and Meyer (cf. [4], [12]). On the other
hand, for solving the polynomial ideal membership problem there is an interesting
approach that is called the method of Gr6bner bases [1], [2]. In spite of the simplicity
of the Gr6bner basis algorithm, little is known about its complexity. Recently, a
double-exponential lower bound for the degrees of Gr/Sbner bases has been announced
in [13] and independently obtained by the author in [9] in connection with a lower
bound proof for Church-Rosser commutative Thue systems. Our results in [9] imply
that any algorithm that transforms a given polynomial ideal basis into a Gr6bner basis
requires double-exponential time.

An important technique that has been provided in [4], 12] and is employed again
in [9], [13] is the method of reducing the computation of a double-exponentially
space-bounded counter machine to the membership problem for polynomial ideals,
showing its exponential space-hardness. This reduction depends on two parameters
of the ideal basis: the number of variables, which grows linearly, and the form of the
polynomials in the basis. In particular, if the number of variables is bounded, then
the above reduction does not work. Indeed, our result in [8] shows that with a bounded
number (=> 6) of variables a reduction of this kind can be at best a reduction from an
exponentially space-bounded counter machine.

In view of recent efforts for showing upper and lower bounds for the degrees of
Gr6bner bases in the special cases of 2 variables [3], 10] and 3 variables 15], it seems
interesting to show whether an intractability proof can still be carried out when the
two parameters mentioned above are restricted. In this paper, we will consider 2
subclasses of polynomial ideals: (1) ideals of polynomials in 4 variables and (2) ideals
of polynomials of the form Y-M, where Y is a variable and M is a monomial. We
will show that the membership problems for these 2 subclasses of polynomial ideals
are NP-hard. The proofs of these two results are entirely different from those in [4],
[8], [12].

* Received by the editors June 4, 1984, and in revised form February 10, 1985.
f Computer Science Department, Iowa State University, Ames, Iowa 50011.

581

582 DUN T. HUYNH

2. Definitions and results. In the following let denote the set of rationals, [the
set of nonnegative integers. [X1,’", Xn] denotes the ring of polynomials in
X1,’" .,Xn with rational coefficients. In this paper we consider ideals in
[X1,"’,X,]. For polynomials Q1,’",Qs in [X1,’",X,] let (Q,...,
denote the ideal generated by Q1," ",

The membership problem for polynomial ideals, denoted by MEMBER, is defined
as follows.

MEMBER.
Input: Polynomials P, Q1,. ., Qs [x," ., x,].
Question: Is P (Q1,. ", Qs)?

The first special case of MEMBER, denoted by MEMBER(I), is:
MEMBER(I).

Input: Polynomials P, Q,. ., Qs [x, x2, X3, x4]
Question: Is P (Q1,. ", Q)9.

The second special case of MEMBER is defined by restricting the form of
P, Q1,"’,Qs.

MEMBER(2).
Input: Polynomials Y- M, Y1 M1," ", Y Ms [X,. ., X,] where

Y, Y1,..., Y {X,..., Xn} and M1,’", Ms are monomials.
Question: Is Y-M Y1 M,. ., Ys M)?

Our results are the following two theorems.
THEOREM 1. MEMBER (1) is NP-hard.
THEOREM 2. MEMBER (2) is NP-hard.
Theorems 1 and 2 are proved by making use of a well-known connection between

the membership problem for polynomial ideals and the uniform word problem for
commutative semigroups which we briefly sketch here. For more details the reader is
referred to [5] or [12].

For a finite set X let X denote the free commutative monoid generated by X.
An element WX has the form W=X,...X, where X={X1,...,X} and
el, en N.

Let XxX be a finite set. Define the relation - as follows. For W, W’
X, W-W’ if there is (U1, V1) such that W= UU1 and W’= UV1 for some
U X. Let q denote the symmetric closure of -. Then
W1 q W2 qH...H W, is called a derivation. -= denotes the reflexive and
transitive closure of . Obviously, --- is a congruence relation. The semigroup
presented by is the factor semigroup X/=_. is also called a defining relation
system. An element of is called a defining relation.

The uniform word problem for commutative semigroups, denoted by UWP, is
defined as follows.

UWP.
Input: A set { U1, Vl)," ", Us, V)}

_
X x X and two words W, W’ X.

Question: Is W-= W’?
The connection between MEMBER and UWP is expressed in the following.
FACT 2.1. W=W’iff W-W’(U-V,".,Us-
Proof See [5] or [12]. l-]

Remark 2.2. In 12] the reader can find a combinatorial proof of the above fact,
whereas [5] contains an algebraic one. Notice that in [5] the proof is carried out for
ideals with an arbitrary commutative ring (with 1) as coefficient ring. Therefore,

The reader is referred to [7] for complexity-theoretic notions.

MEMBERSHIP PROBLEM FOR TWO SUBCLASSES OF IDEALS 583

Theorems 1 and 2 are valid even when D is replaced by any commutative ring (with
1). On the other hand, several degree bound results for polynomial ideal problems
require that the coefficient ring be a field satisfying certain conditions (cf. e.g. [14]).
To simplify our discussions we choose, as in 12], as coefficient field.

Using this above equivalence between MEMBER and UWP, we prove Theorem
1 and Theorem 2 by constructing two log-space reductions from the satisfiability
problem, which is well known to be NP-hard (cf. [7]), to MEMBER (1) and MEM-
BER (2), respectively.

Remark 2.3. We need to define the size of an input instance. We encode the inputs
of our problems in a natural way. According to [12], the coefficients and exponents
are encoded in binary notation without leading zeros. W6 will see that Theorem 1
depends on this encoding, whereas Theorem 2 holds even when the exponents are
encoded in unary notation.

3. Proof of Theorem 1. Let SAT denote the satisfiability problem for Boolean
formulas in conjunctive normal form. We construct a log-space reduction of SAT to
MEMBER (1).

We reduce SAT to UWP so that the corresponding instance of UWP has only
four generating symbols. This instance of UWP, formulated as an instance of MEM-
BER, is an instance of MEMBER (1).

Since {Xl,... X4}t is isomorphic to N4, we may illustrate the idea of the
construction geometrically in the lattice N4, and elements of {X1, , X4} are regarded
as points in N. A defining relation is then a pair of points in N4.

Let F E1 ^"’^ Em be a Boolean formula in conjunctive normal form, where
{yl, , y,} is the set of Boolean variables occurring in F and El, , E, are clauses
of literals.2

Given F we want to construct a defining relation system

_
4X]4 and two

points P, P’ M4 such that F is satisfiable iff P-= P’. Furthermore, the reduction
should be computable on a log-space-bounded Turing machine.

Remark 3.1. The following constructions are technically quite complicated. This
is so, because is a symmetric relation. Note that the reduction to the word problem
for commutative semi-Thue systems (instead of commutative Thue systems or
equivalently commutative semigroups) is quite straightforward.

We first introduce some notation. Let b be an integer such that

b 2 [lg2(n+l)].

(The choice of b will be clear later.)
For every literal z {yl,. ., y,, Yl," ",fi} define

1 if z occurs in
v(z) :=

0 otherwise,

where k 1,. ., m. (v(z) encodes the occurrence of z in E.) To encode the occurrence
of z in F define

w(z) := Z v(z) b.
k=l

(To see how the encoding works, the reader may find it helpful to write out w(z) and

We assume w.l.o.g, that no variable and its negation occur simultaneously in a clause, since otherwise
such a clause can be eliminated.

584 DUNG T. HUYNH

other integers occurring in the following constructions in b-ary notation. Notice that
the integers do not have the b terms. We do so for notational convenience only. When
referring to a bi-term of some b-ary integer, we mean i> 0.)

In the following we give the construction of the finite set of defining relations_
M4 x M4. The construction consists oftwo parts. Part I has two finite sets of defining

relations" the second set is used to derive a point in M4 which represents a "nondeter-
ministic" selection of Boolean values for the variables Yl,"" ", Y, (such information
can be obtained when the second component of this point is written in b-ary notation),
whereas the first set is used to select nondeterministically integer values for certain
"normalization". These two nondeterministic selections are represented by a point in
M4, say P", that is derived from P by applying the defining relations in the first set
and then those in the second one.

Part 2 of the construction provides two finite sets of defining relations" the first
set corresponds to the second set of Part 1 and the second set corresponds to the first
set of Part 1. These are used to verify whether the selection of Boolean values for
y,,..., y, by applying relations in Part 1 provides an assignment that satisfies the
formula F. Indeed, we will see that P" (derived from P by using defining relations
from Part 1) represents an assignment that satisfies F iff P" derives P’ using defining
relations from Part 2. (Figures 1-4 show the effects of the defining relations.)

We need some abbreviations.

a:= bk,
k=l

dk, := b(k-1)n+(J+l),
C := hm"+i 1

k=l,...,m, j-0,...,n-1,

(The choice of these constants will be clear later.)
Part 1 of the construction. This part consists of two steps. As described above, the

idea is as follows. Let P denote a point in M4 to be defined later. We will construct
two finite sets of defining relations, in (3.1) and (3.2) respectively, such that a derivation
starting at P that applies defining, relations in (3.1) and (3.2) successively will reach
a point (P") that represents a selection of Boolean values for Yl,"’, Y, (obtained
from (3.2)) and a selection of an m-tuple of integers in {0,. ., n- 1} (obtained from
(3.1)). These two selections are represented in the second component of P". (Note
that the construction is done in such a way that all the points congruent to P are
incomparable,a

In the following we will use bi-terms, 1<-i<-_ mn, to encode a selection of an
m-tuple of integers in {0,..., n- 1}, and b-terms, mn / 1 <-_i<-_ mn + 2n, to encode a
selection of Boolean values for Yl,""", Y,.

Let max be the integer

and max’ be the integer

2n mn+2n

max := dk,j + , ci b
l<=k<--m i=1 j=l

O<=j<_n-1

max’:=na= E nbk.
k=l

We define the partial order -< on]4 componentwise.

MEMBERSHIP PROBLEM FOR TWO SUBCLASSES OF IDEALS 585

Let P be the point P (max, 0, max’, 0)E4 and consider the line

L:= {(p, q, max’, 0) E 41p + q =max}.

We construct defining relations that are applicable at selected points on L. Further-
more, when projected on the first two components, the line that connects two points
of a defining relation is parallel to L. (cf. Figs. 1-4).

Step 1 of Part 1 (cf. Fig. 1).
For all k 1,. , m and j 0,. , n- 1 define the relations"

(3.1) ((max --Pk, qk, max’, 0), (max --Pk dk,j, qk + dk.j, max’, 0)),

where
k-1 k-1 k-1 k-1

Pk d,n-1, qk-- d,o, i.e. pk btn and qk’- b(l-)n+l.
/=1 /=1 /=1 /=1

Remark 3.2. (1) Notice that for a fixed k, the defining relations defined for
j 0,..., n- 1 have max-pk, qk in the first and second components. Therefore, on
L, the points that can derive another one by applying one of these defining relations
must have first component >- max pk and second component _>- qk (cf. Fig. 1).

p

max

max P2

max-p,

all,0

max- (d3 o+ d2._, + d ._,)

i-- --max- (d3 ,+d=._,+d,._,)

q q max q

FIG. 1. Illustration of (3.1) for k 3.

(2) Consider a derivation starting at P that applies for k 1,..., m a defining
relation defined by jk, O<--jk =< n- 1, successively. Then the second component of the
final point in this derivation has the b-ary representation

, dk, , bk-’"++l
k=l k=l

(This corresponds to a nondeterministic selection of the m-tuple (j, j2, ",j,), which

586 DUNG T. HUYNH

will be used in Part 2 to verify that each of the rn clauses in F is satisfied. The values
Pk and qk ensure that exactly 1 value jk is selected for each k.)

Step 2 of Part 1 (cf. Fig. 2). Let low, high denote the integers

low:= Z dk,o Z bk-)"+l,
k=l k=l

high:= d k,,,-1 b k’.
k=l k=l

max

max P3

Ca q- C

\N,,max (high + c4 + c2)

low + c + c3 + c

.,Nmax (high + c, + c4 + c)

max (high + c6 + c4 + G)

q max q

FIG. 2. Illustration of (3.2) for i= 3.

For 1,. ., n define the following defining relations:

(3.2) ((max -Pi, qi, max’, 0), (max -Pi- c2i_, q + c2-, max’, 0)),

where

i--1 i--1

p high + , 2j bkn + Z b""+2,
j=l k=l j=l

i--1 i--1

q low+ c2j-1 bk-1)"+1 + bmn+(2j-1),
j=l k=l j=l

and {0, 1}.
Remark 3.3. The idea of construction (3.2) is similar to the one in the previous

construction. Consider the derivation in Remark 3.2 (2). If we continue that derivation
by applying successively for i= 1,. ., n, one of the 2 defining relations defined for i,
say the one that corresponds to {0, 1}, then the second component of the final

MEMBERSHIP PROBLEM FOR TWO SUBCLASSES OF IDEALS 587

point, denoted by P", has the b-ary representation

Y. dk.jk+ Y C2,-, Y b(-)"+(jk+)+ b"+(:’+’),
k=l i=1 k=l i=1

whose second summand represents a selection of Boolean values for y,. , y,. These
Boolean values are specified by 8,. ., 8, e {0, 1}.

Part 2 of the constmction. This pa consists of 2 steps corresponding to the two
steps of pa 1. idea is as follows. Consider b-ary integers of the form sb +...+
sb. Let a (a,. ., a,) be an assignment that satisfies Then

w(yT’) eb+ + eb
i=1

has the propey that 1 ek n for all k 1, , m, where yO := and y := y. If we
add to the above number, for each k 1,. , m, the number (n ek)b k, then we obtain
the number nb+ + nb= n.a. In other words, a is an assignment that satisfies F
iff there is an m-tuple (j,... ,j) of integers in {0,..., n- 1} such that

(.) w(y’)+ jkbk= nbk=na.
i=1 k=l k=l

From Remarks 3.2 (2) and 3.3, we have seen that using the defining relations in
(3.1) and (3.2), a derivation staing at P has a final point whose second component,
written in b-ary notation, represents a selection of an assignment a and a selection of
an m-tuple (j,... ,j). erefore, in Pa 2 of the construction we define defining
relations that check whether (.) is fulfilled, i.e., whether a is an assignment that satisfies
F. This will be done using the last two components.

The defining relations in this pa are constructed so that the point

P’ (0, max, 0, max’) 4

is congruent to P iff F is satisfiable.
Step 1 of Part 2 (of. Fig. 3). For i= n, n-1,..., 1 dfine the defining relations

for 8 0, 1"

(3.3)

where

((max-pi,, qi,, r,s, 0), (max-p, q, 0, r,s))

2n i--1

pi, high + c + c2- + Y’. c2,
j----2i+l j=l

2n i--1

qi, low+ cj "" C2i_ " C2j--1,
j=2i+l j=l

r,, w(y),
2n i--I

p, p,, + c2,-(-) 2 bk + Y b’"/ + Y. b’"/2,
k=l j=2i j=l

2. i-1

qi qi,s + CEi-(-)= b(k-)’+ + b ’’"+j + b’’"+-.
k=l j=2i j=l

Remark 3.4. Consider P" defined in Remark 3.3. P" represents the selection of
Boolean values , , 8, e {0, 1}. If we apply for each n, n 1,. , 1, the defining
relation in (3.3) that corresponds to successively, starting at P", then we reach a

588 DUNG T. HUYNH

max

max (high + c5 + c, + c2)

C5

q3, q3,0 q3

II
low + c5 + c. + c, low + c6 + c3 + c, low + c6 + c + c+ c,

max (high + c6 + c+ c, + c2)

max q

FIG. 3. Illustration of (3.3).

final point whose second component has bi-terms with coefficients 1 for all i=
nm + 1, , mn + 2n.

Step 2 of Part 2 (cf. Fig. 4). For k m, m 1, , 1 and j n 1,. , 0 define
the defining relations"

(3.4) ((max--pk,j, Ok,j, rk,j, 0), (max--pk, qk, 0, rk,j))

where

2n n--1 k-1

Pk,j Cj d- dl, q- dk,j d- dl,n-1,
j=l /=k+l s=0 /=1

2n n-1 k-1

qk,j Cj "+" kl, + dk,j + , dl,o,
j=l /=k+l s=O /=1

rk,j=j’bk,
n--1 k-1 2n

Pk Pk, + dk, bIn+ b(l-1)n+j + Cj,
s#l 1=1 l=kj=l j=l
s--O

n-1 k-1 2n

qk q,+ d,s= ., b(-"++ b(-"++ c.
sj I=0 l=k j=l j=l
s=O

Remark 3.5. Consider a continuation of the derivation in Remark 3.4 by applying
the defining relation in (3.4) that corresponds to j for each k= m, m-l,..., 1

MEMBERSHIP PROBLEM FOR TWO SUBCLASSES OF IDEALS 589

max

max Pk,O

FIG. 4. Illustration of (3.4).

max q

successively. Then the second component of the final point has the following b-ary
representation:

mn+2n

bi max.
i=l

Observe that the above construction can be implemented on a log-space bounded
Turing machine. We now proceed to prove the correctness of our construction.

Correctness of construction. Let denote the set of relations constructed in (3.1),
(3.2), (3.3) and (3.4). Further, as defined above, let

P (max, 0, max’, 0),

P’ (0, max, O, max’).

We want to show that

P-- P’ if[F is satisfiable.

LEMMA 3.1. IfF is satisfiable, then P P’.
Proof Let (tl,""" n)E {0, 1}" be an assignment for y,..., y, that satisfies F.

Then we have

w(y’)= elbl+ ...+erabm
i=1

590 DUNG T. HUYNH

so that ek => 1 for all k 1,. , m. Furthermore, since no variable and its negation can
occur simultaneously in a clause, we have that 1<_-ek <= n for all k 1,..., m. Let
jk ’-" rl- ek for all k 1,..., m. Then it holds that

Ao

w(y’) + Z Jkbk Z nbk na max’.
i=1 k=l k=l

Consider the derivation that starts at P and applies successively
For each k= 1,..., m, the defining relation in (3.1) that corresponds to

For each 1,. ., n, the defining relation in (3.2) that corresponds to .
For each n, n- 1, , 1, the defining relation in (3.3) that corresponds to
For each k m, m-1,..., 1, the defining relation in (3.4) that corresponds

to jk.
By Remarks 3.2 (2), (3.3)-(3.5), the final point of this derivation is P’. Thus

P -- P’. This completes the proof of Lemma 3.1. [3

We proceed to show the converse of Lemma 3.1. Because = is symmetric, the
proof of the converse of Lemma 3.1 needs some arguments.

First observe that the projection of / onto the first and second coordinates is a
set of relations in [2)<N2 which are parallel to the line {(p, q)NEIp+ q max}.

We divide "half" of the line L, defined above as

L {(p, q, max’, 0) 41p + q max},

into "segments" So, S,. , Sin, Sin+l, Sm+n as follows.
For k=O, , m"

Sk {(p, q, max’, O) e [IP + q max, qk <- q <= Pk},
where Pk, qk, as in (3.1), are defined by

k k

Pk , d t,,-, qk dt,o.
/=1 /=1

For i= 1, , n"

Sm+ (p, q, max’, 0) 41p + q max, qi -<_ q -< p},

where p, q, as in (3.2), are defined by

i--1 i--1

p high + c, q low+ c_.
j= j=

Further, define the following "segments"

by:
Win+,(= Sin+.), W,.+,_,’’ ", W,+, Win,’", Wo

For n, n-l, , 1"

Win+i_ ={(p, q, r, s)s4lp+q=max, r+ s max’, q<-q<-_p}

where q, p, as defined in (3.3), are"

2n i--1

p high+ cj + Z C2j,
j=2i j=l

2n i--1

qi low + c + Y’. c-l.
j=2i j=l

MEMBERSHIP PROBLEM FOR TWO SUBCLASSES OF IDEALS 591

For k= m, m-l,. , 1"

Wk-1 { P, q, r, S) N41 p + q max, r + s max’, qk <- q <---- Pk

where qk, Pk, as defined in (3.4), are:

2n n--1 k-I

X X X X
j=l l=k s=0 I=1

2n n-1 k-1

qk Cj + dr,s+ dt,o.
j=l l=k s=O 1=1

FACT 3.2. (1) For k 1,. , m, a point in Sk-t derives another point in Sk in one
step only if exactly one of the relations in (3.1) is applied.

(2) A similar statement as (1) holdsfor S,,+_, Sm+, 1 <- <- n, where the correspond-
ing relation is in (3.2).

(3) A similar statement as (1) holds for W,,++I, W+i, 0--< 1 _-< n- 1, where the
corresponding relation is in (3.3).

(4) A similar statement as (1) holds for Wk+I, Wk, 0 <- k <- m- 1, where the corre-
sponding relation is in (3.4).

Proof. This is clear from the construction of (cf. Remark 3.2 (1)).
We introduce some abbreviations. Consider a derivation starting at P. Such a

derivation is said to cross a segment among So, , S,,+n, W,,+n_, , Wo if it contains
a point that belongs to that segment. The segment W,,+,(= S,,+,) is called the critical
segment.

LEMMA 3.3. Let Q be a point in Wo. If P =- Q, then there is a derivation from P
to Q that crosses each segment in So,’", S,,,+,, W,.+,_, , Wo exactly once.

Proof. Observe that in a derivation for P --- Q, a subderivation from a point in
St to a point in Si+k and back to a point in S without crossing the critical segment
must, by Fact 3.2 (1), (2) and the definition of defining relations in (3.1), (3.2), be a
cycle. The same holds for a subderivation from a point in W/+k to a point in W and
back to a point in W+k.

Now consider a derivation D for P-- Q. We may assume that D does not
contain cycles within So," ", S+n or within W,,+,, ., Wo. First observe that from
the construction of , it follows that D must cross every segment. Assume that D
cross some segment more than once. Since D does not contain cycles within
So, , S,,+, or within W,,+,, , Wo, it must be the case that D, starting at P, crosses
the segments in the following order: So, S,...,S,. .,S,,+,= W+n,
W,,+,_t, , Wk, Wk+," , W,,+, S,,+,, ", S for some i, k < m + n. By the above
discussion, the subderivation of D obtained when D crosses S,...,S,,+,=
W,,+n,. , Wk, Wk+," ", S,,+, W,,+,, , Si, contains a cycle within
W,,+I," ", Wo: A contradiction to our assumption that D does not contain cycles
within So,’", S,,+, or within W,,+,,. , Wo. Thus D crosses each segment exactly
once. This completes the proof of Lemma 3.3.

We now show the converse of Lemma 3.1.
LEMMA 3.4. If P =- P’, then F is satisfiable.
Proof. From Lemma 3.2, it follows that there is a derivation from P to P’ which

crosses each segment exactly once. Thus there is a unique point P" in the critical
segment such that there is a derivation of length 2(m / n) from P to P’ that crosses
the critical segment in P".

592 DUNG T. HUYNH

Let the second entry of P" be

_, dk.jk + C2,-,,
k=l i=1

where i {0, 1} and jk {0, 1,. ., n 1}.
Since the fourth entries of P" and P’ are 0 and n.a, respectively, and jk =< n- 1, it

follows that

w(y’)= Y eb
i=1 k=l

with ek >---- 1 for all k 1, , m.
Thus the assignment (1,. ", n) satisfies E
From Lemmas 3.1 and 3.4, the correctness of the construction follows. This

completes the proof of Theorem 1.
Remark 3.5. The reader should have noticed that the bi-terms of the integers in

the first and second components, that occur in the construction, have coefficients 0 or
1. Therefore, the basis b for these integers can be chosen to be 2.

Open question. Is the membership problem for polynomial ideals still NP-hard,
when the number of variables is bounded by 3 or 2?

4. Proof of Theorem 2. Again we construct a log-space reduction from SAT to
MEMBER (2). The idea of the construction is similar to the previous one.

As in the previous proof let F El ^. ^ Em be a Boolean formula in conjunctive
normal form, where {Yl,"" ", Yn} is the set of Boolean variables occurring in F and
E,. ., E,, are clauses of literals.

We construct an instance of UWP, denoted by tr(F), as follows, tr(F) contains
the symbols S, Yl,o, Y,I,"" ", Y,,o, Y,,I, B,..., B,, C,..., Cm-1, DI.t,,’’’, D,,,,,
U1, U,,, T1, T,,, VI, V,,,, Z1, Z,,, where O <- lk <- n l for k l, m.

Again let Vk(Z) {0, 1} encode the occurrence of the literal z in Ek. The occurrence
of z in F is encoded by

3,(z) T’(z)’’ Tm,(z) V-’(z)" V-,(z).

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

The set of defining relations in I(F) consists of:

(S, YI,B1), 8 {0, 1},

(Bi, Y,+,B,+), te{0,1}, i=l,...,n-1,

(B,, DI,CI), 0<-/l<_-n-1,

(Ck, Dk+I,Ik/Ck+) for k-1,...,m-3, O<--lk+l<--n--1,

(Cm-2, Dm-l,i,._.Dm.l,.), 0 <-- 1,_, 1,, <-- n- 1,

(Y,, Uiy(y)) for i= 1,..., n,

(Dk,, TV,-Zk) fork=l,...,m, O<=lk<=n--1.

Let denote the set of the above relations. We prove:
LEMMA 4.1. S UI U, T’ T, V’ V Z Zm if F is satisfiable.
Proofi Let c=(a,..., c,) be an assignment such that F(a)= 1. From the

relations in (4.1) and (4.2) we have

MEMBERSHIP PROBLEM FOR TWO SUBCLASSES OF IDEALS 593

From the relations in (4.6) we have

Y1, tXl Y,,. --5 UI’" U, /(y,) ,(y-)

-= U,... U, T,... Tr V(,... Vf,,
where l_-<e_-<n fork=l,...,m, since F(a)=l.

Let I := n e, k I, , m. Then 0 I _-< n I. From the relations in (4.3), (4.4)
and (4.5) we have

B. Dl,I, D,n,l..

Now, by choosing appropriate relations in (4.7) we have

DI,,,...D,,.,. =-- Eli’’’" rl v,... Vgm Z,’’" Z

with f +g n for all k 1, , m. Thus we have

This completes the proof of Lemma 4.1.
The proof of the converse of Lemma 4.1 needs some arguments. Let E denote the

set of symbols in (r(F). We define a partial order =< on E by considering exponent
vectors of words in E as usual.

Let I{1,..., n} and K_ {1,..., m}. A word W in E is called an (I, K)-word
if for each ! exactly one Yi,, (0, 1, occurs in W and for each k K exactly one
Dk,k, 0 <= lk -< n 1, occurs in W, and no other symbol occurs in W. A word WeE is
called terminal word if it contains only symbols in {U1,’", U,, T1,’", T,,,
V,..., V,,, Z,..., Z,,}. Further, a derivation step in which the left-hand side of
some relation in (4.1)-(4.7) is replaced by the right-hand side is called an expansion.
Otherwise, it is called a contraction.

LEMMA 4.2. Let I { 1,. ., n}, K { 1,. m}. Let W, W’2 be two (I, K)-words.
Further let W1 and W2 be two terminal words such that there is a derivation from W to
W, 1, 2, which consists ofonly expansions. Then either W W or they are incompar-
able w.r.t. <-_.

Proof Follows immediately from the construction of relations in (4.6) and
(4.7).

LEMMA 4.3. If S -- W, W= UI.*, U T’... T, V’... V Z1 Zm, then
there is a derivation from S to W which consists of only expansions.

Proof. Consider a derivation D from S to W. If D has some contractions, then
there are some corresponding expansions. Using Lemma 2 this subderivation consisting
of contractions followed by expansions can be deleted to shorten D. We omit the
details.

LEMMA 4.4. Let W be as in Lemma 4.3. Then S =- W implies that F is satisfiable.
Proof. By Lemma 4.3 there is a derivation consisting of only expansions from S

to W. It follows that there is an (I, K)-word W’ with I {1,. ., n}, K {1,. ., m}
such that there is a derivation consisting of only expansions leading from W’ to W.
From W’ an assignment c for {Yl,’",Y,} can be obtained and F(a)= 1. This
completes the proof of Lemma 4.4.

From Lemmas 4.1 and 4.4 the correctness of our reduction follows. On the other
hand, our reduction can be implemented on a log-space bounded Turing machine.
This observation completes the proof of Theorem 2.

Remark 4.4. Notice that MEMBER (2) is still NP-hard, even when the exponents
of polynomials are encoded in unary.

594 DUNG T. HUYNH

5. Concluding remarks. In this paper we have considered the complexity of MEM-
BER (1) and MEMBER (2). Both problems have been shown to be NP-hard. As in
[4], [12], our proofs employ the connection between the uniform word problem for
commutative semigroups and the membership problem for polynomial ideals that has
been briefly presented in 2.

Concerning MEMBER (1), it is unlikely that a reduction that employs the connec-
tion between commutative semigroups and polynomial ideals can be constructed so
that an essentially better lower bound for MEMBER (1) can be obtained. This is so,
because the word problem for commutative semigroups with a bounded number of
generating symbols is in symmetric linear space [8], [11], and hence in polynomial
space. (With the same encoding of input instances as in this paper.) On the other hand,
the subclass of polynomial ideals in MEMBER (2) represents a very restricted class
of polynomial ideals when we consider the manifolds defined by polynomials of the
form Y-M, where Y is a variable and M is a monomial. Although we do not have
an upper bound for MEMBER (2) that is not much higher than NP, it seems unlikely
that an essentially better lower bound for MEMBER (2) can be obtained. The evidence
for this is that the context independence of the defining relations restricts their
"simulation power" considerably.

Acknowledgments. The author wishes to thank the referees for many valuable
suggestions for improving the presentation of this paper.

REFERENCES

1] B. BUCHaERGER, Ein Algorithmisches Kriterium fiir die L6sbarkeit eines Algebraischen Gleichungssys-
terns, Aequationes Mathematicae, 4 (1970), pp. 374-383.

[2] ., Gr6bner bases: an algorithmic method in polynomial ideal theory, to appear in Recent Trends
in Multidimensional Systems Theory, ed. N. K. Bose.

[3] ., A note on the complexity of constructing Gr6bner-bases, Proc. EUROCAL’83, Lecture Notes in

Computer Science 162, Springer-Verlag, New York, 1983, pp. 137-145.
[4] E. CARDOZA, R. LIPTON AND A. MEYER, Exponential space complete problems for Petri nets and

commutative semigroups, Proc. 8th STOC, 1976, pp. 50-54.
[5] S. EILENBERG AND M. SCHOTZENBERGER, Rational sets in commutative monoids, J. Algebra, 13

(1969), pp. 173-191.
[6] G. HERMANN, Die Frage der Endlich Vielen Schritten in der Theorie der Polynomialideale, Math. Ann.,

95 (1926), pp. 736-788.
[7] J. HOPCROFT AND J. ULLMAN, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, Reading, MA, 1979.
[8] D. HUYNH, Complexity ofthe wordproblemfor commutative semigroups offixed dimension, unpublished

manuscript, 1983.
[9],A superexponential lower boundfor Gr6bner bases and Church-Rosser commutative Thue systems,

unpublished manuscript, 1984.
10] D. LAZARD, Gr6bner bases, Gaussian elimination and resolution ofsystems ofalgebraic equations, Proc.

EUROCAL ’83, Lecture Notes in Computer Science 162, Springer-Vedag, New York, 1983, pp.
146-156.

11] H. LEWIS AND C. PAPADIMITRIOU, Symmetric space-bounded computation, Theoret. Comput. Sci., 19
(1982), pp. 161-187.

[12] E. MAYR AND A. MEYER, The complexity of the word problems for commutative semigroups and
polynomial ideals, Adv. Math., 46 (1982), pp. 305-329.

[13] M. MOLLER AND F. MORA, Upper and lower bounds for the degree of Gribner bases, Proc.
EUROSAM’84, Lecture Notes in Computer Science 174, Spdnger-Verlag, New York, 1984.

[14] A. SEIDENaERG, Constructions in algebra, Trans. AMS, 197 (1974), pp. 273-313.
15] F. WINKLER, On the complexity of the Gr6bner-bases algorithm over K[x, y, z], Proc. EUROSAM’84,

Lecture Notes in Computer Science 174, Springer-Verlag, New York, 1984, pp. 184-194.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
021

NONCOMMUTATIVE BILINEAR ALGORITHMS FOR
3 x 3 MATRIX MULTIPLICATION*

RODNEY W. JOHNSON," AND AILEEN M. McLOUGHLINq:

Abstract. New noncommutative bilinear algorithths for 3 x 3 matrix multiplication are presented. These
have the same complexity, 23 essential multiplications, as the one discovered by Laderman, but are
inequivalent to it. Equivalence here refers to a certain group oftransformations all ofwhich map noncommuta-
tive bilinear matrix-multiplication algorithms into other such algorithms; "inequivalent" means not related
by a transformation in the group. This group has been studied by de Groote, who has shown for the case
of 2 x 2 matrix multiplication with 7 essential multiplications that all such algorithms are equivalent to
Strassen’s. The new algorithms, by contrast, include infinitely many pairwise inequivalent algorithms. The
computer search that led to the new algorithms is described.

Key words, matrix multiplication, computational complexity, Strassen’s algorithm

1. Introduction. We here present new noncommutative bilinear algorithms for
3 x3 matrix multiplication over the field of rational numbers--that is, we specify
rational coefficients A, B’l, C rm. such that, with N 3, the equation

(1) E X.pYp . AoXo , Bkl Ykl Gin.
p=l r=l i,j=l k,l=l

is an identity for N x N matrices X and Y.
The problem of finding such algorithms originally received attention because each

such algorithm yields an upper bound O(na) on the number of arithmetic operations
needed for multiplication of n x n matrices, where a loggy M. Strassen’s algorithm
[1] (N= 2, M =7) had been shown to be optimal for N =2 [2], [3], and it seemed
that one avenue to reducing the exponent a was to find algorithms for other small
values of N and sufficiently small M, such as N- 3, M -21. Recent reductions in the
exponent by Pan [4], [5], [6], Bini et al. [7], [8], Sch6nhage [9], and Coppersmith
and Winograd [10] have been achieved by rather different means with the help of
several new ideas; for N > 3, it remains an interesting unsolved problem to determine
the minimum complexity of noncommutative bilinear algorithms for N x N matrix
multiplication.

Laderman, in 11], gave an algorithm with M 23, the best value known for N 3
with rational coefficients. (Unpublished work of Sch6nhage’s 12] indicates that M 22
is achievable with complex coefficients.) The algorithms we present here have the same
complexity, M -23 essential multiplications, as Laderman’s but are inequivalent to it
in the following sense.

Several sorts of transformations on families of coefficients Ao, Bk, Cm,, have the
property of mapping any (noncommutative, bilinear) algorithm for N x N matrix
multiplication again .into such an algorithm. We describe these using the notation A
for the N x N matrix with elements A, with similar definitions for B and C r. The
transformations include replacement of these coefficient matrices A, B r, C by:

(2) Ar(r), B(r) C "rr(r)

* Received by the editors October 3, 1984.
f Naval Research Laboratory, Washington, DC 20375.
t Department of Computer Science, Rensselaer Polytechnic Institute, Troy, New York 12180.

595

596 RODNEY W. JOHNSON AND AILEEN M. McLOUGHLIN

for some permutation r of the indices 1,. ., M;
(3) C, At, B

(cyclic permutation);

(4) C t, B t, Ar,
where the tilde denotes transposition;

(5) atAt, btB t, ctC t,

where at, bt, ct are rational numbers such that atbtct 1 for r 1,. ", M; and

(6) PAtQ-1, QBtR-1, RCrP-1 (6)

where P, Q, R are invertible N x N matrices. Two algorithms will be called equivalent
if the coefficients of one are mapped to those of the other by a sequence of transforma-
tions of the forms (2)-(6); otherwise they are inequivalent.

De Groote [13], 14], [15] has studied the group generated by such transformations
and has shown 14] that Strassen’s algorithm is essentially unique" any algorithm with
N 2 and M 7 is equivalent to Strassen’s. (De Groote worked over an arbitrary field
K, not assumed to be the rational numbers. Pan had stated the result without proof
in 16] for the case of the rational numbers. Hopcroft and Musinski 17] had treated
the case of the integers (mod 2).)

The algorithms presented here show that, in contrast with Strassen’s algorithm,
Laderman’s is not essentially unique; in fact they form a 3-parameter family and a
1-parameter family that contain infinitely many pairwise inequivalent algorithms with
N 3 and M 23. The coefficients of the first family of algorithms are shown in Table
1; the 3 parameters are x, y, and z. The coefficients for the second family are in Table
2; the parameter is x. Only for 5 values of r in each table do the entries actually depend
on the parameters. We discovered the new algorithms with the help of a computer
search, which we describe in the next section. In the third section we discuss the
question of the algorithms’ inequivalence.

2. Search procedure. A necessary and sufficient condition for (1) to hold identically
in X and Y is that the coefficients satisfy

M

(7) ABrktC2. nijklm.
r=l

Solutions of (7) correspond to zeros of

(8) . AoBk Crmn tni jklm
i,j,k,l,m,n=l r=l

which is a nonnegative function of the coefficients. We sought solutions of (7) by trying
to minimize (8). Although (8) is a sixth-degree polynomial, it is only quadratic in the

A when the other coefficients are held fixed; likewise it is quadratic as a function of
the B,l alone or of the C,, alone. Since the minimum of a quadratic polynomial can
be obtained from the solution of a set of linear equations, it is straightforward to
minimize (8) with respect to any one of the three sets of coefficients separately. We
wrote a program that assigns random starting values to the matrices A and B and,
holding these fixed, determines values for the C that minimize (8). Next it determines
new values for the B that minimize (8) with the A and C held fixed. It then minimizes
with respect to the A with the new B and the C held fixed, minimizes with respect

BILINEAR ALGORITHMS FOR MATRIX MULTIPLICATION 597

10

11

12

13

14

15

16

0
0

0

0

-1
1/3

0
0
0

0
0
1/3

0
0
0

0
0
0

-1
0

0
0
0

0
0
0

0
-1
0

0
0

-1/3

0
-1/3
0

0

0

0
0
0

0

TABLE
Coecients for three-parameter algorithm family.

0
0
0

0

0

-1

1/(l+xy)
0
0

-1

0
0
0

0
0

-1

0
0
0

0
0
0

1/(l+xy)
0
0

0
0
0

0
0

-1

0
0
0

0
0
0

0
0
0

0
0
0

-1
0
0

0
-1
0

-1

0
0
0

0
0
0

-1
-1

0
0

0
0
0

0
0

0
0
0

0

0
0

-2/3

0
-1
0

-1/2
3/2
3/2

0
-1
-1

I

0 0
0 0 0
0 0 0

0 0 0
0

0 0 0

0 -1
0 0 0
0 0 0

0 0 0
0 x

0 0 0

0 -1
-1 -1 0
0 0 0

-1
-2/3
-1

0

-1
1/3
0

-1/3
-2/3
-1

1/2
0
1/2

-1/3
1/3
0

-1
0

0
1/2
0

-1
0
0

0
-1
0

1/3
0
0

-1
0
0

-1/2
0

-1/2

1/3
0
0

C

0 0
0 0 0
0 0 0

0 0 0
0

0 0 0

0 0 0
0 0

0 0 0

z -(I-y)(1- z)
-1 -z (1-y)(1-z)
y yz -2(I-y)(1- z)

0 0
0 -1

0 0 2

0 0
0 -1 0
3/2 3/2 0

0 0 2
0 0 -2
0 0 2

0 0 0
-1 0 0
-1 0 0

0
-1 -1 0

0

XZ

--XZ

--Z

3/2
-3/2

0

0
0
0

3/2
-3/2

3

-1
0
0

0
0

-2

0
0
0

X

--X

-3/2
0

0
-1
0

0
-3/2

3

0
0
0

0
0

-2

0
0
0

-(1+x)(1- z)
(l+x)(1-z)

-2(1 +x)(1- z)

-1
0
0

-2

-2

0
0
0

0
0

0
0
0

-1
0
0

598 RODNEY W. JOHNSON AND AILEEN M. McLOUGHLIN

TABLE 1--continued

17

20

21

22

23

A

0 -z 0
0 0
0 0

0 0 0
0 0

0 0 0

0 -z 0
0 0
0 0 0

0 0 0
0 0 0
0 0 -1

fl 0 0
0 0 0

0 0

0 z -1
0 -1
0 0 0

0 0
0 -1 0
0 -1 0

B

0 0 0
-1 0 1/2
0 0 -1/2

-1 -1 0
0 0 0

-1 -1 0

0 0 0
0 0 -1
0 0 -1

0 0 0
0 -I -1/2
0 -1 -1/2

0 -1 -1/2
0 0 0
0 0 0

0 0 0
0 0 0
0 0 -1

0 -1
0 -1 -1
0 0 0

0 -1 -1
0
0 0 -2

0 0 0
-1 -1 0
-1 -1 0

0 -1/2 1/2
0 1/2 -1/2
0 -1

0 -1
0 -1
0 0 0

0 0 0
0 0 -2/3
0 0 -2/3

0 -1 0
0 0
0 -1 0

0 0
0 0 -1
0 0 2

to the C with the new A’ and B" held fixed, and continues thus cyclically. This results
in a decreasing sequence of values for (8); the search is considered to be successful
if these appear to be converging to 0 while the coefficients converge to finite limits.

One difficulty that proved troublesome in practice was "zeros at infinity." For
some searches, some of the coefficients seemed to be tending to infinity in such a way
that (8) was tending to zero. This phenomenon is undoubtedly due to the existence
of arbitrary-precision approximating (APA) algorithms in the sense of Bini et al. [7],
which implies that there are sequences of values for the coefficients that behave as
described. APA algorithms for 3 x 3 matrix multiplication are known to exist; indeed
SchSnhage [9] has constructed such an algorithm with M 21.

The difficulty was countered with a modification of the expression the programs
were attempting to minimize; a term

(9) e , ((A)2+(B)2+(C)2)

was added to (8). The coefficient e was adjusted by trial and error, interactively, so
that, if possible, the magnitudes of the coefficients would stay bounded or decrease at
the same time that the value of (8) was decreasing. If a suitable value for e could not
be found, new random starting values were chosen for the coefficients and the search
was begun again.

The procedure just described typically yields tables of rather arbitrary-looking
floating-point numbers as values for the coefficients and a small but nonzero positive
number, such as 10-6 as the value of (8) computed to machine precision. One would
like coefficient values that can be expressed exactly and that yield 0 as the exact value
of (8). Simple rational coefficient values are therefore desirable--that is, ratios of small

BILINEAR ALGORITHMS FOR MATRIX MULTIPLICATION 599

10

12

13

14

15

16

TABLE 2
Coefficients for one-parameter algorithm famfl

A

0 0
0 0 0
0 0 0

0 0 0
0 0
0 0 0

0 -1
0 -1 0
0 0 0

0 0 0
-1 0 -1
0 0 0

--X

0
0

0

-1/2

-1
0
0

0
-l
0

0
0

0
0
0

-1
-1

0
0

-1

--X

0
0

0
0
0

0
0
0

0
0
0

x-I

0
0
0

0

0
0
0

0
0

-1

0
0
0

l-l/x
l-l/x
l/x-I

0
0
0

x-I

0
0

-1
-1

0

0

0
0
0

0
0
1/2

0
0
0

0
0
0

0
0
0

0

0

0
0
0

-1
0
0

-1

0
0
0

B

0 0
0 0 0
0 0 0

0 0 0
-1 -1 0
0 0 0

0 0 0
0 0

0 -1

0 0 0
0 0 0

0

0 1-2/x -1
0 -1
0 -1

0 0
0 0 0

-1 -1 0

0 1-x x--1
0 -x x
0 -x x

-1 -1 0
0 0 0

0

-l
0

0
-1

0
0

-l

-1
-1
-1

0
-1
0

0
0

0

0

0
0

0
0
0

0
1/2
1/2

0
0
0

0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
-1/2
1/2

-l
0

0
0
0

0
0

0
0
0

0
-1
0

-1

0

-1
0
0

0
0
0

-1
0

0
0
0

0

0

0
0
0

-1
-1

0
0
0

1/2
-1/2

0

0
0
0

-1

0

0
0
0

0
0

-l

0
0
0

0
0
0

-1

0
0
0

0
1/2

-1/2

0
-l

0
0
0

0

-1

0
0

-1
-l

0

-1

1/2
-1/2
1/2

0
-1/2
1/2

0
0
0

-1
-1

0
0
0

600 RODNEY W. JOHNSON AND AILEEN M. McLOUGHLIN

TABLE 2--continued

17

18

19

20

21

22

23

A

0 0
0 0
0 -1 0

0 0 0
-1 0 0
0 0 0

0 0
0 0 0
0 0 0

0 -1
0 -1 0
0 0

0 0 0
0 0 0

-1 0 -1

0 -1
0 -1

-1/2 0 1/2

0 0 0
0 0 0
0 0

n

0 l-l/x 0
0 0
0 0

0 0
0 0 0

0 0
0
0

0 0
0 0

C

0 0 0 0 -1

0 0 0
0 0
0 0

0 0 0
0 0

0 -1 0

0 0
0 0 0

0

0 0 0
0 0 0
0 -1

0 -1/2 -1/2
-1 -1/2 -1/2
0 1/2 -1/2

0 0
0 0 0
0 0 0

0 0
-1 0 -1
-1 0 -1

0 0 -1/2
0 0 0
0 0 0

0 -1 -1
0
0 0

0 0 0
-1 0 -1
-1 0 -1

integers. (Ideally, one would like the coefficient values to be confined to 0 and +1, as
indeed they are for Strassen’s and Laderman’s algorithms.)

The minimization procedure is unlikely to lead to a simple rational solution of
(7), even if one exists; with any such solution, transformations (5) and (6) associate
an infinite family of equivalent solutions, most of which do not consist of simple
rational numbers. We therefore wrote procedures for performing transformations of
the forms (5) and (6). When the minimization procedure appeared to be converging
to a zero of (8), we used these procedures in an attempt to transform the solution to
a simple rational form--if possible, consisting of l’s, O’s, and -l’s. We would arbitrarily
choose, one of the coefficient matrices--for example B; we would then find values for
the matrices Q and R in (6) and the scalars a, bl, and c in (5) that would transform
B to diagonal form with l’s and O’s on the diagonal, as in Table 1. Enough freedom
remained in the choice of P, Q, R, and the scalars to permit further simplifications,
such as the transformation of A and C and the coefficients for r 2 to the form
shown in the table. When that freedom had been exhausted, the coefficients for several
values of r had attained the values shown in the table to within -I-10-3. We altered
these coefficients, replacing the approximate rational values by exact rational values
(to machine precision). For other values of r, the coefficients were not close to any
obvious simple rational values. In Table 1 these included r 4, 10, 17, 19, 22" the 5
rows of the table that show dependence on the parameters x, y, and z.

We wrote a version of the search procedure that would minimize (8) with respect
to the coefficients for selected values of r only, holding all coefficients fixed for the
remaining r. We held fixed the coefficients that we had set to rational values and found
that the search still seemed to be converging to a zero of (7). Moreover, by arbitrarily

BILINEAR ALGORITHMS FOR MATRIX MULTIPLICATION 601

perturbing some of the nonfixed coefficients, we found it possible to guide the search
so that additional coefficients tended toward rational values. We could thus simplify
additional rows of the table, replace approximate rational values by exact, and add
to the list of values of r for which the coefficients were held fixed. The 5 parameter-
dependent rows were the last to be simplified. We found that we could vary certain
of the coefficients in these rows practically at will and still obtain good numerical
solutions to (7) with the coefficients in the other rows held fixed. This observation led
to the parametrized family explicitly presented in Table 1. The same procedure, with
different random starting values for the search, led to the family shown in Table 2.

Similar, earlier computer searches for minima of (8) were undertaken by Brent
[18], Ungar [19], and Lafon [20], all of whom report successes with M =7, N=2:
computer runs for which (8) became small and appeared to be converging to 0. Except
for the e term (9), the minimization procedure we have described is basically identical
to Brent’s [18]. Brent reported apparent success with N 3, M 25, but did not try
to simplify the solution by equivalence transformations such as (6), (7). Sch6nhage
12], by admitting complex coefficients, has obtained numerical solutions (unsimplified)
of (7) with N 3, M 22.

3. Inequivalence. For comparison with Tables 1 and 2, the coefficients of Lader-
man’s algorithm are shown in Table 3.

We have claimed that none of the new algorithms is equivalent to Laderman’s
algorithm. To prove this, we point out that, except for permutations, the transformations
(2)-(6) leave the ranks of the matrices A, B, and C unchanged. Six matrices in
Table 3 (A and B3, for instance) have rank 3. But regardless of the parameters, all
the matrices in Table 1 have rank 1 or 2, and just one matrix (B23) in Table 2 has rank
3. Therefore, no combination of transformations (2)-(6) can change the coefficients
in Table 3 into those given in Table 1 or Table 2. That is, the algorithm presented in
Table 3 is not equivalent to any algorithm of the families presented in Tables 1 and 2.

Similarly, the algorithms of the family in Table 1 are inequivalent to those of
Table 2.

Next we consider whether distinct algorithms within a family are equivalent. Let
(x’, y’, z’) and (x", y", z") be distinct triples of values for the parameters in Table 1. If

(10) x’=-l/y", y’=-l/x", z’= z",

then the corresponding algorithms are equivalent by a permutation (2) that interchanges
r=4 and r= 10 together with an obvious scaling (5). Otherwise the algorithms are
inequivalent. In Table 2, distinct values x’ and x" of the parameter always correspond
to inequivalent algorithms.

The proof of these statements is entirely elementary, and too tedious to give in
full. We merely sketch the ideas involved. For definiteness, consider the family of
Table 2, and write A(x), B(x), C(x) to show the dependence of the coefficients on
the parameter.

Let x’ and x" be values ofthe parameter, and suppose the algorithm with coefficients
A(x’), B(x’), C(x’) is equivalent to that with coefficients A(x"), B(x"), C(x"); we need
to show that x’= x". For some permutation r, numbers at, b, c, and invertible matrices
P, Q, R, one of six sets of equations holds"

A(x’) aPAr)(x")Q-1
(11) B(x,)= bQB=)(x,,)R 1,

C"(x’)=c,.RC"(x")p-1,

602 RODNEY W. JOHNSON AND AILEEN M. McLOUGHLIN

10

12

A

-1 -1 0
0 -1 -1

0 0

TABLE 3
Coefficients for Laderman’s algorithm.

I

0 0 0
0 0
0 0 0

0-I 0

C A

0 0 0 0 0
0 0 13 0 0 0

0 0 0 0 0-1

0 0 0 0

I

0 0 0
0 0
0-1 0

0 0 0

0 0
0 0
0 0 0

-1 0 0
0 0 0

0 0 0
0 0
0 0 0

-1 0 0
0

0 0 0

0 0 0
0

0 0 0

0 0
0 0 0
0 0 0

-1 0 0
0 0 0

0

-1 0 0
0 0 0

0 0

0 0 0
0 0 0

0

0 -1 -1
-1 -1 0

0 0 0
0 0 0
0 0

0 0-1
0 0 0
0

0 0
0 0 0

-1 0- -i
-I 0

-I 0
0 0
0 0 0

-I 0
0 0 0
0 0 0

0 0
0 0 0
0 0 0

0-I
0 0
0 0 0

0 0
0 0-I
0 0 0

-I 0
0 0 0
0 0 0

0 0 0
0 0
0 0 0

-I 0
-I -I

-I 0

0 0 0
0 0

-I 0

0 0 14 0 0 0
0 0 0 0 0 0

0 0 0 0 0
0 0 0 15 0 0 0
0 0 0 0

0 0 0 0-1
0 16 0

0 0 0 0 0 0

0 0 0 0 0
0 17 0 0 -1

0 0 0 0 0 0

0 0 0
0 18 0

0 0 0 0

0 0 0 0
0 0 0 19 0 0 0

0 0 0 0

0 0 0 0 0
0 0 0 2O 0 0
0 0 0 0 0

0 0 0 0 0 0
0 0 0 21 0 0

0 0 0 0

0 0 0 0 0 0
0 0 0 22 0 0 0

0 0 0 0

0 0 0 0 0
0 0 0 23 0 0 0
0 0 0 0 0

0 0
0

0 0 0

0 0 0
0 0

0 0 0
0 0 0

-1 0

0 0 0
0 0

0-1

0 0 0
0 0
0 0-1

0 0 0
0 0 0

-1 0

0 0 0
0 0

0 0 0

0 0 0
0 0 0
0 0

0 0
0 0 0
0 0 0

0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0

0
0

0 0 0
0

0 0 0

0 0
0 0 0

0

0 0
0 0 0
0 0

0 0 0
0 0 0

0

0 0
0 0 0
0 0 0

0 0 0
0 0
0 0 0

0 0 0
0 0 0
0 0

0 0 0
0 0
0 0 0

0 0 0
0 0 0
0 0

or one of five similar sets obtained from these by permutations of A(x"), B(x"), C(x"),
on the right, possibly with transposition (cf. (3), (4)). The steps of the proof are to
show that (11) holds; that P, Q, and R are scalar multiples of the identity matrix; that
r(r) r for all r; and finally that x’= x".

Inspection of a tabulation of the ranks rk Ar, rk Br, rk C of the matrices in Table
2 suffices for a proof that (11) holds.

Consideration of the tabulated ranks also permits a proof, for a few particular
values of r, that r(r)= r. We obtain further information by considering inclusion
relations between row spaces or between column spaces of matrices. For instance we

BILINEAR ALGORITHMS FOR MATRIX MULTIPLICATION 603

have col C9(x’)col C22(x’), which by (11) implies col C(9)(x")_ col C(22)(x").
From a listing of such inclusion relations, we can show for a number of additional
values of r that 7r(r)= r. Now when r is such that r(r)= r and Cr(x’) Cr(x"), it
follows from (11) that the column space col Cr(x’) is an invariant subspace for R. It
is possible to identify in this way enough invariant subspaces for R to find 4 eigenvectors
of R, no 3 of which are linearly dependent. From this it follows that R is a scalar
multiple of the identity. A similar analysis shows that P and Q are likewise scalar
multiples of the identity.

It now follows from (11) that A()(x"), B()(x"), and C’(r)(x") are scalar multiples
of A’(x’), Br(x’), and Cr(x’). For all r this implies zr(r)= r. Then AS(x") is a scalar
multiple of AS(x’); it follows that x’= x".

REFERENCES

[1] V. STRASSEN, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp. 354-356.
[2] J. E. HOPCROFT AND L. R. KERR, On minimizing the number of multiplications necessary for matrix

multiplication, SIAM J. Appl. Math., 20 (1971), pp. 30-36.
[3] S. WINOGRAD, On multiplication of 2x2 matrices, Linear Algebra and Appl., 4 (1971), pp. 381-388.
[4] V. YA. PAN, Strassen’s algorithm is not optimal--trilinear technique ofaggregating, uniting and canceling

for constructingfast algorithmsfor matrix operations, Proc. 19th Annual Symposium on Foundations
of Computer Science, Oct. 1978, pp. 166-176.

[5] , Field extension and trilinear aggregating, uniting and canceling for the acceleration of matrix

multiplications, Proc. 20th Annual Symposium on Foundations of Computer Science, 1979.
[6] ., New fast algorithms for matrix operations, this Journal, 9 (1980), pp. 321-342.

[7] D. BINI, M. CAPOVANI, F. ROMANI AND G. LoTrI, O(n2"7799) complexityfor n x n approximate matrix

multiplication, Inform. Proc. Lett., 8 (1979), pp. 234-235.
[8] D. BINI, G. LOTTI AND F. ROMANI, Approximate solutionsfor the bilinearform computationalproblem,

this Journal, 9 (1980), pp. 692-697.
[9] A. SCnONHAGE, Partial and total matrix multiplication, this Journal,.10 (1981), pp. 434-455.

[10] D. COPPERSMITH AND S. WINOGRAD, On the asymptotic complexity of matrix multiplication, this
Journal, 11 (1982), pp. 472-492.

11] J. LADERMAN, A noncommutative algorithm for multiplying 3 x 3 matrices using 23 multiplications, Bull.
Amer. Math. Soc., 82 (1976), pp. 126-128.

[12] A. SCHNHAGE, private communication.
[13] H. F. DE GROOTE, On varieties of optimal algorithms for the computation of bilinear mappings. I: The

isotropy group of a bilinear mapping, Theoret. Comp. Sci., 7 (1978), pp. 1-24.

14],On varieties ofoptimal algorithmsfor the computation ofbilinear mappings. II: Optimal algorithms
for 2x2 matrix multiplication, Theoret. Comp. Sci., 7 (1978), pp. 127-148.

15],On varieties ofoptimal algorithmsfor the computation ofbilinear mappings. III: Optimal algorithms

for the computation ofxy and yx where x, ye M2(K), Theoret. Comp. Sci., 7 (1978), pp. 239-249.
16] V. YA. PAN, On schemesfor computation of the product ofmatrices and the inverse ofa matrix, Uspekhi

Mat. Nauk, 27, 5 (1972), pp. 249-250. (In Russian.)
17] J. HOPCROFT AND J. MUSlNSKI, Duality applied to the complexity of matrix multiplication and other

bilinear forms, this Journal, 2 (1973), pp. 159-173.
18] R. P. BRENT, Algorithmsfor matrix multiplication, Tech. Rep. CS 157, Computer Science Dept., Stanford

Univ., Stanford, CA, March 1970.
[19] P. UNGAR, private communication.
[20] J. C. LAFON, Ph.D. dissertation, Univ. of Grenoble.

SIAM J. COMPUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
022

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING*

FRANCINE BERMAN’, MARY ELLEN BOCK, ERIC DITTERT’, MICHAEL J. O’DONNELLf
AND DARRELL PLANK

Abstract. Hashing techniques for accessing a table without searching it are usually designed to perform
efficiently on the average over all possible contents of the table. If the table contents are known in advance,
we might be able to choose a hashing function with guaranteed efficient (worst-case) performance. Such a
technique has been called "perfect hashing" by Sprugnoli and others. In this paper, we address the question
of whether perfect hashing is feasible in principle as a general technique, or whether it must rely on special
qualities of the table contents. We approach the question by counting the number of functions which must
be searched to be sure of finding a perfect hashing function. We present upper and lower bounds on the
size of this search space, with attention to the tradeoff between the size of the search space and the size of
the hash table.

Key words, hashing, perfect hashing

1. Introduction. Often a computer program needs to accept as all or part of its
input a sequence of character strings and decide, for each string, whether that string
is a member of some finite set of known strings. The set of known strings may be
nonempty when the program starts and may change as the program receives input.
The strings, both known and otherwise, are generally referred to as keys. Testing a key
for membership in the set of known keys is called a search, adding a key to the set of
known keys is called an insertion, and removing a key from the set is a deletion.

Many different schemes have been developed to handle this computational task.
These include linear search of an unordered table, binary search of an ordered table,
B-trees, tries, various forms of string pattern matching, and hashing. The choice of
one scheme over another for a certain application generally depends on the size of
the set of known keys, and the relative numbers and order of searches, insertions, and
deletions, since each scheme is efficient in some situations, and inefficient or inappli-
cable in others.

Hashing refers to schemes that use some simple arithmetic function of a key as
the location in the table at which the key should be stored. The locations in the table
are referred to as buckets. A search for a key is performed by computing the same
function on the key to be searched for, and then comparing the key with whatever, if
anything, is currently stored in the indicated bucket. A collision occurs when two keys
to be inserted are mapped by the function to the same bucket.

In the general case in which search operations and insertion operations may be
intermingled in an arbitrary manner, collisions are inevitable, and any hashing scheme
designed to work in this case must include a method of resolving them. However, if
the insertion operations are guaranteed to precede all the search operations, then all
the keys which will ever be in the table are known in advance. In this case one might
try to find a function mapping these keys, without collisions, into a table not much
larger than the set of keys. In particular, we have the following definitions from
Sprugnoli [Spr77].

* Received by the editors July 14, 1982, and in revised form March 13, 1985. This work was supported
by the National Science Foundation under grants MCS 78-01812, MCS 80-05387, and MCS 81-01670.

f Department of Computer Sciences, Purdue University, West Lafayette, Indiana 47907., Department of Statistics, Purdue University, West Lafayette, Indiana 47907.
Bell Laboratories, Indian Hill, Illinois.

604

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING 605

DEFINITION 1.1. A hashing function is a perfect hashing function (or phf) for a
set of keys iff the function is 1-1 on that set of keys, i.e., there are no collisions on
those keys.

DEFINITION 1.2. A hashing function is a minimal phf for a set of keys if[the
function maps the keys 1-1 onto the buckets 0, 1, , k- 1, where k is the number of
keys in the set.

Thus if one has a minimal phf for a set of keys, the hash table need have only as
many entries as there are keys in the set. A nearly minimal phf is a function which
uses a table not much larger than the set of keys, where "not much larger than" might
be interpreted, for example, as "not larger than a constant factor times".

Every set of keys has, of course, several minimal phfs; the problem is that we
may not know how to compute any of them in constant time, as we would like for a
hashing function. Several articles [Spr77], [CicS0], [Jae81] recount procedures which
take as input a set of keys and try to adjust numeric parameters in an arithmetic
function in order to make it a phf for the given set of keys. Jaeschke’s work [Jae81]
is unique among these in that his method succeeds in producing a phf for every set
of keys given as input. The problem with his method is that the parameters needed to
specify the phf may grow very rapidly with the size of set of keys.

Alternate approaches to the general problem include that of Tarjan and Yao
[Tar79] which produces minimal phfs computable in O(1Ogk P) time, where P is the
size of.the universal set from which k keys are drawn. Recently, Harry Mairson [private
communication] has studied the tradeoff between program complexity and the number
of probes of a table needed to determine whether a key is in the table. Perfect hashing,
using but one probe, is at one extreme, while binary search, using log k probes is at
the other. Carter and Wegman [Car77] study classes of functions with the property
that given a set of keys, S, a function chosen at random from the class will be, on the
average, a good hashing function for S. And Comer and O’Donnell [Com82] give an
algorithm for producing phfs that are linear combinations of possibly nonperfect
hashing functions; the phfs produced, though, may havevery large ranges (table sizes).

This paper addresses the question of how large a collection of functions must be
in order to be perfect, that is, to contain at least one phf for each set of keys. This is
important because when this number is very large, then the large-parameter problem
ofJaeschke’s method is, in fact, inherent; when it is not, then it is likely that a refinement
of Jaeschke’s method, or some different scheme can overcome the parameter problem.
We also investigate what types of functions make up minimal-sized perfect collections.

2. Notation. In order to study these questions, we must first make them precise.
Since the internal structure of keys and bucket addresses is irrelevant to hashing, we
shall take the set of possible keys and the set of buckets each to be an initial segment
of the natural numbers. In addition, we will specify the size of the sets of keys for
which phfs are to be found. We shall use the following symbols:

P the number of possible keys, those being {0, 1,. ., P- 1},
b the number of buckets, those being {0, 1,. ., b- 1},
k the number of keys in a key set,
bP={flf: {0, 1,..., P-1}--> {0, 1,..., b- i}}.

Also, R will denote the real numbers, R+ the nonnegative real numbers, and N the
natural numbers. And we shall need the following definitions.

DEFINITION 2.1. A (k, P)-set is a k-element subset of {0, 1,. , P- 1}.
DEFINITION 2.2. A functionf bP covers a (k, P)-set, S, iff f is a phf for S. Also,

G bP covers a (k, P)-set, S, if[for at least one g G, g covers S.

606 F. BERMAN, M. E. BOCK, E. DITTERT, M. J. O’DONNELL AND D. PLANK

DEFINITION 2.3. A collection of functions F
_
be is k-perfect iff F covers every

(k, P)-set.
By definition, then, the collection offunctions produced by an algorithm generating

a phf for each (k, P)-set must be k-perfect. Thus, the question which we wish to answer
is

Given P, b, and k, what is the smallest integer Minf(k, b, P) such that there exists
a k-perfect collection of Minf(k, b, P) functions in bP?

The answer will yield information about the feasibility of using parameterized phfs.
We have used two distinct approaches to finding Minf(k, b, P). The first starts by

posing the following question

Given P, b, k and an integer n, what is the maximum number, Maxs(n, k, b, P),
of (k, P)-sets which can be covered by n functions in be?

Then to find Minf we observe that Minf(k, b, P) is in fact the smallest n such that
Maxs(n, k, b, P) equals (’), the total number of (k, P)-sets. Section 3 introduces an
approach which reduces a collection of functions to an array of integers, called the
key distribution, which still contains enough information to determine the number of
(k, P)-sets covered. Sections 4 and 7 use key distributions to obtain some information
about Maxs and Minf.

The second approach is to construct a k-perfect collection of functions, thus
providing an upper bound on Minf. In 5 and 6 we discuss some results obtained
using this approach.

3. An abstraction of collections of functions.
DEFINITION 3.1. Given F {f,... ,f,}_ be, coverk(F) is the number of (k, P)-

sets covered by F.
In this section we define for each collection of functions, F, a structure called the

key distribution of F, and show that it contains the information necessary to compute
coverk(F). If [FI n, then the key distribution of F, denoted A(F), is an n-dimensional
array of integers, and we develop a formula for a function, cove, of the key distribution
such that covk(A(F)) cover(F).

If we have just one functionfb then we can count the number of (k, P)-sets
covered by {f} in the following way. First, let "simple bucket-set i" denote f-l(i), the
set of keys mapped by f to i. Now select any k distinct buckets i,. ., ik, and the
corresponding simple bucket-sets. If we form a (k, P)-set by picking one key from
each of the selected simple bucket-sets, that (k, P)-set is covered by f. For a particular
selection of k buckets, I {i, ., ik}, the number of (k, P)-sets that we can form in
this way is just the product of the cardinalities of the corresponding simple bucket-sets:

k

1 Ibucket-set i1= I-[If-(i)l
j=l il

If we then sum over all ways of picking k buckets, we will have counted exactly once
each (k, P)-set that f covers:

covera({f}) E
i_{O,1,...,b-1} i.l

To illustrate the reasoning for collections containing more than one function, we
will use a simple example involving two functions with four buckets acting on seven
keys (n 2, b =4, P 7). These functions arc defined in Fig. 1. (For clarity, we have

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING 607

x q

f(x)

g(x)

r s u

2 3 3

0 2 3

FIG. 1. Definition off and g.

2

0 3

{q}
{r, o}
{s, w}
{t,u}

{r, v}
{q,u)

{t, w}

FIG. 2. Simple bucket-sets off and g.

named the keys by letters rather than integers.) Also, in this example we will take the
number of keys per set to be three (k 3).

For collections F {fl,""" ,fn} -be containing more than one function it will
not do to just sum the preceding formula for coverk((f}) over all the functions in the
collection, since a (k, P)-set could be covered by more than one function, but should
only be counted once. (For instance, in our example both f and g cover (q, r, s}.) One
way to overcome this difficulty is to generalize our notion of bucket-sets. Each general-
ized bucket-set is the intersection of n simple bucket-sets, one from each function. We
name a generalized bucket-set by a vector,/ (/(1), ., (n)), which indicates from
which simple bucket-sets it was derived. More precisely, the generalized bucket-set Z
is given by

Z,(F) ZI).....n)(F) f bucket-set/(j) from functionj
j=l

j=l

Note that in general each key will be a member of exactly one generalized bucket set,
so that the array of generalized bucket sets is partition of the keys.

In our example, the generalized bucket-sets of {f, g} are named by ordered pairs
(since n 2) and hence can be thought of as the elements of a square matrix, as
illustrated in Fig. 3. For instance, Z(3,1)({ g}) =f-(3) g= {t, u} [’) {q, u}= {u}.

g
0 2 3

0 {q}

{r, v}

2 {s}

3 {u}

{w}

{t}

FIG. 3. Generalized bucket-sets of {f, g}.

608 F. BERMAN, M. E. BOCK, E. DITTERT, M. J. O’DONNELL AND D. PLANK

Unfortunately, it is not the case that picking one key from each of k distinct
generalized bucket-sets will guarantee that the (k, P)-set so formed is covered by F.
The essence of the complication is that for F to cover a (k, P)-set, some single function
in F must cover that (k, P)-set. (For instance, s, w, and come from distinct elements
of Z({f, g}), but neitherf nor g covers {s, w, t}.) If we select k generalized bucket-sets,
Z,,I, Z,,k, then the (k, P)-sets formed by picking one key from each Z,,, will be
covered by F just if there is some f F such that Z,,1, , Z,, are subsets of k distinct
simple bucket-sets of f. One can visualize this condition as follows. Suppose that S is
a (k, P)-set formed by picking one key from each of Z,,,,..., Z,,k. Align the names
of the generalized buckets sets/-1,""", jtk one beneath the other:

(/1(1)"""/.(n))
(/2(1)’’" j[.L2(n))

(/k(1)""" Ik(n))

Then f F covers $ if and only if column of the display above comprises k distinct
entries. Thus, F covers S if and only if at least one column of the display comprises
k distinct entries. To facilitate using this notion in formulae, we introduce

diffk(l,’’’,/k) I{J: /(J), ", tZk(j) are pairwise distinct}].

Thus diffk(l,’’’, t.k) is exactly the number of functions in F which cover each
(k, P)-set formed by picking one key from each of Z,,. ., Z,k.

In our example, diff3((2,2), (2,3), (3,3))=0, diff3((2,2), (2,3), (3, 1))= 1, and
diff3((1, 0), (2,2), (3,3))=2. Thus, respectively, {s, w, t} is covered by 0 functions,
{s, t, u} is covered by 1 function (g), and {r, s, t} is covered by 2 functions.

So to compute coverk(F) for IFI> 1, we take, as in the case of one function,
products of cardinalities in sequences of k bucket-sets. But we sum only over the
sequences of bucket-sets having the property described above:

1
E , IZ,(F)I.overk F)

k! ay(,,...,,)

The factor 1/k! reflects the fact that each collection of k bucket-sets, Z,,. , Z, can
be ordered in k! different ways to appear as Z,,,..., Z, in the formula.

Since apparently only the cardinalities of the various Z, are important we define

a,(F) IZ(F)I-- C ’((j)).
j=l

Then A(F)= [a,(F)] will be an n-dimensional (b x b x... x b) array of nonnegative
integers with , aN P (since each key is counted in exactly one aN). We refer to A
as the key distribution of F. And, as promised, we can define a function of the key
distribution

1 k

COrk(A)
k! a,,,....,)=l =a

so that COVk(A(F))= coverk(F).
Figure 4 shows the key distribution A({f, g}). We find the number of sets of size

three covered by {f, g} by computing COVa(A({f, g})) 10. (2.1 1) + 8. (1 1 1) 28.

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING 609

0
g

2 3

0 0

2 0 0 0

0 0

0 0

FIG. 4. Key distribution: A({f, g}).

Our goal is to translate our questions about collections of functions into questions
about key distributions. We must first discover what the set of all key distributions is.

DEFINITION 3.2a. For n > 1, b > 1, and P> 0, let 1 n,b,P denote the space of all
n-dimensional, b x b x... x b arrays, A, with entries which are nonnegative integers
such that , a, P.

Our observations to this point show that for every collection of n functions, F
_

bP,
the key distribution A(F) lNn,b,P" We now observe that in fact every A 1-/Nn,b,P is the
key distribution of some collection of n functions in b P. Thus we can find

NMaxs(n, k, b, P) if we can find the maxima of COrk(A) for A n,b.p. In 4 we show
that in the case of one function (n 1) and in the case of two keys per set (k 2), coy

is of a special form which facilitates finding its maxima.
In 7 we try to obtain at least an approximate answer for the general case (arbitrary

n, k, b, and P) by extending the domain of CO)k(A) to arrays of real numbers.
DEFINITION 3.2b. For n-> 1, b-> 1, and P> 0, let [’n,b,P denote the space of all

n-dimensional, b x b x. x b arrays, A, with entries which are real numbers such that

E a=P.
DEFINITION 3.2C. For n > 1, b > 1, and P> 0, let ll +,,b,P denote the space of all

n-dimensional, b x b x... x b arrays, A, with entries which are nonnegative real
numbers such that Y. a. P.

Section 7 concerns finding a maximum of cork(A) for A fl.,b,p. Such a maximum
would certainly be an upper bound on the maximum of cork(A), A fl .,b,P and thus
would also bound Maxs(n, k, b, P) above, yielding a lower bound for Minf.

4. Results for two special cases: one function (n = 1); and two keys per set (k = 2).
Formally, the function COrk(A) is the sum of products, each product having k distinct
elements of A as factors. In general, COrk does not include all such products. However,
in two special cases it does. In this section we first discuss some properties of the
function, denoted by [’k(A), that is the sum of all products of k distinct elements of
a key distribution A, and then exhibit the results about those special cases that we can
deduce from the properties of Fk.

DEFINITION 4.1. For n --_> 1, k_-> 2, b _-> k, P > 0, for A ’n,b,P
r(A)= E II a..

M_b IM
IMl=k

In finding the maxima of coy in the case involving one function (n 1) both
Berman, Bock, and Plank [Ber81] and Anderson and Sprugnoli [And79] used the idea
of comparing coy(A) with cov(A’), where A’ is obtained from A by perturbing just
two elements of A. By studying how the value of Fk changes under such transformations,

610 F. BERMAN, M. E. BOCK, E. DITTERT, M. J. O’DONNELL AND D. PLANK

we can show that Fk is maximized on arrays in which all entries have the same value
[Ber82, Dit82].

DEFINITION 4.2. For each real constant c let [c].,b denote the n-dimensional
b x b x... x b array, all the entries of which have the value c.

THEOREM 4.3. For A l-I /.,b,P the value of Fk(A) is maximized at A =[P/b"],,.b.
A similar result holds when we restrict our attention to key distributions.
DEFINITION 4.4. A "v [C].,b (read A approximates [C],b with integers) if and

only if the sum of the elements of A is c. b" and each element of A is equal to either
IcJ or

THEOREM 4.5 For A flay.,b,p the value of Fk(A) is maximized if and only if
A N [P/b"].,b (provided that P>- k).

The first use we make of these findings is to generalize the results of Anderson
and Sprugnoli [And79] and Berman, Bock, and Plank [Ber81] for the case of one
function (n 1). In this case, the key distribution is a vector, A--[al, , ab], where
ai is the number of keys mapped by f to bucket i, and

cove(A) Y. I-I a,.
I_b il

Thus, for A fll,b,p, covk(A) is the sum of all products of k distinct elements of A, so
in this case COVk(A) is identically Fk(A). It follows immediately from Theorem 4.5 that
for one function (A fl is maximized key,,p) COVk(A) by distributions which have,
as nearly as possible, all elements equal (A v [P/bib,b). This allows an exact calcula-
tion of Maxs(1, k, b, P).

THEOREM 4.6 covr(A) AI’I 1,b,P ismaximizedifandonlyifA’v [P/b]l,b. Thus

Maxs(1, k, b, P)= IP/bJ r. [P/b] k-r (P/b) k.
r--0 r k-r

Our second application of the properties of Fk is to the case of two keys per set
(k 2). We establish a complete characterization, in terms of key distributions, of the
collections of functions from bp that cover all (2, P)-sets, and show that the minimal
size for such a collection is exactly [logb P]. Examining the form of COVE, we find that

1
COV.,b,2(A) :- 2

diffE(l,)

because diffE(l, s) => 1 if and only if/z s. So COY2 is just the sum of all products of
pairs of elements of A, which is FE, and the following is immediate from Theorem 4.5.

THEOREM 4.7 COVE(A) A 1) n,b,P is maximized ifand only ifA v P/b"].,b. Thus

Maxs(n, 2, b, P)=[p2_ p mod b"- P2-(PIOd bn)2].
Our next two results are then easy corollaries, or they can be proved independently

[Ber82].
PROPOSITION 4.8. F {f," ,f,} bP covers all (2, P)-sets iffits keys distribution,

A(F) comprises solely Os and Is.
THEOREM 4.9. Minf(2, b, P)= [log P].
The results in these special cases seem to indicate that there is one particular kind

of function that is especially interesting if we are trying to construct perfect collections.

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING 611

DEFINITION 4.10. A function febP is an even-sprinkling function iit its key
distribution, A, is such that A "N [P/b]l,b. Thus an even-sprinkling function is one
which maps, as nearly as possible, the same number of keys to each bucket.

Theorem 4.6 tells us that each even-sprinkling function covers the maximal number
of (k, P)-sets, and that every other function covers fewer. This is consistent with our
intuition about which functions are good hashing functions: for example, mod is an
even-sprinkling function.

In the case of two keys per set, there is always a minimal size perfect collection
comprising only even-sprinkling functions [Ber81]. A good example of a minimal-sized
collection, F_ bP, with a (0, 1) key distribution is F= {f: 0<_-i-<_ [1Ogb P]-1}, where

f(x) ith digit in the base b representation of x.

This also illustrates the point that given a collection G, if one considers, for each key
x, the vector (g(x), , g,(x)) to be a representation of x, then a (0, 1) key distribution
for G corresponds to each key having a unique representation.

In fact, for each n there is a set of n even-sprinkling functions covering the
maximal number of (2, P)-sets (Maxs(n, 2, b, P)). Also, in some cases (when P/b is
near an integer), every collection of n functions covering Maxs(n, 2, b, P) (2, P)-sets
must comprise only even-sprinkling functions. It remains an open question whether
for arbitrary k, for every n, there is a collection of n even-sprinkling functions covering
Maxs(n, k, b, P) (k, P)-sets.

5. A collection of functions which covers all sets of size 3. In this section we prove
an upper bound on the minimal size of a collection of functions which covers all
(3, P)-sets (Minf(3, b, P)), by constructing such a collection for each b and P.

THEOREM 5.1. For b 6, Minf(3, b, P) <- [1ogb P])2; and Minf(3, 6, P) <-

([1.2. log, p]]2.
Proof. By Proposition 4.9 we can find [1ogb P] functions in bp such that for any

two keys (elements of {0, 1, , P- 1}), at least one of the functions will map the two
keys to different buckets. For example, we could use the functions f defined by

f(x) ith digit in the base b representation of x

for i= 0,..., [logb P]- 1. Let F denote this set of functions.
Note that this set of functions does not cover all (3, P)-sets, since there are a

number of sets of three distinct elements which do not all differ in the same digit (for
example 00, 01 and 11). However, for each (3, P)-set, S {sl, s2, s3}, either (a) some
f F covers S; or (b) there are two functions f and f,, such that j distinguishes Sl
from s2 and s3, andfm distinguishes s2 from sl and s3 (subject, perhaps, to a renumbering
of sl, s2, s3). In particular, in case (b) J and fm could be diagrammed as follows:

where x y and w # z.

SI
$2

$3

We can obtain a collection of functions which covers all the (3, P)-sets by adding
to F a collection of functions which covers the (3, P)-sets in case (b). We do this by
constructing, from each pair of functions f, fm F, tWO new functions g and h such
that, if 3 and fm satisfy the conditions of case (b) for S, then either g or h covers S.
The construction uses the concept of orthogonal latin squares.

612 F. BERMAN, M. E. BOCK, E. DITTERT, M. J. O’DONNELL AND D. PLANK

DEFINITION 5.2. A latin square of order r is an r x r square matrix having entries
chosen from a set of r elements in such a way that each element appears exactly once
in each column and exactly once in each row. In a latin square L, L(i,j) denotes the
entry in row and column j (0 _-< i, j -<_ r 1).

DEFINITION 5.3. TWO latin squares L and M of order r are orthogonal if every
ordered pair of symbols occurs exactly once among the rE pairs {(L(i,j), M(i,j)):
0_-< i,j_-< r-1}. If r # 6, then such a pair of latin squares always exists [Bos60].

Given b 6 and a collection of functions F as above, let L and M be orthogonal
latin squares of order b with entries from {0, 1,. ., b- 1}. For each pair of functions
f/, f,, F (0-<_ < m -<_ [1Ogb P 1) let

gl,m(x) L(fl(x),fm(X)),

and

ht,,,(x) M(fl(x),f,,(x)).

And let E F t2 { gt, ht,,,, 0 <- < m <= [IOgb P 1 }.
We claim that E covers all (3, P)-sets. To see this, consider an arbitrary (3, P)-set,

S {sl, s2, s3}. If one of the f e F covers S, then we are done. If not, then case (b)
above pertains and for some and m f, fro, gl,,,,, hi,,,, act on {Sl, s2, s3} as follows:

S

S2

S3

f,(s) gl,m(s)

L(x,z)

L(y, w)

L(y, z)

hl,,,(s)

M(x,z)

M(y, w)

M(y,z)

where x y and w z. Since the same value does not appear twice in any row or
column of a latin square gl,,,(sl) g,,,(s3), g,,,(s2) g,,,(s3), h,,,(sl) ht,,,(s3), and
hl,m(S2) hi, re(S3). Furthermore, the orthogonality of L and M guarantees that either
g,,,(Sl) gl,m(S2) or h,,,(Sl) h,m(S2), for if not then (L(x, z), M(x, z))=
(L(y, w), M(y, w)), which contradicts the orthogonality of L and M. Thus either gl,
or hl, covers S. Since S was arbitrary, this shows that E covers all (3, P)-sets. It
remains to count the number of functions in E.

We know that [FI [1ogb P]. The added collections {gt,m} and {ht,m} each con-
tain at most one function for each unordered pair (l, m) of indices from {0,...,
[1Ogb P 1 }. Thus

IEI--< [logb P + 2.1/2. [logb P 1)(rlogb P 11) [logb P 1)
Recall that we cannot guarantee the existence of orthogonal latin squares when

b 6. However, in this case we obtain an only slightly larger bound by observing that
Minf(3, 6, P) <- Minf(3, 5, P), and we have just shown that Minf(3, 5, P) <- [logs P])2.
Thus

Minf(3, 6, P)-< ([logs P])2= ([logs 6" log6 P])2< ([1.2" log6 p])2.
6. Some k-perfect collections of minimal phfs. In this section we exhibit a construc-

tion producing for each key-set k and each universal set size P a k-perfect collection
F,p of functions using k buckets. The size of Fk,p is then an upper bound on

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING 613

Minf(k, k, P). The construction is derived from one given in [Yao81]. For clarity of
presentation, we assume that P is a power of 2. If P is not a power of 2, the results
are substantially the same, but the notation and proofs are more complicated ([Dit82]).

The central idea of the construction is to split the domain, P, in two, and then
form a k-perfect collection from combinations of pairs of functions: one from an
/-perfect collection for one half ofthe domain, the other from a (k-/)-perfect collection
for the other half. The basis for this recursion uses the identity function if the domain
becomes small enough (P < k), or a function mapping everything to 0 if k 1. To give
the details, we need a convenient method for denoting renamings of the elements in
the domain and/or the range of a function.

DEFINITION 6.1. Suppose f: D- R, D={dl,’’., d}, R={rl,..., ro} and we
have two other sets" D’=(d’l, d’},andR’=(rl, ., r). Thenf[D R’] is defined
by

f[D’; R’](d’i)= rc:f(d,)=).

Similarly, for a collection of functions, F, with common domain D and range R,
F[D’; R’] {f[D’; R’] Ife F}.

Note that if F is k-perfect, then so is F[D’; R’].
Construction 6.2. Our construction of Fk,p goes by recursion on k. The case (k _-> 2)

goes by recursion on P.

(k=l)’F1,p={f}, wheref(x)=0, x=0,...,P-1,

(k>-2,2<=P<-k) "Fk,P={f}, wheref(x)=x, x=0,...,P-1,

(k=>2, P>k)’LetP,={O,...,P/2-1} andP={P/2,.-.,P-1}.

Let Gk,p U {fU g[P2; {i," ", k- 1}life Fi,p/_, g c Fk-,,p/2}
l<_i<=k-1

and Hk,p {fUf[P2; k]lfc Fk,p/2).

Then F,p Gk,p U H,p.
Motivation for the last step of the construction can be found in the proof that Fk,P is
k-perfect.

PROPOSITION 6.3. Fk,p is k-perfect.
Proof For the cases (k 1) and (k -> 2, P _-< k), this is obvious from the construc-

tion. These form the bases for inductions on k and P, respectively. To complete the
proof, we need to show that Fk,p is k-perfect when k_-> 2 and P> k. Our induction
hypotheses are that F,,,o is m-perfect for m < k and that Fk, is k-perfect for Q < P.

Now pick an arbitrary (k, P)-set, S={s,... ,Sk}, and imagine the domain,
{0,1,...,P-1}, being split into two halves: P={0,...,P/2-1} and PE-
{P/2,. , P- 1}. This induces a splitting of S as well. The first possibility is that the
splitting of S is trivial; that is, either S

_
P or S

_
P2. In this case, one of the functions

in Hk,p covers S. In particular, by the induction hypothesis Fk,P/2 is k-perfect; so if
S P1, then there is an f Fk,p/2 that covers S, and if S

_
P2, then there is an f Fk,p/2

such that f[P2; k] covers S. Furthermore, the function fUf[P2; k] covers every (k, P)-
set covered by either f or f[P2; k]. (The point of gluing the functions together being
just to reduce the size of Hk,p.) Thus, since Fk,p

_
Hk,p, Fk,p covers S in this case.

If the splitting of S is nontrivial, then one of the functions in Gk,p covers S. Let
S1 S f) P1, $2 S f’l P2, ISII. Note that 1 -<_ _<- k- 1. By our induction hypothesis,
Fi,p/2 is/-perfect, and Fk_i,p/2 is (k-/)-perfect. Hence, there is anf Fi,p/2 that covers
$1, and there is a g Fk-i,p/2[P2; {i,"" ", k-l}] that is 1-1 on $2. Given these, it is

614 F. BERMAN, M. E. BOCK, E. DITTERT, M. J. O’DONNELL AND D. PLANK

clear that fU g covers $. Since we have carefully included all functions of this sort in
Gk,e, and so in Fk.e, it follows that Fk,e covers S.

Next we derive an upper bound on the size of Fk,e, which is then also an upper
bound on Minf(k, k, P). The steps in the inductive proof follow the steps in the
recursive construction of Fk,e.

THEOREM 6.4. Minf(k, k, P) <-[Fk,p[<= kk-l(1og2 p)k-1.
Proof Here we only prove this for P a power of 2, that is, Minf(k, k, 2) _-< (ka)k-.

The same result holds in general [Dit82], the proofbeing similar, but more complicated.
Since Fk,p are k-perfect collections, it suffices to show that]Fk,2[_<--(ka)k-. We

prove this by induction on k and ct. For the cases (k 1) and (k _-> 2, 2 _-< 2 _-< k)

IF = l 1 _-< (ka)k-1.

For (k-> 2, 2> k), from our construction of Fk., we see that

k-1

i=1

Then by our induction hypotheses
k-1

IFk,2l----< (i(a--l)) ’-1" ((k-i)(a-1))k-’-+(k(a-1))k-
i=1

k-1

-’(a--l)k-2 E ii-l(k-i)k-i-d-(k(t-1))k-
i=1

k-1

<--(a--l)k-2 (k-1)k-Ed-(k(ot-1))k-1

i=1

(k 1)k-l(a 1)k-2
_
kk-(1)k-1

<- kk-’(a 1)k-211 + a 1]

<= kk-1 ot k-1.

By comparison, the construction in [Yao81] splits the domain into k parts, and the
derived bound on the size is 4k2(1og p)k-.

7. Results obtained using arrays of real numbers. Despite our success in the case
of one function and the case of two keys per set, we do not known in general how to
find the maxima of COVk over integer arrays (fNn.b,,, the key distributions). However,
if we could find the maxima of COVk over arrays with nonnegative real numbers as
entries, then that maximal value would at least be an upper bound on the maximal
value of COVk over integer arrays. In this section we present the results we have obtained
using this approach.

Recalling our observations in previous sections that for A E’,b,p, COt)k(A is
identical to Ik(A), and that in all cases COVE is identical to I2, the following are
consequences of Theorem 4.3.

+PROPOSITION 7.1. COVk(A), A f,b,P is maximized at A [P/ b],b.
-I-PROPOSITION 7.2. COVE(A), A l.,b,p is maximized at A [P/ b].,b.

Considering this evidence, we make the following conjecture.
Conjecture 7.3. COVk A A I+

.,,p is maximized at A [P/b]n,b.
The following theorem represents the extent of our progress in proving this conjecture
correct.

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING 615

THEOREM 7.4. *tin > 1, k> 2, fb > k, ’P> 0, COOk(A), A n,b,P has a strict local
maximum at A P/ b"]n,b.

Proof. We present here an outline of the proof; details are available in [Dit82].
We prove this theorem by showing that on lines in f+

n,b,P which pass through [P/b"].,b,
COrk has a strict local maximum at the point A =[P/b"]..b. (Note that a proof that
[P/b"].,b is a global maximum on the portion of each line comprising arrays with
nonnegative entries would be a proof of our conjecture.)

Each line in 12 +..b,p can be characterized as a set of arrays, {(p D+[P/b].,b)ip
R}, where D is an n-dimensional b x,. , x b array, the elements of which sum to 0
(D I.,b,o), but which has nonzero elements (D # [0]n,b). Thinking of D as fixed, we
see that COVk(pD+[P/b"]n,b) is a function of the single variable p. Our goal, then, is
to show that COVk(pD+[P/bn]n,b) has a strict local maximum at/9 =0.

The first step is to show that COVk(pD+[P/b"].,b) is a polynomial in p of degree
k, i.e., there are coefficients Co,’", Ck such that

k

COVk(pO+[P/bn]n,b) E Cr" pr.
r=0

Of course, the coefficients depend on the choice of D, so we write

k

(1) COVk(pD+[P/b’].,b) cr(D)" pr.
r--0

Next we establish some facts about the coefficients co(D), Cl(D), and c2(D). In
particular, VD Iln,b,0\([0],b} (i.e., for every line)

co(D) cork([P b’],,,b).
This is easily shown by substituting p =0 in (1). Secondly, VD e 12.,b,o\{[0].,b}

Cl(D --0.

To prove this requires a little algebra, but basically it follows from the fact that the
elements of D sum to 0. Finally, we can show that ’D

C2(D) < 0.

The proof of this is long and seems to have no easy intuition behind it.
We can use these facts about the coefficients to rewrite (1)"

k

COVk(pD+[P/b"]n,b) COVk([P/bn].,b)+pEc2(D)+ c(D)P r.
3

kNow for sufficiently small p, p2c2(D) will dominate =3 c(D)p. Therefore, since
c2(D) is always negative, we have that for sufficiently small p (p rs 0)

COVk(pD + P/ b"].,b < COVk([P/ b"],,,b).

Hence, COVk([P/b’].,b) is a local maximum on every line through [P/b"].,b.
This result does not give us any certain information about Maxs(n, k, b, P), the

number of (k, P)-sets that can be covered by n functions from be. However, if
+A=[P/b"].,b is global maximum for cork(A), Aef.,b,p, then COVk([P/b].,b) is an

upper bound on Maxs(n, k, b, P). In particular
k1 , l-[P/b"

1 b.]kCVk([P/ b"]",b) k-" dZ(.,,...,.)__> =-..[P/ diffk(I.tl,’",l.tk)>=

616 F. BERMAN, M. E. BOCK, E. DITTERT, M. J. O’DONNELL AND D. PLANK

We can show [Dit82] that

Hence

Y. l=b"k. 1- 1 (b_k)vbkdiffk(la,1,...,lk)

COVk([P/b"],,,b) [P/b"]kb "k" 1- 1 (b_k)!bk

If our conjecture is correct, then (2).is an upper bound on Maxs(n, k, b, P), and solving

cov([P/b],)=total # of(k, P)-sets=
k

for n would produce a lower bound on Minf(k, b, P). The outcome of this calculation
is

log 1 P !/(P k pk]
log [1-b!/(b-k)!bk]

However, this may not be a tight bound since the key distribution of a collection of
functions which covers all (k, P)-sets contains many zeros, and hence is on the boundary
of .,,p, whereas [P/b"],,,b is right in the middle of f+n,b,P"

8. Conclusion. The preceding sections of this paper contain a variety of results
which we have obtained pursuing various approaches to finding the minimal size for
k-perfect collections of functions. This minimal size is significant for any perfect
hashing scheme employing parametrized functions, because the parameters must be
large enough to uniquely identify each function of some k-perfect collection. And the
time complexity of actually evaluating the phf must include time to do computations
involving the parameter (although the size of the parmater is not necessarily a lower
bound on the time complexity evaluating the phf, since the entire parameter may not
be used during every evaluation). In this section we discuss the bounds we can derive
on the minimal size of k-perfect collections, using the results from previous sections,
and we summarize the consequences of these results for perfect hashing schemes that
employ parameterized functions.

In 4 we found an exact expression for Maxs(1, k, b, P), the maximum number
of sets that one hashing function can cover. However, this expression is rather cumber-
some, and Proposition 9.1 provides a reasonably tight and relatively simple upper
bound"

Maxs(1, k, b, P)<=COOk([P/b]l,b)=()(P/b) k.

We can use this to calculate a lower bound on Minf(k, b, P), the minimum size of a
k-perfect collection"

Minf(k, b, P) >-_
total # of (k, P)-sets
Maxs 1, k, b, P)

COLLECTIONS OF FUNCTIONS FOR PERFECT HASHING 617

For minimal perfect hashing, when we have the same number of buckets as keys
per set (b k), this bound becomes

Applying Stirling’s approximation for factorials and doing some algebra yields

x/
where f(k, P) 1 + p k

The quantity f(k, P) increases toward the constant e as the ratio (P-k)/k becomes
large. Table 1 indicates the rate at which this convergence occurs. Since in applications
of perfect hashing (P-k)/k is likely to be ve_ry large indeed, for practical purposes
we can consider our lower bound to be .89ek/x/k. Thus, the size in bits of the parameters
specifying minimal phfs will be at least log2 (.89ek/v/-)>= 1.44k-1/2 log2 k-.16.

TABLE

(P-k)/k

2
3
4
5

10
20
100

1,000
10,000

f(k, P)

2.000
2.250
2.370
2.441
2.488
2.594
2.653
2.705
2.717
2.718

To see how much allowing more buckets than keys might reduce the parameter
size, we apply similar reasoning to our lower bound for Minf(k, b, P) for arbitrary b.
We find that

p) >_
.8 f(k, P) k

Minf(k, b,

where f is as above. The minimum parameter size is then k. log2 (f(k, P)/f(k, b))-
1/2 log2 (k + 1) -.32. Hence, increasing the number of buckets may substantially reduce
the coefficient of k. For example, if we assume P>> k, so that f(k, P)=e, and make
b 2k, then the coefficient of k is log2 (elf(k, 2k)) .44. However, so long as b depends
linearly on k, the ratio (b- k)/k is constant, and so the coefficient of k is constant.
Hence, the number of bits in each parameter will be at least linear in k.

On the other hand, the results in 6 indicate that the situation may not be much
worse than this. The upper bound Minf(k, k, P)<-(k log2 p)k- implies that the para-
meter size theoretically need be no greater than (k 1)(log2 k / log2 log2 P), and there
are at least two reasons to suspect that this bound is overly large. First, it was derived
for minimal perfect hashing (b k), and so takes no account of the advantage gained
by allowing more buckets than there are keys per set. Second, many of the functions
in the k-perfect collection produced by the construction in 6 are far from being
optimal with respect to the number of sets they cover individually. For instance, some
of the functions map as many as P/2 keys to a single bucket, whereas we know from

618 F. BERMAN, M. E. BOCK, E. DITTERT, M. J. O’DONNELL AND D. PLANK

4 that a function covering the maximal number of sets distributes keys evenly among
the buckets.

Thus our analysis gives hope that even minimal perfect hashing can be practical
for key sets of limited size, and that increasing the number of buckets used can
substantially increase the size limit. However, it also shows that if the entire parameter
of a parameterized phf must be used in evaluating the function, then that form of phf
can be useful (i.e., better than binary search) only for limited-size key sets.

Acknowledgments. We would like to thank Mark Wegman and Tom Leighton for
helpful discussions on parts of the material.

Afterword. Since the submission of this paper, many other researchers have
reported findings on various aspects of perfect hashing. Among those with results
bearing on the issue of the minimal size for a perfect collection are Fredman, Komlos,
and Szemeredi [Fre84] and Mehlhorn [Meh82]. In terms of the notation we have used,
Fredman et al. mention that R. Graham has obtained an upper bound on Minf(k, k, P)
that is approximately e k. Mehlhorn proved a similar but more general result:
Minf(k, b, P) <-_ k. log P. ek2/b. This seems to pretty completely pin down Minf.

The main contribution of Fredman et al. is to the practical side of the issue: they
give a way to construct perfect hashing functions with b < 3k. The parameters used to
describe the function occupy, at worst, a total of (k / 1) log P bits. Significantly, though,
only 2 log P bits need to be examined during any one function evaluation. Hence,
their scheme has a worst-case running time which, with respect to k, is O(1).

And79
[Ber82]

[Ber81]
[Bos60]

[Car77]

[Cic80]
[Com82]

[Dit82]

[Fre84]

[Jae81]

[Meh82]

[Spr77]

[Tar79]
[Yao81]

REFERENCES

M. R. ANDERSON AND R. SPRUt3NOLI, unpublished notes, 1979.
F. BERMAN, M. E. BOCK, E. DITrERT, M. J. O’DONNELL AND D. PLANK, Collections of
functions for perfect hashing, Tech. Rept. CSD-TR-408, Dept. Computer Sciences, Purdue
University, West Lafayette, IN, 1982.

F. BERMAN, M. E. BOCK AND D. PLANK, unpublished notes, 1981.
R. C. BOSE, S. S. SHRIKHANDE AND E. T. PARKER, Further results on the construction of

mutually orthogonal latin squares and the falsity of Euler’s conjecture, Canad. J. Math., 12
(1960), pp. 189-203.

J. L. CARTER AND M. N. WEGMAN, Universal classes of hash functions, Proc. Ninth Annual
Symposium on the Theory of Computing, May 1977, pp. 106-112.

R. CICHELLI, Minimal perfect hash functions made simple, Comm. ACM, 23 (1980), pp. 17-19.
D. COMER AND M. J. O’DONNELL, Geometricproblems with application to hashing, this Journal,

11 (1982), pp. 217-226.
E. DITTERT, On the feasibility of a method for recognizing elements of a set of data keys, Ph.D.

dissertation, Dept. Computer Sciences, Purdue Universtiy, West Lafayette, IN, 1982.
M. L. FREDMAN, J. KOMLOS AND E. SZEMEREDI, Storing a sparse table with 0(1) worst case

access time, J. Assoc. Comput. Math., 31 (1984), pp. 538-544.
G. IAESCHKE, Reciprocal hashing: A method for generating minimal perfect hashing functions,
Comm. ACM, 24 (1981), pp. 829-833.

K. MEHLHORN, On the program size ofperfect and universal hash functions, Proc. 23rd Annual
Symposium on the Foundations of Computer Science, November 1982, pp. 170-175.

R. SPRUGNOLI, Perfect hashingfunctions: A single probe retrieving methodfor static sets, Comm.
ACM, 20 (1977), pp. 841-850.

R. E. TARJAN AND A. C. YAO, Storing a sparse table, Comm. ACM, 22 (1979), pp. 606-611.
A. C. YAO, Should tables be sorted?, J. Assoc. Comput. Math., 28 (1981), pp. 615-628.

SIAM J. CO.PUT.
Vol. 15, No. 2, May 1986

(C) 1986 Society for Industrial and Applied Mathematics
023

RECOGNIZING COMPOSITE GRAPHS IS EQUIVALENT TO
TESTING GRAPH ISOMORPHISM*

JOAN FEIGENBAUM[AND ALEJANDRO A. SCHFFER[

Abstract. We consider composition, a graph multiplication operator defined by Haxary and
Sabidussi, from a complexity theoretic point of view. If G and H are undirected graphs without
self-loops, then the composite graph G[H] has vertex set V(G)V(H) and edge set ((gl,hl)--
(g2,h2): gimg2EE(G) or gl =g. and h--h2EE(H). We show that the complexity of testing whether
an arbitrary graph can be written nontrivially as the composition of two smaller graphs is the same,
to within polynomial factors, as the complexity of testing whether two graphs are isomorphic.

Key words, graph isomorphism, graph products, graph composition, graph algorithms, com-
putational complexity.

AMS Subject Classifications. 02El0: Algorithms, 05C99: Graph Theory, 68A10: Algo-
rithms, 68A20: Computational Complexity and Efficiency.

In this paper, we investigate one of the graph products defined in [6] and [9]
from a complexity theoretic point of view. We refer to this product as composition
and call a graph that cannot be expressed as the composition of two smaller graphs
irreducible. In [5], Garey and Johnson used composition to study approximation
algorithms for graph coloring, and, in [8], Papadimitriou and Yannakakis used it
to show that EXACT CLIQUE is complete for a class called Dp, but they did not
address the question of how difficult it is to decide whether a graph is irreducible. Our
main result is a proof that testing a connected graph for irreducibility is polynomial-
ime equivalent to testing whether two connected graphs are isomorphic. In the
proof, we provide an algorithm that uses a polynomial number of calls to a graph
isomorphism subroutine and either determines that the input graph is irreducible
or yields a factorization. This distinguishes the graph-factoring problem from the
integer-factoring problem, where factoring and primality testing are not known to
have the same complexity. In the following discussion, all graphs are undirected and
are assumed to be connected unless otherwise specified.

DEFINITION. Given two graphs G1 and G2, construct the composition G
GI[G2] as follows: For each node in G1, insert a copy of G2. If two copies correspond
to nodes that are adjacent in G, then draw in all possible edges x y such that x
is in one copy and y is in the other. We refer to these as adjacent copies and call G1
and G2 the left and right factors of G, respectively. We prefer the notation x y to

This work was done while the authors were summer employees of AT&T Bell Laboratories. During
the academic year, the first author is supported by a Xerox Corporation Fellowship and the second
by a National Science Foundation Graduate Fellowship and NSFDCR 83-00984. The preparation
of the Figures was paid for by NSFDCR 83-08109. The text of this paper was typeset at the
Stanford University Computer Science Department using TF_. ’TE’ is a trademark of the American
Mathematical Society.

Computer Science Department, Bldg. 460, Stanford University, Stanford, California 94305.

619

620 J. FEIGENBAUM AND A. A. SCHFFER

the more common (x, y) because (x, y) has many other meanings, x y emphasizes
that the graph is undirected, and x y readily extends to x y to denote a
path from x to y.

EXAMPLE. Figure 1 shows the composition of a three-node chain and a triangle.
Observe that, unlike the more common graph products of [6], [9], and [10],

composition is not commutative. The smallest counterexample to commutativity
is GI[G2] G2[G1], where G1 is the two-node graph with one edge and G is
the two-node graph with no edge. For graphs G1 and G2 on more than one node,
GI[G2] G[G1] if and only if G1 G2 or G1 and G2 are both complete or both
empty [6].

FIG. 1. The composition ofa three-node chain and a triangle.

Having defined the composition, we naturally ask how difficult it is to test a graph
for irreducibility. In Theorems 1 and 2, we show that the complexity of irreducibility
testing is the same to within polynomial factors as that of testing graph isomorphism.
We first show that certain useful restrictions on the graph isomorphism problem do
not reduce its complexity.

LEMMA 1. Consider instances of the graph isomorphism problem in which p, the
number of nodes in each graph, is an odd prime, both graphs are connected, and no
node in either graph has degree greater than 2" This restricted version is at least as
hard as the general graph isomorphism problem.

Proof. We reduce an instance GI? G2 of the general graph isomorphism
problem to an instance Hi? H of the restricted problem. Suppose that each of G1
and G2 has n nodes. We know that for any positive integer n, there is at least one
odd prime p in the interval [2n / 3, 4n / 6) [7]. The first step in our reduction is to

COMPOSITE GRAPHS AND GRAPH ISOMORPHISM 621

find the smallest such p; we can do this deterministically by trial division of successive
odd integers 2n / 3, 2n / 5, etc., each in time polynomial in n. Next we transform G1

’Sinto a graph H1 on p nodes as follows: Call G nodes x, x2, xn and create a
set of p- n new nodes xn+, Xp. Add an edge x xn+ for each i

_
n and an

edge x x+l for each i, n / 1 <_ i

_
p- 1. Use the same procedure to transform

G2 into a graph H on p nodes; name H2’s nodes y through yp. Figure 2 shows the
results of applying the transformation to two four-node graphs. Note that H and
H2 will always be connected.

We can perform this reduction in time polynomial in n. The mimum degree
nodes in the resulting graphs are Xn+ and Yn+l, which have degree n + 1; because
p 2n + 3, this neans that no node has degree greater than . It is clear that if
G G2, then H H2. Suppose conversely that H H2. In each of H and
H2, there is a unique set X of n nodes, precisely those nodes that induce G and
G2, satisfying the following conditions: there is exactly one node x X such that x
is adjacent to every node in X, and no node in X is adjacent to any node not in X
except x. In H, X X1 (Xl,...,Xn} and in H2, X X2 {Y,...,Yn}. Hence,
any isomorphism from H1 onto H must map the subgraph induced by X1 onto the
subgraph induced by X2, and these subgraphs are G1 and G2 respectively.

X1 X2 Yl Y2

X4 X3

Xl X2 H1

Y4 Y3

Y1 Y2 142

FIG. 2. The reduction in the proofofLemma transforms G and G2 into H and H2.

Armed with the fact that the restrictions of Lemma 1 do not reduce the complex-
ity of the graph isomorphism problem, we proceed to our analysis of the complexity
of irreducibility testing.

THEOREM 1. Testing a connected graph G .for irreducibility is at least as dilcult
as graph isomorphism.

Proof. It suffices to reduce an instance GI? G2 of graph isomorphism satisfying
the conditions of Lemma 1 to an instance of irreducibility testing such that G1 G2
if and only if the resulting graph is composite. To do this, form a graph G that

622 J. FEIGENBAUM AND A. A. SCHFFER

resembles GI[G1] as follows: Replace p- 1 of the nodes in G1 with copies of G1, and
replace the remaining node with a copy of G2. If adjacent nodes v and w in G have
been replaced by graphs V and W, then draw in an edge a b of G for each a E V
and b E W. If G1 G2, then G G[GI], so G is composite.

To prove the converse, suppose that G is composite. Because G is connected, we
know that if G H1 [H2], then its left factor H is also connected. Assume first that
Hu is also connected; we will show that under these assumptions, H1 H2 G1
G2. Observe that G has p nodes, where p is prime; so if it factors nontrivally its
factors must have p nodes each.

Let x be an arbitrary node in G. We will give a polynomial-time algorithm to
identify a unique set of p nodes, H, the copy of the right factor that contains x. H2
is connected; hence, it suffices to show that we can distinguish between neighbors of
x that belong to the copy H and neighbors that belong to other copies. We denote
by N(x) the set of all neighbors of x.

Let the degree of x in G be d. Because of the way we constructed G, we know
that d dp+d, where 0 < dl,d2 < 2

. For G Hi[H2] with p nodes in the right
factor H2, that means x has d2 neighbors in its copy H and that H is adjacent to
dl other copies. For all x, both d and d2 are strictly less than ; hence all nodes in
H1 and H2 have degree less than p

2"
If y is a neighbor of x in H and H is a copy ofH that is adjacent to H, then

both x and y are adjacent to each node in H. In this case x and y have at least dlp
common neighbors. On the other hand, if y is adjacent to x but H - H, then H
and H can both be adjacent to at most dl 1 other copies of H2 in G; hence other
copies contribute at most (d 1)p nodes to the set N(x) N(y). In addition, x and
y are both adjacent to all nodes in N(x)H and all nodes in N(y)H. There are-
fewer than p of these nodes because all nodes in H2 have degree less than p

2"
Thus for each edge x y, we determine in polynomial time that x and y are

in the same copy if IN(x) N(y)l >_ dp and that x and y are in different copies
if IN(x) N(y)l < dip. Because H2 is connected, we can find at least one node
in H: adjacent to x. Because x is arbitrary, we can do a similar common neighbor
set computation to identify the remaining nodes in H. By construction, p nodes
comprise a copy of G2 and the remaining (p- 1)p nodes can be partitioned into
copies of G1; so if G Hi[H2] and H is connected, then G1 G2 H1 - H2.

If we drop the assumption that H2 is connected, then we can use the same
procedure to construct, for each x G, the connected component ofH that contains
x. If that component had fewer than p nodes, it would correspond to a component
of G1 or G2 with fewer than p nodes, which is impossible because G and G2 are
connected. Therefore, if G HI[Hu], H2 must be connected and H1 - H2 - G1
G.

Several readers, including one of the referees, suggested that Theorem 1 could
be proved with a much simpler argument as follows. Let G? G2 be an instance of
graph isomorphism and reduce it to an instance of composite testing such that G has
two connected components, G and G2. Then G is composite if and only if G G,
in which ease G is the composition of the empty graph on two nodes with G. We did
not use this reduction because the G that it produces is not connected. It is impor-
tant to show that recognizing composite graphs is difficult even for connected graphs,
because this distinguishes composition from another definition of graph multiplica-
tion called cartesian product. In [41 and [121, Feigenbaum, Hershberger, Schiffer, and

COMPOSITE GRAPHS AND GRAPH ISOMORPHISM 623

Winkler show that connected cartesian-product graphs can be recognized in polyno-
mial time, whereas recognizing disconnected cartesian-product graphs is at least as
difficult as testing graph isomorphism. The proof for disconnected cartesian-product
graphs is precisely the reduction just suggested.

Theorem 1 implies that if there were a polynomial-time algorithm for testing
irreducibility, there would be one for testing graph isomorphism. Theorem 2 gives
the reverse implication: Given an instance G of irreducibility testing, we can produce
in polynomial time a polynomial number of graph isomorphism problems (whose sizes
are polynomial in IGI) such that the answers indicate whether G is irreducible. The
reduction is similar to the proof of sufficiency in Theorem 1 in that it entails taking
an arbitrary node x in G and finding the nodes that would have to constitute G
if G were the composition GI[G2]. Without the restrictions on G1 and G2 that we
imposed in Theorem 1 that process is more complicated.

If n, the number of nodes in G, is not the square of a prime, then we must try
all possible nontrivial factorizations of n as candidate sizes Of the factors G and
G2. This alone does not preclude a polynomial-time redaction, because there are
only polynomially many different factorizations n nln2. Observe that there may
also be more than one way to partition the nodes of G into subgraphs G so that
G GI[Gu]. Figure 3 shows two ways of doing so in the composition of a two-node
chain with a four-node star. Note that the nodes A and B of the stars violate the
degree condition of Lemma 1. In our proof of Theorem 2, we provide an algorithm for
making consistent choices and discovering that such a graph is composite. DSrfler,
Imrich, Coppersmith, and Feigenbaum characterize all the finite graphs G that have
two inequivalent factorizations G GI[G] HI[H2] and show that for a fixed
factorization nlnu IV(G)I, there is at most one pair of graphs G, G2 such that
G[G2]- G, IV(G)I nl, and IV(G)[n [2, 3].

A B

C H

A B

C D E F G H

A B

F G H C D E

Fit;. 3. The composition ofa two-node chain and afour-node star. There are two ways ofpartitioning the nodes into
copies ofthe rightfactor

624 J. FEIGENBAUM AND A. A. SCHFFER

THEOREM 2. Testing an n-node graph G for irreducibility is no more dicult
than solving a polynomial number of graph isomorphism problems, each of whose size
is polynomial in n.

Proof. For each factorization n nln2 such that 1 < nl, n2 < n, we attempt to
place each node x of G in a copy G of size n2. If we succeed, we will have produced nl
graphs of size n2 and we can test whether they are pairwise isomorphic. We can also
examine which copies are adjacent and construct a candidate for G!; then we form
G[G] and test whether it is isomorphic to our original graph G. So in what follows,
assume that we have fixed a factorization n n n2. If the possible factorizations
have been exhausted, then G is irreducible.

In the following algorithm, we start with no information about any edge x y
in G. For each edge x y, we perform two polynomial-time tests, and in some cases
the tests determine whether x and y are in the same copy of G2. If the tests are
conclusive, then we record the result, maintaining sets of nodes that can be subsets
of copies of G2 and pairs of nodes that cannot be in the same copy. There are three
conditions under which we abandon the current factorization attempt and go on to
the next possible factorization nl n2" We create a copy with more than nu nodes; our
tests tell us that some node x is in G but y is not in G; we find a node z that is in
both G and G where G G. We refer to all of these conditions as contradictory
states.

Before presenting the algorithm, we show that we may assume without loss of
generality that we are attempting to factor a connected graph G and that if G
GI[G], then both G1 and G2 are connected. First consider composite graphs G
GI[G2] in which G1 is not connected. For a fixed nu, the right factor G2 is unique up to
isomorphism. IfG has m isolated nodes, m _> 1, then G has a non-empty subgraph G
in which every component has at most nu nodes; otherwise all components of G have
size greater than n. We divide G into copies of G2 as follows: Place the components
in isomorphism classes, and say that there are p classes, with representatives C,
Cp. If the current values of m and n2 are to yield a proper factorization, then the
number of components in the ith class must be kim, for some integer k _> 1, and G2
must be the disjoint union, for i between 1 and p, of ki copies of Ci.

The subgraph G\G is the part that corresponds to the non-isolated nodes of G1.
Here there is a one-to-one correspondence between the components of G and those
of G1, regardless of the number of components in G2. Therefore, we can factor each
component of G separately and, if each one factors nontrivially, check whether all of
the right factors are isomorphic to each other and to the right factor of G. If they
are, then G is composite; otherwise we proceed to the next factorization n n n2.
Hence we can assume that G and G are connected.

If G G[Gu] is connected but G is not connected, then for each node x G
our factoring algorithm produces not the entire copy G but the connected component
Cx of G that contains x. After placing all the nodes in components, we can put the
components into isomorphism classes with a polynomial number of isomorphism tests.
The number of components in each class must be divisible by nl; once again, if a class
has kn members, then each copy of the right factor G2 contains k of them. After
putting components into isomorphism classes, we can use the following polynomial-
time test to put the correct number of members of each class into each copy G and
then check whether the copies have n nodes each: If G G but x and y are in

COMPOSITE GRAPHS AND GRAPH ISOMORPHISM 625

different connected components of G, then Cx N Cy and N(x) \ Cx N(y) \ Cy.
Conversely, if Cx N Cy and N(x) \ Cx N(y) \ Cu, then C and Cy are distinct
components of copies G and G that have the same neighbor copies in G1 and hence
play interchangeable roles in G1; so we can place Cx and Cu in the same copy without
loss of generality. Thus we assume for simplicity of exposition of our algorithm that
G is connected and that if it factors its right factor is also connected; so we can
construct copies G by distinguishing between neighbors of x in the same copy and
those in different copies.

In the first stage of the algorithm, we check whether G GI[G2] where G1 is
a complete graph. This special case can be recognized more easily than the general
case and in fact our algorithm for the general case uses it as a subroutine. Let Km
denote the complete graph on m nodes. If G Kn, then G is composite if and only if
n is composite. Suppose that G =/: Kn and consider the possibility that G - Knl [G2].
If x is a node in such a graph, then all nodes not adjacent to x must be in G. Let
Gc be the complement graph of G, that is, the graph with the same nodes as G that
contains edge x y if and only if G does not contain edge x y. If G Knl [G2],
then Gc can be partitioned into n copies of G such that no two nodes in different
copies are adjacent. Therefore, we attempt to factor G by forming copies of G. This
approach is inspired by Spinrad’s algorithm for modular decomposition [11].

Find the connected components of Gc and place them in isomorphism classes;
this can be done with a polynomial number of isomorphism tests. If G
then each isomorphism class of components in Gc must have knl members for some
integer k, and there must be k of these members in each copy of G. It does not
matter which k members are placed in a particular copy, because each node in a
connected component of Gc is adjacent to every node of G outside that component.
Hence we can finish this stage of the algorithm by checking whether the size of each
isomorphism class is a multiple of n and if so dividing the members evenly among
the copies of G. If this gives us n copies each with n2 nodes, then G Kn [G2].

In the remainder of the algorithm, we use the subroutine TESTto decide whether
nodes can be in the same copy.

TEST(x, y)
{

N :-- N(x) \
G := the subgraph of G induced by the vertices

that remain after removing N from G;
C :- the connected component of G that contains x;
return(C);

Note that TEST(x, y) is not necessarily the same as TEST(y, x). Here is the
final stage of the algorithm:

For each node x in G

For each y in N(x)
If [TEST(x, Y)I > n2 or TEST(y, x)l > n2

Then mark x and y as members of different copies;
If fewer than n neighbors of x remain unmarked

Then mark all the remaining ones as members of G;

626 J. FEIGENBAUM AND A. A. SCH,,FFER

Else
{

Y :- all unmarked neighbors of x;
H :-- [.J y U TEST(x, y);

yEY

m :---IHI/n;
Partition H into copies of G2 using the algorithm for

graphs of the form Km [Gu];

If a contradictory state has been reached, stop and go on to the next n n;

It remains to show that the main loop of our algorithm assigns nodes to copies
correctly in the case that G1 is not a complete graph. If G G, then neither
TEST(x,y) nor TEST(y,x) contains any nodes not in G; hence they are both of
cardinality at most nu, and x and y are not marked as members of different copies.
If G G and G has at least one neighbor copy G that is not adjacent to G
in G1, then TEST(x, y) contains at least x, y, and all the nodes in G; thus it has
cardinality greater than nu, our algorithm marks x and y correctly, and the set Y in
the "Else" clause will not contain any of these nodes. Similarly, we mark x and y
correctly in the case that G G and G has at least one neighbor copy that is not
adjacent to G in G1. Therefore, the only neighbors of x that are unmarked after the
execution of the inner loop of the algorithm are those in G or in copies that, together
with G, form a clique of G1; that is, if y and z are unmarked neighbors of x, neither
is in G, and G G, then G and G must be adjacent copies. For any unmarked
neighbor y, TEST(x, y) contains x, y, and all the nodes of G that are not adjacent
to x. The reason for taking the union in the second statement of the "Else" clause is
that Y contains all nodes in copies of G2 in this clique except nodes in G that are
not adjacent to x. Hence H is of the form gm[G] if G is of the form GI[G].

Thus we can reduce an instance of irreducibility testing to a polynomial number
of graph isomorphism problems each of size polynomial in the size of the original
problem. We include the separate stage of the reduction algorithm that checks for
composite graphs of the form Knl [G] primarily for expository reasons, because the
final stage reduces to that case if G is such a graph. For a given factorization n nn
the reduction takes polynomial time because the body of the inner loop is executed
twice for each edge, the entire main loop is executed once for each vertex, and both
involve only connected component, set-union, and various bookkeeping operations all
of which can be done in polynomial time [1].

Finally, we remark that if G2 is in a class of graphs that can be tested for isomor-
phism in polynomial time, for example, the class of trees or the class of bounded-degree
graphs, then G can be tested for irreducibility in polynomial time.

Acknowledgements. We would like to thank our referees and Mihalis Yan-
nakakis, Dave Johnson, and Jeff Lagarias of AT&T Bell Laboratories for uncovering
mistakes and unnecessary complication in earlier versions of our proofs. We also
thank David Fuchs of Stanford for invaluable help with TEX.

COMPOSITE GRAPHS AND GRAPH ISOMORPHISM 627

REFERENCES

1] A.V. AHO, J. E. Hopctov’r ANt J. D. ULLMAN, TheDesign andAnalysis ofComputerAlgorithms, Addison-Wesley,
Reading, 1974.

[2] D. COPP.ltSMITH AN) J. FEIt;.NBAUM, Finite Graphs with Two Inequivalent Factorizations under the Composi-
tion Operator, IBM Research Report RC 11149, Yorktown Heights, 1985.

[3] W. D6RItR ANt) W. IMmCH, Das lexikographische Produktgerichteter Graphen, Monatshefte fOr Math, 76 (1972),
pp. 21-30.

[4] J. F.IG.rBAUM, J. H.ItSHn.Rt;It ANI) A. A. SCH)FW.R, A Polynomial limeAlgorithmforFinding the Prime Fac-
tors of Cartesian Product Graphs, Discrete Appl. Math., 12 (1985), pp. 123-138.

[5] M. R. GAR.Y AND D. S. JOHNSON, The Complexity ofNear-Optimal Graph Coloring, J. Assoc. Comput. Mach.,
23 (1976), pp. 43-49.

[6] E HAP.AnY, On the Group ofthe Composition of Two Graphs, Duke Math J., 26 (1959), pp. 29-34.
[7]. I. NIVEN AND H. S. ZUCrRraAN, An Introduction to the Theory ofNumbers, 3rd ed., John Wiley, New York, 1972.
[8] C.H. PAPADIMITRIOU AND M. YANNAKAKIS, The Complexity ofFacets (andSome Facets ofComplexity), J. Corn-

put. System Sci., 28 (1984), pp. 244-259.
[9] G. SAmDUSSI, The Composition ofGraphs, Duke Math. J., 26 (1959), pp. 693-696.

[10] Graph Multiplication, Math. Z., 72 (1960), pp. 446-457.
[11] J. SPINII), Transitive Orientation in O(n2) /]me, Proc. 15fth Annual STOC, Boston, 1983, pp. 457-465.
[12] P. WINKL-R, Factoring a Graph in Polynomial ime, submitted for publication.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
001

REGISTER ALLOCATION FOR UNARY-BINARY TREES*

P. FLAJOLETf AND H. PRODINGER

Abstract. We study the number of registers required for evaluating arithmetic expressions formed with
any set of unary and binary operators. Our approach consists in a singularity analysis of intervening
generating functions combined with a use of (complex) Mellin inversion. We illustrate it first by rederiving
the known results about binary trees and then extend it to the fully general case of unary-binary trees. The
method used, as mentioned in the conclusion, is applicable to a wide class of combinatorial sums.

Key words, analysis of algorithms, register allocation, random trees, Mellin transform

1. Introduction. An arithmetic expression with only binary operations may be
described as a binary tree. For instance, (x + y ’ z) corresponds to

The problem of register allocation consists in finding an evaluation strategy for
arithmetic expressions using only binary operations applied to elements of an array
called registers. For the above expression with registers being an array R[0], R[1],.
a possible evaluation strategy is

R[0] - x
R[1] -y
R[2]z
R[1 <- R[1] ’ g[2]
g[0] g[0] + R[1]
R[1]-
R[0] - R[0] * R[1]

There is an optimal strategy with respect to the number of registers used. That
strategy has been found by Ershov as early as 1958 [5] and is described by Sethi and
Ullman in [23]. The minimal number of registers necessary to keep intermediate results
is called the register function of the tree t, and is denoted by Reg (t). This function
may be defined recursively as follows:

Reg ([2]) 0,

2 [max {Reg (tl) Reg (t2)} otherwise.

The average number D. of registers needed to evaluate a binary tree of size n
(i.e. n internal nodes) assuming that all binary trees of size n are equally likely is a

* Received by the editors January 5, 1984, and in revised form February 19, 1985.
f INRIA, Rocquencourt, 78150 Le Chesnay, France.
Technical University Vienna, Gul3hausstral3e 27-29, A-1040 Vienna, Austria.

629

630 P. FLAJOLET AND H. PRODINGER

well studied quantity [7], [12], [16]. It satisfies

/log* nD. log4 n + D(log4 n)+ 0
\ / 1,

where D is a periodic function with period 1 and known Fourier coefficients and log* n
denotes an unspecified power of log n (usually different powers in different situations).

The aim of the present paper is twofold. Firstly, we give an alternative proof of
this result, which is based on an analytic technique " la Odlyzko" that has proved
to be very helpful in tree enumeration problems (see [9], [17]); this alternative proof
permits us if needed to derive asymptotic expansions of D, to any order.

Then we show that this approach extends easily to more general classes of trees"
assume that unary operations like -, sin, exp, log, etc, , are also permitted. There
we have to deal with unary-binary trees, possibly with weights, according to the number
of unary and binary operations allowed. (See 3 for precise definitions.)

The register function is also defined on unary-binary trees in an obvious way: it
is clear that unary nodes do not affect the register function. More precisely, for a
unary-binary tree t, the register function Reg (t) is defined inductively by:

Reg (i-q) 0,

Reg (t)= Reg (t),

Reg(/)={l+Reg(tl) ifReg(tl)=Reg(t2),
t2 max {Reg (h), Reg (rE)} otherwise.

In 3 we consider the average number of registers needed to evaluate a unary-
binary tree. The analysis that we develop for binary trees (2) can be translated to
this more general case since the unary-binary trees are obtained from the binary trees
by a simple substitution operation. As a consequence, all the generating functions
needed for the analysis are obtained from the corresponding ones for binary trees via
a simple substitution.

The singularity analysis that we are going to use in this paper is based on an
extension to complex arguments of the Mellin transform inversion theorem. It can be
applied to several problems in the analysis of algorithms. We mention height of trees
[2], register allocation [7], [12], [16] and odd-even merge [8], [19]. The advantage is
that asymptotic expansions to any order can be derived rather simply, as the generating
functions are usually much easier to approximate in a neighbourhood of their sin-
gularities than their Taylor coefficients; also Mellin transform techniques constitute a
rather powerful tool when dealing with number theoretic functions (here the dyadic
valuation).

2. The register function of binary trees revisited. In order to rederive the formula
for D,, we need several generating functions, which can be most easily obtained by a
simple translation from so-called symbolic equations [6]: If A and B are families of

trees, then we write /) for the set of all trees consisting of a root, a left subtree
A B

tl E A and a right subtree 2 E B. The family of binary trees is then described by the
symbolic equation

REGISTER ALLOCATION FOR UNARY-BINARY TREES 631

If we define the family v to be the family of all binary trees with Reg (t)= p,
then the definition of the register function easily carries over to:

j<p j<p’

0--[’1o

Let Rv(z) denote the generating function of the family , i.e.

R(z)= E z’’.
tp

It is known [7], [12], [16] that
z2P-1

Rv(z)

where F(z) is the ith Fibonacci polynomial:

yi_yi l+r 1-r
Fi(z) -----:-_, with y

y-y 2’ 2’

The generating function of the cumulated register values is

E(z)= E p" R(z).

The sought average D. is then

where

[z"]E(z)
[z"]B(z)

B(z)-" E zSiZe(’)

p>l

r= r(z) x/i -4z.

is the generating function of all binary trees and [z"]fdenotes the nth Taylor coefficient
of the power series f.

From the defining equation for one obtains immediately

B(z)=l+z(B(z))-, or B=(1-r(z))/2z.

Using the substitution [2]

we easily find

1 -/$2 /,/2p 1 u2

----E p E v2(k)u k,E(z)=
u v>

__
1 u

-p+.
u k>_l

where v2(k) is the dyadic valuation of k, defined as

v2(k) =max {i12 divides k}.

We want to extract [z"]E(z) by means of Cauchy’s formula, viz.

(1) [z"]E(z)=1 E(z)
2ri z

where F is a path as depicted in Fig. 1.

632 P. FLAJOLET AND H. PRODINGER

FIG.

To be more precise, let 0< 0< r/2, to>0 and p>-. Then F= Fot.JFt.J F2 with

Fo {z" Iz-1/41 to, IArg (z-1/4)l> 0},

F1 {z" Iz--1 >- to, Iz < p, IArg (z-1/4)1 0},

F=-- {z" Izl-- o, Imrg (z-)l -> 0}.

For this, we have to show that E(z) has an appropriate analytic continuation in a
domain which properly contains F.

Following the general strategy developed in [9], we can, provided we have an
approximation of E(z) about , "translate" it to an approximation of the coefficients
[z"]E(z) given by the Cauchy integral (1). This is a fairly straightforward process
once the approximation of E(z) is known. So our task is reduced to the problem of
obtaining an expansion of the form"

E(z).-.ot. r. log r+/3. r+. ,
where r=x/1-4z, in a sector about 1/4 which contains the line segment of F; the
contribution of the Cauchy integral (1) of the part of the circle with radius >1/4 is
negligible.

Now, since

U
2

U
4

U
E v2(k)uk- u.4+ 8+""
k=>l 1--U2 1-- 1 U

the unit circle u]- 1 is a natural boundary of this function. The nature of the mapping
z z(u) is such that the boundary of the unit circle in the u-plane is mapped on the
halfray Re (z)-> 1/4, Im (z)= 0, and this halfray thus constitutes a natural boundary for
E(z). From the preceding remark we are free to choose any contour that simply
encircles the origin without crossing the halfray and in particular we can take the
contour F of Fig. 1.

What remains to do is thus to find a local expansion of E(z) about z =1/4. This
will be done by the use of the Mellin transform. (See [4], [20] for more information
about the Mellin transform and [6], 18] for some applications in Computer Science.)

We set u e -t" and

V(t)= v2(k) e-k’, V*(s)= x-’ V(x) dx.

REGISTER ALLOCATION FOR UNARY-BINARY TREES 633

Since v2(2k) 1 + v2(k) and v2(2k + 1) 0, we easily find

E v() -2 ,
k_l

and so

r(s)C(s)
V*(s)=, Re (s) > 1.

2-1

The Mellin inversion formula gives

1 f2+i V*(s)t-Sds,V(" a2-,

and we can shift the line of integration to the left as far as we please if we only take
the residues into account.

The reader might be puzzled that we use the Mellin transform of functions of a
complex variable. But we actually do not need more than

F(s)t ds, Re (t) > 0, c>0;
2"rri i

a reference for this is for example [1, p. 91].
Thus we find an asymptotic series for V(t) via

V(t)--- Res (V*(s)t-s).
Re(s)_--<l

The main contributions come from s 1, s 0, s 2kri/log 2, (k 0). The residue at
s 1 is easily found to be

1

By using local expansions of F(s), ’(s), (2- 1)-1 and we find the residue at s =0,
resp. at s Xk := 2kzri/log 2"

1 1 y1
logz log_ 2zr+-+

2 4 2log2

and the residue at s Xk.

Ckt-xk with Ck
log 2

F(Xk)(Xk).

Putting things together, we find (z--> 1/4, i.e. t-> 0)

E (z) t. log2 + K. + , 2Ckt-xk + 2 + O(t2)
k0

with

1
K -log2

log 2"

Now e-t=u and u=(1-r)/(l+r) with r=x/1-4z; thus

1-r
2r+ O(r3)log = + r

634 P. FLAJOLET AND H. PRODINGER

yielding

E(z)=2rlog2 r+2(K + 1)r+4 ckr-Xk+2+O(r2).
k#o

So we find an asymptotic expansion for [z"]E(z), as announced earlier, by looking
at [z"]2r log2 r, [z"]2(K + 1)r and so on. For this, we refer to [9], [10], [11], [13]:

-S-) 1+0 a#O, 1,2,’’’,

[z"] log (l-z)" (l-z)
__---1 log n .-a-1 (log* no

k }.

Using known values of F(-1/2) and F’(-1/2) this gives us

[z"] log (1-z)" (l--z) 1/2 =n -3/2 log n
+ 2/ (/+21og2-2)+0

\ n5/2].

Hence

(.) Cknxk/2 (log;n)D,=Zlog+log21ogn +log2-1 -(K+l)+4x/r- k#02 F((Xk-1)/2)
t-0

Using the duplication formula for the gamma function [21], we can simplify:

4,f--ck (xlr(x/2)(x- 11
F((Xk 1)/2) log2

Finally we notice that nxk/2 e2krri’lg4n and state [7], [12]"
THEOREM 1. The average number of registers to evaluate a binary tree with n nodes

is given by

D, log4 n + D(log4 n) + o (lg; n),
where D(x) is a periodic function with period 1. This function can be expanded as a
convergent Fourier series D(x)=kz dk e2k=ix, and

1 y 1
do - log2 2m2 2log2 log2

dk i0g K(x)r (x 1), k # 0, Xk log 2"

Remark that the constant do was erroneously stated in [7].

3. The register function of una-bina trees. The symbolic equation:

C2.

describes a family of unary-binary trees, where the weights fulfill Co> 0, c _>-0, c2 > 0.
The interpretation is that we have Co different types of nullary nodes, c unary nodes
and c2 binary nodes. For. example, if the set of operators and variables is {x, y, t,
,,/, log, sin; +, x}, then Co =4, c 3 and c2 2.

REGISTER ALLOCATION FOR UNARY-BINARY TREES 635

We can obtain from the family of binary trees by means of the following
substitution process" Above each leaf insert a sequence of unary nodes, viz.

-, ()*.
Above each binary node insert a sequence of unary nodes, viz.

For plain binary trees, yB(y) is the series enumerating N, whe y marks a leaf and
marks an internal node. Thus the corresponding series for N is obtained by the

substitutions

1--ClZ
(2)

Let / be the generat}ng function of the trees in and /p be the generating
function of the trees in n, i.e. the trees in with register function p. Since the
substitutions do not change the register function of the involved trees, we can find
from by the substitutions (2).

We can define the size of a tree in in two ways:
(1) we count leaves and internal nodes,
(2) we only count internal nodes.

In terms of generating functions (1) corresponds to the transformation

while (2) corresponds to:

coz s(f(z)--> f(z)= 1-c,----- (1-c,z)2]

f(z)f(z)=l-ClZ (1

We can treat both cases together by considering the more general transformation:

(3) f(z)f(z) CZ +.Cf ((c--z +-.cz1-cz (1 ClZ)2]’
where Co, c->-0 and Co 0c=0. So all we have to do in order to compute the
average register function D. of all trees of size n is to perform the transformation in
the expansion

E(z)=2rlog2 r+2(K + l)r+4 ckr-X+2+O(r2)
k0

and in

We are interested in

B(z) 2 2r + O(r2).

[z"](z)
D= [z-](z)"

636 P. FLAJOLET AND H. PRODINGER

Since the factor (CoZ + C’o)/(1 clz) appears both in the numerator and the denominator
and is regular at the dominant singularity of 9, we can write

ill]]/[[z"]B (((l_ClZ)2]](1+O()).
Let p(z)=(CoZ+C’o)C2Z/(1-clz)2. We have to express r(cp(z)) in terms of =
(1-z/r)/2, where tr is the singularity of r(cp(z)) nearest to the origin; plays the
role that plays in the case of binary trees:

r((z))-
1 i_(2Cl+4CC2)Z+(c_4CoC2)Z2;

1-ClZ

is one of the solutions s, s2 of

(c-4CoC2)Z2-(2Cl +4cc2)z+ 1 =0, i.e.

Cl + 2cc22 cc+ cac+ Co
Sl,2 C 4COC2

(a) We assume first that c 4CoC and c +2cc> 0. Then Sl -s2. We set s2
and # s. If c < 4COC2, then is the singularity closest to the origin and [# > . If
C> 4COC2, this is also true, because

c +:cc 44cc+c c+ o> o

C+4CClc2 + ,2 2 ,2 2
Co C2 4CCl C2 +Co C2 + 4C0C2

c> 4CoC.
So we have

(c-4CoC2)Z2-(2c +4cc)z + 1 (c-4CoC2)(z-)(z-#)
and thus as z

(c-4CoC)Z2-(2Cl +4cc2)z + 1 (c-4CoCa)(z-)(-#)

Hence

with

r tP z
l C Cr cr o"

(b) If c 4COC2, then

x/1 -(2c + 4C’oC2)Z A.
1

r(q)(z))

1 1
tr and A

2c + 4CoC2 1 c
(c) If Cl + 2CC2 0, we have e -r. This means c 0 and c 0, so that we have

to consider

[z"]cozE(coc).z) [z"-]E(coc:z)
[z"]cozB(coc2z2) [z"-]B(coc_z2)"

REGISTER ALLOCATION FOR UNARY-BINARY TREES 637

In this case n has to be odd, n 2N+ 1, and we substitute Z2-’- W and have to consider

[w’]E(CoCW)
w’](CoCW)

which is as in the other cases.
In order to compute/n up to a relative error of O(1/n), we can use

[[z’](2al-Zlg2(A41--)+2(K+l)a tr

+4 ko Ck (A /1---)l-xk)]/

[1 4 Z () 4 z
[z"]

log 2
1 ---tr log 1 + (K + 1 + log2 A) 1 ---tr

log4 n + D(log4 n -log2 A)- log2 A.

If we consider (according to case (c))

lg4
n- l + D (lg4 n-1)-- 2

log2 A log2 A,

this is, up to a relative error of O(1/n), equal to

log4 n + D(log4 n-1/2-log2 A)-1/2- log2 A.

This leads us to our main theorem.
THEOREM 2. Given a family o of unary-binary trees:

CO > 0, C2 > 0, C 0,

the average register function , where all trees of size n are equally likely (if the size is
measured by the number of internal nodes and leaves, we set c 0; if the size is just the
number of internal nodes, we set c := Co and Co := 0), is given by"

(a) If c2 4CoC2 and cl + 2cc> O, set

1 + 2C’oC2- 2c2/cc + Co2C2 + Co

C21 4COC2
and

1 ClO"
2N/r’ C/4(C6Cl -- CgC2"+" Co) 1/4,

638 P. FLAJOLET AND H. PRODINGER

then

Then

)=loga n+ D(loga n_log2 A)_log2 A+ o (log n),
(b) If c 4COC2, set

1 1
tr= and A=

2c+4CC2 1 ctr

,=log4n+D(log4n-log2A)-log2A+o(lOf n), (no).

(c) If c / 2cc2 O, then for odd n, we have with tr, A defined as in (a):

/n =log4 n +D(log4 n-log2 A-)-log2 A-l+2 O(10-gn* n) (n +).

Example. Let us consider the Motzkin trees, defined by:

g F-1 +0 + /.

Let a leaf contribute to the size. The generating function of the numbers of Metzkin
trees satisfies (z) z(1 + M(z)+ M(z)=), whence

1-z-x/1-2z-3z=
M(z)

2z

Co 1, c) 0, c 1, c2 1, tr 1/3, A . The average number D, of registers needed
to evaluate a Motzkin tree of size n is then

/,, log4 n + D log4 n- log2 3 - log2 3 + O (n + o0),

where D(x) is the periodic function of Theorem 1. We may mention that

log4 tl --1/2 log2 3 log4 n.
4. Conclusions. The path we have taken is general enough to enable us to treat

the asymptotics of sums of the form

(4) Sn= ak (2n)k>_l n k

(where instead of binomial coefficients, differences of binomial coefficients may
appear), when {ak}k>_ is an arithmetic sequence, i.e. a sequence such that the Dirichlet
generating function

a(s)= akk
kl

is meromorphic and well enough behaved towards ira. Such sums appear in the analysis
of algorithms in at least the following three cases:

(1) height of trees [2];
(2) register allocation [7], [12], [16];
(3) odd-even merge [8], [19].

REGISTER ALLOCATION FOR UNARY-BINARY TREES 639

The methods that have been employed to analyse sums of the form (4) are:
(A) With the Gaussian approximation of binomial coefficients, replace the study

of Sn in (4) by the study of $*(1/x/n) where:

(5) S*(X) ak e-k2x2
kl

and use Mellin transform techniques to evaluate (5) asymptotically. This is the way
taken originally by de Bruijn, Knuth and Rice [2] (problem 1), Kemp [12] (problem
2) and Sedgewick [19] (problem 3).

(B) Use real analysis to obtain real expressions for

ak orAk= aj or Ak2= . A)1’’’.
j<k j<k

Developments based on techniques of Delange constitute the original treatment of
register allocation in [7] (problem 2), and have been applied to rederive Sedgewick’s
solution to [8] (problem 3). In the context of problem 1, they lead to an elementary
derivation of the main terms of the expected height of general trees (this fact has been
pointed out to us by L. Guibas).

(C) Use singularity analysis of the generating function of the Sn,

S(z)= E Sz
n_>--0

as we have done in this paper. The method has the advantage of allowing rather simply
derivation of asymptotic expansions to any order and also generalises easily, as we
have seen, to cases where binomial coefficients are replaced by trinomial coefficients
or even more generally to coefficients of powers of some fixed function. It could
therefore have been applied to problems 1 and 3 as well; interestingly enough, this is
the way Knuth started his partial attack to problem 3 14, ex. 5.2.2.16, p. 135 and p. 607].

Aekaowletlgment. We would like to thank one of the referees for pointing out a
reference to a further paper dealing with register problems [22].

REFERENCES

1] G. ANDREWS, Theory of Partitions, Academic Press, New York-London, 1976.
[2] N. G. DE BRUIJN, D. E. KNUTH AND S. O. RICE, The average height ofplanted plane trees, in Graph

Theory and Computing, R. C. Read, ed., Academic Press, New York-London, 1972, pp. 15-22.
[3] H. DELANGE, Stir la fonction sommatoire de la fonction somme des chiffres, l’Enseignement

Math6matique, 21 (1975), pp. 31-47.
[4] G. DOETSCH, Handbuch der Laplace Transformation, Birkhiuser, Basel, 1950.
[5] A. P. ERSHOV, On programming of arithmetic operations, Comm. ACM, (1958), pp. 3-6.
[6] P. FLAJOLET, Analyse d’algorithmes de manipulation d’arbres et de fichiers, Cahiers du BURO, 34-35

(1981), pp. 1-209.
[7] P. FLAJOLET, J. C. RAOULT AND J. VUILLEMIN, The number of registers required for evaluating

arithmetical expressions, Theoret. Comput. Science, 9 (1979), pp. 99-125.
[8] P. FLAJOLET AND L. RAMSHAW, A note on Gray code and odd-even merge, this Journal, 9 (1980),

pp. 142-158.
[9] P. FLAJOLET AND A. ODLYZKO, The average height of binary trees and other simple trees, J. Comput.

System Sci., 25 (1982), pp. 171-213.
10] P. FLAJOLET AND C. PUECH, Partial match retrieval ofmultidimensional data, INRIA Research Report

233, Aug. 1983, extended abstract in 24th IEEE Symposium on Foundations of Computer Science,
Tucson, AZ, 1983, pp. 282-288.

11 R. JtJNGEN, Sur les s.ries de Taylor n’ayant que des singularits algbrico-logarithmiques sur leur cerde
de convergence, Comm. Math. Helvetici, 3 (1931), pp. 266-306.

640 P. FLAJOLET AND H. PRODINGER

12] R. KEMP, The average number of registers to evaluate a binary tree optimally, Acta Inf., 11 (1979), pp.
363-372.

[13] P. KIRSCHENHOFER, On the height of leaves in binary trees, J. Combin. Inform. Syst. Sci., 8 (1983),
pp. 44-60.

[14] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Addison-Wesley, Reading, MA, 1973.
[15] A. MEIR AND J. W. MOON, On the altitude of nodes in random trees, Canad. J. Math., 30 (1978), pp.

997-1015.
[16] A. MEre, J. W. MOON AND J. R. POUNDER, On the order of random channel networks, SIAM J. Alg.

Disc. Meth., (1980), pp. 25-33.
17] A. ODLYZKO, Periodic oscillations of coefficients ofpower series that satisfy functional equations, Adv.

Math., 44 (1982), pp. 180-205.
18] M. REGNIER, Evaluation des performances du hachage dynamique, Thse, Paris-Sud-Orsay, 1983.

[19] R. SEDGEWICK, Data movement in odd-even merging, this Journal, 7 (1978), pp. 239-272.
[20] I. SNEDDON, The Use of Integral Transforms, McGraw-Hill, New York, 1952.
[21] E. T. WHITTAKER AND G. N. WATSON, A Course of Modern Analysis, Cambridge Univ. Press,

Cambridge, 1927.
[22] R. KEMP, The reduction of binary trees by means of an input-restricted deque, RAIRO Inform. Theor.,

17 (1983), pp. 249-284.
[23] R. SETH AND J. D. ULLMAN, The generation of optimal code for arithmetic expressions, J. Assoc.

Comput. Mach., 17 (1970), pp. 715-728.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
002

CONSTRUCTING O(n log n)SIZE MONOTONE FORMULAE FOR
THE kth THRESHOLD FUNCTION OF n BOOLEAN VARIABLES*

JOEL FRIEDMAN"

Abstract. In this paper we construct formulae for the kth elementary symmetric polynomial of n Boolean
variables, using only conjunction and disjunction, which for fixed k are of size O(n log n), with the
construction taking time polynomial in n. We also prove theorems involving n log n. (polynomial in k)
upper bounds on such formulae. Our methods involve solving the following combinatorial problem: for
fixed k and any n construct a collection of r= O(log n) functions fl," ,f from {1,. , n} to {1,. , k}
such that any subset of {1,. ., n} of order k is mapped 1-1 to {1,. ., k} by at least one f.

Key words, monotone formula, threshold function, error-correcting codes, partitions

AMS(MOS) subject classification. 68C25

Introduction. For Boolean variables Xl,"’,xn we define the "threshold k"
function

1 if at leastkoftheXl,.., xn are 1
Thk(Xl," x,)-- [0 otherwise.

In [Kr] Krichevskii proved that any monotone Boolean formula, i.e. formula using
only conjunction and disjunction, for Th2(Xl,’’’, x,) must be of size (i.e. number of
occurrences of variables) l’l(n log n), and hence so does Thk(Xl,... ,x), k>2. In
[Kh] Khasin proves the existence of formulae for Thk(Xl,..., x,) of size O(n log n) for
fixed k; unfortunately the proof is not constructive (an exhaustive search for such a
formula would take time exponential in n). Kleiman and Pippenger, in [K, P], have
constructed formulae for Thk(X, , x,) of size O(n log n(2k)g*") for fixed k. In this
paper we construct monotone formulae for Thk(Xl, , x,,) of size O(n log n) in time
polynomial in n for fixed k. In addition we prove the existence of monotone formulae
of size O(klE’6n log n), which improves on Khasin’s bound of O(k0g k)n log n). We
also prove constructions for formulae of size O(kS74n log n) which also use negation
and XOR.

As a byproduct of our construction we solve the following combinatorial problem.
It is well known that for fixed k and any n there exists a collection of r= O(log n)
functions, fl, ,f, from {1,..., n} to {1,..., k}, such that any subset of {1,. ., n}
of order k is mapped 1-1 to {1,..., k} by at least one f. Previous proofs are
nonconstructive. We give a construction for such a collection of functions.

In 1 we give a simple construction for Thk(Xl,’’’, xn) which, for fixed k, is of
size O(n log n) and requires polynomial time in n. The construction makes use of
certain sets, which, to coding theorists, are certain types of error-correcting codes. In
2 we explain this more thoroughly, and derive more general results using these codes,

including the O(klE6r/log n) existence theorem. The rest of the paper is devoted to
quicker constructions of these codes, using well-known coding techniques. Section 3
gives a randomized algorithm for construction, simplified by using linear codes. Section
4 uses the idea of concatenating codes and Reed-Solomon codes, which greatly
improves the construction at the cost of lengthening the code somewhat. Section 5
uses Justesen codes to give explicit codes; these codes are much longer than those of

3 and 4 (giving threshold function formulae of size c. n log n for fixed k with a
much larger constant c).

Received by the editors February 27, 1984, and in revised form March 18, 1985.
f Harvard University, Cambridge, Massachusetts 02138. Present address, IBM, San Jose, California

95193.

641

642 JOEL FRIEDMAN

1. The basic construction. We construct formulae of the form

(1.1) Thk(Xl,""’, xn) / Fi
i=l

where each F is of the form

where A,. ., Ak are disjoint subsets of {1,. ., n}. We shall call each A,..., Ak a
partition of {1,. ., n}, though we do not require A t_J. LI Ak to be all of {1,. ., n}.
The formula (1.1) is valid if[the r partitions have the property that each subset
{il," ", ik} of {1," ", n} is separated by at least one of the partitions, i.e. for some j
the sets A,. , Ak each contain exactly one element of {il,. , ik}. Such a collection
of partitions will be called an n, k scheme of size r. The formula (1.1) has length <-rn.
In what follows we construct n, k schemes of size O(log n) for fixed k.

For k 2 and any m we construct a 2m, 2 scheme of size m as follows. For positive
integers and j let Binj (i) be the jth digit (from the right) of the binary representation
of (i.e. i=Bin (i)+2. Bin2 (i)+4. Bina (i)+. .). For j= 1,. ., m we define the
partition of {1,..., 2m}

A= {i: Binj (i)= 0, 1 <_- i_<-2m},

A{ ={i: Bin (i)= 1,

Since any two distinct integers {1,..., 2m} differ at the jth digit of their binary
representations for some j, 1-<j-< m, the above collection of partitions separates
{1,..., 2"}. Thus they define a 2", 2 scheme of size m.

This method does not directly generalize to k > 2. For example, one might try to
use base 3 representations to construct 3 m, 3 schemes of size m. Unfortunately there
are triples such as (222, 122, 221) of distinct base 3 integers with no digit on which
they all differ. Our idea is to consider, for some base b, a subset S of {1,..., bm}
such that any two distinct elements of $, expressed in base b, differ on more than 32- of
the (first) m digits. For such $, any triple (x, y, z) of distinct elements of S all differ
on at least one of the first m digits, because each of the three pairs (x, y), (y, z), and
(x, z) coincide on less than] of these digits. Partitioning by digits as before we get a
Isl, 3 scheme of size linear in m (where Isl dnots the cardinality of S). If b is chosen
large enough we can find an S of size exponential in m.

On {1,. , b}", the set of m-tuples of integers from 1 to b, we define the "Hamming
distance,"

p((x,, x,,,), (y,, y,,,))=-1{i: xi

For x {1,..., b}" we define the ball of radius r about x,

Br(x) =- {y: p(x, y) <-_ r}.

For positive integer r clearly

r!(m-r)!"
For a subset $ c { 1,. ., b}" we define its minimum distance to be min {O(x, y): x, y
S, xeyt.

FORMULAE FOR A THRESHOLD FUNCTION 643

LEMMA 1.1. Let be an integer > 1. Then for b 22t, c "-21 we have that for any
positive integer m there exists a subset S of {1,. ., b} with [S[b and with minimum
distance > (1 1/l) mc.

Proof. Let 0 1 1/I. For any x { 1,. ., b}mc we have

(mc) 2mcbomC:b(O+logt, 2)mc_.b(l_l/l+l/21)m]Bomc(X)] bme <
Omc

1 1
b<-/2mc- [{1, , b}m[bm./l.= I{1, , b}mc[--g

since log 2 1/2/. To construct S we choose any x {1,. , b} as our first element
and subsequently choose x from

{1,’’ ", b}me- Bomc(X)- Bomc(X2) Bomc(Xi-l).

Since this set has at least I{ 1,..., b}mcl(1- (i- 1)/bm) elements, we can keep choosing
x’s for <- bm.

The above construction of S takes polynomial time in bm, since we can go through
the set {1,..., b} in some order to find points for S; each time we add a point x
to S we "mark off" the points in Bomc(X).

THEOREM 1.2. For fixed k we can constrict n, k schemes of size O(log n) in time
polynomial in n.

oof In the above lemma let 1= (), let m be fixed, and let S {x,..., Xbm}.
Let y,’’., Yk be distinct points in S. Since each of the () pairs of these points differ
at a fraction > 1-()- of their components, there must be one component at which
all pairs differ, i.e. for some u the uth component of y,..., Yk are all distinct. We
therefore construct a bm, k scheme as follows" for each integerj, 1 j cm, and integers
fi, , tk with 1 ta < h <" < tk b we define paition whose uth subset is

Aq.’".’ { i: the jth component of x is t,},

u 1, , k. Since any kx’s are separated by somejth component, the above collection
of paitions separates any k points of {1,. ., bm}. is scheme is of size

=o(.

Hence for any n we can take [log n ([a denoting the smallest integer a) to
get an n, k scheme of size O(log n). Fuhermore the construction of S is done in
polynomial time of b O(n).

We can significantly improve on Lemma 1.1 by using Stirling’s foula

where

Then we have

mc

n!= e"-

1 1
<r. <-----.
12n+l 12n

x/2r0(1 O)mc
[0(1--0)(-)] el]12mc <[O0(l__O)(1--O)]--mc

644 JOEL FRIEDMAN

or

mc) h,,C OO 0)(1_0)]_(1.2)
Omc

< where h (1

Using this bound, instead of (o,c)< 2 which we used before, we get
LEMMA 1.3. Lemma 1.1 holds for any c and b h/3 with

1 1 1

cfl=l"
Proof.

mc) b Omc

IBom(X)l Omc h"Cb"c

I(1,’.., b}ml b
<

bm---7-= (hb-1/’)mc

1
bm

(bl/c+lgbh--1/l)mc= 1/bm(bl/C+l/-l/l)mc

which is <-_lib" if l/c+ 1/-1/1<-0.
COROLLARY 1.4. Lemma 1.1 holds with c 21 and any b >-e2/2= (7.389...)/2 or

c 12 and b >- 8 I.
Proof. For c 21 we need/3 >-21 and thus

b >- h / 1+ < le

since (1+ 1/n) <e, for all integers n. Also, using (l+l/n)n+l <4 and nl/("-<-_2 for
all n positive integer, we see that for c it sutces to choose

b>_h ’2/(’-) l’/(’-)(l+ l-l)t (l--_l)II/(-) 1 + < I. 2 4 81.

Thus in Theorem 1.2 we can take c k(k 1) and b 2k2(k 1)2 or c 1/4k2(k 1)2
and b 4k(k- 1).

Remark. R. Boppana has pointed out to me that this corollary holds with c
O(l log l), b O(l).

2. The general theory. In this section we generalize on the basic construction of
Theorem 1.2 and describe how the theory of error-correcting codes ties into our
construction.

By a b, m, c, 0 set we shall mean a subset S of {1,. ., b} of minimal distance
>Omc and with IS[= b"*. In 2 and 3 we will always take m to be an integer. Of
course, b, cm, and b" must always be integers.

Let us examine the role played by the b, m, c, 0 set, S {x, , Xbm}, in the proof
of Theorem 1.2. We constructed our b", k scheme by separating x,..., Xb. by their
components. For each j, 1 <=j <= cm we associated () partitions with thejth component;
we point out that the jth component of k points in $ represent k points of {1, , b},
and so the () partitions associated with the jth component simply represent a b, k
scheme. We observe that a better b, k scheme, of size r, would lead to a construction
of a bin, k scheme of size cm. r.

THEOREM 2.1. Let {M,. ., dJk}j=l,...,r be a b, k scheme of size r. Then from this
scheme, and from a b, m, c, 0 set S {x,..., xb} with 0 1--(2k) -1, we can construct
a b", k scheme of size cm. r.

FORMULAE FOR A THRESHOLD FUNCTION 645

Proof. For integers j,j2 with <-j <-_ mc and 1 <=j2<= r we define the partition
whose uth subset is

Aid ’j2 {i" the jlth component of x is contained in M.}.J2

Clearly these mc. r partitions separate any k distinct points of {1,. ., b"} and thus
form a b", k scheme of size cm. r.

Theorem 2.1 tells us that the role of the b, m, c, 0 set was to combine with a b, k
scheme to form a b% k scheme. Next we show how to combine a b, m, c, 0 set directly
with a formula for Thk (yl,’’’, Yb) to get a formula for Thk (y,’’’, yb):

THEOREM 2.2. Let there exist a (monotone)formula for Thk (z,..., Zb) of size "
(i.e. total number of occurrences of variables). From this formula, and from a b, m, c, 0
set S={x,... ,Xb} with O= 1--(k)-, we can construct a (monotone) formula for
Thk (y,’’’, Yb") of size -cmb"-1.

Proof. For each j, <-j <- cm we define the partition of { 1, , b’} into b subsets,
AJ,""", A,, where

Then

A {i" the jth component of xi is u}.

(2.1) Thk(y,’’’,yb)= Thk(V yi, V yi,..., V y)
j=l iAJl iAJ2 iA

because a subset R of {1,..., b"} satisfies IRI _-> k if[there is some j for which R has
members in at least k of A,..., A,. On the right-hand side of (2.1) we have a

disjunction of cm threshold-k functions of b arguments. Consider one ofthese functions

(2.2) Thk(V y,, V y,," "’, V

for some fixed j. The b arguments of this threshold-k function contain a total of b
occurrences of variables (in fact, each variable y,..., y occurs once). If, in our
formula for Th (zl,..., z), each variable z appears the same number of times, i.e.
r/b times, then the formula constructed for (2.2) will be of size r/b. b ’. If some of
the variables z,. ., z occur less often than others, then by matching these ones up
with the larger sets among A,..., A we will do no worse than r/b. b’. Thus using
(2.1) we can construct a (monotone) formula for Th (y,. , yb) of size cm. r/b. b.

The construction of b, m, c, 0 sets is a central problem of the theory of error-
correcting codes. In error-correcting codes one assumes that the characters of a
transmitted message each have a certain probability of being received incorrectly; if
we only transmit from a subset, S, of all possible messages, having minimum distance
>=2t + 1, then we can correct the errors in the received message as long as no more
than characters are in error. Corollary 1.4 tells us that for 0 1/l there are 81, m,
l,sets for integers m, constructable in time polynomial in (81) mi2. Actually, there are
more sophisticated error-correcting codes which, for fixed 0, yield explicit b, m, c, 0
sets for all m and some fixed b and c. We will devote 3-5 to explaining some of
these techniques. Before doing so we shall discuss the implications of Theorems 2.1
and 2.2 and discuss Lemma 1.3 in coding theory terms.

According to Corollary 1.4, for O(k) 1- ()- we can construct b, m, c, 0 sets for
any m and for b(k) 4k(k 1), c(k) 1/4k2(k 1)2. By Theorem 2.1, if we can construct
a b(k), k scheme of size r(k) then we can constrict b ", k schemes of size cmr(k)=
O(k4mr(k)). Thus constructing Thk (xl,’", xn) formulae of size n log n times a

646 JOEL FRIEDMAN

polynomial in k would follow from a construction of 4k2, k schemes of polynomial
size in k. Unfortunately our methods do not improve on previously known bounds for
r(k), which are exponential in k. However, recently L. G. Valiant has demonstrated
polynomial bounds for the size of monotone formulae for Thk (Xl,"-’, X4k2).

LEMMA 2.3. There exist monotone Boolean formulae for Thk (xl,""", x,) for any
k of size 0 n5.3).

Proof See IV].
THEOREM 2.4. There exist monotone Boolean formulaefor Th (x, , x,) of size

O(kl’6n log n).
Proof By Lemma 2.3 there exist monotone formulae for Th (xl,. , x4) of size

O(k6). Combining this with Theorem 1.2 in which we take b =4kz, c= k4 yields
formulae for Th (xl," ", x-) of size

O(k1.6)
cm b" O(klE’6mbm).

b

For any n set m-[logn]/logb and construct Thk(yl,’’ ",y,) out of our
Thk (xl,’’ ", Xbm) formula by choosing the n variables of xl,"’, xb which occur
with the least frequency in our formula (and setting the others to 0). This yields a
formula for Thk (Yl, ",Yn) no more than nb" times the size of our Thk (xl," , Xb")
formula, i.e. a formula for Zhk (Yl,""", Yn) of size

n klE.6mbm 12.6mn kl2.6nb-- O(O(k O(log n).

Since Valiant’s proof of Lemma 2.3 is nonconstructive, so is Theorem 2.4. Works
of Pippenger [Pi], Paterson [Pa], and Peterson [Pe] have led to constructions of
formulae for Thk (xl,""", x,) of size O(n337) (for all k) in which negation and XOR
are allowed as well. Also, a result of Ajtai, Komlos, and Szemeredi [A, K, S] on
comparator sorting networks of depth O(log n) implies a construction for monotone
formulae for Thk (xl,"" ", x,,) (for all k) of size polynomial in n (but the degree of
the polynomial is very large). Using Theorem 2.2, these results yield constructions for
formulae for Thk (xl,- ., x,) of size O(kS’74n log n) using negation, XOR, conjunc-
tion, and disjunction, and monotone formulae of size n log n. polynomial (of large
degree) of k.

R. Boppana and a referee have pointed out that Lemma 2.3 can be improved to
O(k4"3n log n); along with the improvement of Corollary 1.4, this improves Theorem
2.4 to O(k4"3 n log n).

Let us now return to the construction of b, m, c, 0 sets. Lemmas 1.1 and 1.3 are
consequences of what coding theorists call the Gilbert (or Gilbert-Varshamov) bound,
which simply says that b, m, c, 0 sets exist if

IBomc(X)l < 1_._ (x 6 {1, b}mc).(2.3) I{1,..., b}ml- b

In Lemma 1.3 we estimated IBo,.c(x)l by (o)b’. For fixed b, c, and 0 the following
bound is better for large m:

]Bo,,(x)l <- (b
i=0

This leads to the asymptotic Gilbert bound, which, in our terminology, says that for
fixed b, c, and 0, bound (2.3) is achieved for sufficiently large m if b, c, and 0 satisfy

FORMULAE FOR A THRESHOLD FUNCTION 647

0< 1-1/b and

where Hb(O) is given by

c>
1--Hb(O)’

Hb(O) =-- 0 IOgb b 1 0 lOgb 0 1 0) 1ogb 1 0).

See [vL] for details. This bound is slightly better than that of Lemma 1.3.
In 3 and 4 we improve on the b, m, c, 0 set construction of Lemma 1.1, which

took time polynomial in b me. The constructions which follow take time polynomial in
b where the degree of the polynomial is independent of c (and b and 0). In 3 we
give a simple random algorithm working in expected time polynomial in bm. In 4
we use more sophisticated techniques to give an algorithm without randomness. In
5 we give an explicit construction of such set in terms of finite fields, but for

0 1 / 1/l the c we choose is exponential in I.

3. A randomized linear construction. In Theorem 1.2 we constructed n, k schemes
of size O(log n) in time polynomial in n kk-1). In what follows we give a random
algorithm which will construct a b, m, c, 0 set, S, in space O(m2) bits and expected
time O(mbm) with time measured as number of bit operations. We require that b be
prime and that b, m, c, 0 satisfy (2.3). The construction is known as a random linear
code (see [vL]).

Let b, m, c, 0 satisfy (2.3). Our first attempt at a random algorithm to construct S
would be to pick x,..., Xm at random and to see if p(x, x)> Omc for all i,j, ij.
We would have 1/2b re(b,,_ 1) pairs x, xg to check, and each check would require O(m)
bit operations since the x’s are of length O(m) bits. Thus this check would require
fl(mb:m) bit operations, as well as f(mbm) bits of storage for the x’s. So even if our
first guess is correct we need a fair amount of time and a lot of storage. To improve
on this we use the idea of linear codes.

Let us further assume that b is a prime number, which we will henceforth denote
p. Then Z/pT/, the integers modulus p, form a field and (./pT/) forms a vector space
over Z/p2’. We can identify (7//pZ) with {1,. , p}mc, and the notions of Hamming
distance and minimal distance of a subset carry over to (7//p7/) inc. Note that for vectors
U, 1 (TZ/p.) and scalar a Z/pZ

p(u,v)=p(u-v,O)

and

p(u, v) p(au, av) if a # O.

We define the weight of a vector, v, to be

w(v)=-p(v,O).

Let T be any linear subspace of (7//p7/) inc. Then the minimum distance of T,

min {p(u, v): u, v T, u v} min {p(u- v, 0): u, v T, u v}

min {w(x)" x T, x # 0}.

Hence to find the minimum distance of a linear subspace we need only find the
minimum weight, which involves IT[weight checks as opposed to 1/21TI(T]- 1) distance
checks. It turns out that (2.3) is enough to guarantee the existence of a b, m, c, 0 set
which is also a linear subspace of (’/p7/)".

648 JOEL FRIEDMAN

PROPOSITION 3.1. Let T be a subspace of (7//p7/) of minimum distance >=d and
let v be a vector whose distance to T,

p(v, T) min p(v, t) >= d.
tT

Then the subspace spanned by T and v also has minimum distance >-_ d.
Proof. Any vector in the span of T and v can be written as / cv with T and

a scalar. If a=0 then w(t+av)=w(t)_->d, while if a#0 then w(t+av)=
w(a-l(t + aV)) w(o-lt / v) d.

THEOREM 3.2. We can construct an S with minimum distance > Omc and IsI =pm
via a random algorithm in space O(m2) bits and in expected time O(mpm) bit operations.

Proof. Choose Vl,’",v at random from (7//p7/) and consider S=
span(v,...,Vm). By Proposition 3.1, if p(v,O)>-d and for each i>1,
p(v, span (v, , v_)) >= d, then an easy induction argument shows span (v, , Vm)
has minimum distance >=d. Since the probability that p(v, span (v,. ., v_))> Omc is

pi-lBomc(O pi-1
->_1- =1pmc pm

we have that S has minimum distance > Omc with probability

Since [I i=1 (1- a,) > 1-y,m
i=l ai if 0 < ai < (as shown by induction starting with (1

al)(1 a2) 1 al- a2+ ala2 1 al- a2), the above probability is

1 p p"- 1
->1 pm pm pm =l--pm(l+P+ +p

1 (pm--1) 1 p--2
=1----=. >1

\ p--1 p--1 p--1

Hence the expected number of tries to construct S with minimum distance > Omc is
(p-1)/(p-2).

To find the minimum distance of S we need to check the weights of aVl+... +
amVm for all ai’s between 0 and p-1; if we go through (al," , am) in lexicographic
order, i.e. in order increasing with t //ga2 / pEa3 /... /pm-am (i.e. count from 0 to
pm-1 in base p), then to update air /’" "/ OlmV We only need to add v to Ol,lI"

running vector sum each time, to add V2 to Ol.lI" sum lip of the time, add Va1/p2 Of
the time, etc. Thus we can go through all combinations alVl +" + amVm in pm(1 + l/p/

"/ 1/pm) vector additions =O(pm) vector additions -O(mpm) bit operations. Also
we need store only a, , am, the vectors Vl, , Vm, and the running sum al Vl /" /

amVm, requiring a total of O(m2) bits of storage.
Hence the above random algorithm runs in space O(m) and in expected time

O(mpm) bit operations.
COROLLARY 3.3. Using the above random algorithm, for fixed k we can construct

monotone formulae for Thk (Xl,""", x,) of size O(n log n), explicit up to a construction

of a set, S, taking space O((log n)2) bits and expected time O(n log n) bit operations.

4. A concatenation construction. In 2 we demonstrated ways of constructing new
Thk (x,..., x,) formulae and n, k schemes from ones with smaller n by combining
them with a b, m, c, 0 set. In this section we show a way of combining two b, m, c, 0

FORMULAE FOR A THRESHOLD FUNCTION 649

sets to get a new one, and apply this technique. These are known as concatenated
codes (see [vL]).

From now on we no longer require m to be an integer in a b, m, c, 0 set (only that
b, b’, and cm be integers). Note that for any b, m, c, 0 set S, S is also a b, m, c, 0’ set
for 0’< 0, and any subset of S of size b m’ is a b, m’, c. m/m’, 0 set, for any m’ < m
with b"’ an integer.

Let S1 be a bl, ml, Cl, 01 set and S2 a bE, C2, mE, 02 set with b2- ISll-- bl. Then we
can identify {1,. ., bE} with $1 and think of each element of $2 as a CEmE-tuple of
elements of S1. More precisely, let the points of S1 be ordered Xl,’" ", Xb"?, and let
r:{1,..., bE} $1 be defined by r(j)=-xj. For each point Y=(Yl,""", Y-EcE) in $2 let
-(Y) (r(Yl)," ", r(Y,,EcE)). Then : s2 ($1) m:: which we can identify with
{1,. ., bl}m’m. We define SlO $2, the concatenation of $2 with S1 (with respect to
a given ordering of S1), as the image g(Sz). Note that Is1 SEI Is21, and further that
$1oS2 is a bl, mimE, CLC2, 0102 set.

The above construction also works for bE < ISll, but then

IS, S:l [Sl b’ bm2
log b2where/x
log bl

and so $1oS2 is a bl, /zmE, ml/tz" 1C2, 0102 set.
The following set is known to coding theorists as a Reed-Solomon code: for any

prime p and integer d < p we define

(p, d)=-{(f(O),f(1),... ,f(p- 1)) (’/p7/)P: f is a polynomial of degree <d}.

Since every polynomial of degree _-<d- 1 (over a field) has at most d 1 roots, 6e(p, d)
is a

p, d, , 1- set.

While (p, d) is simple and ex.plicit, it only gives b, m, c, 0 sets for m < b. However,
concatenating (p, d) sets with other sets is a very powerful technique.

THEOREM 4.1. For fixed b, c, 0 1 1/21, let S, M 1, 2, , be a sequence of
b, M, c, 0 sets. Then for each sufficiently large M we can construct a b, m, c’, 1-1/l set

for some c’< 462c(21+ 1), by concatenating an 9"(p, d) set ith an SO(log,, for primes
p between b and b + for some M with b + < m.

oo For each M choose a prime p between b and bM+I (it is well known that
there is at least one prime between a and 2a- 2 for any a >). Let d [p/21] (where
[a] denotes the greatest integer Na). Then S+(p, d) is a

b, d, M+ l cp, 0 1- set

where logp. For suciently large d [p/21] > p/(21+ 1); for such M we have
d> Mb/(21+ 1), and so any subset S of S+(g d) of appropriate size is a

b, 2/+1 2/+1
(M+l)cp, 0 1- set.

And since O(1-d/p)e(1-1/21)> l-l/l,

M
SMisab,

2/+1
bM, 1

c’, 1-’7 set
1

650 JOEL FRIEDMAN

where

M+I p
c’=(21+ l)c--- b1 <(21+1)c. 2. b=2bc(21+ l).

For any rn let M be the integer such that (M-I)/(21+ 1)bM-1 <m<-M/(21+ 1)bVt;
clearly M= O(log m). Then m=t(M/(21+ 1)b) with l>-t>(M-1)/Mb> 1/2b,
and thus any subset of S, of appropriate size is a b, m, c", 1-1/1 set with

"< bc(21 + 1) < 4b2c(21 + 1)

For iiateger k -> 1 let logk x denote the kth iteration of log x,

logk x -= log log. log x,

k times

and define logx--x.
In 1 we saw that for 0 1-1/l there are constants b, c polynomial in such

that b, m, c, 0 sets can be constructed, for all integers m, in time polynomial in b"c.
Repeated application of Theorem 4.1 yields

THEOREM 4.2. Let k be a fixed positive integer. Then for 0 1-1/l there exists
constants b, c polynomial in such that for each sufficiently large m (larger than some
polynomial in l), a b, m, c’, 0 set with c’< c can be constructed in terms of a set, S,
constructable in time polynomial in logk-1 m, and k appropriately chosen primes <m.

Note that one can find all primes <m in time polynomial in m. Thus Corollary
4.3 follows.

COROLLARY 4.3. For fixed k we can construct monotone formulae for
Thk (Xl,""" ,xn) of size O(n log n) in polynomial time in n, where the degree of the
polynomial does not depend on k.

5. An explicit construction. In the previous sections our constructions for b, m, c, 0
sets have always involved, at some point, the choosing of points in {1,. , b} which
are a large distance apart. Such points were not explicitly specified. Using Justesen
codes it is possible to specify sets explicitly (for m 1, 2,..., for fixed b, c, 0), in
terms of finite fields. We remark that irreducible polynomials needed in the realization
of finite fields can be found quickly; see [R].

Here we shall briefly describe these Justesen codes, assuming a familiarity with
finite fields. For a more detailed discussion and background on finite fields, see [vL]
or [B].

By GF(q) we mean the finite field of q elements. GF(qm) is an m-dimensional
vector space over GF(q); it will often be useful to view it as (GF(q))m, i.e. think of
its elements as m-tuples of GF(q) elements.

Let us generalize the notion of a concatenated set. Let T be a b2, m2, c2, 0 set and
let S, be hi, ml, cl, Of sets for i= 1,..., c2m2, with b2 bl. Then we define the
concatenation of T with {S}, denoted {S}o T, as ’(T) where : T--> $1 x SEX’’’ X Sc,,
is given by

r((yl,’’’, Yc2m2)) (1(Yl), ",

where are any bijections from {1,..., b2} to S. In the construction of 4 we
constructed {Si}oSe(p, d) by taking a large minimum distance set, S, and setting
$1 $2 S,2 $. Unfortunately, we do not have an explicit description of S.

FORMULAE FOR A THRESHOLD FUNCTION 651

However, there are explicit descriptions of collections of bl, ml, c, 0 sets with fixed
bl, ml, c and with almost all of the 0’s close to 1. The idea behind a Justesen code is
to take such collections s and construct {Si} T with the Si distinct elements of

PROPOSITION 5.1. Let T be a b2, m2, c2, 0 set, S be b, ml, Cl, O sets for i=
1,. ., c2m2 with b2 bT". Of the numbers 0, ., 0c2,,2, let no more than em2c2 of them
be < 0 for some e < 1 and O. Then {S}o T is a

hi, mlm2, CLC2, 0(- e) set.

Proof. Two distinct elements of T differ at more than Omc2 of their components,
and more than (/-e)m2c2 of these components correspond to S’s with 0-_> 0.

Next we demonstrate collections mentioned previously.
Let c, q, and m be fixed. For any a,. ., a_l GF(qm) consider the set

S,,...,,_ {(fl, flt,..., fla_)" fl GF(qm)} (GF(qm)).
Viewing GF(qm) as (GF(q))m, we view each S,,...,_ as a q, m, c, 0 set for some 0.
Each element of (GF(q)) of nonzero weight can belong to at most one S,,...,_.
Thus, of the q"<c-) sets S,...,,_,, at most Bomb(O) have a nonzero element of weight
<= Omc. The proof of Lemma 1.3 also proves

PROPOSITION 5.2. Let q= ha where h--[00(1--0)(1-0)]-1, and let

2 1 1

cfl-I
where 1/l 1 O. Then IBo,,(O)l < q,-2.

COROLLARY 5.3. Let q, c, and 0 be as in Proposition 5.2. Then less than 1/qm of
the S,,,...,,_ s are not q, m, c, 0 sets.

Note that since Proposition 5.2 requires 2/c+ 1/fl <- 1/1 instead of 1/c+ 1/fl <- 1/1
as in Lemma 1.3, Corollary 1.4 shows that c 41 and q >- eEl2 or c 2/2 and q _-> 81 will
work in Proposition 5.2.

Next we describe the set T which we concatenate with {S,,l....,c_l}. T will be
taken to be a "BCH code". We shall give a brief account of the theory of BCH codes;
for a more detailed account, see [vL, Chap. 6] and [B, Chap. 12], for example, as
indicated below.

For a prime power q and positive integer n, consider the ring
GF(q)[x]/(xn- 1), the polynomials over GF(q) modulus xn- 1. Each element in

/30+/31x+. .+/3n_xn- can be thought of as the n-tuple (fl0," ",/3,_) (GF(q))n.
Let I c be an ideal. The monic polynomial of least degree in/, g(x), generates/,
i.e. I g; g(x) is called the generator of/. Furthermore, as a subset of (GF(q)),
(/3o,’’’,/3n-) I implies any cyclic shift of (flo,""",/3n-1), i.e. (/3,_/3o/3 /3,-2),
(/3-2/3n-flo /3,-3), etc., is again eL I is called a cyclic code. Also, then, h(x)g(x)
xn- 1 for some h(x) 9 called the check polynomial. Then

II qdegree (h) an-degree (g).

Let us further assume q and n are relatively prime. Let c be the multiplicative
order of q in n, i.e. the smallest positive number c with q---1 (mod n). Then there
exist primitive nth roots of units in GF(qC); let/3 be one of them. For any d < n let

BCH(q, n, d)=-{a(x) t" a(/3) a(/3) a(fla-) 0}.

BCH(q, n, d) is an ideal.
LEMMA 5.4. BCH(q, n, d) has minimum distance >= d.

652 JOEL FRIEDMAN

Proof. BCH(q, n, d) is a linear subspace of (GF(q))". If a(x) BCH(n, q, d) and
has weight <d, i.e. a(x)= alxil+ .+ ad_lXi-’, then (al,’’’, ad-1) would be in the
kernel of the matrix

2i

(d’-l)i [(d "--1)id-i

But the determinant of the above matrix is a Vandermonde determinant equal to

[3il+’’’+id H (ir-

which is nonzero since fl is a primitive nth root of unity.
For details of the above, see [vL, Chap. 6, 6.3]. There, a quick method for

constructing BCH(q, n, d) is discussed, using calculations only in GF(q).
Now consider the case n qC_ 1 (note that the multiplicative order of q in qC- 1

is c). BCH codes with such n are called primitive. For fl, primitive nth root of unity,
GF(q), we have

n-1

x 1 I-I (x i)o
i=0

Let d be an integer <n, let g(x) be a generator of BCH(q, n, d), and let h(x) be the
check polynomial, g(x) is the minimal monic polynomial with roots/3, f12,...,/3d-1.
Since g(x)h(x)=xn-1, each a GF(q) is a root of either g(x) or h(x). But a

q2GF(qc) is a root of a polynomial a(x) if[all of its conjugates, a q, a ,. ., are
roots of a(x) as well. Hence degree (g) is the number of integers i, 0-<i< n, with
i=jqk (mod n) for some k andj with O<=j<=d-1.

For details of the above see [B, Chap. 12].
LEMMA 5.5. Let d (q- a)ac- for some integer a. Then IBCH(q, n, d)l qaC. Also

this BCH has minimum distance > d.
Proof. For any integer define i] by i](mod n), 0 =< i] < n. If i] has base q

representation il i2 i q i + qi2 + + q- ic) then [q. i] has representation
iili2"" i_, and in general [qki] has representation equal to a cyclic shift of il’" i.
For any integer j, 0-<_j < n, we have 0 <=j <= d 1 if[j has representation j .j with
0-<jc < q a. It follows that/3 i, 0=< < n, is a root of h(x), not g(x), if[has representa-
tion i... ic with each ik >- q-a. There are a such i. Thus IBCH(n, q, d)l-qac. In
addition, the smallest such has representation (q-a)... (q-a), and thus/3j is a
root of g(x) for any O<=j<(q-a)(q-+qC-2+ .+ 1); the proof of Lemma 5.4 then
shows the minimum distance >=(q a)(qc- +. + 1) > d.

If in Lemma 5.5 we replace q by q" and a by aqm-, then we see that the BCH
set has size (qm) acq and minimum distance >(q-a)q inc. Hence we have

COROLLARY 5.6. BCH(qm, q,,C_ 1, (q-a)qmc-1) is a

q q q 1 a

q---i--’ 1 --q see.

Returning to our construction, let 0 1-1/l, c 41, and q be any prime power
>-e212 and, say, <=2e212<151. Let a= [(1/l)qJ. Then a>(1/l)q-l=q(1/l-1/q)>
q/(l+ 1). For any positive integer m, let T be the BCH set in Corollary 5.6 with c

FORMULAE FOR A THRESHOLD FUNCTION 653

replaced by c- 1. Since {S,...,c_} has at least 1 1/qm of its elements with minimum
distance > Omc, so does M {S,...,c_} So,o,...,o ($o,o,...,o has minimum distance 1).
Note M consists of qm(C-1)_ 1 sets. Consider do T. By Proposition 5.1 it is a

(c--1 ()c--lm(c--l) ()q, mqm(c_l) a
c

q -1 a 1

\ q/ qm(c-1) 0 1
q qm set.

To simplify these terms, note 1/(l + 1) < a/q < 1/l, and so 0(1 a/q 1/q") >
(1-1/l)(1-2/l)> 1-3/1. Next since (a/q)C-l>(1/(l+l))-1, any subset of oT of
appropriate size is a

q, mqm(c_l)(1 c-1\--/ c(l+ 1) c-1
qm(C-1)_ 1
qm(C-1)

that is, a

(5.1) q, mqm(41_l)(l__41-1 1)41_1(1) 3

\1+ 1]
41(I+ 1--qm(4/_j) 1-- set

or a q,f(m),g(m), 1-3/I set with f(m) and g(m) according to (5.1). Note g(m)<
4/(/+ 1)41-1. Thus to find a q, n, c’, 1-3/1 set for any n, we choose m withf(m)<-n<
f(m + 1), and since

m + 1 q41-1 12)4/-1f(m+1_._)< <2(15

the above yields a q, n, c’, 1- 3/l set with

c’ < g(m) 2(15/2)4/-1 < r(l)

with r(l) 4/(1 + 1)4/-. 2(15/2)4/-1. Thus we have
THEOREM 5.7. The above construction gives for each integer n a q, n, c’, 1 1/l set

for fixed q <= 15/2 and some c’<- r(1) defined as above.
We finish by remarking that one can modify the construction to avoid the construc-

tion of irreducible polynomials needed for realizing GF(pm), m > 1. We do this as
follows: First note that Proposition 5.1 holds with b2=< b’ and {Si}o T then being a

ml log b2bl, /xm2, ClC2, 0(02-e) set, /X-logo,_1.

As before, set 0 1-1/l, c 41, but now take q to be any integer _-> e212. For each m
find the largest prime, p, -<_q’. Let T-BCH(p, pC-i_ 1, d) with d (p-[p/lJ)p-.
For al," ", a_ in Z/pZ let

S,,,...,o_,-= {(a, txla, ", ac_la) (7]/p7])" a Z/pZ}

and let d {Sffl,...,Oc_l } So,o,...,o Let u {1,. , q}m. Since <qm(C-2) points in U are
of weight <=Omc, less than a fraction q’(c-2)/p-=(a"/p)-2, lip of the sets
U S,,...,_, have minimum distance =< Omc. Then, proceeding as in Theorems 5.7 and
4.1, the sets U do T will work for the construction (one U do T for each positive
integer m). As remarked before, according to [vL, 6.3], BCH(p, n, d) can be quickly
constructed using calculations only in GF(p); one need not construct GF(pm), m > 1.

Acknowledgments. The Thk (Xl, Xn) construction problem was posed to the
author by L. G. Valiant; the author would like to thank him, as well as P. Elias,
R. Boppana, and M. O. Rabin, for several helpful conversations and suggestions.

654 JOEL FRIEDMAN

REFERENCES

[A, K, S] M. AJTAI, J. KOMLOS AND E. SZEMEREDI, An O(n log n) sorting network, Proc. 15th ACM
Symposium on Theory of Computing, 1983.

[B] E.R. BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[Kh] L.S. KHASIN, Otsenka slozhnusti realizatsii monotonnykh simmetrich eskikh funktsii formulami v

bazise v, &, -, Dokl. Akad. Nauk SSSR 189 (1969), pp. 752-755; transl, as Complexity bounds
for the realization of monotonic symmetricalfunctions by means offormulas in the basis v, &, -,
Soviet Physics Dokl., 14 (1970), pp. 1149-1151.

[K, P] M. KLEIMAN AND N. PIPPENGER, An explicit construction of short monotone formulae for the
monotone symmetric functions, Theoret. Comput. Si., 7 (1978), pp. 325-332.

[Kr] R.E. KRICHEVSKII, $1ozhnost kontaktnykh skhem, realizuyushchikh odnu funktsiyu algebry Iogiki,
Dokl. Akad. Nauk. SSSR, 151 (1963), pp. 803-806; transl, as Complexity of contact circuits
realizing the function of logical algebra, Soviet Physics Dokl., 8 (1964), pp. 770-772.

[vL] J.H. VAN LINT, Introduction to Coding Theory, Springer-Verlag, New York, 1982.
[Pa] M.S. PATERSON, New bounds on formula size, Lecture Notes in Computer Science 48, Springer-

Verlag, Berlin, 1977, pp. 17-26.
[Pe] G.L. PETERSON, An upper bound on the size offormulae for symmetric boolean functions, Dept.

Computer Science Tech. Report 78-03-01, Univ. Washington, Seattle, 1978.
[Pi] N. Pn’I’ENGER, Shortformulaefor symmetricfunctions, IBM Research Report RC-5143, Yorktown

Heights, NY, 1974.
[R] M.O. RABN, Probabilistic algorithms in finite fields, this Journal, 9, (1980), pp. 273-280.
[V] L.G. VALIANT, Short monotone formulae for the majority function, J. Algorithms, to appear.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
003

THE COMPLEXITY OF COUNTING STABLE MARRIAGES*

ROBERT W. IRVING’]" AND PAUL LEATHER

Abstract. In an instance of size n of the stable marriage problem, each of n men and n women ranks
the members of the opposite sex in order of preference. A stable matching is a complete matching of men
and women such that no man and woman who are not partners both prefer each other to their actual
partners under the matching.

It is well known that at least one stable matching exists for every stable marriage instance, so that the
decision version of the problem always has a "yes" answer. Furthermore, efficient algorithms are known
for the determination of such a stable matching, so that the search version of the problem is polynomially
solvable.

However, by exploring the structure of the set of stable matchings for any particular instance of the
problem, and exploiting its relationship with the set of antichains of an associated partially ordered set, we
prove that the enumeration version of the problem--determining the number of stable matchingsmis
4 P-complete, and therefore cannot be solved in polynomial time if P # NP.

Key words, stable marriage, computational complexity, 4 P-complete, partially ordered set, antichain

1. Introduction and background. The stable marriage problem, first described and
studied by Gale and Shapley 1], involves two disjoint sets of equal cardinality n, the
men and the women. Each person ranks all members of the opposite sex in order of
preference. A stable matching is defined as a complete matching between men and
women with the property that no man and woman who are not partners both prefer
each other to their actual partners under the matching. A readable introductory
treatment of the problem is given by P61ya, Tarjan and Woods [7].

Gale and Shapley proved that at least one stable matching exists for all instances
of the problem, and gave an efficient algorithm for finding such a matching. Later,
McVitie and Wilson [5] gave an alternative formulation of the algorithm, together with
an extension to find all stable matchings for a given problem instance. A quite different
algorithm for all stable matchings, based on backtrack search, was given by Wirth
[10], but although easier in concept, it is much less efficient than that of [5].

As a concluding chapter of a wide-ranging treatise on stable.marriage, Knuth [4]
presented a set of twelve unsolved problems. The sixth of these asked for a description
of the structure of the set of stable matchings that would allow these matchings to be
characterised without having to enumerate them. He also raised various issues concern-
ing the number of stable matchings that may arise for particular instances of the
problem. In particular, he showed that the maximum number of solutions for instances
of size n (i.e. involving n men and n women) grows exponentially with n, a fact that
we shall re-establish in a different way in 2. It follows that any algorithm for finding
all stable matchings is necessarily of exponential worst-case time-complexity. However,
one might ask whether at least the number of stable matchings for a given problem
instance can be determined in polynomial time, and this is one of the central issues
that we shall investigate.

The concept of 6P-completeness was introduced by Valiant [8], [9] (see also
Garey and Johnson [2, pp. 167-170]) in order to describe those enumeration problems
that are "at least as hard" as NP-complete problems. Enumeration problems associated

* Received by the editors August 16, 1984, and in revised form April 1, 1985.

" Department of Computing Science, University of Glasgow, Glasgow, Scotland G12 8QQ.
Department of Computing, Salford College of Technology, Salford, England.

655

656 ROBERT W. IRVING AND PAUL LEATHER

with most NP-complete problems (such as "how many Hamiltonian cycles does a
given graph contain?") are P-complete, but so also are many enumeration problems
arising from polynomially solvable recognition or optimisation problems. We shall
establish the stable marriage problem as one of these.

However, in pursuit of this objective, we shall obtain a good deal of insight into
the fascinating structure of the set of stable matchings for a general stable marriage
instance, and in so doing, we produce at least a partial answer to Knuth’s sixth problem.
We would claim that Theorem 4.1 provides a description of the kind sought by Knuth,
and in view of the #P-completeness result (Theorem 5.2), it seems unlikely that any
more effective characterisation of the stable matchings is possible.

2. The maximum number of stable matchings. One of the unsolved problems raised
by Knuth [4] concerns the maximum numberf(n) of stable matchings for any problem
instance of size n, and the nature of the instance(s) that yield(s) this maximum. In
this section, we provide a construction which we might conjecture provides at least a
partial answer to Knuth’s question, and which certainly establishes the exponential
growth of the function f(n).

An instance of the stable marriage problem is specified by its male and female
preference matrices. If both men and women are arbitrarily numbered 1, 2,..., n, then
these matrices are defined by

mp(i,j) k<=>woman k occupies position j in the list of
preferences of man i;

wp(i,j) k c:>man k occupies position j in the list of
preferences of woman i.

Alternatively, a specification may be given in terms of the male and female ranking
matrices, which we shall use in later sections, defined by

mr(i, k) =jc:woman k occupies position j in the
preference list of man i;

wr(i, k)=j,man k occupies position j in the
preference list of woman i.

Clearly, mr(i, mp(i,j))=j, wr(i, wp(i,j))=j, etc.
Our result is based on the following lemma, for which we give a rather informal

proof, the formal proof being a little messy and tedious.
LEMMA 2.1. Given an instance I, of size n of the stable marriage problem with g(n)

stable matchings, there exists an instance I2,, of size 2n with at least 2{g(n)}2 stable
matchings.

Proof Let I, be based on men and women labelled 1,..., n, and let I’, be an

isomorphic instance based on men and women labelled n + 1,..., 2n. Let mp,, wp,
and mp’,, wp’, be the preference matrices for I, and I’, respectively.

The men and women in I2, are labelled 1,..., 2n. The preference lists for the
men in I’, (respectively I,) are appended to the preference lists for the men in I,
(respectively I’,). The preference lists for the women in I, (respectively I’,) are prefixed
by the preference lists for the women in I’, (respectively I,). This results in preference
matrices as shown for I2n"

mp2, wp2n
rap. mp. wp. wp ’

COMPLEXITY OF COUNTING STABLE MARRIAGES 657

Now, let S be a stable matching in I,, and S’ a stable matching in I’,. In I2,, if
each man from I, is given his S-partner and each man from I’, is given his S’-partner,
then we have a stable matching in I2,. For:

(i) no man/woman pair from I, (respectively I’,) can cause instability because
of the stability of S (respectively S’);

(ii) no man from I, and woman from I’ or man from I’, and woman from
can cause instability because such a man prefers his partner to any such woman.

Also, if each woman from I, is given the S’-partner of the corresponding woman
in I’,, and each woman from I’, the S-partner of the corresponding woman from I.,
then we again have a stable matching in I2,, by an essentially identical argument.

Hence, as S and S’ run independently through all g(n) stable matchings of I,,
we obtain 2{g(n)}2 stable matchings in 12..

We are now able to establish the exponential growth of the function f(n).
COROLLARY 2.1. For each (>=0) there exists a stable marriage instance of size

n 2 with at least 2"-1 stable matchings.
Proof Such a sequence of stable marriage instances is obtained by starting with

the only stable marriage instance of size 1, which has of course a single stable matching,
and repeatedly applying the construction of Lemma 2.1. If g(n) denotes the number
of solutions of the instance of size n so generated, then we have

g(n)>=2{g(n/2)}2, g(1)= 1,

from which the result of the corollary follows.
In fact, it can be shown that the number of stable matchings in the family of

instances described in Corollary 2.1 satisfies the recurrence relation

g(n)=3{g(n/2)}2-2{g(n/4)}4 (n->_4)

giving the table of values of g(n) for n 2k, k -<_ 5 shown in Table 1. We might conjecture
that this sequence of problem instances provides the answer, for the case when n is a
power of 2, to Knuth’s question concerning the maximum possible number of stable
matchings. However, we have not even been able to solve the above recurrence relation
to give a closed form for g(n), so no proof of this conjecture is in sight.

TABLE

Size of instance No. of stable matchings

2 2
4 10
8 268
16 195472
32 104310534400

3. The fundamental algorithm. In this section, we outline the "deferred accept-
ance" algorithm of McVitie and Wilson 5] and summarise the properties ofthe reduced
preference lists that arise from its application.

The algorithm is based on a sequence of "proposals" from the men to the women.
When a woman receives a proposal, she"
(i) holds it for consideration if it is the best proposal she has so far received,

simultaneously rejecting any poorer proposal already held;
(ii) rejects it outright if she already holds a better proposal.

658 ROBERT W. IRVING AND PAUL LEATHER

(A "better" proposal means a proposal from some man higher in the woman’s prefer-
ence list.)

Each man proposes in turn to the women on his preference list, in order of course,
pausing when a woman agrees to hold his proposal, and resuming his sequence of
proposals upon any subsequent rejection.

It is not difficult to show, as in [5], that:
(i) the sequence of proposals so specified ends with every woman holding a

single unique proposal, and that the proposals held constitute a stable matching;
(ii) the outcome of the sequence of proposals is independent of the order in which

the men propose.
A similar outcome results if the roles of males and females are interchanged, in

which case the resulting stable matching may or may not be the same as that obtained
from the male proposal sequence. Throughout, we adopt a male-oriented approach,
while recognising that a female-oriented approach would be equivalent in all respects.

Two fundamental implications ofthis initial proposal sequence, implicit in [5], are:
(i) if m proposes to w then there is no stable matching in which m has a better

partner than w;
(ii) if w receives a proposal from m then there is no stable matching in which w

has a worse partner than m.
These observations suggest that we should explicitly remove m from w’s list, and

w from m’s, if w receives a proposal from someone she likes better than m. We refer
to the resulting lists as the (male-oriented) shortlists. The following properties are either
immddiate, or are explicit or implicit in [5].

Property 1. If w does not appear on m’s shortlist, then there is no stable matching
in which m and w are partners.

Property 2. m appears on w’s shortlist if and only if w appears on m’s.
Property 3. w appears first on m’s shortlist if and only if m appears last on w’s.
Property 4. If every man is paired with the first woman on his shortlist then the

resulting matching is stable; it is called the male optimal solution, for no man can
have a better partner than he does in this matching, and indeed no woman can have
a worse one; this is the solution given by the male proposal sequence. (Corresponding!-
ly, a female-oriented approach would yield the female optimal solution.)

It follows that, if all the shortlists have just a single entry, then they constitute
the unique solution for that problem instance, but as we shall see later, if any shortlist
has more than one entry, then there may well be other stable matchings.

Finally, in this section, we establish a theorem that we shall need later. In the
proof of this theorem, as throughout, we regard a stable matching as a set of ordered
male/female pairs.

THEOREM 3.1. Ifman m and woman w are partners in some stable matching S then
(i) there is no stable matching S’ in which both m and w have worse partners;
(ii) there is no stable matching S’ in which both m and w have better partners.
Proof. (i) This is immediate, for m and w would cause instability in such an S’.
(ii) Suppose that such an S’ exists. Let M and W (respectively M’ and W’)

denote the sets ofmen and women who have better partners in S than in S’ (respectively
in S’ than in S). Then m M’, w W’. For the stability of S, every man in M’ has an
S’-partner in W, so M’I <--Iwl. For the stability of S’, every woman in W has an
S-partner in M’, so wl-<- IM’I. Hence M’I- Wl, and MI--IW’l. So no man in M’
can have an S-partner in W’, giving a contradiction.

4. Rotations. In this section we introduce the concept of a rotation, which is
crucial in establishing the relationship between the structure of a stable marriage

COMPLEXITY OF COUNTING STABLE MARRIAGES 659

instance and that ofan associated partially ordered set. This concept was first introduced
and studied by Irving [3] under the name "all-or-nothing cycle" in the context of the
stable roommates problem, which is a version of the stable marriage problem involving
just a single set.

We recall that, in the male optimal solution, every man is partnered by the first
woman on his shortlist. If we wish to generate a different stable matching, then it is
clear that some of the men (two at the very least) must sacrifice their optimal partners.

Suppose that man rn sacrifices his optimal partner, woman w. Then the best partner
that man m can have is the woman that appears second on his shortlist, say woman
v. But man m would represent an improvement, from woman v’s point of view, on
her partner, say man k, in the male optimal solution, so that, for the sake of stability,
man k is forced to sacrifice woman v. This argument may be repeated for the second
woman in man k’s shortlist, and so on, generating a chain of forced sacrifices. Because
of the finiteness of the problem, this process can end in one of only two ways, namely:

(i) the chain eventually cycles, yielding a sequence mo, m,..., mr_ (r >= 2) of
men such that the second woman on m’s shortlist is first on that of mi+l, where the
subscripts are taken modulo r; or

(ii) the chain reaches a man whose shortlist contains just one woman.
In case (i), we refer to such a cycle of implications as a rotation relative to the

shortlists. The terminology arises because, as we shall see, the partners can be rotated
one place without destroying stability. A more precise definition is given below.

For a given instance of the stable marriage problem, a set of reduced preference
lists is a set obtainable from the originals by zero or more deletions, such that:

(i) no list is empty;
(ii) woman w is absent from man m’s list if and only if man m is absent from

that of woman w.
Relative to such a set S of reduced preference lists, we denote by first (x),

secondse (x) and lastse (x) the first, second and last person respectively on x’s list. (We
shall often omit the subscript 6e when it is obvious which set of lists applies.) Of
course, secondse (x) may be undefined in the event that x’s reduced list in 6e has just
one entry.

A set 6e of reduced preference lists will be called stable if, for each man rn and
woman w,

(i) w =first (m) if and only if m =lastse (w);
(ii) w is absent from m’s list if and only if wr(w, m)> wr(w, lastse (w)).

(Note: mr and wr are the original ranking matrices for the instance of the problem.)
For brevity, we shall refer throughout to a stable set of reduced preference lists

as a stable set.
LEMMA 4.1. The shortlists form a stable set.

Proof. Property (i) was noted in 3 above.
For property (ii), we consider two cases"

Case (a): mr(m, w) < mr(m, first (m)). In this case, w is absent from m’s shortlist
if and only if m proposed to w and was rejected. This happens if and only if w already
held, or subsequently received, a better proposal, so that the last proposal held by w
must also be betteri.e, wr(w, m) > wr(w, last (w)).

Case (b): mr(m, first (m))< mr(m, w). In this case w is absent from m’s shortlist
if and only if m was removed from that of w by virtue of w receiving a proposal from
someone better than m. As in case (a), this happens if and only if wr(w, m)>
wr(w, last (w)).

LEMMA 4.2. If, relative to a stable set, each man m is partnered by first (m), then
there results a stable matching.

660 ROBERT W. IRVING AND PAUL LEATHER

Proof By property (i), if w first (ml) first (m2) then ml last (w) m2, SO that
a matching is certainly specified.

If m prefers w to first (m), then w is absent from m’s list. Hence, by property
(ii), w prefers her partner, last (w), to m, and there can be no instability.

The stable matching obtained from a stable set 5 as described in Lemma 4.2 will
be referred to as the stable matching corresponding to 5.

LEMMA 4.3. If, for some stable set,
(i) mr(m, first (m)) < mr(m, w) and
(ii) w is absent from m’s list,

then there is no stable matching in which m and w are partners.
Proof By Lemma 4.2, (m, first (m)) S for some stable matching S. Suppose that

(m, w) S’ for some stable matching S’. Then m is better off in S than in $’.

Now, since w is absent from m’s list, we have wr(w, m)> wr(w, last (w)). So w
is better off in S (with last(w)) than in S’ (with m), and Theorem 3.1(ii) is
contradicted.

An ordered sequence (mo, Wo)," ", (mr-l, wr-1), r => 2, ofman/woman pairs forms
a rotation in a stable marriage instance if, relative to some stable set

w,+ first (mi+1) second (m,)

for each (0_-<i_-< r-1, i+ 1 taken modulo r).
The rotation is said to be exposed in
LEMMA 4.4. Let be a stable set, and let S be the corresponding stable matching.

IfS’ is a stable matching in which man m has a worse partner than firstse m (his partner
in S), then there is a rotation exposed in all ofwhose male members have worse partners
in S’ than in S.

Proof. By Lemma 4.3, if first (m) is the only entry in m’s list then there is no such
stable matching S’ and we have nothing to prove. Otherwise, we form the sequence
{(m,, w,)}, where

(i) mo m,
(ii) w, =first (m,), i=0, 1,))","(iii) mi+l last (second (m i=0, 1,. ..
Since Wo first (too), it follows that (mo, Wo) S. By Lemma 4.3, mo has an S’-

partner no better than second (mo)= first (ml)= wl. Hence, for stability of S’, wl has
an S’-partner no worse than mo, and therefore better than ml last (wl). So, by Theorem
3.1(ii), ml must have an S’-partner worse than wl, and so, in particular, by Lemma
4.3, second (ml) is defined. This argument can be repeated to show that second (m)
is defined for all i, and that all the m have worse partners in S’ than in S.

Now, the sequence {(m, wi)} must cycle eventually; suppose mo," ’’, ms-1 are
distinct but ms=mr for some (0 =< =< s 2). Then it is immediate that
(mr, w),..., (m-l, W_l) forms a rotation that is exposed in 6 and has the required
property.

For a given man m and a given stable set 5, we call the rotation obtained from
m in the way described in Lemma 4.4 the rotation generated by m. Clearly, if m is
himself in a rotation exposed in 5e, then this is the rotation generated by m.

The following are immediate corollaries of Lemma 4.4.
COROLLARY 4.1. If is a stable set with corresponding stable matching S, then

either:
(i) at least one rotation is exposed in ;or
(ii) no man can have a worse partner in any stable matching than he has in S (and

S is the female optimal solution).

COMPLEXITY OF COUNTING STABLE MARRIAGES 661

COROLLARY 4.2. If mo, Wo), (mr-l, wr-) is a rotation, and if, in some stable
matching S, some fixed mj has a partner worse than wj, then each of the mi has an
S-partner worse than wi.

We now introduce the notion of rotation elimination. Suppose that p=
(mo, Wo),’’ ", (mr-i, wr_) is a rotation that is exposed in some stable set 6e. If, for
each (0_-< i-< r-l) all successors of mi are deleted from Wi+l’S list (in 6e), and w+
is removed from the corresponding men’s lists, we shall say that the rotation has been
eliminated. (Here, as usual, i+ 1 is taken modulo r.)

The significance of rotation elimination is contained in the next lemma.
LEMMA 4.5. If a rotation is eliminated from a stable set b in which it is exposed,

then the resulting set of lists is also stable.
Proof. We have to establish properties (i) and (ii) for the new lists.
(i) If m is not in the rotation, then

w firstr (m):> w firstse (m), since first (m) is not removed,

:> m lastse (w), since is a stable set,

:> m lastr (w), since last (w) is not removed.

If m is in the rotation, then

w firstr (m) :> w second (m), since firstse (m) is removed but

second (m) is not,

:> m last (w), since all successors of m are

removed from w’s list.

(ii) w is absent from m’s new list

:>(w was already absent from m’s old list) or

(m was removed from w’s list during the rotation elimination)

e(wr(w, m) > wr(w, lastse (w)) or

(wr(w, last (w)) > wr(w, m) > wr(w, lastr (w)))

wr(w, m) > wr(w, lastr (w)).

We are now in a position to establish the one-to-one relationship between stable
sets and stable matchings for any given instance of the stable marriage problem.

LEMMA 4.6. For a given instance ofthe stable marriageproblem, there is a one-to-one
correspondence between the stable matchings and the stable sets. Furthermore, each stable
set can be obtained from the set of shortlists by a sequence of zero or more rotation
eliminations.

Proof Given a stable set, a unique stable matching can be constructed as in
Lemma 4.2.

On the other hand, given a stable matching S {(mo, Wo), , (m,_, w,_)}, we
construct a stable set as follows.

We start from the set vg of shortlists which, of course, has corresponding stable
matching M, the male optimal solution. If $ # M, then for some i, wi first (m).
Now, by Lemma 4.3, w is in mi’s shortlist, and by Lemma 4.4, the exposed rotation p
generated by m is such that all of its male members have worse partners in $ than in
M. If p is eliminated to obtain, by Lemma 4.5, a new stable set, again by Lemma 4.3,

662 ROBERT W. IRVING AND PAUL LEATHER

wi remains in mi’s list, and vice-versa, for all i. This process may now be repeated
relative to the new set of lists, and then again, as often as necessary, until w- first (m)
for all i. We shall then have a stable set to which the stable matching S corresponds,
and it will have been obtained by a sequence of zero or more rotation eliminations
starting from the set of shortlists.

LEMMA 4.7. In a given stable marriage instance, no pair (m, w) can belong to two

different rotations.

Proof. Suppose that the pair (m, w) belongs to rotations pl and /92, and that
(m’, w’) belongs to pl but not to/92. We shall show that these assumptions lead to a
contradiction.

If 6e is a stable set in which p2 is exposed, and if v is the partner of m’ in the
corresponding stable matching S, then mr(m’, v) <= mr(m’, w’). For otherwise, Corollary
4.2, applied to pl, would force m to have an S-partner worse than w.

Let be the stable set, and T the corresponding stable matching, obtained by
eliminating p2 from 6e. We consider two cases.

Case (a). (m’, v) p.: since (m’, w’) /92 it follows that v w’, and mr(m’, v) <
mr(m’, w’). Since (m, w)/92 and ff arises from the elimination of P2, we deduce that,
in T, m has a partner worse than w. However, Lemma 4.3 applied to the stable set
reveals that, in , w’ is present in the list of m’. Further, this presence is not affected
by the elimination of p2, so that, in T, m’ has a partner at least as good as w’. Therefore
pairs (m, w), (m’, w’) of pl and the stable set - provide a contradiction of Corollary
4.2.

Case (b). (m’, v)/92 then the elimination of p2 from 6e does not affect the
presence of v in the list of m’, so that (m’, v) is in T. Exactly as in Case (a), we have
a contradiction of Corollary 4.2.

LEMMA 4.8. Suppose m, w) belongs to a rotation. Then:
(i) (m, w) belongs to some stable matching;
(ii) in a stable set obtainedfrom the shortlists by a sequence ofrotation eliminations,

w is absentfrom m’s list ifand only if the rotation containing (m, w) has been eliminated.

Proof. (i) There must be a stable set in which the rotation containing (m, w) is
exposed, and m and w are partners in the corresponding stable matching.

(ii) When a rotation p is eliminated, entries may disappear from m’s list in two
ways:

(a) the first entry will disappear if (m, first (m)) p;
(b) one or more entries may disappear as a result of the deletion of m from one

or more of the women’s lists.
If w were to disappear from m’s list by method (b), then immediately thereafter,

the conditions of Lemma 4.3 would apply and m and w could not, after all, be partners
in a stable matching.

Given a rotation p of a stable marriage instance, there may be several stable sets
in which/9 is exposed. As observed in Lemma 4.6, any such stable set can be obtained
from the shortlists by a sequence of rotation eliminations. If it should happen that no
stable set in which p is exposed can be obtained without eliminating rotation rr, then
we say that r is a predecessor of p, and write r < p.

The relation -< is clearly antisymmetric, transitive and reflexive, and therefore
defines a partial order on the set of rotations. We call this the rotation poset for that
stable marriage instance.

As further terminology, we say tiaat 7r is an immediate predecessor of p if r < p
and there is no tr such that 7r < tr < p. We also refer to a subset of a poset that is closed
under predecessors simply as a closed subset.

COMPLEXITY OF COUNTING STABLE MARRIAGES 663

An alternative representation for the poset is in the form of an acyclic directed
graph with a node representing each rotation, and an arc from the node representing
rotation r to the node representing rotation /9 if and only if 7r is an immediate
predecessor of/9.

An antichain in a poset P, =< is a subset A of P containing no elements 7r, p such
that r </9. Given such an antichain A, we define the closure A* of A by

A* ={Tr P: 7r<p for some p e A}.

It is clear that, for any closed subset C of P, there is a unique antichain A such that
A*= C. We call this the spanning antichain of C.

We are now in a position to establish a theorem that is central to our main result.
THEOREM 4.1. For any stable marriage instance, there is a one-to-one correspondence

between the stable matchings for that instance and the antichains of its rotation poser.
Proof. Given an antichain A, it is immediate that A* is closed, so that all rotations

in the set represented by A* can be eliminated, one by one, starting from the shortlists,
to produce a stable set with its corresponding stable matching.

If two different sets of rotations are eliminated, then it follows from Lemma 4.8(ii)
that the resulting stable sets are different, and hence so also are the stable matchings.
Since ABA* B*, it follows that different antichains yield different stable
matchings.

On the other hand, by Lemma 4.6, any stable matching arises from the shortlists
via a sequence of rotation eliminations. The set of rotations concerned must be
closed, for a rotation cannot be eliminated until it is exposed, and it cannot become
exposed until all of its predecessors have been eliminated. So this set has a unique
spanning antichain, l-1

As well as giving a characterisation of the set of stable matchings for a given
problem instance, Theorem 4.1 provides the basis of an efficient algorithm for the
generation of these stable matchings. Such an algorithm would involve the derivation
of the rotation poset, suitably represented, the determination of all of its antichains,
and the interpretation of each one as a stable matching.

5. P-completeness of stable marriage enumeration. The problem of determining
the number of stable matchings for a given stable marriage instance is clearly in 4 P,
for any particular matching can be checked for stability in polynomial time. In order
to prove the problem = P-complete, it suffices to describe a polynomial transformation
(a "parsimonious" transformation, in the terminology of Garey and Johnson [2]) from
a known 4P-complete problem such that the instance of the original enumeration
problem and the corresponding instance of the stable marriage problem have the same
number of solutions. We shall now demonstrate such a transformation, using the
following theorem of Provan and Ball [6].

THEOREM 5.1. Determining the number of antichains in a poset is = P-complete.
We are now in a position to state and prove our main theorem.
THEOREM 5.2. Given a poset P, <= with n elements, there exists an instance I of the

stable marriage problem, constructible from P, <- in time polynomial in n, such that the
stable matchings of I are in one-to-one correspondence with the antichains of P, <-_.

In order to prove Theorem 5.2, we first describe a transformation, and then we
prove that the transformation has the required property.

From the poset, we first form an acyclic directed graph with one node for each
element of P, and an arc from node u to node v if u is an immediate predecessor of
v. Two extra nodes are included in this directed graph; one, the source, has an arc to

664 ROBERT W. IRVING AND PAUL LEATHER

every node representing a minimal element of the poset, and the other, the sink, has
an arc from every node representing a maximal element. The arcs of this acyclic directed
graph are numbered arbitrarily 1,..., t. Each node, except the source and the sink,
is labelled with an ordered subset, of size -> 2, of { 1, , t}, namely the subset consisting
of the numbers on the arcs incident to or from that node, with those numbers in an
arbitrary but fixed order, say increasing order.

In the course of the construction, from this digraph, ofthe stable marriage instance,
each node of the digraph, with the exception of the source and the sink, is "processed"
according to rules that we prescribe below. In order to ensure that no node is processed
before one of its predecessors, the nodes are processed according to a topological order.
This is a one-to-one mappingf from the nodes ofthe digraph onto the set {0, , n 1}
such that if node u is a predecessor of node v then f(u)<f(v). (It is well-known that
such a topological ordering of the nodes of an acyclic digraph can be found in time
polynomial in the number of nodes.) During this "node processing" phase, partial
preference lists for the men are built up in natural (first to last) order, while those for
the women are built up in reverse order; after processing all the nodes, each list is
completed by appending absentees, in arbitrary order, after those already present.

The stable marriage instance involves men and women; the first woman on
man i’s list is woman i, and man is also initially placed on woman i’s list (i=
1, 2, , t). So the male optimal solution pairs man with woman for each (1 _-< _-< t).

Suppose that, after the first k (_->0) nodes of the digraph have been processed, in
the chosen topological order, the woman most recently appended to man i’s list is
w(k, i) (1 _-< <_- t). Then node k + 1, labelled {ao," , at-l} say, is processed as follows:
for each (0<_-i <- r-1) woman w(k, ai+) is appended to man ai’s list, and man a is
placed on woman w(k, ai+l)’S list ahead of any men already there, the most recent of
whom is clearly man a+. Hence

mr(ai, w(k, ai/l))= 1 + mr(ai, w(k, ai))

and

wr(w(k, ai+), ai+l)= 1 + wr(w(k, ai+), ai)

for -0, , r- 1, where / 1, throughout, is taken modulo r.
As mentioned previously, once all the nodes have been processed, each list is

completed by appending, in arbitrary order all the members of the opposite sex not
already present in that list. It is clear that the entire construction can be carried out
in time polynomial in n. We first have to justify the claim that this construction produces
a genuine stable marriage instance of size t.

LEMMA 5.1. The construction described above does yield a stable marriage instance

of size t.

Proof. It suffices to show that, during the processing of the nodes, no woman can
be appended twice to the same man’s list (and therefore that no man can be included
twice in the same woman’s list).

For a given arc in the digraph, denote by init (i) and term (i) the initial and
terminal nodes respectively of that arc. Consider to which men’s lists woman is
appended during the processing of the nodes. Woman is first involved when start (i)
is processed, where start (i) is defined to be init (i) unless init (i) is the source, in
which case start (i) is defined to be term (i). At this point she is appended to the list
of man il (i), where il immediately precedes in the label of node start (i). If
start (i) term (i) then the list of man takes no further part in the processing of the
nodes, so woman appears on no other lists. Otherwise, when term (il) is processed,

COMPLEXITY OF COUNTING STABLE MARRIAGES 665

woman is appended to the list of man i2, where 2 labels term (il). Proceeding thus,
we obtain a sequence il, i2," ", is (S >= 2) of men such that

(i) start (i) init (il);
(ii) init (/) term (/j_i) (j 2, , s 1);
(iii) stop (is) =term (/s-i), where stop (is) is defined to be term (is) unless term

is the sink, in which case stop (is) is defined to be init (is);
(iv) during the processing of the nodes, woman is appended to the lists of men

i, il," ", is, and to no others.
Clearly, by (ii), arcs il,"" ", is-1 form a directed path in the acyclic digraph, and

so are all distinct. Also, by (i) and (iii), and is are distinct from il," ", is-1. Finally
is, for otherwise il," ", is-1 is a path from start (i) to stop (is) and and is could

be the same arc only if start (i)=init (is) =init (i) and stop (is)=term (i)=term (is).
But then the path il," ", is_ would contradict the fact that init (i) is an immediate
predecessor of term (i). I-]

LEMMA 5.2. For the stable marriage instance constructed above, the set ofshortlists
contains precisely the men and women appended before and during the processing of the
nodes.

Proof. This is obvious and is left as an exercise for the reader. 13

LEMMA 5.3. (i) If {ao,"" ", at-l} is the label on the digraph node numbered k in
the chosen topological ordering, then the stable marriage instance constructed above
contains a rotation

where

p (ao, bo),""", (at-l, br-1)

bi w(k- 1, ai).

This rotation has as its predecessors precisely those rotations pj for which node j is a
predecessor of node k. Furthermore, when Pk is eliminated from any stable set in which
it is exposed, only bi is removed from ai’s list, for each (0 <-i<= r-1), and no woman
is removed from any other man’s list.

(ii) There are no rotations other than those described in (i).
Proof. (i) We first observe that the statement of (i) is true for node number 1.

For, when this node was processed during the construction of the stable marriage
instance, we set

seconder (ai)= mp(ai, 2)= w(0, ai+l)= mp(ai+l, 1)= firstt (ai+l)

for each i, and this shows that a rotation/91 of the stated kind is exposed in . Clearly,
the rotation, like the node, has no predecessors. Further, when p is eliminated, it is
immediate that bi w(O, a) mp(a, 1) is removed from ai’s list. But since wr(bi, a_l)
wr(bi, a)- 1, for each i, no other entries are removed from any of the men’s lists.

We now assume that (i) is true for all nodes numbered up to k, and we prove
that, as a consequence, it must also be true for node k + 1. Starting from , for each
node j that is a predecessor of node k/ 1, there is, by the induction hypothesis, a
rotation pj which may be eliminated, provided this is done in topological order. Let
O be the stable set obtained after this sequence of rotation eliminations, and consider
the preference list of a in

Case (a). Node k + 1 is init (ai), or init (a) is the source. Then a is not a label
on any predecessor of node k + 1, so no woman has been removed from ai’s list. Hence
first.e (a,) first (ai) w(k, a,).

666 ROBERT W. IRVING AND PAUL LEATHER

Case (b). Node k + 1 is term (ai), and init (ai) is not the source. Then init (ai) is
a predecessor of term (ai), and just woman firste (a) has been removed from a’s list,
namely when Pinit(a,) was eliminated. Hence, again

In both cases, because

we see that

firstse (ai) second (ai) w(k, ai).

mr(ai, w(k, ai+l))= 1 + mr(ai, w(k, ai))

secondse (a,)= w(k, ai+l)= first (a,+l).

Therefore Pk+l is a rotation as specified, and is exposed in
If some rotation pj is not eliminated, where node j is a predecessor of node k + 1,

then neither is some rotation p,, for a node m that is an immediate predecessor of
node k + 1. Hence there is an a for which node k + 1 is term (a) and Pinit (ai) has not
been eliminated. But then

firstse (a,) first (a,) # w(k, a,

and the rotation Pk+l is not exposed.
Finally, when Pk+l is eliminated, it is an immediate consequence of the fact that

wr(bi, a_)- wr(b, ai)- 1, for each i, that the only entries removed from the men’s
lists are the bi from the list of a (0_-< i-< r-1).

(ii) Clearly (m, w) cannot be in a rotation if w is not in m’s shortlist, nor if
w lastt (m). All other pairs (m, w) are in one of the rotations Pk described in (i), so
that (ii) follows from Lemma 4.7. [3

ProofofTheorem 5.2. This is now an immediate consequence ofthe given construc-
tion, Lemmas 5.1 and 5.3, together with Theorem 4.1. D

COROLLARY 5.1. Determining the number ofstable matchingsfor an instance of the
stable marriage problem is # P-complete.

6. Conclusions. In this paper, a characterisation of the stable matchings for any
stable marriage instance as the antichains of the associated rotation poset has been
presented. It has been shown further that every finite poset is the rotation poset of
some stable marriage instance, obtainable from the poset in polynomial time. Therefore,
the fact that enumerating the antichains of a poset is 4P-complete leads to the
conclusion that counting stable marriages is also 4 P-complete.

It has also been pointed out that this characterisation of the stable matchings
could be exploited to yield an algorithm for the generation of all stable matchings.

A new constructive proof has been given to show that the maximum number f(n)
of stable matchings in a stable marriage instance of size n grows exponentially with
n, leading to a conjecture concerning the precise nature off(n). It would be of interest
to investigate whether the new characterisation of stable matchings can be used to
throw light on the function f(n), or on the function representing the average number
of stable matchings per problem instance of size n, a function about which next to
nothing appears to be known.

Acknowledgments. The authors are grateful to the referees and to Dan Gusfield
for their helpful comments. Work on this paper was carried out while the first author
was in the Department of Mathematics and Computer Science, University of Salford,
Salford, England.

COMPLEXITY OF COUNTING STABLE MARRIAGES 667

REFERENCES

D. GALE AND L. S. SHAPLEY, College admissions and the stability of marriage, Amer. Math. Monthly,
69 (1962), pp. 9-15.

[2] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability, Freeman, San Francisco, CA, 1979.
[3] R. W. IRVING, An efficient algorithm for the stable room-mates problem, J. Algorithms, to appear.
[4] D. E. KNUTH, Mariages stables, Les Presses de l’Universit6 de Montr6al, Montreal, 1976.
[5] D. MCVITIE AND L. B. WILSON, The stable marriage problem, Comm. ACM, 14 (1971), pp. 486-492.
[6] J. S. PROVAN AND M. O. BALL, The complexity of counting cuts and of computing the probability that

a graph is connected, this Journal, 12 (1983), pp. 777-788.
[7] G. Pt3LYA, R. E. TARJAN AND D. R. WOODS, Notes on Introductory Combinatorics, Birkhauser Verlag,

Boston, MA, 1983.
[8] L.G. VALIANT, The complexity ofcomputing the permanent, Theoret. Comp. Sci., 8 (1979), pp. 189-201.

[9] The complexity of enumeration and reliability problems, this Journal, 8 (1979), pp. 410-421.
[10] N. WIRTH, Algorithms + Data Structures Programs, Prentice-Hall, Englewood Cliffs, NJ, 197i.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

1986 Society for Industrial and Applied Mathematics
004

ON DETERMINISTIC MULTI-PASS ANALYSIS*

CLAUDIO CITRINIf, STEFANO CRESPI-REGHIZZI$ AND DINO MANDRIOLI:

Abstract. Chains (or cascade composition) of push-down transducers are introduced as a model of
multi-pass compilers. We focus on deterministic chains, since nondeterministic transducer chains of length
two define the recursively enumerable sets. Deterministic chains recognize in linear time a superset of
context-free deterministic languages. This family is closed under Boolean operations, disjoint shuffle,
and reverse deterministic pushdown translation, but not under homomorphism. Equivalent definitions of
the family in terms of composition of syntax-directed translation schemes and control languages are
considered. The family is a strict hierarchy ordered by the length of the chain. The complexity of is
obviously linear, but not all linear-time parsable languages are in 9. On the other hand it strictly includes
the Boolean closure of deterministic languages. Finally is not comparable with another classical Boolean
algebra of formal languages, namely real-time languages.

Key words, multi-pass translation, cascade composition of push-down automata, deterministic push-
down transducers, syntax-directed translation, deterministic languages, LR grammars, control languages,
Boolean algebra of languages

AMS (MOS)subject classifications. 68Q45, 68Q05, 68Q50, 68N20

1. Introduction. The theory of syntax directed translation is in widespread use for
compiler design. Translation processes of different complexity have been modeled by
abstract transducers (finite-state, push-down) or by equivalent syntax directed transla-
tion schemes. In this formal picture a rather important part is surprisingly missing:
the study of multi-pass translation, a technique frequently adopted for designing
complex compilers, from the earliest Algol 60 projects. This omission is the more
startling if one looks back to the early studies of multi-pass sequential machines (e.g.,
Hartmanis and Stearns (1966)). In contrast very little research on composition of
deterministic push-down transducers is known to us (studies of composition of tree
transducers do not address the same problem, as the parsing of a string is not tackled
by a tree automaton). Scattered studies concentrating on special cases have been
published by Aho and Ullman (1972-73) in connection with bottom-up polish transla-
tions, by Khabbaz (1974) for operator precedence grammars, and by Tadashi Ae (1977)
for nondeterministic push-down transducers. The latter case is really out of our main
interest, since composition of two such machines can model any Turing machine,
whereas our major motivation is from compilation, where slower than linear algorithms
are seldom used. For completeness we mention that the family of deterministic cancella-
tion push-down automata of Vitnyi and Savitch (1978) is a restricted case of our
2-chains. The main objectives of this study are:

wto provide a formal model of multi-pass translation;
wto investigate the power of translation and language recognition which can be

performed by a chain of deterministic push-down devices;
--to study formal properties of languages recognizable by such a chain.
It is worth contrasting our goals with those of earlier studies on sequential machine

(de)composition. Since in that case cascade composition does not affect the family of
languages recognized (the regular languages), motivation came from a concern for
minimization" how to build a chain which performs as a single automaton, but such

* Received by the editors October 6, 1983, and in final revised form April 8, 1985. This work was
supported by a grant of Ministero Pubblica Istruzione.

f Dipartimento di Matematica, Politecnico di Milan’o, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
t Dipartimento di Elettronica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Previously at Istituto di Matematica, Informatica e Sistemistica, Universith di Udine.

668

DETERMINISTIC MULTI-PASS ANALYSIS 669

that each stage is smaller than the original automaton. On the other hand, we are
interested in studying gains in computing power obtained from cascade composition.
Minimality could also be relevant for chains of push-down transducers, but is not
pursued in this paper. Our research is connected with other areas of the theory of
computation and formal languages, namely: it extends the notion of deterministic
push-down transducer in the direction undertaken by Wotschke (1978) and by Kintala
(1979), which already considered unions and other nonclosed operations on deter-
ministic languages; it relates to linear-time multi-tape Turing machine complexity.

The paper is organized as follows.
In 2 we define chains of deterministic push-down translators and related

languages, and illustrate them by examples. Some classical counterexamples of the
inadequacies of the (deterministic) context-free model are shown to be in the new
family of languages.

In 3 we contrast the parsing and translation power of deterministic push-down
transducers with two other formalisms (which have a strong relevance in formal
language theory), namely syntax directed translation schemes and control languages.
It is shown that the different power of one-pass analyzers and translators of various
models vanishes when they are serially composed.

In 4 some closure properties of the new family are investigated. In particular it
is shown to be a Boolean algebra but not an AFL.

In 5 we show that our family of languages is a strict hierarchy with respect to
the length of the chain. The proof of this intuitive result is rather complex, and is
based on a generalisation of a lemma by Ginsburg and Greibach (1966). Details of
the proof are in the Appendix.

In 6 the relations with other classes of languages are investigated: it is shown
that our family strictly includes the Boolean closure of deterministic languages and is
strictly included in the class of linear time recognizable languages, but it is not
comparable with real-time languages. This result is proved by means of a corollary of
the hierarchy theorem.

Some open problems are listed both along the paper and in the conclusion. For
the sake of clarity, we tried to use convincing but somewhat informal arguments in
the simpler proofs. The exception is the proof of the hierarchy theorem, which needs
a careful analysis. In this case the details are postponed into the Appendix.

Part of the contents of this paper has been presented in a preliminary version in
Citrini, Crespi-Reghizzi, Mandrioli (1983).

2. Fundamental definitions and examples.
2.1. Definitions. For definitions not included here we refer to the texts by Aho

and Ullman (1972-73), Hopcroft and Ullman (1969), and Salomaa (1973). The trans-
ducers to be considered will be deterministic, except for some side remark.

Let us recall some basic definitions. Let T (Q, E, F, fl, 3, qo, Zo, F) be a deter-
ministic push-down transducer (dpdt). If the output alphabet fl is dropped and is
accordingly projected, we obtain the subjacent deterministic push-down automaton
(dpda).

The term configuration of a dpdt will either denote the quadruple C (q, x, a; u),
q Q, x E*, c F*, u [l*, or the triple C (q, x, c), when the output is irrelevant.
The choice will be made clear by the context.

It is convenient to consider so-called d (for deterministic) computations and
loop-free transducers, as in Ginsburg and Greibach (1966) and Harrison (1978). A
d-computation is defined via the relation _a. as follows. Let C1 =(ql,x, O1) and

670 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

C2 (q2, X2, tR2) be two configurations. Then

C1 -d* C2
if and only if

i) (ql, Xl, al) -* (q2, x2, a2) with a2 flZ, Z F, and
ii) 6(q)., e, Z) is undefined.
Intuitively a d-computation cannot be extended by e-moves, that is the automaton

has gone as far as possible in computing on (ql, Xl, al) without reading the first symbol
of x2.

A dpda is loop-free if for all x X* there exists q Q and a F* such that
(qo, x, Zo) _d. (q, e, a). A dpdt is loop-free if its subjacent dpda is loop-free. Intuitively
a loop-free machine always exhausts its input string and stops.

Throughout the paper we shall suppose (without loss of generality), that any dpdt
or dpda is loop-free.

DEFINITION 2.1. Let T be a dpdt.
1. The translation generated by T during the computation C1 -* C2, where C1

(ql, ZX2, tl; Ul) and C--(q2, X2, C[2; UlU) is

7’(C --8 C2) A U.

2. If C is (q, x, a), r(C) is defined by

’(C) ’((q, x, a; e) _d, (q,, e, a’; u)) u.

3. ’(x), x 2", is defined by

’(x) ’((qo, x, Zo)).

Notice that the above definitions are well posed because T is loop-free.
DEFINITION 2.2. A chain S (or cascade composition) of k >- 1 dpdt’s T1, T2, , Tk,

is a sequence, written (T1, T2," , Tk), such that

S is termed a k-chain and k is its length. Similarly, we denote by (S1, $2,""", S,,) the
cascade composition of the chains S1, $2," , Sin.

DEFINITION 2.3. The language L(S) accepted by a k-chain S is

L(S)={x.*lr_,(... (’I(X))""") L(A)}

where A is the dpda subjacent to T, and is the translation computed by T, 1 <_-j < k.
The translation r computed by a k-chain S T1, Tk) is the mapping E*- f*

defined as

O’(X)--7k(Tk_l(""" 71(X)""")),

The translation computed by the subchain (T1,’", Ts) will be denoted by ; in
particular rl rl and

Remark. Alternatively and equivalently we could assume that +l(x) is defined
only if s(rl(x)) L(As+I). The alternative definition is only used in 3.

DEFINITION 2.4. The family is the set of languages recognized by some
k-chain.

is CI

__
c3Y. Obviously (Y(

_
c3Y+1. (1 equals the family of deterministic

context-free languages.
A k-chain S is nondeterministic if some Ts, i-<_j-<_ k, is nondeterministic. The

definitions of L(S) and o-(x) could be obtained in the natural way recalling that r(x)

DETERMINISTIC MULTI-PASS ANALYSIS 671

is a set of strings; they are omitted because the nondeterministic case is only of marginal
interest for this article.

DEFINITION 2.5. The family VCgk is the set of languages recognized by some
nondeterministic k-chain.

Unless otherwise stated, all chains considered in this paper are deterministic.

2.2. Examples. In order to give an idea of the extension of the family of languages
which are accepted by a chain of dpdt (even with only few transducers), we present
some examples, covering both nondeterministic and inherently ambiguous context-free
languages and noncontext-free ones. Most tedious details are omitted for brevity.

Example 2.1. {a"ba2"ba3"b bak"bln >- O, k fixed}
Hint. T1 produces r(x) xl if x {a"baE"baamba4" } xO (or xl0) otherwise;

T2 verifies whether rl(x)e {a"baEmbaa’ba4pba5p... 1}.
Many generalizations are possible.
Example 2.2. {a"baE"baa"b bak"ln >-- O, k >- 1}
Hint. T1 "accepts" (i.e. produces an acceptable output) only if the input is of the

form x ababah... baqba and outputs easily

trl(X aicJaJcha h cqaqcr;

T2 verifies whether _-<j _-< h _-<. _<- q _-< r, and gives

O’2(X aicJ-iaJ-ich-Jah-J.., cr-q.

Lastly T3, by comparing consecutive pairs of exponents, accepts x if and only if j- i,
j-i=h-j,

Example 2.3. The languages {uuRc[U E*, C E}, where, as usual, uR denotes the
mirror image of u, and {uuc[u E*, c E} both belong to cg3.

Notice that {uuRc} is a context-free nondeterministic language because of Corol-
lary 2 of Theorem 3.4 and Corollary 1 of Theorem 3.5 of Ginsburg and Greibach
(1966). {uuc} is noncontext-free.

Hint. The accepting chains are similar. T1 "accepts" a string xc ,*c itt its length
is odd, say Ixcl 2m + 1, producing tr(xc)= CruXR. NOW T2 marks the center of xR by
a c sign, producing tr2(xc)= zRcyR [zRcy in the second case], with [y[-[z[, x--yz.
Lastly T3 must only check if tr2(xc) {wcwRIw E*}, a context-free deterministic
language.

Example 2.4. The language Lj

{ala2.n .aj."Ja"a22n aj’ n, >0,= 1 <= i<-j}

belongs to 2 for every fixed j. In general, {uculu E*, c E} s 2.
This example is interesting because we need only a (fixed) 2-chain independent

of j, despite the fact that we deal with an infinite hierarchy ofj-intersection languages
(Liu and Weiner (1973)). The chain is just a simplified version (without T1) of
Example 2.3.

Example 2.5. The language {a"ban2b a" k >= 2, ni >= O, 1 <= <- k, and, for some
i, 1 < i-< k, n ni} 2. Notice that this is an inherently ambiguous context-free
language, with unbounded degree of ambiguity (Harrison 1978)).

Hint. Zl(X)= a"c"2a"2c"3a3’’’ Then T2 pushes a" on the stack, and compares
n2 with n by reading c’s. If n n2, T2 accepts; otherwise, if nl < n2 (the case nl > n2
is easier), it pushes the remaining (n2-nl) c’s on the stack. By reading the next n2
a’s, the stack is first emptied, and then grows again to nl symbols, to be compared
with c3, etc.

672 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

3. Chains of transducers, syntax directed translations and control languages. In this
section we compare with cascaded syntax directed translations and with control
languages, and show their essential equivalence. However, more generality will be
claimed, in some sense, for .

DEFNIa’ION 3.1. A simple syntax directed translation (ssdt) scheme is a system
Y(VN, E, f, P, S), where VN (the nonterminal alphabet), E (the terminal alphabet)
and S (the axiom) are as in a grammar; 12 is the output alphabet; E fq f Z without
loss of generality.

P is the set of productions of the form B-, a, where B V, a (V U E U f)*.
Let us introduce the two homomorphisms (projections)

hi(a)=a ifaEVv, h(a)=e ifa,

ho a e ifaE, ho a a ifalVv

and extend them in the natural way to the domain (U fl U VN)*.
The two grammars

GI VN, ,, P’, S), Go Vn, E, P", S)

where P’= hi(P), P"= ho(P), are the input and the output grammars of Y. For a

production p P, let p’ hi (p) and p" ho(p).
The translation rr is the mapping E* --> 12", defined by ’r(x) ___a y, where

S=:O1::O2" "=:an =X,

p’ p p’,’

that is the two derivations result from the same derivation with regard to P, under
application of homomorphisms hi and ho. Notice that in this case 7"y is only defined
in L(G), whereas for dpdt’s r is defined in E*. This does not affect the generality of
the following Definitions 3.2 and 3.5.

A ssdt Y is postfix (respectively prefix) iff for any production B- a in P it is
a c Vv U E)*. 1* (resp. a c f*. V U E)*).

DEFiNa’ION 3.2 (cascade composition of ssdt schemes).
1. A language L belongs to the family -k if there exist k ssdt schemes Y such

that G is LR (i.e. is LR(n) for some n>=O), and xL if and only if

Tyj_(’’’(’l’y(X))’’" is defined and belongs to L(GI) for all j_-< k.
2. The family 9k is defined similarly to -k, with the difference of G being

LL(n), n >- 1.
3. The family l:lpk is defined as -k by constraining Y to be postfix, for all j _-< k.
4. , -w, -p are resp. defined as [.J k%l k, ’k, -Pk.
Let us now briefly comment on the relations between the above families and c.
First, since the theory of deterministic parsing and translation is developed

assuming the presence of endmarkers (Aho and Ullman (1972-73)), we need the
following technical definition.

DEFINITION 3.3. Let +/- E. A language L is in cCy(+/- (resp. c+/-k) iff L. _1_ is in
coy((resp. Ck).

It is well known that ssdt’s are equivalent to pdt’s as any translation defined by
means of a ssdt can be obtained by a pdt and conversely (Aho and Ullman (1972-73)).
The same fact in general does not hold in the case of deterministic parsing and
translation. In fact if, for a given scheme Y, Gt is LR, it is not guaranteed that "/’y can

DETERMINISTIC MULTI-PASS ANALYSIS 673

be computed by a dpdt. On the other hand, if GI is LL, then ’/’y can be computed by
a dpdt, but L(GI) cannot be any deterministic language, since deterministic top-down
languages are strictly included in the deterministic context-free ones.

However, dpdt’s are equivalent to postfix ssdt schemes, what implies that +/-k
-Pk / k.

On the other hand it is known (Aho and Ullman (1972-73, p. 736)) that for any
ssdt scheme Y such that G1 is LR, there exists a chain of 4 dpdt’s such that
z4("" Zl(X)...)= -g(X) for all x L(GI). This leads to

STATEMENT 3.1. +/- -p---- -.
This statement recasts, for the chains of dpdt’s, the full equivalence with ssdt’s

existing in the nondeterministic case.
Instead, it is not known whether between ff and r+/- equality or strict inclusion

holds: i.e. can multi-pass top-down deterministic parsing reach the same power as in
the bottom-up case? The answer is obviously negative for single pass parsing.

Let us now relate with the languages obtainable by means of control sets
(Ginsburg and Spanier (1968)).

DEFINITION 3.4.
1. A labeled grammar GL is a triple (G, Lab, A}, where

1. G is a context-free grammar G (Vr, E, P, S);
2. Lab is a finite set of labels;
3. A is a mapping A" P Lab U {e};

A(p) is the label of production p. If A(p) e, the production is unlabeled. Notice that
two productions may have the same label. The mapping A is naturally extended to P*.

2. As in Aho and Ullman (1972-73), we denote by ’=:> (resp. ==>) a leftmost
(resp. rightmost) derivation, where 7r denotes the string of the elements of P composing
the derivation.

3. 7rl(x), 7rr(x), rrR(x), rlR(x) are defined as"

rl(x) & {y Lab* [there exists 7r, S :=> x, y A(er)};

7rr(x) a= {y Lab* [there exists r, S :::>’ x, y= A(zr)};

errS(x) - {y Lab* Ithere exists r, S :,= x, y A(Tr)};
rl(x) a__ {y Lab*]there exists m S ’:::> x, y A(r)}.

Let ,k(x) stand for any one of the four cases above. If G is unambiguous (and, a
fortiori, if it is LR), then x E*, ,k(x) is either empty or a singleton.

Considering labeled grammars which are LR, the following families of deterrninisti-
tally controlled languages can be defined.

DEFINITION 3.5 (composition of controlled LR grammars). Let {GL, 1 <-j<= k},
be a set of labeled LR grammars with Lab1= E, Labz=E3, Lab_l=E. The
following scheme defines the language recognized by the deterministically controlled
chain" L a-{x[xL(G) and, /j, l<-_j<-k-1, r(. q(x).) L(G+)}.

Four families of languages are obtained according to the choice of
1. 7rl; then ("k __A {L};
2. ,k rr; then k =a {L};
3. r 7rrR" then CRk a__ { L}.
4. r 7rlR’, then c.Rk a__ {L}.
The families of controlled languages have been widely studied in the literature

by using several slightly different definitions (Ginsburg and Spanier (1968), Salomaa
(1973)). In general, the attention has been focused on the nondeterministic case--i.e.

674 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

relaxing the hypothesis that all G are LR. A notable exception is provided by Khabbaz
(1974), where linear simple precedence grammars are considered.

For the nondeterministic case we denote by a prefix 2" the nondeterministic
counterpart of the families of Definition 3.5 (thus in 2’Ck the labeled grammars may
be nondeterministic, etc.).

The main result in the nondeterministic case is that Nc2 g’, the family of all
recursively enumerable languages (Ginsburg and Spanier (1968)). Since it is immediate,
for any labeled grammar, to build a pdt such that ’x: z(x)= rrl(x), and conversely
for any pdt to build a labeled grammar such that 7rr(x) r(x), we have Nc2 ,N’_
2-= g.

Furthermore, since context-free languages are closed with respect to reversal
operation, we have

STATEMENT 3.2. NcffLa2 - N(2- v/([2 Xg’tR2 XCR2 =- g.
Notice that the statement c2g’ was rediscovered by Tadashi Ae (1977),

who instead left open the question whether "the cascade product of two dpda’s is
equivalent to a Turing machine". The question will next receive a trivial answer.

For any labeled grammar GL=(G, Lab, A) such that G is deterministic it is
immediate to build a postfix ssdt scheme Y such that Gx G and rE(X)= rra(x)lx E

L(G). Hence (kk cr:Rk =- -rkVk.
Furthermore, since the reversal r(x+/-)= xRd_ can be easily obtained by means of

anyone of dpdt’s, (postfix) ssdt’s, or (regular) labeled grammars, we have +/-

Also, for any labeled LR grammar, a (prefix) ssdt scheme Y can be immediately
obtained such that Gx G and rg(x)= zrl(x)Vx L(G).

Conversely, the following statement holds.
STATEMENT 3.3. Let Y be a postfix ssdt scheme such that GI is LR. Then a prefix

ssdt scheme Y’ exists such that G’t is equivalent to G and LR, and rg,(X)- rg(x)Vx
L(G’).

Proof. Let P and P’ denote the productions of Y and Y’ respectively. To construct
P’ replace any production i: A cto, a V (_J E)*, to e f* in P by the productions
A + aQ, Q- to, where Q are new nonterminals. Notice that

hi Q, - to Q, + e, ho Q, + to) Qi + to.

The equivalence of Y and the ssdt scheme Y’ thus obtained is obvious. But G is LR
if GI is SO, since it is immediate to construct a canonical LR parser associated to G,
by a straightforward modification of the parser associated to GI. Q.E.D.

On the other hand, it is immediate to obtain from a given prefix ssdt scheme Y,
whose GI is LR, a labeled LR grammar GL such that Vx L(G): ry(x)= zrl(x).

Therefore, since any language in W is also in p, it is in c as well. In
summary, we have proved the following statement.

STATEMENT 3.4. c+/- - _-- c cR =_

Remark. With a little more insight it can also be realized that the same equalities
continue to hold when in a labeled grammar the mapping A is bijective (isomorphism).

Notice the symmetry of the above statement, in spite of the fact that deterministic
languages are not closed with respect to reversal, even when provided with an
endmarker.

Notice also that the equivalence r+/-
_
c implies that a leftmost derivation of

any deterministic language can be deterministically obtained, but not necessarily in a
single pass. This is not to be confused with the question whether

DETERMINISTIC MULTI-PASS ANALYSIS 675

4. Closure properties of. In this section we investigate some closure properties
of (and c_1.) with respect to usual language operations. The main result shows
that both of them are Boolean algebras.

THEOREM 4.1. and cd_ are closed with respect to union.

Proof. We sketch the rather simple construction for . A simplified reasoning
applies to _1_.

Let L’, L"_X* be resp. recognized by the chains S’=(T,..., T’k), S"=
(T’,..., T’). First we derive S’ from S’ by modifying each dpdt T’r of S’ as follows.

Whenever T reads a character ai, TI emits ti (X), then it performs the same
d-computation as T. The following dpdt’s T’r, 1 < r =< k, when reading t, simply copy
it on the output tape and, otherwise, compute as T’. The last dpda T of S’ is changed
into a dpdt T, as follows. Whenever T, reads a, T performs the same d-computation
as T, and finally it outputs 1 (resp. 0), if the state of T, is final (resp. nonfinal). Thus
the output g of S’ is in (X (3 {0, 1})* {0, 1}, and h(g) x, where h is the homomorphism
defined by h(,) a,, h(0) h(1) e.

Now build a modification S" of S" such that each dpdt performs the same
computation in S" as in S", apart from copying O’s and l’s. The last dpda T’ accepts
if T’ accepts, or if the input string ends by 1. Q.E.D.

Remark. In order to show the closure with respect to union and to intersection
of cCXa_l_, a simpler proof can be given as briefly sketched below.

1. First translate x+/- to XA_xRA_;
2. then translate this to x+/-x_k by reversing xR;
3. finally check whether the first copy of x L’ or the second copy L".
The strength of this approach resides in the fact that by means of k + 1 dpdt’s one

can build 2k copies of a string x_L. Thus by letting LG(k) be the integer j such that
2-1< k_-< 2, we have the following corollary.

COROLLARY 4.2. Let L UjL L, L c_l_ h. Then L c+/- where r
max {h} + LG(k) + 1. (An analogous statement holds for f’) too).

THEOREM 4.3. c and c+/- are closed with respect to the complement (to ,*).
Proof. The proof is quite similar to the well-known proof of the closure of

deterministic context-free languages with respect to complement, a proof that also
relies on the loop-free form of dpda.

It just suffices to observe that for any k-chain, trk_(X) is defined ’x *. For the
last automaton just set Fk Qk Fk to obtain the complement of the language accepted
by (T1,’’’, Tk). Q.E.D.

Consequently both c and c+/- are Boolean algebras.
It is perhaps worth emphasizing that obtaining the same results directly on the

equivalent classes 3-, c, c etc. would have been quite less immediate.
The following trivial properties somewhat complete the framework of closure

properties of and
PROPOSITION 4.4. The families c and c_1_ are closed under z-1, where - is a

deterministic push-down translation.
Vitnyi and Savitch (1978) have mainly investigated the inverse dpdt translation

of Dyck sets, the latter obviously deterministic.
Their results thus concern a special case of
COROLLARY 4.5. _1_ is closed under reversal.
PROPOSITION 4.6. The families qgg and qg_l_ are closed with respect to the shuffle

of languages with disjoint alphabets.
Hint. Let L’= L(S’), L"= L(S") with disjoint alphabets E’ and E". Then a chain

S (’, S") accepting the shuffle of L’ and L" is obtained by modifying $’ into S, so

676 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

that each ’, when encountering a symbol a" X", simply copies it on the output
tape.

PROPOSITION 4.7. The family is not closed under homomorphism.
Proof. By a theorem of Ginsburg and Spanier (1968), every recursively enumerable

language L is the homomorphic image of the intersection of two deterministic context-
free languages: L h(L’f) L").

But L’ L", this latter being a Boolean algebra. Hence we would obtain_ , which is absurd (see also 6). Q.E.D.
Thus and _t_ are not AFL’s, which is also implied by the fact that they are

Boolean algebras and contain the language {anb"ln >= 1} (Ginsburg (1975)). Closure
with respect to concatenation and is still open, but unlikely in our opinion, as it is
often the case for Boolean algebras of languages, the only important exception being
regular languages.

5. The /’ hierarchy. The main result of this section is that both {i} and
{ _t.i} are a strict hierarchy with respect to i. This is an immediate consequence of
the following theorem.

THEOREM 5.1. The language L= {anbknl[n >= 0, k J} : c if I/I--> 2 =’+-2-’>.
The proof is based on a series of technical lemmas which carefully study the

behaviour of a dpdt, extending the results in the literature (Ginsburg and Greibach
(1966), C. Kintala (1979)). Each lemma is preceded by an informal description. The
formal statement follows, with a brief sketch of the proof. Technical details of the
proofs are postponed to the Appendix.

Let us first recall that Lemma 4.1 by Ginsburg and Greibach (1966) studies the
behaviour of a loop-free dpda reading a single character repeated arbitrarily many
times. It states that either the length of the stack is bounded independently of the
length of the inputmand therefore the same contents periodically returns to the
stackmor a loop is entered by which a fixed string is pushed onto the stack. Notice
that the former case can be considered as a special case of the latter, by assuming that
the string pushed onto the stack during the loop is null.

As a first generalization of this lemma, consider a dpdt in a configuration with a
generic state and stack contents, and an input consisting of an arbitrary number of
repetitions of a string x in +. Then the dpdt, after reading a bounded number of
occurrences of x, ultimately enters a loop. At each loop iteration a fixed number of
repetitions of x are read and consumed, a fixed string is pushed onto the stack, and
a fixed output string is produced (both strings may be null).

This is formally stated in the following lemma.
LEMMA 5.2. Fo_r any dpdt, and for any q Q, x ,+, a F+, there exist:
ntwo integers k, k (called the threshoM and the period respectively);
mtwo strings , fl in F*;
ntwo strings w, y in f*, such that for any L, 0<-_ L < f there exist
--a state qL Q,
--a string F*,
a string w (prefix ofy), such thatfor every integer k of the type k + hfc + L,

the following derivation holds:

(q, xk, a; e)a. (qi, e, dflh; wyhwL).

The proof in the Appendix is a careful exploitation and extension of the proof
of Lemma 4.1 by Ginsburg and Greibach (1966); as such it constitutes also a more
accurate (and perhaps, simpler) demonstration of their result. The core of the proof

DETERMINISTIC MULTI-PASS ANALYSIS 677

splits the computation of the dpdt into three distinct phases, called opening transient,
loop iteration, closing transient.

The opening transient consists of the derivation

(q, x, a; e _d. ((t, e, 6fl; wy),

where k, t, t, fl, sr, w, y are effectively computed.
The loop consists of the derivation

(, Xk, i. E) [_..d: (, E, l.i+l’ y), >- 1

where/ is the fixed number of repetitions of x consumed by each iteration of the loop.
The closing transient consists of

Remember that these computations always exist because the automaton is loop-free.
In the following we will use the notations"

g {klk > ,, k-,=- L (mod/)}
{klthere exists an integer h _-> 0 such that k +h+ L}.

The notation will also be extended to bidimensional and n-dimensional sets.
The function h(k)-(k--L)/f for k g is linear. In general in the sequel the

notation h(k, k2, , k,) indicates that h is a linear function of arguments kl, , k,.
To further analyze the behaviour of dpdt’s, consider the scanning of xk, starting

with a stack containing an arbitrary number of string repetitions. Precisely the starting
configuration is of the type" (q, x k, aoflial; e), shortly denoted as C(k; i).

Several cases may occur: in the most complete one, the dpdt starts with an erasing
phase where al and a certain number of fl’s are popped while reading some (linearly
related) number of x’s, producing proportionally many occurrences of an output string.
For k sufficiently large, all fl’s are consumed and the situation of Lemma 5.2 is
reentered. Otherwise the dpdt halts in a configuration of the type
(q’, E, OoJ’ woyh(k)w1) with j -< i. Intuitively we shall say that a comparison has been
performed between the exponents k and of the periodically repeated input and stack
strings x and ft. In fact a linear function states how many x’s are to be read in order
to pop all/’s from the stack. In the other cases some phase may be ineffective or missing.

This analysis is formalized by the next lemma.
LEMMA 5.3. For any dpdt, consider a configuration of the type

C(k; i) -(q,xk, aoflia,; e), with Jill >- 1.

There exist then k, k, , t such that VL and l, 0 <-L < k, 0 <-l < , one can effectively
compute"

1. a linear function f(k; i) and a constant f >- 0 which partition the set

2 {(k, i)[k >- , k =- L(mod/), >_- , i- [--- (mod/’)}

into three disjoint subsets"

X(-1) {(k, i) 9 If(k; i) < 0},

X(o) {(k, i).[[O<--f(k; i)<-f},

X(+,) {(k, i)lf(k;

678 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

2. a set ofstrings Wo,p, Yl,p, Wl,p, Y2,p, 14/2,p E fl*,forp -1, O, 1, and oflinearfunctions
hl,p(k, i), h2,p(k, i), such that (k, i) X(p) and C(k; i) d, (qp, e, yp; Up) imply

Up Wo.pYIb,(k. i)
Wl,P.)’2,p W2,p"

In particular

W1,-1 --Y2,-1 W2,-1 E, Y2,0-" W2,0 .
To clarify, Fig. 1 shows the partition of the lattice X.

f(k-i)=o

o E k

f(k’i)="

FIG. 1. The partition of X.

We call X(o) a strip, X(+I), X(_a) angular domains. In the region X(_), f is <0,
i.e. there are not enough x’s to completely pop /3’s from the stack. In X(o) /3’s are
completely popped, but a new loop is not entered. In X(+I), k is large enough, with
respect to i, to enter a new loop, as in Lemma 5.2.

Notice that, as a special case, the line f(k; i)= 0 may be parallel to the /-axis.

This means that either all/3’s are popped while scanning only a bounded number of
x’s (through e-moves), or that/3’s are not popped (but in a bounded number). In this
case X(_) and X(o) are empty, and no comparison of exponents has been performed.
The figure relates in fact to the most complex case.

As a further generalization, we consider now a starting configuration where the
stack contains a number s of periodically repeated strings/3i. To illustrate with a simple
case, where the fli’s and the input period are single characters, consider a dpda in the
configuration

(q, a k, ZoB’,Ci),
and suppose that 6 is defined by:

a(q, a, C)= a(q, a, B)= (q, e),

6(q, a, Zo) (ql, Zo),

6(q,, a, Zo) (q, ZoA),

6(q, a, A) (q, AA).

It is immediate to realize that the following configurations are respectively reached:
--if k < i2: (q, e, ZoBi’C2-k);
--if k -> i2, k- i2 < i1" (q, e, ZoBq-(k-i2))
--if k i2 + il" (ql, e, Zo);
--if k > i2 + i" (q, e,

DETERMINISTIC MULTI-PASS ANALYSIS 679

Notice that the comparisons between exponents are expressed by linear inequalities
involving k and the ij.

This is formally and generally stated in the following lemma.
LEMMA 5.4. Consider a configuration of the type

C(k; il, i) a (q,xk,aofl, e),,,,...13;s,,

There exist then ., k, , such that fL, It" 0 <-_ L < k, 0 <- lr < (1 <- r <= s); one can

effectively compute an integer c, with 0 <-_ c <-s, and"
1. c <- s constants {f, s c +l-<t<_-s} and c linear functions {f(k;

i,_,, , i,) s c / 1 <- <-_ s}, which partition the set

3= {(k, il,""", i,) k >- , k f L (mod/); it>= , i l (mod i’), 1 <= r <= s}

into 2c + 1 disjoint subsets Xp, p + 1, O, 1, , -2c + 1"

X(-2j+,) {(k, il,""", i)elf-,+<O,fs-++l>fs-++l}
with 1 <=j <= c (ifj c the last inequality is missing),

X(_2,+2) ((k, il, i,) . O<=fs_c+j<-- fs_c+j},

X(+I) {(k, il," "’,

2. (2c+3)(2c+ 1) strings

WO,p, Yl,p, Wl,p, Yc+l,p, Wc+l,p

c + 1)(2 c + 1 linear functions
h,p(k,i,is_l,’",i_+), -2c+l--<p-<-l, 1--<r--<c+l,

(actually hc+l,p does not depend on i_c), such that

(k,i,.. .,i)Xp and C(k; il,. ..,i)-d*(qp,e, yp; up)

imply

Up Wo,pyhl’bpk’ ’ h2"pk’i"’s-’ h k ,,,..
"Vl,pY2,p YcI, ""s-c+l Wc+l,p"

Similar to Lemma 5.3, some W,p, Yi,p may vanish.
When p is even, X<p) is called a strip; when p is odd X<p) is called an angular

domain. Intuitively the integer c is the maximum number of comparisons between the
exponents k and i, that are actually performed when k is "large".

The proof consists of a repetitive application of Lemma 5.3 to each group fl,
staing with r s. At some step, if k is large enough, the situation of Lemma 5.2 is
entered. In order to make the notation not too cumbersome, a single congruence with
modulus t is obtained by considering the 1.c.m. of the moduli of the congruences
determined by each subcase.

The next lemma generalizes Lemma 5.2 by allowing a number n of periodically
repeated strings in the input. Although the initial stack contains only Zo, as a result
of iterated pushes, the stack can reach the configuration that was considered as the
staing one in Lemma 5.4. Therefore in the most complex case, this lemma has to
analyze the behaviour of a dpdt from a configuration which has a number ofperiodically
repeated strings in the input and on the stack. The result is that the output produced
contains a number of periodically repeated strings: this number does not exceed the
double of n, and the number of repetitions of each string is a linear function of the
numbers of repetition of the strings in the input.

680 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

LEMMA 5.5. Consider an initial configuration

Co(kl, ", k,) (qo, uoXkl’Ul X,"U, Zo;

One can effectively compute , f such that, VLj (0 <- Lj < f) the set [{k >- , k =- L
(mod k), 1 <-j <= n} is partitioned into finitely many parts Xp). Each Xp) is defined by
at most n 1 relations ofthe same type as in Lemma 5.4. Furthermore (kl, , k) Xp)
and Co(kl,""", k) _d. (qp, e, yp; rp) imply:

hl, hq,p1. rp Wo,py l,p y q,p Wq,p, q 2 n,

where Wi,p, Yi,p, hi,p are as in Lemma 5.4.

gl,p(kl,’",kn lgr,p(kl"’"kn) Olr,p,2. yp ao,fl 1,p a l,p r,p

where g,p are linear functions and r <= min { n, 2n- q}.
The proof is an inductive application of the previous lemma.
The previous lemmas are next applied to analyze the behaviour of an/-chain of

dpdt’s, with input of the type a"bm+/-. The first output can thus contain at most four
periodically repeated strings, and the numbers of repetitions are linear functions of n
and m. It results that after translations the output contains a number of periodically
repeated strings that is bounded by an exponential function of i, and that each number
of repetition is a linear function of n and m. The actual linear functions involved
depend on the equivalence classes to which (n, m) belongs, with respect to a set of
congruences. The number of different sets of functions can be bounded by an hyper-
exponential function of i.

LEMMA 5.6. Let S=(T1,..., T) be a chain of dpdt’s with input of the type
x a’*b" +/-. One can effectively compute , , tfi, r such that Vl,, < , l, < rh the set

2=((n,m)ln>=a, n-a=l. (mod t), m>-r, m-rh=lm (mod rh)}

is partitioned into s _-< a 22’+1-2-) angular domains and s-1 strips, both denoted as

Xp), such that n, rn Xp) implies
hi, hq,O’(X) WO,pyl,p yq,p Wq,p, q 2i+1

where hr,p are linear functions of n,m.
We are finally ready to give
Proof of Theorem 5.1. For any k in J, let

Lk ={a’b’’+/-ln_->O} and Pk {n, kn)la"bk"+/- Lk},

i.e. the Parikh mapping of Lk. Assume by contradiction that L is recognized by an
/-chain. Compute fi, , t, tfi as in Lemma 5.6. Let h- 1.c.m. {rfi, }, and choose any
I, < h, l,, < h. By Lemma 5.6 the partition ofthe corresponding X has at most s 1 strips.

Clearly, for any strip Xp) there exists at most one k J (i.e. a straight line) such
that Pk f’) Xp) is unbounded. Thus, since IJI _-> ai, there exists at least one angular domain
Xp) such that Pk f’)Xp) is unbounded (that is at least one straight line is ultimately
contained in Xp)).

Let Xp) be defined by a system of congruences and of inequalities of the types"

and

n--ln (modh), m=-lm (modh),

n=>t, rn_->r, a’n+b’<m<a"n+b", O<a’<a", a’-<_k-<_a".

By a proper choice of rh and , it can be assumed (without loss of generality) that

DETERMINISTIC MULTI-PASS ANALYSIS 681

, if1) E Pk X(p), therefore"

{(n, m)ln + rh, m= tfi+ rhk= kn, r>_-O} Pkf3X(p).
Assume now k < a" (if k a", then k > a’ and proceed in a similar way). Then the point

P n, r), with n + rh, r r + rhk + h kn + h

belongs to X(p) provided that kn + h r < a"n + b", i.e.

h < (a"- k)n + b"= (a"- k) + (a"- k)rh + b".

Since (a"- k) + b"> O, it suffices to choose r> 1/(a"-k) in order that ’EX<p) (see
Fig. 2).

/rkh

r+kh

m

m=a"n/b"

im=kn
// m=a’n/b’

/1" // ./m= jn

p, //

fi R/h R/rh n

FIG. 2. Proof of Theorem 5.1.

But anba’_L L if r -> 1, because rh/n k + h n < k + 1. On the other hand V(n, m)
X(p), anb’+/- is accepted by the chain and this proves the contradiction. Q.E.D.

Finally we observe that Lemma 5.6 proves that the translations which can be
computed by an/-chain are an infinite strict hierarchy.

6. Relations to other families of languages. In this section we investigate the
relations between Y(, r+/- and other relevant families of languages. Since the former
are Boolean algebras, we focus attention on families sharing the same property. Precisely
we consider:

--the family of regular languages;
--the family of real-time languages (Rosenberg (1967)) i.e. those languages

recognized by some deterministic multitape Turing machine in a number of
steps which equals the length of the input string;

--the family 3, consisting of the Boolean closure of deterministic context-free
languages;

--the family of linear-time languages, i.e. those languages recognized by some
deterministic multitape Turing machine in a number of steps which is bounded
by K Ixl, where K is a fixed integer and x is the input string;

682 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

--the family c6e of deterministic context-sensitive languages, i.e. those languages
recognized by a deterministic single-tape Turing machine by using a number
of cells of the tape bounded by K lx I.

Figure 3 displays the relations between the above families of languages.

CH1 CH

LT

BC

DCS

FIG. 3. Relations between families of languages.

We now briefly sketch the proofs of the nontrivial relations displayed in Fig. 3.
1. c c 3-. The language

L= {0n’10n21 0nk 12r3 "k-r+’ ni-> 1, 1 _-< r_-< k}

is deterministic context-free but not real-time (Rosenberg 1967)).
2. c c c. The language L= {uculu {a, b}*} is in c2 (see Example 2.4) but

not in c (Wotschke (1978)).
3. c c_1 is obvious. We conjecture the inclusion to be strict.
4. c_t_. The language L= {a’bk’_LIm>=O, k_>-0} is in - but not in c.
L is recognized in real-time by a Turing machine with read-only input and two

other tapes. The machine operates as follows. After reading a’, tape 1 is ta "-1 and
tape 2 is empty. As the machine reads b’s, it moves leftwards on tape 1 erasing a’s,
and moves rightwards on tape 2 writing bb..., until it hits either a or _L (on input).
If head 1 is on a, the motion on the two tapes is reversed; the machine moves rightwards
writing a’s on tape 1 and moves leftwards on tape 2 erasing b’s, until it hits b or _L.

When the input is _L, the machine accepts, provided head 1 is on ti or head 2 is on b.
Lc is a corollary of Theorem 5.1. In fact, suppose by contradiction L is

recognized by some/-chain. Since for any J defined as in Theorem 5.1 it is

L’= {a"bk"_Lln >-O, kJ}_ L,

we can find a pair (n,) as in the proof of Theorem 5.1, which is accepted by the
chain but is not in L.

5. c_t_ c -. The inclusion is obvious as an essential property of our class. The
inclusion is strict because of relation 4 above.

Notice that every /-chain (T,..., T) can be simulated in linear time by a
deterministic Turing machine provided with 3 tapes in the following way. First the
input of T is on tape 1, while tape 2 is used to simulate the stack of T1 and tape 3
stores the output of T1. When T1 has been completely simulated by the Turing machine,
r(x) is on tape 3. Since < g, lxl, the contents of tape 3 can be copied to tape
1 by linearly many moves. Then the 3 heads can be reset by a linear number of steps,
and simulation of T2 begins, etc.

DETERMINISTIC MULTI-PASS ANALYSIS 683

Thus c_t_ is contained in the family w-3 of languages recognized by deterministic
3-tape (plus one read-only tape) Turing machines.

6. ff_ c5 is well known (Hopcroft and Ullman (1969)).
Besides the above relations it would be interesting to investigate whether Y((or

Y(_I_) contains all context-free languages. We conjecture a negative answer for the
following reasons:

1. It is likely that there exist nonlinear time recognizable context-free languages.
2. Although L= {wwR._L.} is in cCyg, and therefore L’= {WWR} is in c+/-, we suspect

that L’ is not in cCy(. This would only imply {context-free languages} c.
3. We are unable to find a chain recognizing L’L’.

7. Conclusion. We have proposed a formal model of multi-pass translation, a
frequently used technique for compiler writing, and investigated its basic properties.
The model extends the well-known syntax-directed deterministic translation, towards
more powerful, yet linear-time, translation schemes.

In this paper we have attempted to investigate the basic properties of chains (or
cascades) of deterministic push-down transducers. From a generative viewpoint,
languages accepte,d by these devices are between the deterministic context-free and
the languages recognized in linear time by deterministic multi-tape Turing machines.

The family cofmulti-pass deterministic languages has several interesting closure
properties, notably with respect to Boolean operators and reverse homomorphism.

An important result proved in this paper is that the family k is a strict hierarchy
ordered by k. The rather complex proof extends the classical analysis by Ginsburg
and Greibach (1966) of the behaviour of a dpda with input a to the case of a chain
with input a nb m.

Several interesting corollaries derive from this result. Our hierarchy theorem
generalizes previous results (by Liu and Weiner (1973), Wotschke and Kintala (1979))
related to the class c of Boolean closure of deterministic context-free languages.

Hierarchy results have also appeared for tree-transducers (Engelfriet (1982)).
However such formalism is suitable for language generation, not for recognition.

Several problems are still open. Perhaps the most interesting one is whether
c c+/-, i.e. whether multi-pass deterministic top-down parsing is less powerful

than bottom-up, as it happens for single pass parsing.
The same problem can also be considered for different restricted models of dpda’s,

such as those recognizing by empty stack, by single elements in the stack, and so on
(see Harrison (1978) for a systematic description of such models).

Another problem which is perhaps worth mentioning is to improve the present
bounds for the power of/-chains: on the basis of Corollary 4.2 an/-chain can recognize-

L={anbknx[n >- 1, 1-<_ k<=2i},

but cannot recognize

L’= (a"b’"+/-ln >_- 1, 1 -<_ k-< 2J},
What can an /-chain do at most in this respect?

j=2i+-2-i.

After preparation of this paper, we learned of an independent claim of the hierarchy theorem by
Platek (1983), but we are unaware of a complete proof of such a result in the open literature.

With a little more insight the endmarker can be removed.
We recently received a communication by Yehudai (1984), where it is shown that

Lj {a"bk"_l_lk J, J{--< 2a....1}
can be recognized by an/-chain. His proof is based on the idea of performing a binary search.

684 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

8. Appendix.
Proof of Lemma 5.2. For any r > 0 consider the derivation

(1) (q,xr, ol)[---d* (41, xr-1 ’1)[-d*" __d, (r E, ’r)
Define y as the string in F* such that r Y’, and
(i) Vs > 0, Vx’ suffix of x:

(, x,) -* (q’, x’, ySr’r), with "r F+

(i.e. 7 is the stack portion never affected when reading any number of x’s, after the
scanning of x),

(ii) for no 3 properly containing Yr, such that 3;sr, (i) still holds.
A decomposition Y’r meeting (i) is called admissible, while a decomposition

meeting (i) and (ii) is called maximal. Obviously ’dr the maximal decomposition exists
and is unique. Notice also that [’[=> 1.

For any r>0, because of the maximality of Yr, there exists s>0 such that
computation (1) can be continued as

(2) (q, Xr+sr, Ol) _..d$ (lr+sr_l, X, ’)/r) -’* (q’, x’, T,.Z’)

(q,, ,,) a,x y,. - (qr+, e, Yrr),

for some x’ suffix of x, x" suffix of x’ and Z’e F, ’", e F+.
Next we show that the length of ’ is bounded. Since the dpdt is loop-free, there

exists N > 0 such that, for any suffix x’ of x, Vq’e Q, ’Z’e F, if

(q’, x’, Z’) _d. (q,,, e, sr)

then I’]_-< N. Thus in derivation (2)ILl_-< N.
Next we show that with reference to derivation (2) a sequence {kt, qt, "Or, 0t}t>o

can be sampled where, Vt, k, is an integer, with kt < kt+l, qt Q, *It, Ot F*, lot]<= N,
such that:

(iii) (q, x k,, a)d. (q,, e,

and, for any s > 0, x’ suffix of x"

(iv) (q,, x, rl,O,) -* (q’, x’, rt,O’) with 10’1--> 1.

Such a sequence can be inductively built as follows. For 1 let ylSrl be the
maximal decomposition of (of derivation 1)), and s be such that (2) holds for r 1.
Then assume

kl 1 + s, q t+,, r/ y, 0 a.
For i+ 1, i> 0, assume r= k, y’ the maximal decomposition of , s> 0

such that (2) holds. Then set

ki+l r+ s, qi+l q+, Ti+I Yr, 0i+1 r.
It is immediate to realize that the sequence built in this way has the required

properties (iii), (iv). For the finiteness of Q and F and from the fact that [0,[<_-NIt,
there exist r and s, with r < s, such that q q, 0 0, r/ rirfl (with/3 F*), because
the decomposition r/t0, is admissible for any k,.

Thus we have

(q, x k‘, a) a. (q,., xk-k, rl,.O,.) a. (q,., e, rl,.flO,.).

DETERMINISTIC MULTI-PASS ANALYSIS, 685

Notice that, once the existence of such qr, kr, ks, r/r,/3 and Or is stated, they can
be effectively computed by running the dpdt and testing for the fulfillment of the
conditions.

Finally the lemma follows by letting t qr, t r/r, = 0r, / kr,/ ks kr and
by defining w, y, qt, ’L, WL via:

(q, xk, a; e)d, (t, e, tiff; w),

(t, xk, (; e) .d, (F e, [3(; y),

(t], x, (; e)d. (q, e, ’; WE). Q.E.D.

Remark. The previous proof overcomes a technical inaccuracy of Ginsburg and
Greibach (1966, Lemma 4.1), where it is claimed that either

(i) there exists n >= 1 such that for every m _>-1 if

(qo, a", Zo) * (q, e, y) then IT] _<- n, or

(ii) there exist integers m, f, words w, y F*, Z F, q Q such that, h => 0:
(a) (qo, a "+hf, Zo) _d. (q, e, wyhZ),
(b) (q, a k, wyhZ) b--* (q’, e, 3/) implies y wyhy’, y’ e. In fact the following loop-

free dpdt does not meet the above claim.

8(qo, a, Zo) (ql, ZoAA),

t(ql, a, A)=(q2, AAZZ),

8(qE, a,Z)=(qa, e),

8(qa, e,Z)=(q4, e),

8(q4, e, A) q2, AAZZ).

ProofofLemma 5.3. Let us analyze the behaviour of the stack y of a configuration
C(k; i) while reading xk. First we prove that there exist two alternatives:

(A) there exists i’ such that Vi_-> i’, k >_-1 and V configuration C =(t, 2, q/) reach-
able from C(k; i) (i.e. such that C -*) it is = ao/3i-i’", " F*.(B) Vi there exist k k(i) and a configuration C =(t], , /) reachable from C(k; i)
such that, for no sr, 3’ aofl.

Intuitively either (A) a bounded number of fl’s are popped, independently of k,
or (B) for k sufficiently large all fl’s are erased.

Now we show that proposition (B) is implied by the negation of (A), namely: Vi’
there exist" i_> i’, k_> 1 and a configuration C (t], ,) reachable from C(k; i) such
that, for no st: /= aofli-i’. Consider the computation

C(k’, i) * C’= (q’, x’, y’) - C"= (q", x", 3/") -* C,

where C" is the first configuration such that, for no sr, y"= aofl-’. By necessity:

Therefore we have

y"= aoi-i’-l rl and y’= ao i-i’.

(q, x k, aofl ia 1) * (q’, x’, aofl i-i’)_
(q,,, i--i’--Ix", ao/),

and consequently by letting i- i’+ 1"

C(k; i) (q, x k, OfOfl i’+101 * (q’, x’, aofl} I-- (q", x", aorl),

which is equivalent to (B), since for no ’, r/=/3sr.

686 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

Hence tertium non datur and we can separately consider cases (A) and (B).
CASE (A). Here we can apply Lemma 5.2, with fli’al instead of a, since, by

hypothesis (A), the portion aofl i-i’ of the stack remains unchanged. The thesis is thus
satisfied with the following values:

i--- I,
l-0 (obviously condition i---0 (mod 1) is not a constraint);
k, k are derived in the same way as in Lemma 5.2;
f=0, f(k; i)- k+l.

In particular:

X_I) Xo)=, and X+)= X, i.e. p--1;
Wo, y, Wl are computed as in Lemma 5.2;
Y2 WE e

h h(k)= (k-k-L)/k as in Lemma 5.2.

CASE (B). Denote by K(i) the minimal k for which (B) holds. First we show that
K (i) is nondecreasing. By contradiction suppose that k2 K (i2) < kl K (i), il < i2.
From (B) and by the definition of K we have:

C(k:; i2)--(q,x k2, aoi2al) ---* C"=(q",x", y"),

with x x x and, for no sr, y"= ao/3sr.
Let now =(q*,x*,ao/3i2-,); be the first configuration such that

C(k2; i2) -* * C", and for no st: " =/3sr. Because of the determinism, we also have:

C(k2; i,)= (q, xk, aofli, al) -* (t, x",
and k2< K(il) would satisfy (B), against the definition of K(i). Hence K(i) is
nondecreasing. Therefore lim_>oo K(i) is either (B1) finite, -k, or (B2) infinite.

The two cases, to be next discussed, correspond to (B1) clearing the stack through
an e-cycle, or (B2) clearing it by a cycle which reads some x’s to remove so.me fl’s.

CASE (B1). Since K(i) is an integer valued function, there exists (that we may
assume to be the minimal) such that i->_ implies K(i)- k. Thus V >_- i:

C(k; i)-(q, x, aoflia) * (gl, Xi,

where g’ is a suffix of x and for no " F*, c =/3r. Therefore we also have

C(k; i) * ((t,, x,, aofl) -* Ci

where i is a suffix of x.
From the finiteness of Q and Z, there exist il, i2, with [-<_ i < 2 such that:

;i, x: x, i.e."
C(k; il) b--* (q, x, ao/3) C,

C(k; i2) * C.

But the second computation can be rewritten as"

C(]; i2) k--* C’-- (t, , Ol,ofl i2-i+) k-* (t, ,
which shows a cycle of e-moves which pops i" 2- ia /3’s from the stack.

By introducing also the output we have:

(C(k; i,); e)* (C’; Wo),

(C’; e)-* (; Yl)-

DETERMINISTIC MULTI-PASS ANALYSIS 687

After configuration has been reached, Lemma 5.2 can be applied, thus producing
as output Wl (through a derivation which scans followed by some number of x’s),
Y2 (periodically repeated), and WE. Note that the forms of these strings depend, in
general, on the value < i’ such that i- -- (mod i’), which is fixed a priori.

In conclusion the lemma is proved for case (B1) by letting"

X(-1) X(o)= , as in case (A);

f= k, f(k; i)= k+l;

WO,1 Wo, Y1,1 Y, w. w1, Y2,1 Y2, w2,1

h,,,(k, i) r- l)/ f

hE, --hE(k), where hE(k) is computed by the application of Lemma 5.2.

CASE (B2). In this case consider the computations of the type

’), aofl’a,) k- (ql, x aofl’-") -(q, xr(d, Ki)-, d,

_d, (qr, Xr’)-r,
where Vj, 1 -<j _-< r < K (i), b Q, for no " F*, ’j flsr’, and the sequence {j} is
nondecreasing.

Notice that there exists N, independent of and j, such that I’jl--< N: this can be
shown by applying a similar reasoning as in Lemma 5.2 (see also Fig. 4).

(-)/

I%1 I
0 ij ij/ ij/

FIG. 4. Illustration of case (B2) ofLemma 5.3.

Since Q and F are finite, for and r sufficiently large, there exist m, n (with m < n)
such that:

Thus we determine

qm=qn=l, ’m=sr.=".

(Xn-m, Oloin--im+l’ E,) _.d. (E, Olof" Yl),

where i, > im (otherwise we would be in case (A)). Let then be fc’= n- m, f i,- ira,
r=im, k= K(r).

688 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

The above computation is a cycle which removes/3 while reading x’. If we define
Wo by

(q, x k, aofl ra; e) d. (gl, e, aofl(; Wo),

Vn->O, VL, O_-<L</’, VI, O-<l<i":

(q, x+"’+, ao/3 r+"r+t+a; e) _a. (, x, ao/3+ar; woy’;).

Notice therefore that, letting n=(i--l)/, K(i) satisfies the following
inequalities"

k+ nk’<- K(i)<k+(n+ 1)k’.

Define the linear functions

I(i)=,,+(i-r-l)/-f’, f(k; i)=k-(i),
and separately consider the cases (i)" f(k; i)< O, and (ii)" f(k; i)>-O.

(i) f(k; i) < O, i.e. k </(i). At least i" + + 1/3’s are left on the stack after reading
xk-L, and the output produced for xk is"

h,-W1,_7"(Xk) WO,-lYl,-1 1,

where Wo,_ Wo, y,- y, w,_ is a prefix of y, depending on L but not on l, and

hl,_,(k)= (k- ,.- L)/ c’.
The string Y2,- w2,_ e, which completes the definition of the behaviour in X(_).

(ii) Consider now the case f(k; i)-> 0. We apply Lemma 5.2 to the configuration

(, Xk-(i), O0 i’+/+l).
After an initial aperiodical computation yielding w,, for k-/(i)>/ (i.e.

f(k; i)> f=/), a cycle is entered:

(q, xk’, a e) _a. (q,, e, Y2,1).
Notice that the behaviour of the automaton in this phase depends on l; in particular

it is /"=/"/).^However a common period for (i) and (ii) can be obtained by letting
/= 1.c.m. {k’, k"(t)10-<_ t< }.

The string w2,, a prefix of Y2,1, depends on the value of k (mod k). In conclusion,
if (k, i) X<+I), we have, as in the thesis"

r(x) Wo yhli’l’:i hkw,y2, w2,

where Wo,1, Yl, and h,l are the same Wo, y, hi,-1 as in case (i); h2, is computed as in
Lemma 5.2.

Finally if (k, i) e X(o, i.e. 0 Nf(k; i) NfK(i) N k N K (i) + , the thesis is proved
with Y2,o WE,o= e; the length of W,o, a prefix of Wl,1, increases with k-(i)N. Q.E.D.

it_ProofofLemma 5.4. For simplicity let aofl al fl_la_l, 1 < r < s, so that

C =(q, x, m#,a;
As in Lemma 5.3 there exist two alternatives, denoted as follows:

(A) there exists t such that Vi > t," Vk > 1, VC (ql, Xl, yl) such that C * C1,
there exists ff’e F* such that ff fl,-:ff’.

(B), Vi there exist k k(i) and a configuration C reachable from C such that,
for no ff’ F*: y flff’.

DETERMINISTIC MULTI-PASS ANALYSIS 689

CASE (A). The lemma substantially coincides with Lemma 5.3, by letting r/ ao.
Thus the statement holds with:

c=O and X<+)=X.
CASE (B). Here again the two alternatives (B1) and (B2)s of Lemma 5.3 have

to be considered. In both cases, there exists a linear function Ks(ix) (which becomes
a constant in case (B1)s) such that, if k >/s(i):

X
k nsss+l +1C b-d* C1 (ql, -rs("), , woyh’(s(i’))Wl),

where 1 is a prefix of Yl and 0 l < t [1 N.
Quite clearly state q and , hence the whole subsequent computation, depend

on the value l (0 l < t%) of i (mod t).
Staing from C1 we can reapply Lemma 5.3, distinguishing again two cases (A)_

and (B)_, and so on.
Let us consider case (B)_. If k> K(i)+K_(i_I), the previous reasoning

applies to the configuration C"
t +I +1 (C a. C: (q, x- ’)---,), n-e- s-; woy’))wy<g’-’<’-’)w:),

and so on until case (A)r occurs This happens necessarily at latest for y ao (letting
by convention r--0; Lemma 5.2).

In conclusion the lemma holds with

c: s-r,

ft(k,i," ",it)=k-K(is) Kt(it), s-c+l<-t<-s;

ft Kt-l(?t-1) for suitable

which intuitively correspond to the number of/3t._,’s popped from the stack before
entering the corresponding loop. By convention Ko is a constant function.

The strings Wi,p, Yi,p and the functions hi,p are defined in the obvious way.
Notice that, as in the previous lemma, there is no problem in assuming, for the

sake of notational simplicity, unique [’ and / as common periods in the above
derivtions. Q.E.D.

Proof of Lemma 5.5. The dpdt reading Uo performs

Co (Oo, Xl

Now, by Lemma 5.2 for input Xlk’, supposing that k is "large" enough, (i.e. k >_-/1)
and k- k g (mod kl), the computation takes place"

do _a, C <q, u,, , c7/3i(’)a; woyhll(k’)l>

where i and h, are linear functions of k,; o is a prefix of Wo; q, a, k, depend on
L1; fl e F*, Yl E ’*.

Next, reading Ul, one of the two following types of configuration, respectively
corresponding to cases (A) and (B1) of Lemma 5.3, is reached"

h1) C =<q, xk2, aofl,’a,; Woy,’w,>,

where, as usual, i(kl)-il and [a,[_-< N;

h,, h2(kl)22) C1 <ql, X2k2, ", a0, rvOYl-’VlY2

where hi is a linear function of i, and consequently of

690 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

Let us now show by induction that, after reading UoXkllUl XJUj, the stack
contents is

/ o?a /3]’a, with s <-j,

and the output is

woyhWl yhq, kq,
with q 2j-s, where ir and hr are linear functions of kl,’’ ", k.

Therefore after reading the whole input string, the output contains at most 2n
iterated string (or "periods").

Base. For j 1 the statement holds, by virtue of 1) and 2) above.
Induction step. Assume that the statement holds for j, and consider the reading

of ’+ By Lemma 5.4, and supposing that case (A) is reached, with 0 < r < s, the"j+

resulting stack is
titr+3,= n[a ’d+

where, as in the proof of Lemma 5.4,

T aOl
and the output becomes

hq+."= Wo’’" yhqqWqyq/t’’" yhqVq+,, with s- r+ 1.

For instance, Fig. 5(a) and (b) resp. show, in an intuitive way, possible evolutions of
the stack contents and of the output while reading a"b".

(a) (b)

FIG. 5. Possible growth of stack (a) and output (b) while reading anb (Lemma 5.5).

After reading u+, the stack becomes
i,

y+ r/,/3 ;, a,, with 0 -< s’ -< r + 1 _<- s + 1 -<_j + 1

(notice that if s’= r+ 1 /3,=/3’+). The output becomes
hq+ h,,hq+t+l"+ woyh Yq+t Wq+tYq+t+l Yq’ Wq,

with q’-(q + t)= r+ 1- s’. Thus after the induction step, q takes the new value

q’ q+ t+ r+ l-s’ q+ s-r+ l + r+ l-s’

q+ s-s’+2=2j-s+ s-s’+2=2(j+ l)-s’.

DETERMINISTIC MULTI-PASS ANALYSIS 691

Since s’ is the new value of s, and s’_-<j+ 1 has already been shown, the inductive
statement is proved.

As usual / and/ are determined, and, VL,. , L,, with 0 =< Li </, the lattice.. { k, >= ., k,- =- L, (mod/)}

is considered. Let us show, by induction, that X is partitioned into a number R of
regions X(p) each one being defined by at most n- 1 relations of the types

0-<f,_-<f,, f,<0, f,>f,,

where f are linear functions of kl,"" ", k, and ft are constants. In general {f} and
{ft} depend on X(p).

Base. Recall that the configuration C1 reached after reading uoXkllU1 has the same
form throughout X. Thus for j 1 the number dl of functions defining X is 0, and X
is partitioned into just one part.

Induction step. Assume that, after reading Uo"" xJuj, has been partitioned
into Rj parts by means of d _<-j- 1 relations of the above type, and the stack contents
is y ao/37’’’/3as, with s =s <=j as in the previous induction. Assume also that

d + sj <=j, what is true in the base of induction. Consider the dpdt behaviour in any
of the R, say ’. By applying Lemma 5.4 to the reading of ../’kJ/11, is split into 2c + 1
parts through c linear functions (i.e. at most cj comparisons have been performed
among k+ and (k,..., k)).

The reading of u+ does not increase the number of parts.
Thus, after reading u+l, X is partitioned into Rj+I parts, with R+ (2j+ 1)R.

Each part is defined by d/-< d + cj relations. By observing, from the previous induc-
tion, that c =s-r (where r is the integer such that case (A)r occurs), we have"

Sj+l r d- 1 s c + 1.

Thus

dj+l +S+l<--d+c+s-cj+ 1 d + s + l=<j+ 1,

and the induction is completed. Q.E.D.
Remark. With a little more insight it could be shown that actually R, <-3 "-1.

However this fact is not essential for the proof of the main theorem, and therefore is
not proved here.

Proof of Lemma 5.6. We proceed by induction on the length of the chain.
Base. By Lemma 5.5, for x=a"bm_l_, r(X)=Woyhl "yh44w4 has 4 periods

Yl,"" ", Y4, which, in general, take different values in 2 angular domains and in one
strip of X.

Induction step. Suppose that the input x’ of T contains 2 periods, which, in
general, differ in a_ 22’-1-i angular domains and in ai_- 1 strips. In fact, at most
one strip can lie between two angular domains (see Fig. 6).

By Lemma 5.5, r(x’) contains at most 2+1 periods, which take possibly different
values in a number of angular domains and strips to be next computed.

For any angular domain A in ., consider the region K {kl, , ks} with N 2
and k; k;(n, m) with (n, m) A. When T scans the N periods of its input, the region

N-1K is split into at most IIj=l (2c; + 1) subregions, where c; is defined as in Lemma 5.5,
what induces the splitting of A into at most B -II;__l (c; + 1) angular domains, and
in B-1 strips. Notice that the number of possible different subregions of K is not
necessarily 2B- 1.

692 CLAUDIO CITRINI, STEFANO CRESPI-REGHIZZI AND DINO MANDRIOLI

FIG. 6. Illustration of Lemma 5.6.

On the other hand we have from Lemma 5.5:

N-1, cs=dv<--N-1.
j=l

This implies that B- IIJV (cs + 1)<_-2N-1. In fact, since for any integer x _-> 0 it is
log2 (x + 1) _-< x, we have:

N--1 N-1

lOgEB= Y, log2(c+l)-< c_-<N-1.
j=l j=l

Thus the number of possible angular domains determined by T is

ai ai._l x 2(2’- 1) with al 2.

Solving the recursion we have

log2 ai log2 (a,_l) + 2 1 (log2 al- 1);

hence

and

log2 a, 1 +(22-1)+...+(2’- 1)= 2i+1-2 i,

ai 2(2+-2-i),
which completes the induction. Finally notice that the final state of T only depends
on the domain X(p) of the input. Q.E.D.

REFERENCES

[1] A. V. AHO AND J. D. ULLMAN, The Theory of Parsing, Translation and Compiling, Vols. and II,
Prentice-Hall, Englewood Cliffs, NJ, 1972 and 1973.

[2] C. CITRINI, S. CRESPI-REGHIZZI AND D. MANDRIOLI, Chains ofdeterministicpush-down transducers,
Dept. Electronics, Politecnico di Milano, Internal Report n. 83-13, 1983, also presented in a shorter
version as Chained deterministic push-down transducers in Colloquium on Algebra, Combinatorics
and Logic in Computer Sciences, Gy6r, 1983.

DETERMINISTIC MULTI-PASS ANALYSIS 693

[3] J. ENGELFRIET, Three hierarchies of transducers, Math. Systems Theory, 15 (1982), pp. 95-125.
[4] S. GINSBURG, Algebraic and Automata-Theoretic Properties of Formal Languages, North-Holland,

Amsterdam, 1975.
[5] S. GINSaURG AND S. A. GREIBACH, Deterministic context-free languages, Inform. Control, 9 (1966),

pp. 602-648.
[6] S. GINSBURG AND E. H. SPANIER, Control sets on grammars, Math. Systems Theory, 2 (1968), pp.

159-177.
[7] M. A. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[8] J. HARTMANIS AND R. E. STEARNS, Algebraic structure theory of sequential machines, Prentice-Hall,

Englewood Cliffs, NJ, 1966.
[9] J. E. HOPCROFT AND J: D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-

Wesley, London, 1969.
[10] N. A. KHABBAZ, Multi-pass precedence analysis, Acta Inform., 4 (1974), pp. 77-85.
11] C. M. R. KINTALA, Refining nondeterminism in contextfree languages, Math. Systems Theory, 12 (1979),

pp. 1-8.
[12] L. Y. LIU AND W. WEINER, An infinite hierarchy of intersections of context-free languages, Math.

Systems Theory, 7 (1973), pp. 185-192.
13] M. PLATEK, Recognizing of languages by composition of deterministic pushdown transducers, private

communication, 1983.
[14] A. L. ROSENBERG, Real-time definable languages, J. Assoc. Comput. Mach., 14 (1967), pp. 645-662.
[15] A. SALOMAA, Formal Languages, Academic Press, New York, 1973.
16] TADASHI AE, Direct or cascade product ofpushdown automata, J. Comput. System Sci., 20 (1977), pp.

257-265.
[17] M. B. VITANYI AND W. J. SAVITCH, On inverse deterministic pushdown transductions, J. Comput.

System Sci., 16 (1978), pp. 423-444.
[18] D. WOTSCHKE, Nondeterminism and Boolean operations in pda’s, J. Comput. System Sci., 16 (1978),

pp. 456-461.
19] A. YEHUDAI, A note on chains ofdeterministic pushdown transducers, Internal report, Univ. California,

Los Angeles, 1984.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

1986 Society for Industrial and Applied Mathematics
005

THE COMPLEXITY OF RELIABILITY COMPUTATIONS
IN PLANAR AND ACYCLIC GRAPHS*

J. SCOTT PROVAN"

Abstract. We show that the problem of computing source-sink reliability is NP-hard, in fact # P-
complete, even for undirected and acyclic directed source-sink planar graphs having vertex degree at most
three. Thus the source-sink reliability problem is unlikely to have an efficient algorithm, even when the
graph can be laid out on a rectilinear grid.

Key words, reliability, complexity, planar graph, acyclic graph, NP-hard, # P-complete

1. Introduction. Connectedness reliability problems on graphs have long con-
stituted a class of computationally intractable problems. Virtually all such problems
have been shown to be NP-hard (actually #P-complete) for general graphs [2], [10],
[11], [16]. Work has therefore concentrated on finding significant special classes of
graphs for which polynomial algorithms do exist for computing network reliability.
This has culminated in methods for computing fairly general reliability measures in
directed and undirected series-parallel graphs [1], [13]. There are three important
classes of graphs for which complexity results have not been obtained, namely, planar
graphs, acyclic graphs, and graphs which have bounded vertex degree. There is,
moreover, compelling evidence to suggest that reliability problems for these graphs
might be computationally easier than for general graphs (see [3], [7], [9], [10], [14]).
We show in this paper, however, that the problem of computing source-sink reliability
is # P-complete, even for undirected and acyclic directed source sink planar graphs
having vertex degree at most three.

2. Preliminaries. Let G (V, E) be a graph (directed or undirected) with vertex
set V of cardinality rn and edge set E of cardinality n. The degree of a vertex is the
number of edges adjacent to that vertex. Two vertices s and are distinguished as the
source and sink vertices, respectively. The graph (3 is called source-sink planar, or
simply (s, t)-planar, if it has a planar representation with s and on the boundary.
Now suppose edges in (3 fail independently, each edge failing with the same probability
l-p, 0=<p-< 1. For the purposes of this paper, we take p to be rational. Then the
(s, t)-connectedness reliability of G, R(G, s, t; p), is the probability that there is at least
one path of operating edges from s to t, where the path is taken to be directed when
G is directed. This probability can be written as

R(G, s, t; p)= E plUI(1-P) "-Inl
He

where is the collection of sets of edges which contain at least one (s, t)-path. The
problem of computing R(G, s, t; p) has been shown to be # P-complete for undirected
graphs by Valiant [16], and for directed acyclic graphs in 10]. In neither case, however,
are the networks planar, nor are the vertex degrees bounded. The two problems
considered in this paper are

P3ST. The problem of computing R(G, s, t; p) when G is an undirected (s, t)-
planar graph with each vertex having degree at most three;

* Received by the editors April 17, 1984, and in revised form January 2, 1985. This research was
supported in part by the Air Force Office of Scientific Research under contract AFOSR-84-0140.

f Operations Research and Systems Analysis, University of North Carolina, Chapel Hill, North Carolina
27514.

694

RELIABILITY COMPUTATIONS IN PLANAR AND ACYCLIC GRAPHS 695

PA3ST. The problem of computing R(G, s, t; p) when G is an acyclic directed
(s, t)-planar graph with each vertex having degree at most three.

It is at present unknown whether there exists a polynomial algorithm to solve either
of these problems.

We explore the complexity of the problems P3ST and PA3ST in the manner
proposed by Valiant [16]. We assume that the reader is familiar with the notions of
NP and NP-complete problems; see [4] for an excellent account of these concepts and
their relationship to #P-completeness. Fix input alphabet E and denote by E* the
corresponding collection of (finite) strings. We assume ,V_,* contains a representation
of Z/ {0, 1, .}. Define the class # P to consist of those functions f: E* Z/ which
can be computed by counting the number of accepting computations of some nondeter-
ministic Turing machine of polynomial time complexity. For function f: E* Z/, define
a f-oracle Turing machine to be a Turing machine, together with an additional input
and output tape, which at any time during a computation can write string cr on the
input tape and in one step receive f(cr) on the output tape. A function g:E* Z/ is
polynomially reducible to f (g ocf) if there exists a polynomial time complexity f-oracle
Turing machine which computes g. A function f is called # P-complete if (a) f is in
P and (b) every function g in # P is polynomially reducible to f.

Roughly speaking, the # P-complete problems are those which are polynomially
equivalent to the counting problems associated with many NP-complete problems--for
example, counting the number of Hamiltonian circuits in a graph. They are therefore
at least as hard as NP-complete problems, and so it is unlikely that a polynomial
algorithm exists to solve these problems. It should be noted that P3ST and P3AST are
technically not # P problems, since, among other things they compute rational numbers
rather then integers. However, it will follow from subsequent discussion (specifically
Corollary 1) that in both P3ST and PA3ST the problem of computing R can be reduced
to that of computing 2"R(G, s, t; 1/2)= [1 =the number of sets of edges which admit
a path from s to t. This function is clearly in # P, since such edge sets are easily
recognizable.

We will show that both P3ST and PA3ST are # P-complete problems. This result
is somewhat surprising, since several #P-complete enumeration problems associated
with (s, t)-connectnessmi.e., the number of (s, t)-paths of any given length and the
number of minimum cardinality (s, t)-cuts---become polynomially computable when
restricted to planar graphs (in the case of minimum cuts) or acyclic graphs (in the
case of paths) [3]. The planarity and bounded vertex degree in P3ST and PA3ST also
mean that the problem of computing R(G, s, t; p) is # P-complete even when G can
be embedded in a rectangular grid with s and on the perimeter (see [5, Thm. 1] for
details).

As a starting point for the results in this paper, we present two known # P-complete
functional evaluation problems.

I. Number of Hamiltonian circuits in a planar cubic graph (# HCPC)
Given: planar undirected graph with each vertex of degree three;
Find: the number of closed simple paths going through every vertex of G.

II. Acyclic (s, t)-connectedness reliability (AST)
Given: acyclic graph G, source s, sink t, and rational probability p.
Find: R(G, s, t; p),

As with P3ST and PA3ST, one can think of AST as computing 2nR(G, s, t; 1/2)= I1 so
as to make it a member of # P. The problem AST was shown to be # P-complete in
[10]. The problem #HCPC has essentially been shown to be #P-complete in [6].
Specifically, in the construction for the m clause, 3-conjunctive normal form expression

696 J. SCOTT PROVAN

F in that paper, if the "required-edge" graph is placed into the successive figures as
oriented, then the resulting graph has exactly (87. 18)". 86a. 8b. 36 Hamiltonian cir-
cuits for each assignment satisfying F, where a is the number of"crossing exclusive-or"
graphs and b is the number of "noncrossing exclusive-or" graphs added in the final
construction. Since the number of satisfying assignments for a 3-conjunctive normal
form expression is known to be # P-complete 15], then # HCPC is also # P-complete.

We next present a key formula used to prove both of the main results of this
paper. It is due to Satyanarayana and Prabhakar ([12, eq. (3)], with a correct proof
in [17]), and is restated here as it applies to P3ST and PA3ST. For directed graph G
and specified vertices s and t, define an (s, t)-subgraph of G to be an acyclic subgraph
H of G having the property that every edge of H lies in at least one path in H from
s to t. Equivalently, an (s, t)-subgraph can be characterized as an acyclic subgraph H
such that s is the only vertex with no edges of H pointing into it and is the only
vertex with no edges of H pointing out of it. Satyanarayana and Prabhakar showed
that the (s, t)-connectedness reliability for G can be written

(1) R(G, s, t; p) E E (-1)J-’+P
id n ij

where Y(0 is the set of (s, t)-subgraphs H with vertices and j edges. This formula
can be applied as well when G is undirected. To do this, we first construct directed
graph G’ by replacing each undirected edge of G by two oppositely directed edges,
each with probability p. Then, as proved in [2, Thm. 2], R(G’, s, t; p) is equal to

R(G, s, t; p). The (s, t)-subgraphs of G now correspond to acyclic orientations of
undirected subgraphs of G for which every edge is in at least one (s, t)-path, so that
an (s, t)-subgraph for an undirected graph will always refer to the corresponding
oriented subgraph. With this modification, equation (1) holds also when G is
undirected.

Finally, we present three general lemmas. The first is due to Valiant [16, Fact 5].
Define the size of a rational number r to be the total number of (binary) digits in the
numerator and denominator, when r is presented as a fraction in lowest terms.

LEMMA 1. Ifg(x) is an nth degree polynomial with rational coefficients and its value
is known at each of the distinct rational points x,..., x,+ each of size at most d, then
the coefficients of g can be deduced in time polynomial in n, d, and the maximum size of
the values of g(xi).

To give the second lemma, we need some additional notation. Let G, s, t, and p
be given, and let S be a subset of edges of G. For l=O,..., IS[define

R’(G, s, t, S; p)= (--1)J-i+lpj
i,j H d

where is the set of (s, t)-subgraphs of G with vertices, j edges of E-S, and
edges of S.

LEMMA 2. Rcr. R, even when restricted to graphs which are (s, t)-planar, acyclic,
or with vertex degree at most three.

Proof. Let the arguments G, s, t, S and p be given, with m the number of vertices
of G, n the number of edges of G, k the cardinality of S, and d the size of p. For
r --0, , k construct the graph G by replacing each edge e (u, v) of S by the path
of r+ edges (u, Ue,1)(Ue,1, Ue,2) ," (Ue, /)), where Ue, l, Ue. are new vertices. This
graph has m + kr vertices and n + k(r + 1) edges, and is planar, acyclic, or with vertex
degree at most three, respectively, if G is. Further, an (s, t)-subgraph in Gr corresponds
to an (s, t)-subgraph of G with each (oriented) edge of S replaced by the appropriate

RELIABILITY COMPUTATIONS IN PLANAR AND ACYCLIC GRAPHS 697

(oriented) path. Equation (1) now becomes

k

R(G, s, t; p)= , (-1)+l(’+l)-(i+’)+lp+l(r+l)
1=--0 i,j

k

2 (-Pr+l)’Rl(G, s, t, S; p).
/=0

This is a polynomial in _pr/l. The coecients R(G, s, t, S; p) consist of sums of at
most 2" terms (an upper bound on the number of (oriented) (s, t)-subgraphs of G)
with size at most nd, so that the size of R(G, s, t, S; p) is bounded by n(d + 2). Similarly,
the size of each R(G, s, t; p) is bounded by (n+ k(r+ 1))(d +2). Using Lemma 1 we
can compute the k+ 1 coecients R(G, s, t, S; p),/=0,. ., k, from the k+ 1 values
R(G, s, t; p), r=0,. ., k, in time polynomial m, n, and d. This proves the lemma.

Note that the reduction in Lemma 1 can be performed when p is fixed at any
value other than 0 or 1, specifically for p 1/2. Fuhermore, if we consider the case
when S= E, then for l=0,..., n we have

where No is the set of (s, t)-subgraphs of G with veaices and edges, i.e. No
But now we can write

R(G, s, t; p) 5". (-p)’R’(G, s, t, E; p).

From the above discussion we obtain the following corollary.
COROLLARY 1. R oc R(’; p 1/2), even when restricted to graphs which are (s, t)-

planar, acyclic, or with vertex degree at most three.
As stated when defining P3ST, PA3ST, and AST, then, there is no loss of generality

in considering the #P-problem of computing I1 rather than the reliability problem
of computing R.

Lemma 2 provides a second useful corollary. Let G, s, t, and S be as in Lemma
2, and for l=O,..., [Sl, k=0,..., [E-SI define

(2) Rlk(G,s, t, S)= Z Z (-1)’-’
H

where LCIk is as defined for R 1. By applying Lemma 2 twice, once to S and once to
E- S, we have the following result:

COROLLARY 2. Rlkoc R, even when restricted to graphs which are (s, t)-planar,
acyclic, or with vertex degree at most three.

Again, the restriction to p 1/2 provides no loss of generality.

3. # P-complete results. We first prove the result for the undirected case.
THEOREM 1. P3ST is # P-complete, in particular, # HCPCoc P3ST.
Proof. Let G (V, E) be a planar undirected cubic graph with m vertices and n

edges. Chose any edge (u, v), and form the graph G’= (V’, E’) by replacing (u, v) by
the two edges (s, u) and (v, t), where s and are new vertices. The graph G’ is clearly
(s, t)-planar. Now form the graph G"= (V", E") by replacing each (degree 3) vertex
except s and with a triangle as shown in Fig. 1. Then [V"l=3m+2 and
n / 3m + 1, and each edge of E’ can be identified with the appropriate edge of E". Let
S be the set of edges of E" associated with E’ so that T E"-S is the set of triangle

698 J. SCOTT PROVAN

FG.

edges. By applying Corollary 2, we conclude that the function

Rm/I"(G",s,t,S)=. E (-1)’-
Hiij

.m+l is the set of all oriented (s, t)-subgraphs of G" with vertices, m + 1mwhere i,m

edges S and m edges of T--is polynomially reducible to P3ST. Now for any H in
i,+1, consider the oriented subgraph H’ of G’ corresponding to the m / 1 edges of
H in S. These must comprise an (s, t)-subgraph of G’, which means that each vertex
in H’ except s and must have degree either 2 or 3. Let V be the set of vertices of
H’ of degree i, 2,3. Again, since H is an (s, t)-subgraph then corresponding to each
vertex in V2 there must be at least one edge of T H and corresponding to each vertex
in V3 there must be at least two edges of T c H. Let k be the total number of edges
of Tc H corresponding to vertices in V3, so that m- k is the total number of edges
of T c H corresponding to vertices in V2. By summing the degrees of vertices in H’,
we have

2(m + 1)= 21VE[/ 31V3I + 2-<2(m k)+ 3k/2 + 2= 2(m + 1)- k/2

implying that k 0. This means that H’ must be a Hamiltonian path in G, and that
H is obtained from H’ by adding the unique set of rn edges of T connecting the
appropriate edges of S c H at each vertex. Thus each H has exactly 2m + 2 vertices
and corresponds in one-to-one fashion with the Hamiltonian paths from s to in G.
It follows that

Rm+’m(G’’, s, t, S)= -Im+l’V2m+2,m]

and we therefore obtain the number of Hamiltonian paths from s to in G’, which
corresponds to the number of Hamiltonian circuits in G’ containing the edge (u, v).
In a similar manner, we can obtain the number of Hamiltonain circuits containing
each of the other two edges of G adjacent to v, and the sum of these three values is
exactly twice the number of Hamiltonian circuits in G. This completes the proof of
the theorem. [q

To prove that PA3ST is #P-complete, we provide an intermediate reduction.
Define a directed (s, t)-planar graph G to be contiguously directed if it has a planar
presentation for which each vertex v has its adjacent edges arranged so that in a
clockwise sweep around v the edges into v and the edges out of v lie in two unbroken
sequences. Define the problem PCAST to be that of computing R(G, s, t; p) in an
(s, t)-planar contiguously directed acylic graph. We note that Lemma 2 and its
corollaries can easily be seen to include the restriction to contiguously directed graphs.

TnEOREM 2. ASToc PCAST.
Proof. Suppose we are given acyclic directed graph G (V, E) with m vertices,

n edges, source s, and sink t. Since G is acyclic, it follows that we can number the

RELIABILITY COMPUTATIONS IN PLANAR AND ACYCLIC GRAPHS 699

vertices of G Vl,"" ",/)m such that (v, vj) E if and only if i<j. We can therefore
place the vertices of G in the plane, representing the edges as straight lines, in such
a way that each vertex v has x-coordinate i, 1,. ., m, no three edges cross at the
same point, and no edge crosses a nonadjacent vertex. Further, this construction can
be done in polynomial time. This realization of G has the properties that no simple
path can cross itself in the realization, and that the number of edge crossings is c =< n2.
Now construct the graph G (V, E) by successively replacing each pair of crossing
edges in G by the planar subgraph shown in Fig. 2. We define the set $ to comprise
the collection of heavy-lined edges as shown in the figure and we set T =/- $. Then
G is planar with rn +6c vertices, 6c edges in S and n + 3c edges in T. Further, with
the given realization of G it follows that G remains acyclic, and that G is contiguously
directed since all edges come into a vertex from the left and leave to the right.

FIG. 2

Now for 1= 1,... ,6c, k= 1,..., n+3c, define Rtk as in (2)"

R’(, s, t, S)= Y’. _, (--1) i-1
i=0

where -k is the number of (s, t)-subgraphs of t with vertices, edges of S and k
edges of T. It follows from Corollary 2 that Rk(, s, t, S) is reducible to R with R
restricted to (s, t)-planar contiguously directed acyclic graphs. The theorem is an
immediate consequence of Corollary 2 and the following claim.

(3) R(G, s, t; 1/2)= E (-1)’+R’(, s, t, S)(1/2)-’.
l,k

Proof of claim. We first rewrite (3) as

(4) R(G, s, t; 1/2)= E _, (--1)’+k-’+l(1/2) k-’.
i,l,k He

We prove the claim by induction on the number r of replacements of the type shown
in Fig. 2. The case r 0 follows from (1). Now suppose that (4) holds after r replace-
ments with G the resulting graph. Suppose we replace the pair (u, v), (w, z) of crossing
edges by the appropriate subgraph F to form graph G’. Consider an (s, t)-subgraph
H’ of G’. This subgraph falls into one of 10 classes, depending on which of the four
edges of F adjacent to u, v, w, and z appear in H’. By symmetry we need to consider
only five classes, namely class lmin which none of these four edges appearsmor one
of the four classes shown in Fig. 3. For each class, consider the possible configurations
of internal edges of F which could form an (s, t)-subgraph with the given outside
edges. By summing (--1)l’+k’-i’+l(1/2) k’-l’ over all configurations in a classmwhere i’,
k’, and l’ are, respectively, the number of vertices, number of edges of S, and number
of edges of T appearing in the configuration (including outside edges and vertices)rowe
get"

(i) the sum over all configurations in class 2 and 3 is 0;

700 J. SCOTT PROVAN

O’ O

FIG. 3

(ii) the sum over all configurations in class 4 is -"2,
(iii) the sum over all configurations in class 5 is -1/4.

Now consider an (s, t)-subgraph H in G. Then H falls into one of four classes,
depending on which subset of the edges (u, v) and (w, z) appear in H. If H contains
neither (u, v) nor (w, z) then H corresponds to exactly one subgraph of G’, which is
in class 1; if H contains exactly one of the two edges, say (u, v), then H corresponds
to the class of (s, t)-subgraphs of G’ comprised of the edges H-F along with the set
of class 4 configurations of F; and if H contains both of the edges (u, v) and (w, z),
then H corresponds to the class of (s, t)-subgraphs of G’ comprised of the edges H F
along with the set of class 5 configurations of F. In each case, the net contribution to
(4) of configurations in classes 1, 4, and 5 is exactly equal to contribution of the edges
(u, v) and (w, z), and the net contribution of configurations in classes 2 and 3 is zero.
It follows that (4) continues to hold for the graph G’, and the claim follows by
induction. This completes the proof of the theorem.

We can now present the result for the directed case.
THEOREM 3. PA3ST is P-complete, in particular PCASTcc PA3ST.
Proof Let G V, E) be an (s, t)-planar acyclic contiguously directed graph with

m vertices and n edges. For each vertex v, let

(u,(v), v), (uz(v), v),..., (U,v(V), v), (v, U,v+(v)),’", (v, Uv(V))
be the edges adjacent to v, listed in clockwise order. Now define the directed graph
G’= (V’, E’) with vertex set

v’={w(v),..., Wv(V); v v)

and edge set E’= S w T with

S: {(Wl(V), w2(v)),... (Wk(v)_l(V), Wk(v)(V)): "l). V},

T= {(wi(u), wj(v))" (u, v) E with u ui(v) and v uj(u)}

The edges can be positioned as shown in Fig. 4. Finally, set s’= wl(s) and t’= Wk(t)(t)o
It is clear that G’ is (s’, t’)-planar and acyclic, that it has at most three edges adjacent
to each vertex, and that v’l 2n, Isl 2n m, and TI n. Further, there is a one-to-one
correspondence between the (s, t)-subgraphs of G and the (s’, t’)-subgraphs of G’,

RELIABILITY COMPUTATIONS IN PLANAR AND ACYCLIC GRAPHS 701

FIG. 4

obtained by associating with each (s, t)-subgraph H of G the subgraph H’ of G’ with
edge set A u B where

A= {(wi(u), w(v))" (u, v) H with u= ui(v), v= u(u)} T,

B= 1 v=s,
J=

k(v), v=
i=

min{p’(Up(V),v)n}, vs, tmax{p:(v, up(v))H},v
so that H’ has exactly IBI more vertices than H. From Lemma 2 we get that
R(G’, s’, t’, S; p) is polynomially reducible to R, with R restricted to (s, t)-planar,
acyclic graphs with vertex degree at most 3. But now

R(G, s, t;p)=Y’. (--1)J-i+pj
i,j

= (-1)’R’(G’, s’, t’, S; p)

and the theorem follows.

4. Conclusion. We have shown in this paper that planarity, acyclicness, and
bounded vertex degree, even taken together, are not sufficient to keep the problem of
computing (s, t) -connectedness reliability from being NP-hard. This is true even though
several counting problems associated with (s, t)-connectedness reliability become
polynomial when restricted to these classes of graphs. A second important connected-
ness reliability problem for which the same type of analysis could be performed is the
source-to-all, or connectedness, reliability problem. This is the problem of computing
for a graph Gunder the same edge failure distribution used in this paperthe
probability that a given source vertex can reach all other vertices of G through paths
of operating edges. For this measure, the acyclic property alone is sufficient to construct
a polynomial evaluation algorithm (see [3, Thm. 4(v)]). Whether planarity alone is
sufficient remains an open problem, although again several related NP-hard problems
can be solved in polynomial time on planar graphs (see [3, Thm. 4(iv)], [10], and [9,
Corollary 2.7 and succeeding discussion]). Further, the class of planar graphs for which
this reliability can be computed efficiently has been extended slightly from series-
parallel graphs to include "Cube-Free" graphs [8]. The problem for planar graphs
with bounded vertex degree also remains open.

Acknowledgment. The author would like to thank Mark Jerrum for comments
which significantly improved the results and presentation of this paper.

702 j. SCOTT PROVAN

REFERENCES

A. AC;RAWAL AND A. SATYANARAYANA, An O(IEl)-time algorithm for computing the reliability of a
class of directed networks, Oper. Res., 32 (1984), pp. 493-515.

[2] M. O. BALL, The complexity of network reliability computations, Networks, 10 (1977), pp. 153-165.
[3] M. O. BALL AND J. S. PROVAN, Calculating bounds on teachability and connectedness in stochastic

networks, Networks, 13 (1983), pp. 253-278.
[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractibility: A Guide to the Theory of NP-

Completeness, W. H. Freeman, San Francisco, CA, 1979.
[5] ., The rectilinear Steiner treeproblem is NP-complete, SIAM J. Appl. Math., 32 (1977), pp. 826-834.
[6] M. R. GAREY, D. S. JOHNSON AND R. E. TARJAN, The planar Hamiltonian circuit problem is

Np-complete, this Journal, 5 (1976), pp. 704-714.
[7] M.G. Luav, Monte-carlo methodsfor estimating system reliability, Tech. Rep. 84/168, Computer Science

Division, Univ. California, Berkeley, CA, 1982, Chapter 6.
[8] T. POLITOF AND A. SATYANARAYANA, A linear time algorithm to compute the reliability of planar

cube-free graphs, Tech. Rept., Dept. Electrical Engineering and Computer Science, Stevens Institute
of Technology, Hoboken, NJ, 1985.

[9] J. S. PROVAN, Polyhedral combinatorics and network reliability, Math. Oper. Res., to appear.
[10] J. S. PROVAN AND M. O. BALL, The complexity of counting cuts and computing the probability that a

graph is connected, this Journal, 12 (1983), pp. 777-788.
11] A. ROSENTHAL, Computing the reliability of complex networks, SIAM J. Appl. Math., 32 (1977), pp.

384-393.
12] A. SATYANARAYANA AND A. PRABHAKAR, New topologicalformula and rapid algorithmfor reliability

analysis of complex networks, IEEE Trans. Reliability, R-27 (1978), pp. 82-100.
[13] A. SATYANARAYANA AND R. K. WOOD, Polygon-to-chain reductions and network reliability, this

Journal, 14 (1985), pp. 818-832.
[14] A. W. SHOGAN, Sequential bounding of the reliability of a stochastic network, Oper. Res., 24 (1976),

pp. 1027-1044.
15] J. SIMON, On some central problems in computational complexity, Ph.D. Thesis (Tech. Rep. TR75-224),

Department of Computer Science, Comell University, Ithaca, NY, 1975.
[16] L. G. VALIANT, The complexity of enumeration and reliability problems, this Journal, 8 (1979), pp.

410-421.
17] R. R. WYLLIE, A theorem concerning directed graphs with applications to network reliability, Networks,

10 (1980), pp. 71-78.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
006

FILTERING SEARCH: A NEW APPROACH TO QUERY-ANSWERING*

BERNARD CHAZELLE"

Abstract. We introduce a new technique for solving problems of the following form: preprocess a set
of objects so that those satisfying a given property with respect to a query object can be listed very effectively.
Well-known problems that fall into this category include range search, point enclosure, intersection, and
near-neighbor problems. The approach which we take is very general and rests on a new concept called
filtering search. We show on a number of examples how it can be used to improve the complexity of known
algorithms and simplify their implementations as well. In particular, filtering search allows us to improve
on the worst-case complexity of the best algorithms known so far for solving the problems mentioned above.

Key words, computational geometry, database, data structures, filtering search, retrieval problems

AMS (MOS) subject classifications. CR categories 5.25, 3.74, 5.39

1. Introduction. A considerable amount of attention has been recently devoted to
the problem of preprocessing a set S of objects so that all the elements of S that satisfy
a given property with respect to a query object can be listed effectively. In such a
problem (traditionally known as a retrieval problem), we assume that queries are to
be made in a repetitive fashion, so preprocessing is likely to be a worthwhile investment.
Well-known retrieval problems include range search, point enclosure, intersection, and
near.neighbor problems. In this paper we introduce a new approach for solving retrieval
problems, which we call filtering search. This new technique is based on the observation
that the complexity of the search and the report parts of the algorithms should be
made dependent upon each other--a feature absent from most of the algorithms
available in the literature. We show that the notion of filtering search is versatile enough
to provide significant improvements to a wide range of problems with seemingly
unrelated solutions. More specifically, we present improved algorithms for the following
retrieval problems:

1. Interval Overlap: Given a set S of n intervals and a query interval q, report
the intervals of S that intersect q [8], [17], [30], [31].

2. Segment Intersection: Given a set S of n segments in the plane and a query
segment q, report the segments of S that intersect q [19], [34].

3. Point Enclosure: Given a set S of n d-ranges and a query point q in Rd, report
the d-ranges of S that contain q (a d-range is the Cartesian product of d intervals)
[31], [33].

4. Orthogonal Range Search: Given a set S of n points in Ra and a query d-range
q, report the points of S that lie within q [1], [2], [3], [5], [7], [9], [21], [22], [23],
[26], [29], [31], [35], [36].

5. k-Nearest-Neighbors" Given a set S of n points in the Euclidean plane E2 and
a query pair (q, k), with q E2,/c =< n, report the/ points of S closest to q 11], [20],
[25].

6. Circular Range Search: Given a set $ of n points in the Euclidean plane and
a query disk q, report the points of S that lie within q [4], [10], [11], [12], [16], [37].

* Received by the editors September 15, 1983, and in final revised form April 20, 1985. This research
was supported in part by the National Science Foundation under grants MCS 83-03925, and the Office of
Naval Research and the Defense Advanced Research Projects Agency under contract N00014-83-K-0146
and ARPA order no. 4786.

f Department of Computer Science, Brown University, Providence, Rhode Island 02912.
703

704 BERNARD CHAZELLE

For all these problems we are able to reduce the worst-case space x time complexity
of the best algorithms currently known. A summary of our main results appears in a
table at the end of this paper, in the form of complexity pairs (storage, query time).

2. Filtering search. Before introducing the basic idea underlying the concept of
filtering search, let us say a few words on the applicability of the approach. In order
to make filtering search feasible, it is crucial that the problems specifically require the
exhaustive enumeration of the objects satisfying the query. More formally put, the
class of problems amenable to filtering search treatment involves a finite set of objects
$, a (finite or infinite) query domain Q, and a predicate P defined for each pair in
$ x Q. The question is then to preprocess S so that the function g defined as follows
can be computed efficiently:

g: Q-2s ;[g(q) { v SIP(v, q) is true}].

By computing g, we mean reporting each object in the set g(q) exactly once. We
call algorithms for solving such problems reporting algorithms. Database management
and computational geometry are two areas where retrieval problems frequently arise.
Numerous applications can also be found in graphics, circuit design, or statistics, just
to pick a few items from the abundant literature on the subject. Note that a related,
yet for our purposes here, fundamentally different class ofproblems, calls for computing
a single-valued function of the objects that satisfy the predicate. Counting instead of
reporting the objects is a typical example of this other class.

On a theoretical level it is interesting to note the dual aspect that characterizes
the problems under consideration: preprocessing resources vs. query resources. Although
the term "resources" encompasses both space and time, there are many good reasons
in practice to concentrate mostly on space and query time. One reason to worry more
about storage than preprocessing time is that the former cost is permanent whereas
the latter is temporary. Another is to see the preprocessing time as being amortized
over the queries to be made later on. Note that in a parallel environment, processors
may also be accounted as resources, but for the purpose of this paper, we will assume
the standard sequential RAM with infinite arithmetic as our only model of computation.

The worst-case query time of a reporting algorithm is a function of n, the input
size, and k, the number of objects to be reported. For all the problems discussed in
this paper, this function will be of the form O(k+f(n)), where f is a slow-growing
function of n. For notational convenience, we will say that a retrieval problem admits
of an (s(n), f(n))-algorithm if there exists an O(s(n)) space data structure that can
be used to answer any query in time O(k +f(n)). The hybrid form of the query time
expression distinguishes the search component of the algorithm (i.e. f(n)) from the
report part (i.e. k). In general it is rarely the case that, chronologically, the first part
totally precedes the latter. Rather, the two parts are most often intermixed. Informally
speaking, the computation usually resembles a partial traversal of a graph which
contains the objects of S in separate nodes. The computation appears as a sequence
of two-fold steps: (search; report).

The purpose of this work is to exploit the hybrid nature of this type of computation
and introduce an alternative scheme for designing reporting algorithms. We will show
on a number of examples how this new approach can be used to improve the complexity
of known algorithms and simplify their implementations. We wish to emphasize the
fact that this new approach is absolutely general and is not a priori restricted to any
particular class of retrieval problems. The traditional approach taken in designing

FILTERING SEARCH 705

reporting algorithms has two basic shortcomings:
1. The search technique is independent of the number of objects to be reported.

In particular, there is no effort to balance k and f(n).
2. The search attempts to locate the objects to be reported and only those.
The first shortcoming is perhaps most apparent when the entire set S is to be

reported, in which case no search at all should be required. In general, it is clear that
one could take great advantage of an oracle indicating a lower bound on how many
objects were to be reported. Indeed, this would allow us to restrict the use of a
sophisticated structure only for small values of k. Note in particular that if the oracle
indicates that n/k-O(1) we may simply check all the objects naively against the
query, which takes O(n)-O(k) time, and is asymptotically optimal. We can now
introduce the notion of filtering search.

A reporting algorithm is said to use filtering search if it attempts to match searching
and reporting times, i.e. f(n) and k. This feature has the effect of making the search
procedure adaptively efficient. With a search increasingly slow for large values of k,
it will be often possible to reduce the size of the data structure substantially, following
the general precept: the larger the output, the more naive the search.

Trying to achieve this goal points to one of the most effective lines of attack for
filtering search, also thereby justifying its name: this is the prescription to report more
objects than necessary, the excess number being at most proportional to the actual
number of objects to be reported. This suggests including a postprocessing phase in
order to filter out the extraneous objects. Often, of course, no "clean-up" will be
apparent.

What we are saying is that O(k+f(n)) extra reports are permitted (as long, of
course, as any object can be determined to be good or bad in constant time). Oftin,
when k is much smaller than f(n), it will be very handy to remember that O (f(n))
extra reports are allowed. This simple-minded observation, which is a particular case
of what we just said, will often lead to striking simplifications in the design of reporting
algorithms. The main difficulty in trying to implement filtering search is simulating the
oracle which indicates a lower bound on k beforehand. Typically, this will be achieved
in successive steps, by guessing higher and higher lower bounds, and checking their
validity as we go along. The time allowed for checking will of course increase as the
lower bounds grow larger.

The idea of filtering search is not limited to algorithms which admit of O(k +f(n))
query times. It is general and applies to any retrieval problem with nonconstant output
size. Put in a different way, the underlying idea is the following: let h(q) be the time
"devoted" to searching for the answer g(q) and let k(q) be the output size; the reporting
algorithm should attempt to match the functions h and k as closely as possible. Note
that this induces a highly nonuniform cost function over the query domain.

To summarize our discussion so far, we have sketched a data structuring tool,
filtering search; we have stated its underlying philosophy, mentioned one means to
realize it, and indicated one useful implementation technique.

1. The philosophy is to make the data structure cost-adaptive, i.e. slow and
economical whenever it can afford to be so.

2. The means is to build an oracle to guess tighter and tighter lower bounds on
the size of the output (as we will see, this step can sometimes be avoided).

3. The implementation technique is to compute a coarse superset of the output
and filter out the undesirable elements. In doing so, one must make sure that the set
computed is at most proportional in size to the actual output.

706 BERNARD CHAZELLE

Besides the improved complexity results which we will describe, the novelty of
filtering search lies in its abstract setting and its level of generality. In some broad
sense, the steps guiding the computation (search) and those providing the output
(report) are no longer to be distinguished. Surprisingly, even under this extended
interpretation, relatively few previous algorithms seem to use anything reminiscent of
filtering search. Noticeable exceptions are the scheme for circular range search of
Bentley and Maurer [4], the priority search tree of McCreight [31], and the algorithm
for fixed-radius neighbor search of Chazelle [10].

After these generalities, we are now ready to look at filtering search in action.
The remainder of this paper will be devoted to the retrieval problems mentioned in
the introduction.

3. Interval overlap problems. These problems lead to one of the simplest and most
illustrative applications of filtering search. Let S {lal, bl],’’’, [a,, b,]); the problem
is reporting all the intervals in S that intersect a query interval q. Optimal solutions
to this problem can be found in [8] (w.r.t. query time) and [17], [30], [31] (w.r.t. both
space and query time). All these methods rely on fairly sophisticated tree structures
with substantial implementation overhead. We can circumvent these difficulties by
using a drastically different method based on filtering search. This will allow us to
achieve both optimal space (s(n)- n) and optimal query time (f(n) log2 n), as well
as much greater simplicity. If we assume that the query endpoints are taken in a range
of O(n) elements, our method will give us an (n, 1)-algorithm, which constitutes the
only optimal algorithm known for the discrete version of the problem. One drawback
of our method, however, is that it does not seem to be easily dynamized.

To begin with, assume that all query and data set endpoints are real numbers. We
define a window-list, W(S), as an ordered sequence of linear lists (or windows),
W1,’", Wp, each containing a number of intervals from S (Fig. 1). Let / be the
interval (in general not in S) spanned by W. For simplicity, we will first look at the
case where the query interval is reduced to a single point x. Note that this restriction
is precisely the one-dimensional point enclosure problem. Let S(x)=
{[ai, bi] Slai <- x <- bi) be the set of intervals of S that contain x. The idea is to ensure
that the window enclosing x contains a superset of S(x), but this superset contains at
most - 1 times too many intervals, where ; is a parameter to be defined later on. We
can then simply read out the entire contents of the window, keeping only the desired
intervals. More precisely, let a1,..., ct2, be the set of endpoints in S in ascending
order. Each window W has associated with it an aperture, i.e. an open interval

/ (tj, t!j+,) with c!j al, p+, a2. and aj+, _-< a+,. As can be seen, the windows of

c
e*

W

o
W2

o,b,c,d,e,f

W3

h

W4 W.
i,g i,g,h

W6

FIG.

FILTERING SEARCH 707

W(S) induce a partition of [am, Ct2.] into contiguous intervals Ira," ", I, and their
endpoints.

Let us assume for the time being that it is possible to define a window-list which
satisfies the following density-condition: (8 is a constant> 1)

and

28

tx I, S(x)
_
W and 0 <lwl-< 8 max (1, Is(x)l).

It is then easy to solve the point enclosure problem in optimal time and space. To do
so, we first determine which aperture/ contains the query x and then simply check
the intervals in the window W, reporting those containing x. If x falls exactly on the
boundary between two apertures, we check both of their windows. Duplicates are
easily detected by keeping a flag bit in the table where S is stored as a list of pairs.
Access to windows is provided by a sorted array of cells. Each cell contains two
pointers: one to a,j (for binary search) and one to W (or a null pointer if j =p + 1).
Each window Wj is an array of records, each pointing to an entry in S; the end is
marked with a sentinel. The storage needed is 3p + 28/(8 1)n + O(1) words of roughly
log2 n bits each. This is to be added to the O(n) input storage, whose exact size depends
on the number representation. Because of the density-condition, the algorithm requires
o(sIs(x)l+log p) comparisons per query, which gives an O(k+log n) query time.
Note that the parameter 8 allows us to trade off time and space. We next show that
window-lists can be easily constructed. We first give an algorithm for setting up the
data structure, and then we prove that it satisfies the density-condition.

Procedure Window-Make
W =O;j: 1;T:=0; low:= 1; cur:=0
for := to 2n do

if a, left-point then
cur := cur+
T:=T+I
if 6 x low <T

then Clear (i, j)

W := W O "current interval"
low := T := cur

else W := W LI "current interval"
else "a fight-point"

cur := cur-
low := min (low, cur)
if x low < T then

Clear i, j)
T := cur; low := max (1, T)

Procedure Clear i, j)
j:=j+l
Wj := {intervals [x, y] of Wj_I s.t. y

We assume that the ui are sorted in preprocessing; ties are broken arbitrarily.
This requires O(n log n) operations, which actually dominates the linear running time
of the construction phase Window-Make. This part involves scanning each ai in
ascending order and setting up the windows from left to right. We keep inserting new
intervals into the current window W as long as T, the number of intervals so far
inserted in Wj, does not exceed 8 x low, where "low" is the size of the smallest S(x)

708 BERNARD CHAZELLE

found so far in Wj. The variable "cur" is only needed to update "low". It denotes the
number of intervals overlapping the current position. Whenever the condition is no
longer satisfied, the algorithm initializes a new window (Clear) with the intervals
already overlapping in it.

A few words must be said about the treatment of endpoints with equal value.
Since ties are broken arbitrarily, the windows of null aperture which will result from
shared endpoints may carry only partial information. The easiest way to handle this
problem is to make sure that the pointer from any shared endpoint (except for a2,)
leads to the first window to the right with nonnull aperture. If the query falls right on
the shared endpoint, both its left and right windows with nonnull aperture are to be
examined; the windows in between are ignored, and for this reason, need not be stored.

By construction, the last two parts of the density-condition, Vx Ij, S(x) Wj and
0 <lw l <-- max (1, Is(x)l), are always satisfied, so all that remains to show is that the
overall storage is linear.

LEMMA 1. E,_<__<_p IW1<28/(-1) n.

Proof. Any interval la, b] can bc decomposed into its window-parts, i.e. the parts
where it overlaps with the /’s. Parts which fully coincide with some / arc called
A-parts; the others arc called B-parts. In Fig. I, for example, segment b has one B-part
in W, one A-part in W2, and one A-part in W3. Let A# (rcsp. B#) bc the number of
A-parts (rcsp. B-parts) in the window W. Note that for the purposes of this proof wc
substitute ranks for cndpoints. This has the cllcct that no interval can now share
cndpoints (although they may in S); this implies in particular that Ap-<_ I. Since a new
window Wj+, is constructed only when minx,,(SlS(x) I) < [Wj[+ 1, if scanning a start-
point, and 8 (minlS(x)l- 1) < Wjl, if scanning an endpoint, we always have 8Aj <_-

minx ij(lS(x)l) < A / / for j < p. From this we derive

Z (Aj+Bj)< Z Bj+ (p-1)+Ap+Bp.
l<=j<_p 8- 1 lj<p 8- 1

Each endpoint ai, bi gives rise to at most one B-part (although some might be shared),
but exactly p/ 1 endpoints do not give rise to any (falling on the boundary of a
window). This implies that l<-j-p Bj _-< 2n -p 1, and since Ap -< 1 and 8 > 1, we have

28 28 + Bp 28y. Iw l-- (Aj+Bj)<n-+Ap<n. [:]

A major asset of window-lists is their simplicity of implementation. Another
advantage which, at first sight, may sccm paradoxical, is that window-lists arc not
based on a tree-structure. This allows us to solve the discrete version of the point
enclosure problem extremely efficiently. This variant of the problem accepts only
queries from a set of integers Q of range O(n). Wc can then dispense with the
preliminary binary search and find the corresponding window in constant time. To do
so, we simply have to provide a table providing the correspondence point/window,
which requires only O(n) additional words of storage. This is a new result in that it
departs from the structures in [8], [17], [30], [31], where roughly log_ n comparisons
arc always required, cvcn in the discrete case.

For the interval overlap problem, where the query now becomes an interval I, and
all the [a, bi] overlapping with I arc to bc reported, wc can still use the window-list
by checking all the windows overlapping with L An argument similar to the proof of
Lcmma 1 would show that, there again, a supcrsct of O(k) intervals will bc reported.
Wc omit the proof.

FILTERING SEARCH 709

THEOREM 1. There exist an n, log n)-algorithm, based on window-lists, for solving
the interval overlap problem, and an n, 1)-algorithm for solving the discrete version of
the problem. Both algorithms are optimal.

4. Segment intersection problems. Given a set S of n segments in the Euclidean
plane and a query segment q in arbitrary position, report all the segments in S that
intersect q.

For simplicity, we will assume (in 4.1, 4.2, 4.3) that the n segments may
intersect only at their endpoints. This is sometimes directly satisfied (think of the edges
of a planar subdivision), but at any rate we can always ensure this condition by breaking
up intersecting segments into their separate parts. Previous work on this problem
includes an (n log n, log n)-algorithm for solving the orthogonal version of the problem
in two dimensions, i.e. when query and data set segments are mutually orthogonal
[34], and an (n3, log n)-algorithm for the general problem [19].

We show here how to improve both of these results, using filtering search. We
first give improved solutions for the orthogonal problem (4.1) and generalize our
results to a wider class of intersection problems (4.2). Finally we turn our attention
to the general problem (4.3) and also look at the special case where the query is an
infinite line (4.4).

4.1. The hive-graph. We assume here that the set S consists of horizontal segments
and the query segment is vertical. We present an optimal (n, log n)-algorithm for this
problem, which represents an improvement of a factor of log n in the storage require-
ment of the best method previously known [34]. The algorithm relies on a new data
structure, which we call a hive-graph.

To build our underlying data structure, we begin by constructing a planar graph
G, called the vertical adjacency map. This graph, first introduced by Lipski and Preparata
[27], is a natural extension of the set S. It is obtained by adding the following lines
to the original set of segments: for each endpoint M, draw the longest vertical line
passing through M that does not intersect any other segment, except possibly at an
endpoint. Note that this "line" is always a segment, a half-line, or an infinite line. It
is easy to construct an adjacency-list representation of G in O(n log n) time by applying
a standard sweep-line algorithm along the x-axis; we omit the details. Note that G
trivially requires O(n) storage.

Next, we suggest a tentative algorithm for solving our intersection problem:
preprocess G so that any point can be efficiently located in its containing region. This
planar point location problem can be solved for general planar subdivisions in O(log n)
query time, using O(n) space [15], [18], [24], [28]. We can now locate, say, the lowest
endpoint, (x, Yl), of the query segment q, and proceed to "walk" along the edges of
G, following the direction given by q. Without specifying the details, it is easy to see
that this method will indeed take us from one endpoint to the other, while passing
through all the segments of G to be reported. One fatal drawback is that many edges
traversed may not contribute any item to the output. Actually, the query time may be
linear in n, even if few intersections are to be reported (Fig. 2).

To remedy this shortcoming we introduce a new structure, the hive-graph of G,
denoted H(G). H(G) is a refinement of G supplied with a crucial neighboring property.
Like G, H(G) is a planar subdivision with O(n) vertices, whose bounded faces are
rectangles parallel to the axes. It is a "supergraph" of G, in the sense that it can be
constructed by adding only vertical edges to G. Furthermore, H(G) has the important
property that each of its faces is a rectangle (possibly unbounded) with at most two
extra vertices, one on each horizontal edge, in addition to its 4 (or fewer) corners. It

710 BERNARD CHAZELLE

xy

FIG. 2

is easy to see that the existence of H(G) brings about an easy fix to our earlier difficulty.
Since each face traversed while following the query’s direction contains an edge
supported by a segment of S to be reported, the presence of at most 6 edges per face
ensures an O(k) traversal time, hence an O(k+log n) query time.

A nice feature of this approach is that it reports the intersections in sorted order.
Its "on-line" nature allows questions of the sort: report the first k intersections with
a query half-line. We now come back to our earlier claim.

LEMMA 2. There exists a hive-graph of G; it requires O(n) storage, and can be
computed in O(n log n) time.

Proof. We say that a rectangle in G has an upper (resp. lower) anomaly if its
upper (resp. lower) side consists of at least three edges. In Fig. 3, for example, the
upper anomalies are on s3, s7, and the lower anomalies on sl, s2, s4. In order to produce
H(G), we augment the graph G in two passes, one pass to remove each type of
anomaly. If G is given a standard adjacency-list representation and the segments of
S are available in decreasing y-order, sl,..., s,, the graph H(G) can be computed
in O(n) time. Note that ensuring these conditions can be done in O(n log n) steps.

The two passes are very similar, so we may restrict our investigation to the first
one. W log, we assume that all y-coordinates in S are distinct. The idea is to sweep

$1

FIG. 3

$7

FILTERING SEARCH 711

an infinite horizontal line L from top to bottom, stopping at each segment in order to
remove the upper anomalies. Associated with L we keep a data structure X(L), which
exactly reflects a cross-section of G as it will appear after the first pass.

X(L) can be most simply (but not economically) implemented as a doubly linked
list. Each entry is a pointer to an old vertical edge of G or to a new vertical edge. We
can assume the existence of flags to distinguish between these two types. Note the
distinction we make between edges and segments. The notion of edges is related to
G, so for example, each segment si is in general made of several edges. Similarly,
vertical segments adjacent to endpoints of segments of S are made of two edges.
Informally, L performs a "combing" operation: it scans across G from top to bottom,
dragging along vertical edges to be added into G. The addition of these new segments
results in H(G).

Initially L lies totally above G and each entry in X(L) is old (in Fig. 3, X(L)
starts out with three entries). In the following, we will say that a vertical edge is above
(resp. below) si if it is adjacent to it and lies completely above (resp. below) si. For
i= 1,. ., n, perform the following steps.

1. Identify relevant entries. Let at be the leftmost vertical edge above s. From a
scan along X(L) to retrieve, in order from left to right, all the edges A {al, a2," am}
above s.

2. Update adjacency lists. Insert into G the vertices formed by the intersections
of s and the new edges of A. Note that if i- 1, there are no such edges.

3. Update X(L). Let B {bl,.. ", bp} be the edges below s, in order from left to
right (note that a and bl are collinear). Let F be a set of edges, initially empty. For
each j 1, , p- 1, retrieve the edges of A that lie strictly between bj and bj+. By
this, we mean the set {au, au+l, , av} such that the x-coordinate of each Clk(U k .<= v)
is strictly larger (resp. smaller) than the x-coordinate of b (resp. b+l). Include in F
every other edge in this set, i.e. {a,+, au+3,"" ", au+w}, where w is the largest odd
integer not exceeding v u (whenever these indices are meaningful)msee Fig. 4. Finally,
delete from X(L) all entries in A, insert all edges in B and in F, marking the latter new.

0 o 2

FIG. 4

This part of the algorithm can be easily implemented to run in time proportional
to the size of the resulting graph. Access to al in step 1 is provided in constant time
by keeping a table associating with each si the relevant entry in X(L) (if any). Steps
2 and 3 require a total of O(m +p) operations, which proves our claim.

712 BERNARD CHAZELLE

It is not difficult to see that G, in its final state, is free of upper anomalies. For
every si, in turn, the algorithm considers the upper sides of each rectangle attached to

si below, and subdivides these rectangles (if necessary) to ensure the presence of at
most one extra vertex per upper side. Note that the creation of new edges may result
in new anomalies at lower levels. This propagation of anomalies does not make it
obvious that the number of edges in G should remain linear in n. This will be shown
in the next paragraph.

The second pass consists of pulling L back up, applying the same algorithm with
respect to lower sides. It is clear that the new graph produced, H(G), has no anomalies
since the second pass cannot add new upper anomalies. To see that the transformation
does not add too many edges, we can imagine that we start with O(n) objects which
have the power to "regenerate" themselves (which is different from "duplicate", i.e.
the total number of objects alive at any given time is O(n) by definition). Since we
extend only every other anomaly, each regeneration implies the "freezing" of at least
another object. This limits the maximum number of regenerations to O(n), and each
pass can at most double the number of vertical edges. This proves that IH(G)[- O(n),
which completes the proof. 0

THEOREM 2. It is possible to preprocess n horizontal segments in O(n log n) time
and O(n) space, so that computing their intersections with an arbitrary vertical query
segment can be done in O(k / log n) time, where k is the number of intersections to be
reported. The algorithm is optimal.

Note that if the query segment intersects the x-axis we can start the traversal from
the intersection point, which will save us the complication of performing planar point
location. Indeed, it will suffice to store the rectangles intersecting the x-axis in sorted
order to be able to perform the location with a simple binary search. This gives us the
following result, which will be instrumental in 5.

COROLLARY 1. Given a set S of n horizontal segments in the plane and a vertical
query segment q intersecting a fixed horizontal line, it is possible to report all k segments
of S that intersect q in O(k + log n) time, using O(n) space. The algorithm involves a
binary search in a sorted list (O(log n) time), followed by a traversal in a graph (O(k)
time).

We wish to mention another application of hive-graphs, the iterative search of a
database consisting of a collection of sorted lists S1, , S,,. The goal is to preprocess
the database so that for any triplet (q, i, j), the test value q can be efficiently looked
up in each of the lists S, S+I, , S (assuming (j). If n is the size of the database,
this can be done in O((j +/)log n) time by performing a binary search in each of the
relevant lists. We can propose a more efficient method, however, by viewing each list
S as a chain of horizontal segments, with y-coordinates equal to i. In this way, the
computation can be identified with the computation of all intersections between the
segment [(q, i), (q,j)] and the set of segments. We can apply the hive-graph technique
to this problem.

COROLLARY 2. Let C be a collection of sorted lists S1, ", Sin, of total size n, with
elements chosenfrom a totally ordered domain U. There exists an O(n size data structure
so that for any q U and i,j(1 <- i<-j<-m), the elements of Si, S+I,"’", Sj immediately
following q (if any) can be found in O(j-/+log n) time. The algorithm is optimal.

4.2. Generalizing the hive-gralh. We consider now the case where the segments
of S may assume an arbitrary position and the query segment has its supporting line
passing through a fixed point O. We can adapt the hive-graph to handle this particular

Chazelle and Guibas 13] have recently extended the notion of hive-graph into a general technique
for iterative search problems, called fractional cascading.

FILTERING SEARCH 713

situation, as we proceed to show. Let J be the planar subdivision defined as follows:
for each endpoint p in S, draw the longest line collinear with the origin O, passing
through p, that does not intersect any other segment except possibly at an endpoint
(Fig. 5). We ensure that this "line" actually stops at point O if passing through it, so
that it is always a segment or a half-line.

FIG. 5

It is easy to construct the adjacency-list of J in O(n log n) time, by using a standard
sweep-line technique. The sweep-line is a "radar-beam" centered at O. At any instant,
the segments intersecting the beam are kept in sorted order in a dynamic balanced
search tree, and segments are either inserted or deleted depending on the status (first
endpoint or last endpoint) of the vertex currently scanned. We omit the details. In the
following, we will say that a segment is centered if its supporting line passes through
O. As before, the hive-graph H is a planar subdivision with O(n) vertices built on top
of J. It has the property that each of its faces is a quadrilateral or a triangle (possibly
unbounded) with two centered edges and at most two extra vertices on the noncentered
edges (Fig. 6). As before, H can be easily used to solve the intersection problem at
hand; we omit the details.

We can construct H efficiently, proceeding as in the last section. All we need is
a new partial order among the segments of S. We say that si <- sj if there exists a ray
(i.e. a half-line) emanating from O that intersects both segments, si before sj. Unfortu-
nately, as shown in Fig. 7, the directed graph induced by this relation may contain
cycles. We can easily remedy this shortcoming, however, by breaking up into their two
subparts each segment intersecting, say, the vertical ray emanating upwards from O.

LEMMA 3. The relation <- can be embedded in a total order.
Proof. It suffices to prove that the induced graph does not contain any cycle.

Suppose that it does, and let si,,’’’, sik, s be the shortest cycle in the graph. Call
the smallest wedge centered at O containing sj. Since the cycle is the shortest, it is
easy to see that the wedges P, , Pk overlap two by two, but 1) three never overlap
at the same point and 2) one never contains another totally. This shows that the
sequence of wedges P,. ., P is monotonically rotating, either clockwise or counter-
clockwise. This must stop before crossing the vertical ray, however, since there is no
possible relation between two edges on opposite sides of the ray, hence a contra-
diction.

714 BERNARD CHAZELLE

/
\

iii
III

FIG. 6

Lemma 3 allows us to embed the relation -<_ into a total order, called ray-order.
To do so, we retrieve the subset of the partial order provided by J. This consists of all
pairs si, sj such that there exists a ray from O that intersects si before sj, and nothing
in between. It is easily shown that this order, denoted -<_*, contains O(n) pairs, and
its transitive closure coincides with that of <=. Therefore we can embed -<_ into a total
order by performing a topological sort on -<_ *, which can be done in O(n) time. Next,
we compute H by proceeding as described in 4.1, the only difference coming from
the fact that the order in which to consider the edges is now given by the ray-order.
We omit the details and directly conclude"

LEMMA 4. The graph H exists, requires O(n) storage, and can be computed in
O(n log n) time.

We observe that setting O at infinity (in the projective plane) gives us an algorithm
for the case where the query segment has a fixed slope.

THEOREM 3. It is possible to preprocess n segments in O(n log n) time and O(n
space, so that computing their intersections with a query segment which either has a fixed
slope or has its supporting line passing through a fixed point can be done in O(k + log n)
time k is the number of intersections to be reported). It is assumed that the interior of
the segments are pairwise disjoint.

oI
FIG. 7

FILTERING SEARCH 715

4.3. The algorithm for the general case. Consider the set of all lines in the Euclidean
plane. It is easy to see that the n segments of S induce a partition of this set into
connected regions. A mechanical analogy will help to understand this notion. Assume
that a line L, placed in arbitrary position, is free to move continuously anywhere so
long as it does not cross any endpoint of a segment in S. The range of motion can be
seen as a region in a "space of lines", i.e. a dual space. To make this notion more
fdrmal, we introduce a well-known geometric transform, T, defined as follows: a point
p: (a, b) is mapped to the line Tp: y ax + b in the dual space, and a line L: y kz + d
is mapped to the point TL: (-k, d). It is easy to see that a point p lies above (resp.
on) a line L if and only if the point TL lies below (resp. on) the line Tp. Note that the
mapping T excludes vertical lines. Redefining a similar mapping in the projective
plane allows us to get around this discrepancy. Conceptually simpler, but less elegant,
is the solution of deciding on a proper choice of axes so that no segment in S is
vertical. This can be easily done in O(n log n) time.

The transformation T can be applied to segments as well, and we can easily see
that a segment s is mapped into a double wedge, as illustrated in Fig. 8. Observe that
since a double wedge cannot contain vertical rays, there is no ambiguity in the definition
of the double wedge once the two lines are known. We can now express the intersection
of segments by means of a dual property. Let W(s) and C(s) denote, respectively,
the double wedge of segment s and the intersection point thereof (Fig. 8).

FIG. 8

LEMMA 5. A segment s intersects a segment if and only if C(s) lies in W(t) and
C(t) lies in W(s).

Proof. Omitted. [3

This result allows us to formalize our earlier observation. Let G be the subdivision
of the dual plane created by the n double wedges W(si), with S {Sl,’’ ", sn}. The
faces of G are precisely the dual versions of the regions of lines mentioned above.
More formally, each region r in G is a convex (possibly unbounded) polygon, whose
points are images of lines that all cross the same subset of segments, denoted S(r).
Since the segments of S are nonintersecting, except possibly at their endpoints, the
set S(r) can be totally ordered, and this order is independent of the particular point
in r.

Our solution for saving storage over the (n3, log n)-algorithm given in 19] relies
on the following idea. Recall that q is the query segment. Let p(q) denote the vertical
projection of C(q) on the first line encountered below in G. If there is no such line,
no segment of S can intersect q (or even the line supporting q) since double wedges
cannot totally contain any vertical ray. Since the algorithm is intimately based on the

716 BERNARD CHAZELLE

fast computation of p(q), we will devote the next few lines to it before proceeding
with the main part of the algorithm.

From [14], [20], we know how to compute the planar subdivision formed by n
lines in O(n 2) time. This clearly allows us to obtain G in O(n2) time and space. The
next step is to organize G into an optimal planar point location structure [15], [18],
[24], [28]. With this preprocessing in hand, we are able to locate which region contains
a query point in O(log n) steps. In order to compute p(q) efficiently, we notice that
since each face of G is a convex polygon, we can represent it by storing its two chains
from the leftmost vertex to the rightmost one. In this way, it is possible to determine
p(q) in O(log n) time by binary search on the x-coordinate of C(q).

We are now ready to describe the second phase of the algorithm. Let H designate
the line T-q), and let K denote the line supporting the query segment q (note that

-1K Tc(q)). The lines H and K are parallel and intersect exactly the same segments
of S, say, si,,"’sik, and in the same order. Let sio, so/,,..., s_, s be the list of
segments intersecting q- aft, with a b (Fig. 9). Let p be the point whose transform
Tp is the line of G passing through p(q) (note that p is an endpoint of some segment
in S). It is easy to see that 1) if p lies between so and si, the segments to be reported
are exactly the segments of S that intersect either pa or pfl (Fig. 9-A). Otherwise, 2)
so,..., s; are the first segments of S intersected by pa or pfl starting at a or /3,
respectively (Fig. 9-B). Assume that we have an efficient method for enumerating the
segments in S intersected by pa (resp. pfl), in the order they appear from a (resp./3).
We can use it to report the intersections of S with pa and pfl in case 1), as well as
the relevant subsequence of intersections of S with pa or pfl in case 2). Note that in
the latter case it takes constant time to decide which of pa or pfl should be considered.
Our problem is now essentially solved since we can precompute a generalized hive-
graph centered at each endpoint in S, as described in 4.2, and apply it to report the
intersections of S with pa and pfl.

THEOREM 4. It is possible to preprocess n segments in O(n log n) time and O(n2)
space, so that computing their intersections with an arbitrary query segment can be done
in O(k 4-log n) time, where k is the number of intersections to be reported. It is assumed
that the interior of the segments are pairwise disjoint.

A)
FIG. 9

FILTERING SEARCH 717

4.4. The special case of a query line. We will show that if the query q is an infinite
line, we can reduce the preprocessing time to O(n2) and greatly simplify the algorithm
as well. At the same time, we can relax the assumption that the segments of S should
be disjoint. In other words, the segments in S may now intersect. All we have to do
is compute the set R of double wedges that contain the face F where C(q)(= Tq) lies.
To do so, we reduce the problem to one-dimensional point enclosure. We need two
data structures for each line L in G. Let us orient each of the =<2n infinite lines in G,
and designate by Lr (resp. Lt) the right (resp. left) side of line L. We construct D(Lr),
the data structure associated with Lr by proceeding as follows: let I be the set of
intersections between L and each of the n double wedges. These intersections consist
of points, segments, pairs of collinear rays, or lines. If L coincides with one of the
boundary lines of a double wedge, we do not include the whole line, but only the ray
on the boundary of the unique wedge lying in L, Finally, we organize I into a
window-list, which can be done in O(n) time, given the sorted order provided
by G.

The data structure D(LI) is defined in a similar fashion. It is identical to D(Lr),
except for its treatment of wedges sharing a line with L. It is now easy to solve our
intersection problem. First, assume that C(q) does not lie on any edge of G. Let e be
an edge of F, and let L be its supporting line. W log, assume that C(q) lies in Lr. The
set R is obtained by probing the window-list D(L) with respect to the midpoint of
e. If now C(q) lies on e, we probe both D(L) and D(Lt), and eliminate duplicate
reports with table look-up. Of course, the data structure, as presented, is redundant
and can be made more economical. We will not concern ourselves with these
implementation issues, however.

THEOREM 5. It is possible to preprocess n arbitrary segments in O(n2) time and
space, so that computing their intersections with an arbitrary query line can be done in
O(k + log n) time, where k is the number of intersections to be reported.

5. Point enclosure problems. Given a set S of n d-ranges and a query point q in
Ra, report the d-ranges of S that contain q. Recall that a d-range is the Cartesian
product of d intervals. We are able to use filtering search to improve on the most
efficient algorithms previously known for the two-dimensional version of the problem:
(n log2 n, log n) [33] and (n, log n) [31]. We present an optimal (n, log n)-algorithm
for this problem; this solution readily generalizes into an (n loga-2 n, loga-1 n)-
algorithm in 9a (d > 1). Note that if d 1 we have a special case of the interval overlap
problem treated in 3.

We look at the case d 2, first. S consists of n rectangles whose edges are parallel
to the axes. Let L be an infinite vertical line with IS vertical rectangle edges on each
side. The line L partitions S into three subsets" St (resp. S) contains the rectangles
completely to the left (resp. right) of L, and Sm contains the rectangles intersecting L.
We construct a binary tree T of height O(log n) by associating with the root the set
R(root) S,, and defining the left (resp. right) subtree recursively with respect to St
(resp. Sr).

Let v be an arbitrary node of T. Solving the point enclosure problem with respect
to the set R(v) can be reduced to a generalized version of a one-dimensional point
enclosure problem. W log, assume that the query q (x, y) is on the left-hand side of
the partitioning line L(v) associated with node v. Let h be the ray [(-, y), (x, y)];
the rectangles of R(v) to be reported are exactly those whose left vertical edge intersects
h. These can be found in optimal time, using the hive-graph of 4.1. Note that by
carrying out the traversal of the graph from (-c, y) to (x, y) we avoid the difficulties

718 BERNARD CHAZELLE

of planar point location (Corollary 1). Indeed, locating (-, y) in the hive-graph can
be done by a simple binary search in a sorted list of y-coordinates, denoted Y/(v).
Dealing with query points to the right of L(v) leads to another hive-graph and another
set of y-coordinates, Yr(v).

The data structure outlined above leads to a straightforward (n, log2 n)-algorithm.
Note that answering a query involves tracing a search path in T from the root to one
of its leaves. This method can be improved by embedding the concept of hive-graph
into a tree structure.

To speed up the searches, we augment Y/(v) and Yr(v) with sufficient information
to provide constant time access into these lists. The idea is to be able to perform a
single binary search in Y/(root)U Y(root), and then gain access to each subsequent
list in a constant number of steps. Let Y(v) be the union of Y/(v) and Y(v). By
endowing Y(v) with two pointers per entry (one for Y/(v) and the other for Y(v)),
searching either of these lists can be reduced to searching Y(v). Let wl and w2 be the
two children of v, and let W1 (resp. W2) be the list obtained by discarding every other
element in Y(Wl) (resp. Y(w_)). Augment Y(v) by merging into it both lists W and
W2. By adding appropriate pointers from Y(v) to Y(w) and Y(w2), it is possible to
look up a value y in Y(w) or Y(w2) in constant time, as long as this look-up has
already been performed in Y(v).

We carry out this preprocessing for each node v of T, proceeding bottom-up.
Note that the cross-section of the new data structure obtained by considering the lists
on any given path is similar to a hive-graph defined with only one refining pass (with
differences of minor importance). The same counting argument shows that the storage
used is still O(n). This leads to an (n, log n) algorithm for point enclosure in two
dimensions. We wish to mention that the idea of using a hive-graph within a tree
structure was suggested to us by R. Cole and H. Edelsbrunner, independently, in the
context of planar point location. We conclude:

THEOREM 6. There exists an (n, log n)-algorithm for solving the point enclosure
problem in 9.

The algorithm can be easily generalized to handle d-ranges. The data structure
Td(S) is defined recursively as follows: project the n d-ranges on one of the axes,
referred to as the x-axis, and organize the projections into a segment tree [8]. Recall
that this involves constructing a complete binary tree with 2n-1 leaves, each leaf
representing one of the intervals delimited by the endpoints of the projections. With
this representation each node v of the segment-tree "spans" the interval I(v), formed
by the union of the intervals associated with the leaves of the subtree rooted at v. Let
w be an internal node of the tree and let v be one of its children. We define R(v) as
the set of d-ranges in S whose projections cover I(v) but not I(w). We observe that
the problem of reporting which of the d-ranges of R(v) contain a query point q whose
x-coordinate lies in I(v) is really a (d-1)-point enclosure problem, which we can
thus solve recursively. For this reason, we will store in v a pointer to the structure
Td_(V), where V is the projection of R(v) on the hyperplane normal to the x-axis.
Note that, of course, we should stop the recursion at d 2 and then use the data
structure .of Theorem 6. A query is answered by searching for the x-coordinate in the
segment tree, and then applying the algorithm recursively with respect to each structure
Ta_(v) encountered. A simple analysis shows that the query time is O(1ogd-1 n + output
size) and the storage required, O(n loga-2 n).

THEOREM 7. There exists an (n loga-2 n, loga- n)-algorithm for solving the point
enclosure problem in a d > 1).

FILTERING SEARCH 719

6. Orthogonal range search problems.
6.1. Two-dimensional range search. A considerable amount of work has been

recently devoted to this problem [1], [2], [3], [5], [7], [9], [21], [22], [23], [26], [29],
[31], [35], [36]. We propose to improve upon the (n loga-1 n, loga-1 n)-algorithm of
Willard [35], by cutting down the storage by a factor of log log n while retaining the
same time complexity. The interest of our method is three-fold" theoretically, it shows
that, say, in two dimensions, logarithmic query time can be achieved with o(n log n)
storage, an interesting fact in the context of lower bounds. More practically, the
algorithm has the advantage of being conceptually quite simple, as it is made of several
independent building blocks. Finally, it has the feature of being "parametrized", hence
offering the possibility of trade-offs between time and space.

When the query rectangle is constrained to have one of its sides lying on one of
the axes, say the x-axis, we are faced with the grounded 2-range search problem, for
which we have an efficient data structure, the priority search tree of McCreight [31].
We will see how filtering search can be used to derive other optimal solutions to this
problem (6.3, 6.4). But first of all, let’s turn back to the original problem. We begin
by describing the algorithm in two dimensions, and then generalize it to arbitrary
dimensions.

In preprocessing, we sort the n points of S by x-order. We construct a vertical
slabs which partition S into a equal-size subsets (called blocks), denoted B1," ", B,
from left to right. Each block contains n/a points, except for possibly B, (we assume
1 < a <-n). The underlying data structure T is an a-ary tree, defined recursively on
the following pattern. Each node v of T points to a data structure D(v), constructed
with respect to a certain subset B(v) of $. To the root corresponds the set $ itself,
and to its ith child from the left corresponds the block Bi. The data structure D(v)
pointed to by each node v consists of either the list of points in B(v) if it contains
fewer than a points, or else the following items: if vi is the ith child of v from the left,

1. each B(v) is organized into two priority search trees, each grounded on a
distinct side of the slab;

2. each B(v) is sorted by y-coordinates and the points of B(v) are linked together
in this order. This forms a polygonal line monotone with respect to the y-axis. Consider
the projections on the y-axis of the [B(v)[-a segments thus defined, and organize
these projections into a window-list (see 3).

The tree T being defined recursively in this manner, it is then easy to answer a
query R {(xl, Yl), (X2, Y2)}; Xl <= X2 and Yl -< Y2. Searching for the values X and x2 in
T induces a decomposition of the rectangle R into one, two, or three canonical parts;
one, if it fits entirely into a slab; two, if it overlaps with two consecutive ones; three,
if it overlaps with more than two. In the general case, R can be rewritten as the
juxtaposition of R1, R*, RE. Both R1 and RE partly overlap with a slab, which gives
us two instances of the grounded 2-range search problem for which we use the priority
search trees. The next step involves determining the polygonal lines intersected by a
horizontal side of R, say, s (Xl, Y2), (x2, Y2)]. Using the window-list, this can be done
in time O(a +log n). Indeed, it suffices to check the window whose aperture covers
Y2, which will give at most a- 1 spurious segments. Finally, for each of the segments
intersected by s, we scan the polygonal line to which it belongs, downwards, stopping
as soon as we encounter a point below the lower side of R.

It is clear that each level of the tree entails O(n) storage; furthermore the partition
of S into equal-size blocks leads to a height of at most [log n/log a], therefore the
total amount of storage required is O(n(log n/log a)). Decomposing a query rectangle

720 BERNARD CHAZELLE

R into its <-3 canonical parts can be simply done in O(log n) time by performing an
O(log a) time binary search at each node traversed ([log n/log c + O(1) nodes are
visited). Finally, solving the two grounded 2-range search problems and checking all
the appropriate windows can be done in time O(a+log n+ k), which leads to an
(n(log n/log a), a+log n) algorithm. Note that setting a=n, for <1 leads to an
(n, n)-algorithm which matches the performance given in [5]. More interestingly,
matching the first two terms in the expression ofthe query time leads to an (n(log n/log-
log n), log n)-algorithm, which outperforms the algorithm given in [35].

6.2. Orthogonal range search in 9d. We can use known techniques to extend our
method to higher dimensions [2]. The basic idea is to reduce a problem in 9d to a
similar problem in 9d-1. The underlying data structure, Td(S), is a complete binary
tree with n leaves. Let x be one of the axes; the ith leaf from left to right corresponds
to the ith point of $ in x-order. In this manner, each node v "spans" the set $(v),
formed by the points associated with leaves of the subtree rooted at v. As usual, we
keep in v a pointer to a data structure D(v), defined as follows: D(v)= Td_I(S*(v)),
where S*(v) is the projection of the set $(v) on the hyperplane (x =0). Of course,
T2(S*(v)) is defined by using the method described above. To answer a query, we
start by searching for the two x-values of the query d-range in the tree Td(S). This
induces a canonical decomposition of the d-range into at most 2 [log2 n parts, each
of them dealt with by projection on the hyperplane (x=0) and reduction to an
orthogonal range search problem in 9d-1.

Each increment in dimensionality adds a factor of log n in the time and space
complexity of the algorithm, therefore since for d 2, we have an (n(log n/log log n),
log n)-algorithm, we conclude with

THEOREM 8. There exists an (n(logd-1 n/log log n), logd-1 n)-algorithmfor solving
the orthogonal range search problem in 9d(d > 1).

6.3. Grounded 2-range search. Before closing this section, we wish to show how
filtering search leads to efficient algorithms for the grounded 2-range search problem.
The problem is to preprocess a set S of n points {(xl, y),..., (xn, yn)}, so that for
any query triple (a, b, c) with a-<_ b and 0-< c, it is possible to report all the points of
{(xi, Yi)l a <- xi <-- b and yi =< c} effectively.

Recall that this problem can be solved optimally using a priority search tree [31].
This structure is essentially a balanced binary tree with one point stored at each node.
The tree is a heap with respect to the y-order, i.e. each node stores a point with smaller
y-coordinate than all of its descendants. As is the case with most balanced tree-
structures, although insertions and deletions can be performed in logarithmic time,
overhead in implementation and running times occurs because rotations (or equivalent
operations) are often necessary.

Filtering search can be used to alleviate the average cost of these operations. After
sorting the n points in x-order, partition S into p blocks of roughly log2 n points each,
denoted B, , Bp, from left to right. Each block Bj is arranged as a linked-list sorted
in ascending y-order. With each Bj we associate the vertical slab V=
{(x, y)lb <-_ x <- b+}, where the bj’s correspond to vertical lines separating the blocks.
Let (aj,/3) be the point of B with smallest y-coordinate. We construct a priority search
tree T with respect to the p points (c,/1), ", (cp,/3p). Answering a query (a, b, c)
involves"

1. finding the two slabs V, Vr(l<= r) containing (a, 0) and (b, 0), respectively;
2. if l+ 1 < r, answering the query (bt+l, b, c), using T;

FILTERING SEARCH 721

3. for each point found in step 2, scanning the corresponding block upwards as
long as the y-coordinate does not exceed c, and reporting all the points visited, including
the starting ones;

4. checking all the points in B and B,, and reporting those satisfying the query.
Note that, since the blocks Bi correspond to fixed slabs, their cardinality may vary

from log n to 0 in the course of dynamic operations. We assume here that the candidate
points are known in advance, so that slabs can be defined beforehand. This is the case
if we use this data structure for solving, say, the all-rectangle-intersection problem (see
[30] for the correspondence between the two problems). This new algorithm clearly
has the same time and space complexity as the previous one, but it should require
much fewer dynamic operations on the priority search tree, on the average. The idea
is that to insert/delete a point, it suffices to locate its enclosing slab, and then find
where it fits in the corresponding block. Since a block has at most log n points, this
can be done by sequential search. Note that access to the priority search tree is necessary
only when the point happens to be the lowest in its block, an event which we should
expect to be reasonably rare.

6.4. Other optimal schemes. In light of our previous discussion on the hive-graph,
it is fairly straightforward to devise another optimal algorithm for the grounded 2-range
search problems. Simply extend a vertical ray upwards starting at each point of S. The
problem is now reduced to intersecting a query segment, [(a, c), (b, c)] with a set of
nonintersecting rays; this can be solved optimally with the use of a hive-graph (4).

Incidentally, it is interesting to see how, in the static case, filtering search allows
us to reduce the space requirement of one of the earliest data structures for the ECDF
(empirical cumulative distribution function) [7] and the grounded 2-range search
problems, taking it from O(n log n) to O(n). Coming back to the set of points
(al, ill),’", (ap, tip), we construct a complete binary tree T, as follows: the root of
the tree is associated with the y-sorted list of all the p points. Its left (resp. right)
child is associated with the y-sorted list {(tl, 1)," ", (t[p/2], [p/EJ)}
(resp. {(atp/2j+l,/3tp/Eji/l), ., (ap, tip)}). The other lists are defined recursively in the
same way, and hence so is the tree T. It is clear that searching in the tree for a and b
induces a canonical partition of the segment [a, b] into at most 2/log2 p parts, and
for each of them all the points lower than c can be obtained in time proportional to
the output size. This allows us to use the procedure outlined above, replacing step 2
by a call to the new structure. The latter takes O(p log p)- O(n) space, which gives
us yet another optimal (n, log n)-algorithm for the grounded 2-range search problem.

7. Near-neighbor problems. We will give a final illustration of the effectiveness of
filtering search by considering the k-nearest-neighbors and the circular range search
problems. Voronoi diagrams are--at least in theorynprime candidates for solving
neighbor problems. The Voronoi diagram of order k is especially tailored for the
former problem, since it is defined as a partition of the plane into regions all of whose
points have the same k nearest neighbors. More precisely, VOrk(S) is a set of regions
Ri, each associated with a subset Si of k points in S which are exactly the k closest
neighbors of any point in R. It is easy to prove that VOrk(S) forms a straight-line
subdivision of the plane, and D. T. Lee has shown how to compute this diagram
effectively [25]. Unfortunately, his method requires the computation of all Voronoi
diagrams of order -k, which entails a fairly expensive O(k2n log n) running time, as
well as O(k2(n-k)) storage. However, the rewards are worth considering, since
VOrk(S) can be preprocessed to be searched in logarithmic time, using efficient planar
point location methods [15], [18], [24], [28]. This means that, given any query point,

722 BERNARD CHAZELLE

we can find the region Ri where it lies in O(log n) time, which immediately gives
access to the list of its k neighbors. Note that the O(k2(n-k)) storage mentioned
above accounts for the list of neighbors in each region; the size of VOrk(S) alone is
O(k(n- k)). A simple analysis shows that this technique will produce an (n4, log n)-
algorithm for the k-nearest-neighbors problem. Recall that this problem involves prepro-
cessing a set S of n points in E2, so that for any query (q, k)(q E2, k<=n) the k
points ofS closest to q can be retrieved efficiently [11], [20], [25].

Using the basic principle of filtering search: "be naive when k is large", we can
save a factor of n space over this algorithm. The method consists of computing
{Vor2,(S)]0 -< -< [log2 n l} (let Vorj(S)= Vorn(S), ifj=> n). This requires S(n) storage,
with

S(n)= O(22i(n-2i)) O(n3).
0i [log n]

All we then have to do is search the diagram Vor2J(S), where 2J-1< k-< 2j, and apply
a linear-time selection algorithm to retrieve from the corresponding set of points the
k closest to the query point. Since 2 is at most twice k, answering a query takes
O(k + log n) time. We conclude to the existence of an (r/3, log n)-algorithm for solving
the k-nearest-neighbors problem. This result matches the performance of the (very
different) algorithm given in [20], which is based on a compact representation of
Voronoi diagrams.

We must mention that a similar technique has been used by Bentley and Maurer
[4] to solve the circular range search problem. This problem is to preprocess a set S
of n points in E2, so that for any query disk q, the points of S that lie within q can
be reported effectively. The approach taken in [4] involves searching Vor2,(S) for

0, 1, 2, , until we first encounter a point in S further than r away from the query
point. At worst we will have checked twice as many points as needed, therefore the
query time will be O(k+logklogn), which as noticed in [4] is also O(k+
log n log log n). The space complexity of the algorithm, stated to be 0(//4) in [4], can
be shown to be O(n3) using Lee’s results on higher-order Voronoi diagrams [25]. For
this problem, see also the elegant reduction to a three-dimensional problem used in
the sublinear solution of [37].

If the radius of the query disk is fixed, we have the so-called fixed-radius neighbor
problem. Chazelle and Edelsbrunner 12] have used filtering search to obtain an optimal
(n, log n) algorithm for this problem. As regards the general problems of computing
k-nearest-neighbors and performing circular range search, Chazelle, Cole, Preparata
and Yap [11] have recently succeeded in drastically lowering the space requirements
for both problems. The method involves a more complex and intensive use of filtering
search.

THEOREM 9. 11 There exists an (n (log n log log n)2, log n)-algorithm for solving
the k-nearest-neighbors problem as well as the circular range search problem. With
probabilistic preprocessing, it is possible to obtain an n log2 n, log n)-algorithm for both
problems.

8. Conclusions and further research. We have presented several applications of a
new, general technique for dealing with retrieval problems that require exhaustive
enumeration. This approach, called filtering search, represents a significant departure
from previous methodology, as it is primarily based on the interaction between search
and report complexities. Of course, the idea of balancing mixed complexity factors is
not new per se. Our basic aim in this paper, however, has been to introduce the idea
of balancing all the various complexity costs of a problem as a systematic tool for
improving on known reporting algorithms. To implement this idea, we have introduced

FILTERING SEARCH 723

the general scheme of scooping a superset of candidates and then filtering out the
spurious items. To demonstrate the usefulness of filtering search, we have shown its
aptitude at reducing the complexity of several algorithms. The following chart summar-
izes our main results; the left column indicates the best results previously known, and
the right the new complexity achieved in this paper.

problem

discrete interval overlap

segment intersection

segment intersection

point enclosure in d(d > 1)

orthogonal range query in Rd(d > 1)

k- nearest-neighbors

circular range query

previous complexity

(n, log n)[17, 30, 31]

(n3, log n) [19]

(n log n, log n) [34]

(n logd n, logd-t n) [33]

(n logd-t n, logd-t n) [35]

(n 3, log n) [20]

(n3, log n log log n) [4]

filtering search

(n, 1)

n 2, log n

(n, log n)

(n logd-2 n, logd-t n)

logd-t n
logd-1 n

log log n

(n(log n log log n)2, log n) [11]

(n(log n log log n)2, log n) [11]

In addition to these applications, we believe that filtering search is general enough
to serve as a stepping-stone for a host of other retrieval problems as well. Investigating
and classifying problems that lend themselves to filtering search might lead to interesting
new results. One subject which we have barely touched upon in this paper, and which
definitely deserves attention for its practical relevance, concerns the dynamic treatmerit
of retrieval problems. There have been a number of interesting advances in the area
of dynamization lately [6], [32], [34], and investigating how these new techniques can
take advantage of filtering search appears very useful. Also, the study of upper or
lower bounds for orthogonal range search in two dimensions is important, yet still
quite open. What are the conditions on storage under which logarithmic query time
(or a polynomial thereof) is possible? We have shown in this paper how to achieve
o(n log n). Can O(n) be realized ?

Aside from filtering search, this paper has introduced, in the concept of the
hive-graph, a novel technique for batching together binary searches by propagating
fractional samples of the data to neighboring structures. We refer the interested reader
to [13] for further developments and applications of this technique.

Acknowledgments. I wish to thank Jon Bentley, Herbert Edelsbrunner, Janet
Incerpi, and the anonymous referees for many valuable comments.

REFERENCES

1] Z. AVID AND E. SHAMIR, A direct solution to range search and related problems for product regions,
Proc. 22nd Annual IEEE Symposium on Foundations of Computer Science, 1981, pp. 123-216.

[2] J. L. BENTLEY, Multidimensional divide-and-conquer, Comm. ACM, 23 (1980), pp. 214-229.
[3] J. L. BENTLEY AND J. n. FRIEDMAN, Data structuresfor range searching, Comput. Surveys, 11 (1979)

4, pp. 397-409.
[4] J. L. BENTLEY AND H. A. MAURER, A note on Euclidean near neighbor searching in the plane, Inform.

Proc. Lett., 8 (1979), pp. 133-136.
[5] , Efficient worst-case data structures for range searching, Acta Inform., 13 (1980), pp. 155-168.

With supporting line of query segment passing through a fixed point, or with.fixed-slope query segment.

724 BERNARD CHAZELLE

[6] J. L. BENTLEY AND J. B. SAXE, Decomposable searching problems. I. Static-to-dynamic transformation,
J. Algorithms, (1980), pp. 301-358.

[7] J. L. BENTLEY AND M. I. SHAMOS, A problem in multivariate statistics: Algorithm, data structure and
applications, Proc. 15th Allerton Conference on Communication Control and Computing, 1977,
pp. 193-201.

[8] J. L. BENTLEY AND D. WOOD, An optimal worst-case algorithm for reporting intersections of rectangles,
IEEE Trans. Comput., C-29 (1980), pp. 571-577.

[9] A. BOLOUR, Optimal retrieval algorithms for small region queries, this Journal, 10 (1981), pp. 721-741.
[10] B. CHAZELLE, An improved algorithm for the fixed-radius neighbor problem, IPL 16(4) (1983), pp. 193-

198.
11 B. CHAZELLE, R. COLE, F. P. PREPARATA AND C. K. YAP, New upper bounds for neighbor searching,

Tech. Rep. CS-84-11, Brown Univ., Providence, RI, 1984.
[12] B. CHAZELLE AND H. EDELSBRUNNER, Optimal solutions for a class of point retrieval problems, J.

Symb. Comput., (1985), to appear, also in Proc. 12th ICALP, 1985.
[13] B. CHAZELLE AND L. J. GUIBAS, Fractional cascading: a data structuring technique with geometric

applications, Proc. 12th ICALP, 1985.
[14] B. CHAZELLE, L. J. GUIBAS AND D. T. LEE, The power ofgeometric duality, Proc. 24th Annual IEEE

Symposium on Foundations of Computer Science, Nov. 1983, pp. 217-225.
[15] R. COLE, Searching and storing similar lists, Tech. Rep. No. 88, Computer Science Dept., New York

Univ., New York, Oct. 1983.
[16] R. COLE AND C. K. YAP, Geometric retrieval problems, Proc. 24th Annual IEEE Symposium on

Foundations of Computer Science, Nov. 1983, pp. 112-121.
17] H. EDELSBRUNNER, A time- and space- optimal solutionfor theplanar all-intersecting-rectangles problem,

Tech. Rep. 50, IIG Technische Univ. Graz, April 1980.
[18] H. EDELSBRUNNER, L. GUIBAS AND J. STOLFI, Optimalpoint location in a monotone subdivision, this

Journal, 15 (1986), pp. 317-340.
[19] H. EDELSBRUNNER, D. G. KIRKPATRICK AND H. A. MAURER, Polygonal intersection searching, IPL,

14 (1982), pp. 74-79.
[20] H. EDELSBRUNNER, J. O’ROURKE AND R. SEIDEL, Constructing arrangements oflines and hyperplanes

with applications, Proc. 24th Annual IEEE Symposium on Foundation of Computer Science, Nov.
1983, pp. 83-91.

[21] R. A. FINKEL AND J. L. BENTLEY, Quad-trees: a data structure for retrieval on composite keys, Acta
Informat. (1974), pp. 1-9.

[22] M. L: FREDMAN, A lower bound on the complexity of orthogonal range queries, J. Assoc. Comput.
Mach., 28 (1981), pp. 696-705.

[23] ., Lower bounds on the complexity ofsome optimal data structures, this Journal, 10 (1981), pp. 1-10.
[24] D. G. KIRKPATRICK, Optimal search in planar subdivisions, this Journal, 12 (1983), pp. 28-35.
[25] D. Y. LEE, On k-nearest neighbor Voronoi diagrams in the plane, IEEE Trans. Comp., C-31 (1982),

pp. 478-487.
[26] D. T. LEE AND C. K. TONG, Quintary trees: A file structure for multidimensional data base systems,

ACM Trans. Database Syst., (1980), pp. 339-353.
[27] W. LIr’sK AND F. P. PREPARATA, Segments, rectangles, contours, J. Algorithms, 2 (1981), pp. 63-76.
[28] R. J. LIroN AND R. E. TARJAN, Applications of a planar separator theorein, this Journal, 9 (1980),

pp. 615-627.
[29] G. LUEKER, A data structure for orthogonal range queries, Proc. 19th Annual IEEE Symposium on

Foundations of Computer Science, 1978, pp. 28-34.
[30] E. M. MCCREIGHT, Efficient algorithmsfor enumerating intersecting intervals and rectangles, Tech. Rep.

Xerox PARC, CSL-80-9, 1980.
[31], Priority search trees, Tech. Rep. Xerox PARC, CSL-81-5, 1981; this Journal 14 (1985), pp. 257-

276.
[32] M. H. OVERMARS, The design of dynamic data structures, Ph.D. thesis, Univ. Utrecht, 1983.

[33] V. K. VAISHNAVI, Computing point enclosures, IEEE Trans. Comput., C-31 (1982), pp. 22-29.
[34] V. K. VAISHNAVI AND D. WOOD, Rectilinear line segment intersection, layered segment trees and

dynamization, J. Algorithms, 3 (1982), pp. 160-176.
[35] D. E. WILLARD, New data structures for orthogonal range queries, this Journal, 14 (1985), pp. 232-253.
[36] A. C. YAO, Space-time trade-offfor answering range queries, Proc. 14th Annual ACM Symposium on

Theory of Computing, 1982, pp. 128-136.
[37] F. F. YAO, A 3-space partition and its applications, Proc. 15th Annual ACM Symposium on Theory of

Computing, April 1983, pp. 258-263.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

1986 Society for Industrial and Applied Mathematics
007

ON A MULTIDIMENSIONAL SEARCH TECHNIQUE AND ITS
APPLICATION TO THE EUCLIDEAN

ONE-CENTRE PROBLEM*

M. E. DYERt

Abstract. The paper is divided into two main sections. The first deals with a multidimensional search
technique of Megiddo [J. Assoc. Comput. Mach., 31 (.1984), pp. 114-127], and suggests an improvement.
The second gives an application of the technique to the Euclidean one-centre problem in a. An algorithm
of time-complexity O(3<d+2)2n) is derived for this problem. This improves the best previous bound even in
the case d 2.

Key words, multidimensional search, linear time algorithms, Euclidean one-centre problem, computa-
tional geometry, location problems

1. Introduction. This paper is divided into two main sections which are closely
related, but also to some extent independent. The first section, 2, discusses in some
detail a multidimensional search procedure due to Megiddo [11], and gives a
clarification of, and an improvement upon, Megiddo’s idea. Lower bounds on the
efficiency of the technique are also briefly examined.

The other main section, 3, deals with an application of the search technique to
a well-known problem in computational geometry, the weighted Euclidean one-centre
problem in d-dimensional space. We show that there exists an algorithm which runs
in O(3(a+2)2n) time for this problem. This time-bound is linear in n for any fixed d,
and improves the best previously known bounds even in the planar case d 2.

2. A multidimensional search technique.
2.1. Introduction. In 11], Megiddo presented an ingenious technique for a multi-

dimensional search problem. The exact problem, and the nature of Megiddo’s solution,
is described in 2.2 below. The technique is a major component of an algorithm for
linear programming which runs in time which grows only linearly with the size of the
problem in any fixed dimension d. Megiddo’s demonstration of the existence of such
an algorithm is clearly an important development in the theory of linear programming.
Unfortunately, however, the "constant factor" for this algorithm grows as fast as 2 o<2a).
Here we describe an improvement to the technique which reduces the order of growth
of this constant to O(3<a+1)2). Megiddo [11] discusses the problem from a geometrical
point of view, and gives only a fairly informal development of his method. However,
his arguments (which rest at one point on an appeal to a diagram) appear to be entirely
correct only in nondegenerate cases. These points will be detailed further below. The
paper [11] also contains a method for handling other types of degeneracy which is
shown in the present paper to be unnecessary. In 2.3 we give a more detailed exposition
of the method, incorporating the above-mentioned improvement, and show that the
degenerate cases are, if anything, an advantage and need little special attention. The
problem and technique are discussed from an algebraic standpoint for ease of rigorous
development.

2.2. The search problem. Suppose we are given n affine functions in Ra"

(2.1) h,(x)=afx+b, (i= 1,2,..., n).

* Received by the editors September 10, 1984, and in revised form April 12, 1985.
f Department of Mathematics and Statistics, Teesside Polytechnic, Middlesbrough, Cleveland TS1 3BA,

United Kingdom.
725

726 M.E. DYER

Let XoRd be any point. We wish to determine the sign of hi(xo) for some fixed
proportion p of the hi, i.e. for at least pn values of i. By the sign of a number, we mean
the obvious mapping into the set {-1, 0, + 1}. We denote this by sign (.). We will also
abbreviate sign (hi(xo)) to sign (hi) where no ambiguity arises.

An enquiry will mean an evaluation of sign (h) for some given affine function in
Rd. (This need not be one of the hi.) We assume that the only access to information
about Xo is through an "oracle" which can decide arbitrary enquiries. Thus we present
an h to it, and it returns us sign (h). The problem is then, for some given p, to achieve
the above objective while, in some sense, minimizing the number of enquiries. It is
obvious that, for any given p and n, some finite number of enquiries suffices, since we
can simply choose any [pn ofthe hi and enquire about these. Rather more surprisingly,
however, Megiddo showed in 11 that there exists a p for which a number of enquiries
suffices which is independent of n. To be specific, he showed that if p=2-2a,
then 2d- enquiries will suffice. Here we generalise his technique, and produce an
improvement which, in the context of its applications, is shown to be advantageous.

2.3. The search technique. First note that if any hi in (2.1) is a constant function
(i.e. ai =0) then sign (hi) can be determined without any enquiries. Thus we may
assume that all such hi are removed initially. Their removal will obviously increase
the proportion of hi whose signs are discovered, for, supposing there are no such

no+p(n no) (1 -p)no+pn > pn.

Now let li be the leading (in order of variable indexing) coefficient in hi. Since
sign (hi) sign (li) sign (hi/li), we may assume that li + without loss of generality.

First consider the case d 1. We have then n functions of the form

hi(x) Xl + bi 1, 2," "., n).

Let /3 be the median of the bi, i.e. the [1/2(n+l)Jth largest. Then x+bi
(x+/3)+(bi-/3). Now, in one enquiry, we can determine sign(h) for h(x)=x+.
Clearly if

(a) sign (h) + 1, then we know sign (hi) + 1 for the [1/2(n + 1) > 1/2n values of
for which bi >-/3;

(b) sign (h)=-1, then we know sign (hi) =-1 for the [1/2(n+ 1)J =>1/2n values of
for which bi <=/3;

(c) sign (h) 0, then we know sign (hi) for all i.
Thus, in all cases, with one enquiry we know the sign of at least half of the
Now, suppose d-> 2. First we select all hi for which the coefficient of Xl is zero.

Let these form the set $1, i.e. hi S1 if ai 0. We will use lower-case letters to denote
the cardinality of sets represented by the corresponding upper-case letter. Thus, for
example, sl ISll. Now the hi S have the form:

hi(x) x 4r. ai2x + hl(x),

where h’i(x) is an affine function of x3, X4, Xd.
We now make (roughly) half of the ai2 nonnegative and half nonpositive by a

change of variable, as follows.
Let a be the median of the ai_, and substitute Xl=Xl+OX. Then hi(x)=

x + ai2x + hitx), where ai ai-c.
The change of variables should, in principle, be reversed before presenting the

enquiries to the oracle, but otherwise makes no real difference to the problem. Thus
for conveniencewe will now drop the primes on x and a i2

A SEARCH TECHNIQUE AND APPLICATION 727

We now select all h for which ai2 0 (or, in the original variables, ai2 a), and
let these form the set S.

Now consider the remaining h S1 O $2. We form these into pairs such that, in
each pair, there is one ai2 of each sign / 1 or -1. The pairs are otherwise arbitrary.

Let i, j be a typical pair, so that

h(x) x -- ai2x2+ h(x) with ai2 > O,
(2.2)

h(x) x + aEx+ h(x) with a2 < 0.

Note that we will be able to form at least 1/2(n- s)-s2 such pairs. If any h are left
unpaired, these are now simply discarded from further consideration for the moment.
Now, for each pair i, j, we can eliminate either x or x2 from h and h to give two
affine functions (with leading coefficient +1). Thus from (2.2) these are:

(2.3)
h)(x) (h,(x)- hj(x))/(ai2- aj2),

h)(x) (-a.i2h,(x) + a,2h.(x))/ a,2 a2).

Note that a2-a2 0, since a2> 0> a2. Now h} involves only x2, x3,"" ", Xd and
h involves only Xl, x3," ", Xd. Thus each is an affine function of only (d 1) variables.
Let S2 be the set of h} and $21 the set of h. The pairing gives a one-to-one mapping
of S2 onto $2. In particular,

(2.4) s2 s2 -> 1/2(n s) s2.

Now, we may invert the system (2.3) to give"

h,(x) a,2h(x) + h(x) with a,2> O,
(2.5)

h(x) aEh(x) + h(x) with a2 < 0.

Note here that it is crucial that ai2 aj2, i.e. they are not both zero. It is here that a
minor error occurs in 11]. Megiddo asserts that each pair requires only a nonnegative
and a nonpositive ai2. It is easy to see that this will not do since, if ai2- aj2--0, the
transformation between (2.3) and (2.5), or vice versa, is singular. Because of the
informal geometric development, this seems to have become a little confused in [11]
with h, h being linearly dependent, which would only be true in 2. The difficulty is
not apparent in [11] since, at this point, an appeal is made to a diagram which represents
only the nonsingular case (2.3). Now, from (2.5), it is easy to see that if we know
sign (h) and sign (h), then we can determine sign (h) or sign (h) or both.
Specifically,

(i) If sign (h.l) 0, then sign (h,) sign (h) sign (h),
(ii) If sign (h1) +1, then

if h(Xo) >-_ O, then sign (h,)= +1,
if h(Xo)<-O, then sign (h)=-1;

(iii) If sign (h) =-1, then
if hf(Xo) <-0, then sign (h,) -1,
if h(Xo)>-O, then sign (h)= /1.

In all cases, we can deduce the sign of at least one of the pair h, h. We can use
this to recursively define a procedure for the search problem.

Formally, a procedure for the search problem is an algorithm A(d, q, p) with an
oracle subroutine for enquiries. It accepts as input a d-dimensional system (2.1) of
size n and outputs the signs of at least pn of the h(xo), after making at most q calls

728 M.v.. OVeR

to the oracle. The time-complexity of A(d, q, p) will be denoted by EA(n), excluding
calls to the oracle.

Suppose now we have two procedures Al(d- 1, ql, Pl), A2(d -1, q2, P2) for the
search problem in Rd-1. It is possible A A2. We combine these to form a procedure
A(d, q, p) in Ra as follows. We assume that an oracle is given for the point Xo d.

(a) ApplyA to S1 U S12. Note that all functions in S U S12 involve only x2, , xa.
The oracle for A must respond to enquiries about Xo restricted to these coordinates.
It is clear that the oracle for A can do this by restricting enquiries so that the first
coefficient of h is zero. Thus the oracle for A is a restriction of the oracle supplied
for A. Procedure A must handle some simple encoding and decoding of Al’S enquiries,
but otherwise they are simply calls to A’s oracle. Let T1 be the set of functions in
S U $12 whose sign is discovered by A. Write M T f3 $1, M’= T1CI $12. We have,
after q enquiries,

(2.6) ml + m’>- p(sl + s2).

(b) Apply A2 to c(M’)[.J $2, where c(M’)__q S2a is the set of h(2) corresponding to
the h) in M’. These functions involve only xl, x3,"’, xa. Similar remarks to those
in (a) about the oracle for A2 apply here also. Let T2 be the set of functions whose
sign is discovered by A2. Write M2 T2 fq $2, M2 T2 fq c(M’). Then we have, after a
further q2 enquiries,

(2.7) m2+ m2 >- P2($2 -1- m’).

At the end of A2, we will therefore have discovered the sign of hi for all hi
M1 U ME. For each h(2) G M12, we will know its sign and also that of its corresponding
h (1), since this is in M’. Thus we will know the sign of at least one hi for every h(2) M2,
applying (2.5). Thus A can deduce sign (hi) for at least

m -> m + m2+ m12 values of i, with ql + q2 enquiries in total

=> m +p2($2 + m’) from (2.7)

>= m+p2(s2+p(s+ $12)-- m) from (2.6)

>=m+p2(s2+p(s+1/2(n-s)-s2)-m) from (2.4),

ioeo

(2.8) rn _-> 1/2PlP2(n + sl) + pl(1 p2)s2 + (1 p2) ml.

Thus,

(2.9) m>-_1/2pp2n.

Therefore we have a procedure A(d, q + q2, 1/2PIP2).
Note, from (2.8), that the existence of nonempty S, $2 actually increases the

proportion of signs which are discovered. In 11], to avoid degenerate cases, Megiddo
proposes a sequence of operations designed to destroy this advantageous situation
should it exist. From the above, however, it seems that sparsity is useful here, as in
linear programming by the Simplex Method. Under certain assumptions on the
coefficients, we may be able to guarantee higher values of p than are given by (2.9).
We will not explore this idea here, but merely observe that it has implications for the
application to linear programming.

We observe further that the work done by A over and above that done in A and
A2 is O(nd), since it involves only simple matrix manipulations and median-finding
operations. The median-finding can be done in O(n) time [2].

A SEARCH TECHNIQUE AND APPLICATION 729

The above construction is used recursively, basing the recursion on the procedure
in R1, which is an A(1, 1, 1/2), described earlier. We explore this idea below.

Megiddo’s procedure [11] involves taking q=q2 1 in every dimension. Used
recursively he shows that this gives q 2d-1 and p 21--d. Thus, while the number of
enquiries is relatively small, the proportion discovered is vanishingly small for (say)
d > 3. However, the number of enquiries does not seem to be the most appropriate
measure of the merit of a procedure. A more relevant measure is what we will call its
efficiency, e p/q. Note that e measures the average proportion discovered per enquiry,
and we would obviously wish to maximize this.

To see why this definition of efficiency is appropriate, note that the applications
of this technique ([11] and 3 below in particular) lead to recurrence equations of
the form:

(2.10) T(n,d)= T((1-ap)n,d)+rq(T(n,d-1)+Klnd)+K2nd

where T is the time bound for some algorithm, r is a constant integer, c is a constant
proportion and K, K2 are constants.

We are looking for a solution of the form T(n, d) _<- C(d) n, where C(d) is a
constant depending only on d. (Thus the algorithm is required to be linear-time in
fixed dimension.) Clearly, from (2.10), we must have

C(d)n >-_ C(d)n(1- tp)+ rq(C(d- 1)+ Kind)+ KEnd,

i.e.

(2.11) C(d)>-(r/te)(C(d-1)+Kd)+Kd/(pa).

In order to keep the rate of growth of C(d) with d as small as possible, we
obviously require e to be as large as possible. To a lesser extent we want p to be large,
but it is not this term which dominates the behaviour of C(d).

Now Megiddo’s procedure, which is an A(d, 2d-,21-Ed), has e=2--Ed/2d--l=
22-d-Ed. This is doubly exponentially small in d. Since the number of enquiries, using
a recursion of the type indicated above, will grow exponentially with d, we might hope
to be able to obtain efficiencies which are singly exponentially small, but no larger.
We show below that this can indeed be achieved.

The device required is extremely simple, and was already used in a rudimentary
form by Megiddo in his Approach II in [11]. That is, suppose we have r procedures
A(d, qk, Pk), k 1, 2," r. Then we may construct a procedure A(d, q, p) with

(2.12) p=l-(I (1--pk)and q= qk,
k=l k=l

simply by applying A, removing the hi whose signs are now known, applying A2 to
the remainder, and so on. In fact, the symmetry of (2.12) shows that it is irrelevant
(in the worst case) which order is used for the r procedures. This idea could be
exploited in a number of ways. We will examine only the most obvious avenues of
approach. Suppose we have some fixed procedure A(d- 1, qd-1, Pal-l) in Rd-. Then
we may repeat this procedure k times to give a procedure A’(d 1, kqd-1, 1 1 pa_)k)
by the above observation. We may combine two such procedures A’, A" with k, l, by
the above methods to give a procedure A(d, q, p) with

(2.13) q=(k+l)qa_ and p=1/2{1--(1--pa_)k}{1--(1--pd_)’}.
We will call this a [k, l] procedure in d. The symmetry of (2.13) shows that it is
sufficient to consider k _-< I. Also, it is easily shown that for fixed (k + l) the value of p

730 M.E. DYER

in (2.13) is maximized when k or k 1-1. Thus we really only need consider [k, k]
or k, k + 1 procedures.

We may now combine a number of such procedures in Ra, using (2.12). A scheme
will comprise a list of r [ki, li] procedures for i= 1, 2,..., r. Such a scheme will
guarantee a proportion

(2.14) Pa 1- I (1-1/2(1-(1--pa_)k’}{1--(1
i=1

with

(2.15) qd (k + l)qd-1
i=1

enquiries.
We now suppose that a fixed scheme is used recursively, based on the A(1, 1, 1/2)

procedure. Thus

qd
i=1

and we will generate a sequence of procedures A(d, qa, Pal), with Pd being expressed
by the recurrence (2.14), subject to the initial condition Pl 1/2. Let the right-hand side
of (2.14) be denoted by f(Pd-). Then it is clear that f is an increasing function from
[0, 1] into itself. We then have the recurrence

(2.16) Pd =f(Pa-) with p 1/2.
Recurrences of the form (2.16) have been well studied in numerical analysis, as simple
iteration methods for finding the root ofan equation p f(p). The asymptotic behaviour
of (2.16) is wholly determined by the roots of this equation. Now clearly p 0 is always
a root of p =f(p), from (2.14). However, since it is easily shown that

f(P) =(,=1 kil’)p2+O(p3)’
it follows that convergence to this root will always be doubly exponentially fast. Thus
we will not improve effectively on Megiddo’s [1, 1] scheme unless there is a root of
p =f(p) with p > 0. By exhaustive checking, it may be shown that 9 is the smallest
value of= (k + l) for which such a nonzero root exists. There are several schemes
for which the root then exists. However, since p , we would like a scheme which
guarantees Pa for all d. The only scheme with= (k+ l)=9 for which this is true
is a [2, 2], [2, 3] scheme. If Pd-, then from (2.14),

pa 1-(1-()2)(1 -. .)= 1059/2048 > .
Thus, used recursively, this scheme guarantees p = with q =9a- enquiries, i.e. it
generates a sequence of procedures A(d, 9d-l,). This has eciency e 1/(2 x 9a-),
which is superior to that of Megiddo’s [1, 1] scheme for every d 3. Fuhermore, its
singly exponential behaviour enables us to reduce the constant in Megiddo’s linear
programming algorithm from 2(2a) to O(3(d+)). (See 3 below for an analogous
argument given in detail.) Megiddo’s Approach II of [11] may be viewed as a repeated
[1, 1] with r= [log2 hi. Again this does not produce as good a bound for linear
programming. (In fact a repeated [1, 1] with r 6 is sucient to guarantee p , and
would then give a superior bound to either of the approaches of 11].)

A SEARCH TECHNIQUE AND APPLICATION 731

In R2, a [1, 1] procedure is more efficient than the above [2, 2], [2, 3] scheme.
However, the most efficient scheme in R2 turns out to be a [2, 2] procedure. This has
q=4 enquiries, and guarantees p =9/32. Its efficiency is therefore 9/128> 1/16, the
efficiency of a 1, 1 scheme.

We must also examine the time-complexity EA(n) of the procedures we have
constructed. Let E(n, d) be the time-complexity for A(d, qa, Pa), where the A’s are
generated by a scheme [ki, I] (i 1, 2,..., r). Since A(d- 1, qa-1, Pa-I) is used c=

i= (ki + 1) times, and is never applied to more than n functions,

(2.17) E(n, d) <- cE(n, cl -1)+ Knd

for some constant K. Note that qa ca-.
If we suppose K is large enough that E(n, 1)<=Kn, then (2.17) has solution

(2.18) E(n, d) <= Kca-dn Kqdn

as may be verified by induction. Thus E(n, d)= O(qdn). In specific cases, by a more
careful analysis, we can lower the bound on E(n, d) somewhat, but (2.18) is sufficient
for most purposes. It is, in fact, better than Megiddo’s estimate [11, p. 121] for his
own procedure. His value is 2(2a)n, although it is not clear in [11] how he obtains
this estimate. From the above it is clear that his scheme only requires O(d2d-n) effort.
(In fact, we believe that a bound of only O(nd2) can be derived for Megiddo’s scheme.)

Finally, it is possible to improve slightly on the growth of q from 9a-l, while still
guaranteeing p =1/2. This can be done by using a [2, 2], [2, 2] scheme for odd d > 1,
and a [2, 2], [2, 3] scheme only for even d. It may then be checked that this guarantees
p 1/2 with only q _-< 9(x/)a-2 enquiries.

2.4. Lower bounds. In the above we have used algebraic, rather than geometric,
terminology. We can, as did Megiddo 11], cast the problem in the geometric form of
locating Xo with respect to hyperplanes h(x)=0 and the half-spaces they determine.
In this section we will adopt this terminology, since it provides a more natural language
for the proof of the result given below. However, it may be observed that there is a
dual geometric interpretation of the search problem, in. terms of known points and an
unknown hyperplane, which is equally intuitive.

For procedures A(d, q, p), we might ask what minimum number of enquiries q is
necessary to achieve some given p. The methods of 2.3 give an exponential upper
bound on q as a function of d. The following gives a much weaker lower bound, that
q must increase at least linearly with d.

PROPOSITION 2.1 For 0<p< 1, q_>-- d max {1, -log2 (l-p)).
Proof. First we prove q => d. Suppose the n hyperplanes are in general position in

a. If q < d, then Xo is only located within a convex polyhedron which contains at least
one infinite line. This line will intersect all but, at most, (d- 1) hyperplanes in a single
point. Thus Xo cannot be located with respect to more than (d- 1) hyperplanes. Since
(d- 1)/n-0 as n 0% we have the result.

To prove q>=-d log2 (l-p), we note that A(d, q,p) is a "linear decision tree",
in the terminology of Dobkin and Lipton [4]. This tree has at most 2q leaves, which
partition a into disjoint convex polyhedra. Now the n hyperplanes also partition a

d
into Y=o (7) convex polyhedra. We will call these regions, to distinguish them from
the polyhedra, which are the leaves of the decision tree. Now each polyhedron fails
to intersect at least [pn hyperplanes, since Xo is located with respect to at least this
number of hyperplanes. Thus, even if the polyhedron intersects all the a=o ("-P")
regions formed by the remaining (n- [pn]) hyperplanes, it can intersect at most this

732 M.E. DYER

number of the regions formed by the n hyperplanes. However, both the regions and
the polyhedra fill Rd, so we must have

(2.19) 2q -> i.e.
=o =o =o =o

Letting n- c, for fixed d, the right-hand side of (2.19) is easily shown to tend to
the limit (1 p) a. Thus
(2.20) 2q>-_(1-p)-a.
Taking logs to base 2 in (2.20) gives the result.

Even the weak bound q >= d has implications for the application of the search
problem to algorithms where equations like (2.10) determine their time-complexity. If
we look for a solution to (2.10) of the form T(n, d)<= C(d)n k, for any constant k, we
must have

C(d)nk>= C(d)(1-ap)knk+dC(d-1)n k, since rq>-d.

That is, C(d)>-_dC(d-1)/(1-(1-ap)k)> tiC(d-l). Thus C(d)=f(d!).
Therefore the constant must grow super-exponentially with d. Thus, for example,

the approach of 11] is incapable of providing an algorithm for linear programming
which is even O(Adnk) for any constants A, k. It is therefore highly unlikely that this
approach can lead to a "genuinely" polynomial algorithm for linear programming
[11], other than for very slowly growing values of d.

3. The Euclidean one-centre problem.
3.1. Introduction. The weighted Euclidean one-centre problem has been con-

sidered by various authors. See, for example, [5], [8], [12]. The problem may be
formulated as follows:

(3.1)
Determine c such that F(c) min F(x)

where F(x) max w/2(v,- x)2,
l<__i<_n

where the vi are n points in Ra with weights wi > 0, and c s Rd is the centre to be
selected. (Note z2 zTz, z a.)

It is well known that F is a convex function of x [5], and this property enables
efficient algorithms for (3.1) to be constructed. In the planar case d 2, to which most
attention has been directed in view of its application to distribution problems, it is
straightforward to give O(n3) time algorithms, but it is possible to do much better
than this. Megiddo has developed an O(n log2 n) algorithm, and Megiddo and Zemel
an O(n log n) time randomised algorithm. (See [10], [12], [13].) Here we improve
these results by exhibiting an algorithm which is O(n) in any fixed dimension d,
although the constant grows as fast as O(3d+2)2). The algorithm applies the results of
2, and techniques developed by the author [6], and independently by Megiddo [10]

for other problems involving convexity. In [10] Megiddo has shown that the planar
unweighted one-centre problem (i.e. when all wi are equal) can be solved in O(n) time,
and his method extends to higher dimensions using the techniques of [11], or better
2 above. His method does not however extend to the weighted problem, since he

uses special properties of the unweighted problem. However, the present section may
be viewed as a generalisation of his technique.

A SEARCH TECHNIQUE AND APPLICATION 733

3.2. The algorithm. The method is iterative. At each iteration, the size of the
problem is reduced by a fixed proportion. To control the iterations, we use the search
technique of 2. The algorithm is rather complicated, and thus will only be outlined
rather than described formally. Its justification and time-analysis will be presented
along with its development. We do not attempt to minimise the constant factor for the
time bound in any dimension, but merely note that such improvements can be made,
for example by maximizing the efficiency of the search procedure.

We first rewrite (3.1) as

F(x) max(w2ixTx 2 2 T

We now express F in a more "linear" form, by introducing an additional variable
Xd+l, and write y--(Xl, X2,’’" ,Xd+1) T. Thus y.Rd+. Then minimising F(x) is
equivalent to solving the following mathematical programming problem:

minG(y)=max(2 2 2 T 2w,v,x+WiXd+l Wi
(3.2)

y

subject to xTx Xd+ <-- O.

The equivalence follows easily from the fact that the constraint must obviously be
binding in any optimal solution. Now (3.2) may be regarded as a special case of the
following, more general, problem:

min G(y)- max (ay+ b,)
(3.3)

y lin

subject to f(y) 1/2y TCy + a ry + b 0

where C is a symmetric positive semidefinite matrix, the a’s are constant vectors and
the b’s numerical constants. In (3.2) we will have, partitioning matrices on their (d + 1) th

position"

2 2bi Wi ti.

We will also write gi(Y)= ay+ bi, so that G(y)= maxi g(y).
Now (3.3) is a convex programming problem. This follows directly from the facts

that:
(i) any affine function is convex,
(ii) a positive semidefinite quadratic form is convex,
(iii) a maximum of convex functions is convex,
(iv) a sum of convex functions is convex.
Note that (3.3) is very similar to a convex quadratic programming problem, in

that such a problem has the form

minf(y) subject to G(y) O,
y

in the ab6ve notation. From this relationship, and the arguments relating convexity
and polynomial solvability developed in [7], it would seem to follow that, to any
specified length of approximation to the solution, there exists a polynomial time
algorithm for the weighted Euclidean one-centre problem. (Chandrasekaran [3] has

734 M.E. DYER

arrived at the same conclusion using a ditterent formulation.) The qualification concern-
ing length of approximation is necessary since, as shown below, the solution point
may be irrational for rational data. We conjecture further that it may be possible to
give a polynomial time algorithm to determine the solution exactly, if the square-root
symbol is allowed, using the methods in [9]. However, we will not pursue these issues
here, concentrating instead on the problem in fixed-dimensional space.

The advantage of (3.3) over (3.1) is that the objective function has been
"linearised". However, observe that to achieve this we have had to introduce a nonlinear
constraint and move up one dimension. Thus, for convenience, we will redefine d for
the moment so that (3.3) is in d, i.e. we set d -d / 1.

We now consider how to solve (3.3). Let Yo be its optimal solution. We use the
observation [6], [10] that for any 1 _-< i, j _-< n, if gi(Yo) g(Yo), then g can be removed
from the definition of G without affecting its optimal solution.

First, we divide the n affine functions g arbitrarily into [1/2nJ pairs. Let i, j be any
such pair, and let hi(y) gi(y)- gj(y). Now we attempt to determine the sign of ho(yo)
for some proportion of the hj. If hi(yo) O, then g can be deleted, and if h(yo) O,
then g can be deleted. If hi(yo)= 0, then it follows that the problem can be reduced
to one of the same form in the (lower-dimensional) space in which ho =-O. In this space
g-- gj, and hence either can be deleted. (In fact, it will follow that, if this case arises,
the problem has already been solved.) In all cases, at least one of g, g can be deleted
if the sign of ho(yo) is known.

Using the ideas of 2, an enquiry is then a problem of the form: for a given affine
function h(y), determine the sign of h(yo). Then it follows that 9d-l-- 32(d-1) such
enquiries are sufficient to determine the sign of at least half of the ho. Thus at least
1/2/1/2nJ _>-n of the g’s can be deleted, and the procedure can be iterated, while n 1.
Eventually, we will reach a point where G is defined by a single g. We will deal with
this case below. Also, we show below that each enquiry can be achieved by solving at
most three problems of the form (3.3) in d-. In addition there will be some manipula-
tions associated with each enquiry, which can be time-bounded by Knd for some
constant K. (See 2.) Therefore, let T(n, d) be the time to solve (3.3) by this algorithm.
We have (c.f. (2.10)),

(3.4) T(n, d) <- T(n, d) / 3 x 32d-(T(n, d 1) / Knd).

Consider T(n, 0). In this case, solving (3.3) amounts to checking whether b<_-0, and
finding the maximum of the n values bi. This can clearly be done in O(n) time. Let
us assume that K is large enough that T(n, 0) 3Kn. Inductively assume that T(n’, d’)
K3d’/l2n’ for all pairs (d’, n’) (d, n) in lexicographic order. Then, from (3.4),

T(n, d) <- -K3’/l2n / 32d-1(K3d:n / Knd)

K3d/(5/6+ 1/9+ d/3’/E)n
(3.5) <- K3d/:(5/6+ 1/9+ 1/27)n

4K3d+)2n

< K3d+l)2n.

Thus the inductive hypothesis is maintained, and we may conclude that for all n, d,
T(n,d)=O(3<d+)n).

We observe that the algorithm is, in fact, polynomial for d O(x/lg n), in addition
to being linear-time in any fixed dimension. The constant grows rather fast, but less
quickly than the constants of order 2 (23) in 11].

A SEARCH TECHNIQUE AND APPLICATION 735

We still have to verify the correctness of some assertions made above. Let us first
consider the solution of (3.3) when n 1, which occurs at the termination of the
iterative cycle, i.e.

min ay+ bl
subject to 1/2y TCy / a Ty / b <- O.

By rational operations, using a "completing the square" process (see, e.g., [1]), this
can be reduced to a problem of the form:

min a 1Tel / a2Ty2 / fl
(3.6)

Tsubject to Y ClYl .jr. y Ty2 "Jr- 0

in variables (Yl, Y2) which are obtained by a nonsingular affine transformation from
y. Here C1 is a diagonal positive definite matrix. Now (3.6) is obviously infeasible if
and only if 5 > 0 and y =0. (If the condition is satisfied, no solution exists because
C1 is positive definite. If it is not satisfied then, if 5 -< 0, Yl Y2 0 is feasible, otherwise
Yl =0, Y2----tSY/Y2 is feasible.) Thus we can easily check feasibility, and obtain a
feasible point. Now, if 31 32--0, any feasible point is optimal in (3.6). Otherwise,
putting yl 0, we have

min c2Ty2 / fl
subject to 3’Y:+ --< 0.

This is clearly unbounded below unless either (i) a2 0 or (ii) c2 --/y for some/ > 0.
Consider case (ii) first. Let t=-(yy2+5). Then (3.6) becomes

min a lYl +/t + fll
subject to 1/2y Clyl <-- t.

The solution to this, since /. 0, is clearly given by =1/2yClYl. Thus the problem
reduces to

min (al yl +1/21yClyl + 1).

By elementary calculus, this has solution Yl =-I.-lClal. We then choose any y2 to
satisfy

(/y2/)=
It remains to consider case (i). Note that so far we require only rational operations.

We have a_=0. Now unless 3’ =0, (3.6) is unbounded below, since we can choose,
for example, Yl =-Mal, y=-(1/2M:aTClal+ 8)y// for arbitrarily large M. Thus
we may assume 3’ 0, and hence 8 <_-0. Now (3.6) has the form

min a lyl +/5
subject to 1/2y Clyl + 5 <-O.

The constraint determines a bounded region for yl, since C1 is positive definite. Thus
the constraint must be binding (since Cl # 0) in the optimal solution. Thus the problem
reduces to

min aly + fl
subject to 1/2yClYl -&

736 M.E. DYER

Again using elementary calculus, it follows that this problem has the solution yl--

Ac-lal where A satisfies

(3.7) A 2= -28/aC-(la.
The value of Y2 is arbitrary.

Up to this point, only rational operations have been needed. However, the
computation of Yl requires the square-root function to determine A from (3.7). For
the moment we will assume this is available, but we will return to this below. Thus,
to summarise the above discussion, when n 1 we can readily decide the feasibility,
boundedness, and optimal solution of (3.3).

To complete the description of the algorithm, we have to consider the enquiry
process in more detail. We will assume that (3.3) is feasible, and that we know a
feasible point y*. This can be achieved by the same process used in connection with
(3.6) above. (If (3.3) is infeasible, there is clearly nothing more to do.)

Now, given an affine function h(y), if h(y) is a constant then we can determine
sign (h) immediately. Otherwise, we first solve the problem (3.3) subject to the addi-
tional constraint h(y)=0. By using this affine constraint to eliminate any variable
having a nonzero coefficient in its description, we can reduce (3.3) to a problem of
identical form in (d- 1) variables. (Note that positive semidefiniteness is preserved,
trivially, by such a substitution.) We recursively solve this lower-dimensional problem
by our algorithm, basing the recursion on the case d 0 discussed above. If it has an
unbounded solution, then so, obviously, does (3.3). There is then nothing more to do.
If it is infeasible, then h(yo) obviously has the same sign as h(y*), since the feasible
set is convex. Thus sign(h) can be determined in a further O(d) time. Otherwise, this
problem has a bounded optimal solution at a value Yl, say, with h(yl)=0. Now, by
convexity, all feasible points to (3.3) with G(y)< G(yl) will have the same sign for
h(y). Moreover, if there is any such point, there are points arbitrarily close to Yl. Thus
we look for a point Y2 Yl + ep where p, which is subject to an arbitrary normalisation,
is a "direction of descent", and e > 0 can be chosen arbitrarily small.

Now let I be the set of values of such that gi(yl)= G(yl). Then, for e small
enough, it follows that

G(y2) m/eatx (a/ry2 + bi)= G(yl) + e max (a.r,p).
iI

Thus G(y) < G(yl) if and only if maxii (arp) <0.
If f(Yl)< 0, this is the condition that such a p exists. However, if f(Yl)=0, we

must ensure that p is directed into the feasible region. Now

f(Y2) yCy2+ ary2+ b =f(yl) + e{1/2eprCp+(a + Cy)rp}

{1/2ep rcp + (a + Cyl) rp}.

So f(Y2)--< 0 if and only if, for arbitrarily small e,

(3.8) 1/2ep rCp + (a + Cyl) rp <--0.

This condition can clearly only be satisfied if (a + Cyl)rp-< 0.
We consider three cases. These give rise to subproblems for checking the existence

of p. Note that we will never have to solve more than two of them in order to do this.
With the determination of y, this gives a total of three, as asserted.

(i) f(y)< 0, or a 0, C -0. Then p exists if and only if there is a solution to

max (alp) <0.
il

We may normalise p arbitrarily so that, for some j I, a[p =-1. Clearly we cannot

A SEARCH TECHNIQUE AND APPLICATION 737

have aj =0, thus we may eliminate one variable using this equation. We obtain a
problem of the form (3.3) in (d-1) variables, but having a trivial constraint (i.e. C,
a, b are all zero). In fact, this problem is simply a linear programming problem, but
for symmetry we treat it as a special case of (3.3).

(ii) Case (i) does not hold, but (a+Cy)’p=O. Then clearly pTCp=O, which is
equivalent to Cp- 0. Thus a ’p 0. Thus there is a direction of descent of this form
if and only if there is a solution to

max (afp) < 0 such that Cp 0, and a rp 0.
iI

We can use the equations to eliminate at least one variable. We again obtain a problem
of the form (3.3) with a trivial constraint.

(iii) Case (i) does not hold, and (a+Cy)p<O. Thus we may normalise p so
that (a+Cy)rp--1. Then the constraint (3.8) is obvously satisfied for any e if
pCp- 0, or otherwise for all e < 2/p ’Cp. Thus there is a direction of descent of this
form if and only if there is a solution to

max (alp)<0 such that (a+Cy)p=-l.
iI

Again the equation can be used to eliminate a variable. (Note that if a / Cy 0 this
case cannot occur.) Once again we obtain a lower-dimensional problem of the form
(3.3) with a trivial constraint.

Solving the subproblems described in (i), (ii) and (iii) allows us to decide the
existence of a direction of descent, and to find one if it exists. If none exists, then
clearly y is also optimal without the constraint h(y)-O. Thus we may take Yo-Y
and stop. Otherwise, suppose h(y)= a ry + ft. Then

h(yE) a’(y + ep)+ fl h(yl)+ eorp ecrp O,

since y is optimal subject to h(y)=0. Therefore we have

sign (h(yo)) sign (h(y2)) sign (a rp),

and we can readily determine sign (h) as required.
This completes the description of the algorithm. However, there is one more point

which requires attention. We have not described a rational algorithm for this problem,
since we have, possibly, to compute square-roots in (3.7). But note that it is only in
the subproblem of case (iii) above that such an irrationally-derived quantity would
enter within the algorithm, since this involves Yl. Since this subproblem has a trivial
constraint, however, no further irrational operations would be needed in its solution.

Let S be the set of all the real-numerical values in the a’s, b’s and C. Then a
rational algorithm means that we must compute wholly within the ordered field
R Q(S), where Q is the field of rational numbers, and we are using the notation for
a field extension given, for example, in 1]. In order to solve the subproblems referred
to above, we wish occasionally to compute in R(A), where A EE R (i.e. in a quadratic
extension of R). However, we can simulate the computations of R(A) in R by using
ordered pairs (rl, r2) =- rl + ArE, where r, r2 E R. It is well-known algebra 1] that the
field operations for R(A) can be conducted using these ordered pairs. It is also
straightforward to show that comparisons in R(A) can be simulated by a mixture of
field operations and comparisons on the elements of such ordered pairs. Moreover,
each operation in R(A) is simulated by O(1) operations in R. It now follows that we
can construct a completely rational algorithm for solving (3.3) which has the same
time-bound up to a constant factor independent of d. The output from this algorithm
will, in general, be a d-vector of ordered pairs (r, rE) together with a number A 2. Then

738 M.E. DYER

Yo is the corresponding d-vector of real numbers r + Ar. We must either accept the
solution in this form, or compute Yo after making a single call to a square-root function.

To summarise the discussion, we have shown that we can construct a rational
algorithm, with time-complexity (3.5), for solving (3.3) provided that we accept the
solution values in the form rl + At2, where the r’s and A 2 are rational. Note that, for
the Euclidean one-centre problem, the (d + 1) in the exponent of (3.5) must be replaced
by (d + 2), since we redefined the value of d in (3.3).

Finally, to show that the solution of (3.3) can be irrational in terms of the data,
consider the following Euclidean one-centre problem in the plane R2. Let vl (0, 0),
v2= (1, 0), v3 (0, 1) with weights w =9, w2 w3 =8. Then it is straightforward to
show that the optimal Euclidean one-centre is the point A (1, 1), where A 8/(8 + 74c).
Clearly all the data is rational, but the solution involves the irrational number .
Thus the solution value could not be obtained by a purely rational algorithm. Note
that the difficulty does not arise in the unweighted case, since then it is easy to show
the algorithm is always rational, since irrational A never occur. In this case, the
algorithm is close to Megiddo’s [10], [11] algorithm for the unweighted case. Thus
Megiddo’s algorithm may be viewed as a special case of the one given here.

Note. During revision of this paper, I learned that K. Clarkson has obtained an
improvement of Megiddo’s linear programming algorithm similar to the main result
of 2 of this paper. In the notation of 2, he proposes a [4, 5] scheme. This achieves
the same number of enquiries as the [2, 2], [2, 3] scheme given here, but with a rather
worse (though nonzero) lower bound for p. I am grateful to Nimrod Megiddo and
one of the referees for bringing Clarkson’s work to my attention.

Acknowledgment. I am grateful to Alan Frieze for discussions concerning the
content of this paper.

REFERENCES

[1] G. BIRKHOFF AND S. MACLANE, A Survey ofModern Algebra, MacMillan, New York, 1977 (fourth
edition).

[2] M. BLUM, R. W. FLOYD, V. PRATT, R. L. RIVEST AND R. E. TARJAN, Time bounds for selection,
J. Comput. System Sci., 7 (1973), pp. 448-461.

[3] R. CHANDRASEKARAN, The weighted Euclidean 1-center problem, Oper. Res. Lett., (1982),
pp. 111-112.

[4] D. P. DOBKIN AND R. J. LIPTON, On the complexity of computations under varying sets ofprimitives,
Lecture Notes in Computer Science, 33, Springer-Verlag, New York, 1975, pp. 110-117.

[5] Z. DREZNER AND G. O. WESOLOWSKY, Single facility lp-distance minimax location, SIAM J. Alg.
Disc. Meth., (1980), pp. 315-321.

[6] M. E. DYER, Linear time algorithmsfor two- and three-variable linear programs, this Journal, 13 (1984),
pp. 31-45.

[7] M. GR6TSCHEL, L. Lov.A,SZ AND A. SCHRIJVER, The ellipsoid method and its consequences in com-
binatorial optimisation, Combinatorica, (1981), pp. 169-197.

[8] D. HEARN AND J. VIJAY, Efficient algorithms for the (weighted) minimum circle problem, Oper. Res.,
30 (1982), pp. 777-795.

[9] R. KANNAN, A. LENSTRA AND L. LOVASZ, Polynomial factorization and non-randomness of bits of
algebraic and transcendental numbers, Proc. 16th Annual ACM Symposium on Theory ofComputing,
1984, pp. 191-200.

[10] N. MEGIDDO, Linear-time algorithms for linear proramming in R and related problems, this Journal,
12 (1983), pp. 759-776.

11] ------, Linear programming in linear time when the dimension is fixed, J. Assoc. Comput. Mach., 31
(1984), 114-127.

[12], The weighted Euclidean 1-centre problem, Math. Oper. Res., 8 (1983), pp. 498-504.
[13] E. ZEMEL, A linear time randomized algorithm for local roots and optima of ranked functions,

J. L. Kellogg Graduate School of Management, Northwestern Univ. Evanston, IL, 1983.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
008

SPARSE SETS, LOWNESS AND HIGHNESS*

JOSl L. BALCAZARf, RONALD V. BOOK:I: AND UWE SCHNING

Abstract. We develop the notions of "generalized lowness" for sets in PH (the union of the polynomial-
time hierarchy) and of "generalized highness" for arbitrary sets. Also, we develop the notions of "extended
lowness" and "extended highness" for arbitrary sets. These notions extend the decomposition of NP into
low sets and high sets developed by Sch6ning [15] and studied by Ko and Sch6ning [9].

We show that either every sparse set in PH is generalized high or no sparse set in PH is generalized
high. Further, either every sparse set is extended high or no sparse set is extended high. In both situations,
the former case corresponds to the polynomial-time hierarchy having only finitely many levels while the
latter case corresponds to the polynomial-time hierarchy extending infinitely many levels.

Key words, polynomial-time hierarchy, generalized lowness and highness, extended lowness and high-
ness, sparse sets

AMS (MOS) subject classifications. 68Q15, 03D15

Introduction. Recent studies on the structure of intractable sets have shown that
the notion of NP-completeness is not compatible with the notion of being sparse unless
the polynomial-time hierarchy has only finitely many levels. Berman [4] showed that
tally sets cannot be _-<-complete for NP unless P= NP. Fortune [6] showed that
co-sparse sets cannot be =m< e.complete for NP unless P NP. Berman and Hartmanis
[5] had conjectured that sparse sets cannot be =<m’-complete for NP unless P= NP
and Mahaney [13] showed that this conjecture was true. Other results due to Long
[10] and to Karp and Lipton [7] showed that if there exist sparse sets with certain
properties of being hard or complete with respect to certain reducibilities, then the
polynomial-time hierarchy "collapses," that is, PH ’, for some n.

In [15] Sch6ning developed a new approach to such questions. He considered a
decomposition of the class NP which depends on the number of distinct levels in the
polynomial-time hierarchy. Call a set A in NP "low" if for some n, (A)_ n,e and
call a set B in NP "high" if for some n, Ee e

,+ E, (B). Thus, if A is low, then with
respect to the operator Ee,, A does not encode the power of a quantifier, but if A is
high, then A does encode the power of a quantifier. It is easy to see that if there is a
set in NP that is both high and low, then the polynomial-time hierarchy collapses. On
the other hand, if the polynomial-time hierarchy does not collapse, then the collection
of low sets and the collection of high sets are disjoint, and, furthermore, there are sets
in NP that are neither high nor low. The structure of the low and high hierarchies in
NP reflects the structure of those sets in NP- P that are not -<_ -complete for NP. Ko
and Sch6ning [9] have shown that the sets in NP with polynomial-size circuits (hence,
also sparse sets in NP) are low in NP. Thus, if a set in NP with polynomial-size circuits
is high, then the polynomial-time hierarchy collapses.

* Received by the editors August 16, 1984, and in revised form April 1, 1985. This research was supported
in part by the U.S.A.-Spanish Joint Committee for Educational and Cultural Affairs, by the Deutsche
Forschungsgemeinschaft, and by the National Science Foundation under grant DCR83-12472. Some of the
these results were reported at the Symposium on Mathematical Foundations of Computer Science, Praha,
September 1984.

" Facultat d’Informtica, Universitat Politcnica de Barcelona, Jordi Girona Salgado, 31, 08034
Barcelona, Spain.

Department of Mathematics, University of California, Santa Barbara, California 93106.
Institut fiir Informatik, Universitit Stuttgart, Azenbergstrasse 12, D-7000 Stuttgart 1, West Germany.

739

740 JOSi. L. BALC,ZAR, RONALD V. BOOK AND UWE SCHNING

The arguments of Ko and Sch/Sning regarding lowness depend heavily on the fact
that the sets under consideration are in NP. Here we consider notions of "low" and
"high" that do not depend on the set being in NP. Call a set A "generalized low" if
there exist and j with i<-j such that EP (A)_ El’; clearly, a generalized low set is in
some level of the polynomial-time hierarchy. Every set in PH- U i_>_o EP is generalized
low since A EP implies EP (A) c Ep

2i. Call a set A "generalized high" if there exist
k and with k>l such that E’_E" (A). Notice that if A is <_-P-complete for
then E]’+I- E1P (A) so that A is generalized high. It is clear that if the polynomial-time
hierarchy collapses, then every set in PH is generalized high since PH- E’ implies
that ifA PH, then E’+- E’ (A) for all _-> 0. On the other hand, ifthe polynomial-time
hierarchy does not collapse, then the structure of the class of generalized low sets in
PH reflects the structure of PH-{L for some i, L is -<_P-complete for EP}. Clearly,
every set in PH is both generalized low and generalized high if the polynomial-time
hierarchy collapses. It is shown here that if there is a set that is simultaneously
generalized low and generalized high, then the polynomial-time hierarchy collapses.
Thus, either every set in PH is both generalized low and generalized high or no set in
PH is both generalized low and generalized high.

In the earlier studies [9], [15] subsets of NP with certain quantitative properties
were considered (e.g., sparse sets, sets with polynomial-size circuits). Thus we are led
to restrict attention to sets in PH with these same quantitative properties. We are
interested in finding classes qgl of sets in PH such that if every set in qgl is generalized
high, then the polynomial-time hierarchy collapses, and classes (2 of sets in PH such
that if one set in (2 is generalized high, then the polynomial-time hierarchy collapses
(so as noted above, every set (2 is generalized high). Here we focus on the class of
sparse sets in PH. One of our main results is that either every sparse set in PH is
generalized high or no sparse set in PH is generalized high. The former case corresponds
to the notion of the polynomial-time hierarchy collapsing while the latter corresponds
to the notion that there are infinitely many levels in the polynomial-time hierarchy.
The same result holds for the class of sets with polynomial-size circuits.

The notion of "generalized low" lifts the idea of "low" sets in NP to sets with
similar properties in PH. One can lift this notion to arbitrary sets, not just those in
PH, if one has a way of comparing them with respect to NP. This is done in the
following way.

PCall a set A "extended low" if for some n,E pn (A)c_ -n--1 (A0) SAT). Call a set A
"extended high" if for some n, E (A0)SAT)_ E,P (A). We show that every sparse set
(whether or not it is in PH) is extended low. Further, if any sparse set is extended
high, then the polynomial-time hierarchy collapses. Another of our main results is that
either every sparse set is extended high or no sparse set is extended high. Again, the
former case corresponds to the collapse of the polynomial-time hierarchy which the
latter case corresponds to that hierarchy extended to infinitely many levels.

Our purpose here is to understand the role that structural notions such as sparsity,
having polynomial-size circuits, etc., have in determining the underlying structure of
complexity classes, with emphasis on the properties of feasibly computable sets. We
believe that our results shed new light on the role of sparse sets in determining the
structure of the polynomial-time hierarchy.

2. Preliminaries. It is assumed that the reader is familiar with the basic concepts
from the theories of automata, computability, and formal languages. Some of the
concepts that are most important for this paper are reviewed here, and notation is
established.

SPARSE SETS, LOWNESS AND HIGHNESS 741

For a string w, [w[denotes the length of w. The empty string is denoted by e, [e[0.
For a set S,]]SI] denotes the cardinality of S.
It is assumed that all sets of strings are taken over some fixed alphabet E that

includes {0, 1}. If A
_
E*, then , E* A.

For sets A,B_E*, the join of A and B is defined as A0) B-
{ Oxlx A) t3 (lyl y B}.

For a set S and an integer n _-> 0, let S, denote {x SI Ix] n}.
Let < denote any standard polynomial time computable total order defined on

E*. We consider e(. to be an encoding function. For a finite set S
_
E*, let e(S)

denote some standard encoding of S into a single string in E*. We use the notation
(.,.) to denote a polynomial-time pairing function on * and generalize it to n-tuples
in the usual way. Observe that it is possible given (x, e(S)) to determine in polynomial
time whether x S.

We assume standard definitions of oracle machines and relativized complexity
classes specified by deterministic or nondeterministic oracle machines that are time-
bounded or space-bounded. See [8], [11], [15], or [18] for details. In particular, Long
[11 has studied the notion of "strong nondeterministic" reducibility. Define A _-< N B
if A NP(B) and A NP(B). This is equivalent to NP(A)

_
NP(B).

For an integer k > 1, a polynomial p, and a set L, we may define a set A as follows"
x A if and only if (:lyl)p (QkYk)p((X, Yl," ", Yk) L). The quantifiers are intended
to alternate between existential and universal so that if k is even, then Qk is universal,
and if k is odd, then Qk is existential. For each i, the domain of y is bounded:
]y,l<=p(lx]). Similarly, we may define a set B as follows" xB if and only if

(Vyl)p""" (QkYk)p((X, Yl,’’’, Yk) L). Now Qk is universal if k is odd and existential
if k is even.

Now we review some well-known properties of the polynomial-time hierarchy.
We refer the reader to the papers of Stockmeyer [17] and Wrathall [18] where the
properties of this hierarchy were first described.

DEFINITION 2.1. (a) Let A be a set. Define EoP (A) HoP (A) A’(A) P(A), and
for each integer i->0, define A+I(A)=P(EP(A)), EP+I(A)=NP(HP(A)), and
H,’+(A)--co-E,’+(A). The structure {(AP(A), EP(A), H,’(A))) is the polynomial-time
hierarchy relative to A. Define PH(A)= U i>__o EP(A).

(b) For each integer i_->0, define AP AP(b), EP EP(th), and IIP IIP(b). The
structure {(A P, E P, A P)},_>_o is the polynomial-time hierarchy. Define an (J ,>-o E P.

Recall that for each k->_ 1, a set A is in 5: if and only if there is a set B P and
a polynomial p such that for all x, x A ifand only if (:ly)p. (QkYk)p((X, Y," ", Yk)
B). A similar characterization of the classes II, k _-> 1, also holds.

It is clear that for every set A and every integer i>-O, AP(A)_E(A)f’)II.P,(A)
E.P,(A)UII.P,(A)_A.P,+I(A). Also, for every set A and every integer i>_-0, AP+I(A)
P(IIP(A)) and EP+I(A)=NP(EP(A)). For any A and i_->l, if ;,’(A)=II,’(A) or
AP(A) =EP(A) or A(A)=II,’(A), then the polynomial-time hierarchy relative to A
contains only finitely many different classes.

It is known [3] that there is a set B such that EPI(B)E(B)EPa(B) but it is
not known whether there is any set C such that the polynomial-time hierarchy relative
to C is infinite.

Clearly, for every set A, PH(A)= [3 >__oIIP(A) and PH(A)= U __>o AP(A). For the
most part the definition of PH(A) as (J _->o EP(A) is the most useful here.

3. The decomposition of PH. There are a number of results that give conditions
on NP under which the polynomial-time hierarchy collapses to E Pn for some n, that

742 JOSI L. BALC,EAR, RONALD V. BOOK AND UWE SCHtNING

is, PH -EP. For example, Mahaney [13] has shown that P= NP if and only if there
is a sparse set S that is _-<-complete for NP, and Long [10] has shown that if
there is a sparse set S such that NP_ P(S) and S is in A2P, then PH A2P. Sch6ning
[15] developed a decomposition theory for NP that generalizes many of these
results.

DEFINITION 3.1 [15]. For each integer n > 0, let L, {A NPIP(A)
_
P} and

let H, {A NP[EPn+l E.P(A)}. Let Ln U .>o L. and nn U .>o H..
PROPOSITION 3.2 [15]. (a)The polynomial-time hierarchy has only finitely many

levels if and only if LH l HH # . Also, LH CI HH # if and only iffor some n > O,
L,, H. LH HH NP.

(b) The polynomial-time hierarchy has infinitely many levels if and only if NP-
(LHO HH) .

One of the contributions of the present paper is to extend the techniques of [15]
to develop a decomposition of the class PH that is similar to the decomposition of
NP. In this section we describe this decomposition. In 4 we study some of the
conditions that cause the polynomial-time hierarchy to collapse, conditions that can
be defined on classes in this decomposition.

DEFINITION 3.3. For every i,j>O, define L(i,j)={Al,V(A)_,}. For every k,
1>0, define n(k, l)={A[,_,(A)}.

Notice that for each n>0, L,= L(n, n) ffl NP and H,= H(n+ 1, n) ffl NP. We call
sets "low" if they lie in LH U >o L. and "high" if they lie in HH U >o H, and
we use the term "generalized lowness" to refer to properties of sets in U ia L(i, j) and
the term "generalized highness" to refer to properties of sets in U k, H(k, l).

Consider generalized lowness. Clearly, if AL(i,j), then AE] so that
U ia L(i, j)_ PH. On the other hand, it makes no sense to take >j when considering
L(i,j) since for i>j, L(i,j)= if]’]’+1 and L(i,j)=PH if]’=E]+I. Thus, we
consider classes L(i, j) only when i<-_j.

Which lowness properties are significant? Let AEP.. Then for any i, P(A) c_

EP(Ev) Ev+ so that ifj->_ i+ n, we have AL(i,j) trivially. Thus, if AEv, then the
lowness property A L(i,j) has significance only if i<-j < i+ n.

There are some obvious inclusion relations.
PROPOSITION 3.4. For all i, j, L(i, j)

_
L(+ 1, j + 1) ffl L(i, j + 1) L(1, j).

Consider generalized highness. Clearly, if k_-

E’(A) so that H(k,/)=2*. Thus, we consider classes H(k, l) only when k> I.
Which highness properties are significant? If A is _-< -complete for E v, then

E’(A) +, so that for k > + n, A e H(k, l) implies that the polynomial-time hierarchy
collapses. More precisely, if k>l+n, then EPflH(k,/)= if E+,#E’++I and
H(k, l)= H(/+ n, l) if E’+ ’++. Thus, if A
H(k, 1) has significance only if < k _-< + n.

There are some obvious inclusion relations.
PROPOSITION 3.5. For all i,j, H(i,j)

_
H(i+ 1,j+ 1) H(i,j+ 1) ffl H(i- 1,j).

There are some characterizations of certain of these classes. The proofs are left
to the reader.

PROPOSITION 3.6. (a) For every j, L(1, j)]’ II.
(b) For every k, n(k+ 1, 1) ={A[A is <-_sN-hard for
Seh6ning [15] showed that the polynomial-time hierarchy collapses if and only

if there exist m and n such that Lm H . This is a consequence of the following
fact.

THEOREM 3.7. If L(i, j) H(k, l) f and j + + k, then the polynomial-time
Phierarchy collapses to ,maxt, t+-.

SPARSE SETS, LOWNESS AND HIGHNESS 743

Proof LetA6L(i,j)CIH(k,l). SinceA6L(i,j),,.P,(A)Y.sothat_ max{i,P o(A) -P’max{i,I}+j-i. Since AH(k,I), EE(A) so that e e,k+max{i, l}_l
___. ,max{i, l}(A). Thus,

P P P
k+max{i, I}-I " which implies that PH Xmax{i, l}+j-imax{i,l}+j-i provided that k- l>j-

or, equivalently, j + < + k.
Consider the proof of Theorem 3.7. The crucial parameter in the argument is the

difference j-i or the difference k-1. One might define a set A to be n-low if there
exist and j such that both n =j-i and also A L(i,j). Similarly, one might define
a set A to be n-high if there exist k and such that both n k- and also A e H(k, l).
Then Theorem 3.7 can be restated as follows: For every n >-0, no set can be both
(n + 1)-high and also n-low unless the polynomial-time hierarchy collapses.

The notion of "A is n-low" may be interpreted as setting an upper bound on the
amount of information that can be encoded in A: the set A has the power of at most
n alternating quantifiers or of the composition of at most n applications of the NP(
operator. Similarly, the notion of "A is n-high" can be interpreted as setting a lower
bound on the amount of information that can be encoded in A" the set A has the
power ofat least n alternating quantifiers, or ofthe composition ofat least n applications
of the NP(operator. Thus, Theorem 3.7 can be interpreted as saying that no set in
PH can have the power of at most n alternating quantifiers and also have the power
of at least n + 1 alternating quantifiers (unless PH collapses to level n, i.e., PH

4. Generalized and extended lowness and sparse oracles. The property of being
generalized low asserts that the usefulness of a set as an oracle set is quite restricted.
If A L(i,j) where -<_j, then A does not have the power of more than j- alternating
quantifiers since Ee(A)_ El’. What type of sets has this property? Ko and Sch6ning
[9] studied sets in NP that have this property. As noted in 3, any generalized low
set is in PH. We want to exhibit sets in PH that have this property.

Consider tally sets in the polynomial-time hierarchy. Notice that for any tally set
T there is a polynomial-time oracle machine that on input 0 will enumerate relative
to T the set of strings in T of length at most n. Suppose that T is a tally set in E’.
By first enumerating the appropriate initial segment of T and then simulating a k+

oracle machine, one can show that E’+(T)= E’+. Hence, for every k, if T is a tally
set in E ke, then T L(k + 1, k + 1).

In a similar way (e.g., see [10]) it can be shown that if S is a sparse set and S E’,
then S L(k+ 1, k+ 1). We can show that if S has polynomial-size circuits and
S e E’, then S e L(k + 2, k + 2). However we will establish a more general theorem.

THEOREM 4.1. For any set A, if there is a sparse set S and integers n, k with n > k
such that A E(S) and A , e,,, then A is in L(n k+ 2, n + 2).

Proof. Since A E’(S), there are a polynomial p and a deterministic polynomial
time-bounded oracle machine M such that for all inputs x, x A if and only if
(=ly). "’(QkYk)(X, yl,’" ",yk)L(M,S). Let B={(x,c(T))IT is a finite set and
(::iy)... (QkYk)p(X,y,’’" ,yk)eL(M, T)}. Clearly, B is in E’. Since S is sparse,
there is a polynomial q such that for all n, IIS _ ll <--q(n).

Let > 0 and consider any C E(A). There are a polynomial r and a deterministic
polynomial time-bounded oracle machine M2 such that for all u, u e C if and only if
(lz)... (Qz)(u, Zl,’", z)eL(M2, A). There is a polynomial s (depending on p
and the time bound of M) such that for all u, u C if and only if there is a finite set
T whose elements are of size at most s(lul) and Tll--< q(s(ul)) such that (i) (x, c(T))e
BC xA, and (ii) (=lz). (Qz)(u,z,. .,z)eL(M2,(wl(w, c(T))eB)). The

e B E’ and k < n. The predicatepredicate described by (i) is in II,+e because A
described by (ii) is in Ee(B) EP(E’) Ee+k.

744 JOSl L. BALCZAR, RONALD V. BOOK AND UWE SCHNING

Thus, membership in C is described by a predicate of the form ::l(I-I P+ A+)
where the existential quantifier is polynomially bounded so that C is in Pmax{n+2, i+k}"

Hence, C is in P.+2 if we choose n k + 2. Hence we have shown that P_k+2(A)
_

EP/ so that AL(n-k+2, n+2).
Observe that A L(n k + 2, n + 2) for a set A ,P is a "significant" lowness

condition as described in 3 since n k + 2 -< n + 2 < 2n k + 2 since k < n. Also, notice
that in the case k 0 and u 1, we have A NP and A P(S) so that A L(3, 3). Since
NPfq L(3, 3) L3, we see that sets in NP with polynomial-size circuits are in L3. This
was first proved by Ko and Sch6ning [9].

COROLLARY 4.2. Let A be a set that is <-SN-completefor , P. Suppose thatfor some
sparse set S and some k < n, A ,(S). Then A is in L(n-k+ 2, n/2) and the poly-

Pnomial-time hierarchy collapses to E,+2.
Proof. Since A is -< SrN-complete for E P PE,+ EP(A) so that A H(n + 1, 1).

Also, A is in E,Pn E’(s) and k<n so that A is in L(n-k+2, n+2) by Theorem 4.1.
Thus, A L(n k+ 2, n + 2) n H(n + 1, 1) so that the polynomial-time hierarchy collap-
ses to P

n/2 by Theorem 3.7.
Notice that in both Theorem 4.1 and Corollary 4.2, the condition that S be sparse

could be replaced by the condition that S have polynomial-size circuits and the
conclusions will still hold. A set that is in a certain level of the polynomial-time
hierarchy relativized to a sparse set might be called "pseudo-sparse." This notion
encompasses such properties as a set being in "almost polynomial time" (APT) [14],
a set having E’-circuits [9], a set having small generators 16], 19], and other properties
that can be translated to being recognized relative to a sparse set, that is, properties
that can be expressed by membership in a set in U {PH(S)[S is sparse}.

From one viewpoint the notion of generalized lowness should not force sets to
be in PH but rather should apply to all sets with some particular property, e.g., to all
sparse sets. This requires a change in the definitions. One way to accomplish this is
as follows.

DEFINITION 4.3. For each n>0, let EL, ={AIEnP(A)_EP._I(A0)SAT)} and let
EH,={AI,P,(AO)SAT)_,P(A)}, Let EL= U EL, and EH= U EH,. A set is exten-
ded low if it is in EL and is extended high if it is in EH.

Let K be any set that is <_P-completem for PSPACE. Clearly, for all n, E,P(K)
E,P_(K0)SAT)=EP(K0)SAT)=PSPACE. Thus, K is in ELf’IEH, so EL and EH
are not disjoint. However, it is easy to see that EL f’l EH f’l PH is empty if and only if
the polynomial-time hierarchy is infinite.

THEOREM 4.4. If S is sparse, then S EL3.
Proof. Let B E’(S). We must show that B E’(S0) SAT). Since B E’(S), there

is a polynomial p and a deterministic polynomial time-bounded oracle machine M
such that for all strings x, x B if and only if (]yl)p(Vy2)p(:qy3)p(X, Yl, Y, Y3) L(M, S).
Since S is sparse, there is a polynomial q such that for all n, II--< q(n), Thus, there
is a polynomial r such that for all strings x, x B if and only if there exists a set T of
size at most (Ixl) such that (i) for all u with lul-< r(lxl), u T if and only if u s, and
(ii) (ly)(Vy2)(iy3)(x,y,y2, Y3)L(M, T). The predicate described by (i) is in
IIP(s) and the predicate described by (ii) is in E’ =E2P(SAT). Thus, membership in
B is described by a predicate of the form I(IIP(s)^E’(SAT)) so that B is in
E’(S0)SAT). Hence, E’(S)_ E2P(s0)SAT) so S EL3. l-]

Recall that a set A has polynomial-size circuits if and only if there is a sparse set
S such that A P(S). The proof of Theorem 4.4 can be trivially modified to yield the
following fact.

COROLLARY 4.5. IfA has polynomial-size circuits, then A is in EL3.

SPARSE SETS, LOWNESS AND HIGHNESS 745

The notions of extended lowness and extended highness appear to be natural
extensions of the basic idea of Sch/Sning that was developed in [15]. It is easy to see
that for every n, EL, f’l NP L, and EH, f’) NP H,.

5. Generalized highness and sparse sets. The property of being generalized high
asserts that using such a set as an oracle set is an advantage. If A H(k, l) where k > l,
then A has the power of at least k-l alternating quantifiers since E’ c__ E’(A). What
type of sets have this property? Sch6ning [15] showed that certain types of complete
sets for NP have this property and it is easy to see that similar sets in each of the
classes XP, > 0, have this property.

It is known [10], [13] that if a sparse set is hard for NP with respect to <- or
even weaker reducibilities such as <-STN, then the polynomial-time hierarchy collapses.
Being hard for any of the classes EP, i> 0, represents a certain "highness." Thus, we
consider the situation in which a sparse set is generalized high. We need the following
notion.

DEFINITION 5.1. A set A is self-reducible if there exists a deterministic polynomial
time-bounded oracle machine M such that (i) on input of size n, M queries the oracle
only about strings of length at most n- 1 and (ii) L(M, A) A.

This definition captures the essential idea of the seemingly more general notions
due to Ko [8] and Meyer and Paterson [14]. Notice that there are >--complete
sets for NP that are self-reducible, and that at each stage E’ of the polynomial-
time hierarchy, the -<_P-complete set for E’ described by Wrathall [18] is self-
reducible.

Condition (ii) of the definition of self-reducible set may be interpreted as saying
that the set is the unique fixed point specified by the oracle machine. We say this
formally as follows.

LEMMA 5.2. Let A be a self-reducible set and let M witness A’s self-reducibility. For
any set B and any n, if L(M, B) <= B<__ then A<_ B<__

Now we have our results.
LEMMA 5.3. Let A be a self-reducible set. Suppose that for some k >= 0 and some

sparse set S,AE(S) Then AL(2, k+2), that is, ,;(A)c,P
k+2-

Proof. Let M witness A’s reducibility so that M is a deterministic polynomial
time-bounded oracle machine. Since A E(S) there are a polynomial p and a deter-
ministic polynomial time-bounded oracle machine M2 such that for all x, x A if and
only if (=ly),. (Qyk)p(x, Yl," ", Yk L(M2, S). For each finite set T, define the set

AT as follows: AT {xl(::lyl)" (QkYk)(X, Y,’" ", Yk) L(M2, T)}. Then for each
T, ATe,(T)=,.

Let L be an arbitrary set in X(A). Then there are a polynomial q and a
deterministic polynomial time-bounded machine M3 such that for all x, x e L if and
only if (::lV)q(VW)q(x, v, w) L(M3, A).

Now consider membership in L. For some polynomial r and all x, x L if and
only if there is a set T of size at most r(Ixl) such that

(i) for all u, u L(M1, AT) if and only if u AT, and
(ii) (=lv)q(VW)q(X, v, w)L(M3, AT).
The predicate described by (i) implies that M3 accepts a suitably small input string

relative to AT if and only if it accepts that input string relative to A; this follows from
Lemma 5.2. Now the predicate described by (i) is in H’+I and the predicate described
by (ii) is in E+2 since AT,, SO that membership in L is described by a predicate
of the form :l(II+ ^ +2). Thus, L is in EPk+2.

Since L was chosen arbitrarily in X’(A), this yields 5:2(A)_ kP/2 as desired.

746 Jos L. BALC,ZAR, RONALD V. BOOK AND UWE SCH6NING

THEOREM 5.4. Ifthere exists a sparse set that is generalized high, then thepolynomial-
time hierarchy collapses. That is, if there is a sparse set S such that for some k, with
k> l, S H(k, l), then ;’+=II’+= PH.

Proof. Suppose that E’
_
E’(S) where S is sparse and k> I. Let A be a set that

is both self-reducible and also <_-P-complete,, for E’. Since A is self-reducible and
A e 5’

_
.’(S), we have EEe(A)

_
E’+2 by Lemma 5.3. Since A is _-< P-completem for

E ’, ’(A) ’+2 implies +2 CZ ff+2" Since k + 2> l+ 2, II ’+2 c --+2 SO that+2 1+2

implies II +2 c Xe
+2. Hence, PH Xe+2 II’+2.

THEOREM 5.5. If there exists a sparse set S such that S is extended high, then the
polynomial-time hierarchy collapses.

Proof. Let S be sparse. If S is in EH., then E,P(s0)SAT)c__ E,(S). Let A be any
set that is <" complete for=p ,+ and is self-reducible. Thus, E2P(A)=E e"+3. Now

P P P PA e Y-,.+I c EP(ssAT) E,P(S) so by Lemma 5.3, E2P(A)
_

’n+2" Hence, ’n+3 ’.’,n+2
P P

SO ’n+3 n+2 PH. [-!

Clearly, the notion of "sparse set" can be replaced by the notion of "set with
polynomial-size circuit" in both Theorem 5.4 and Theorem 5.5 and the conclusions
will not change.

Theorem 5.4 generalizes a number of results that assert conditions that force the
polynomial-time hierarchy to collapse. Some of these conditions are as follows:

(a) there is a sparse set S such that SAT_<- P,.S[13];
(b) there is a sparse or co-sparse set S that is =< r-complete for NP [10], [13];
(c) NP has polynomial-size circuits [7];
(d) NP_ APT [14];
(e) NP=R[1];
(f) there are a sparse set S and an integer k such that PH_ X’(S);
(g) NP is p-selective [8];
(h) NaG BPP [1].
Theorem 5.4 generalizes results of Karp and Lipton [7] and of Yap [19]. The

interested reader might compare the proofs of Lemma 5.3 and Theorem 5.4 with those
in [7] and [19].

6. Main result. In Theorem 5.4 we showed that the existence of a sparse set that
is generalized high causes the polynomial-time hierarchy to collapse. Clearly, if the
polynomial-time hierarchy does collapse, then every sparse set in the polynomial-time
hierarchy is "n-high" for sufficiently large n and so is generalized high. Thus, we have
the first of our two main theorems.

THEOREM 6.1. Either every sparse set in PH is generalized high or no sparse set in
PH is generalized high.

In Theorem 5.5 we showed that the existence of a sparse set that is extended high
causes the polynomial-time hierarchy to collapse. But it is conceivable that one sparse
set $1 might be extended high while another sparse set $2 is not extended high. However,
this cannot be the case.

PROPOSITION 6.2 [12]. If the polynomial-time hierarchy collapses, then for every
sparse set S, the polynomial-time hierarchy relative to S collapses. That is, iffor some
k -> 2, E ’ II ’, then for every sparse set S, ,(S) II (S).

Proof. Let S be sparse. Suppose that for some k->_ 2, E’ II ’. It suffices to show
that if AII’(S), then A,(S). Since A II’(S), there is a polynomial p and a
deterministic polynomial time-bounded oracle machine M such that for every x, x A
if and only if (Vyl)p(::lyE)p... (QkYk)p(X, Y,"" ", Yk) L(M, S). Hence, xA if and
only if (Vyl)p(:iy2)p. (QkYk)(X, Yl," ", Yk) L(M, S_<qlxl)) for some appropriate

SPARSE SETS, LOWNESS AND HIGHNESS 747

polynomial q. Let

B {(x, c(T))[T is a finite set and

(VY),(::IyE)p (QkYk)p(X, y, Y2,""", Yk) L(M, T)}.

From the quantifier characterization of PH, it is clear that B II ’ E’ E’. Using B,
membership in A can be expressed as follows" x e A if and only if there exists a finite
set T such that (i) (Vu)q[u T if and only if u S] and (ii) (x, c(T)) B. This predicate
has the form I(C ^ B) where C e II P($) and B e II ’ E ’. Since k => 2, this yields
A,(S). !"1

Thus, if the polynomial-time hierarchy collapses, then for every sparse set S there
is an integer k > 0 such that PH(S) E’(S). Since NP PH

_
PH(S), this means that

E’(SSAT) E’(S) so that S is extended high. Thus, we have our other result.
THEOREM 6.3. Either every sparse set is extended high or no sparse set is extended

high.

REFERENCES

L. ADLEMAN, Two theorems on random polynomial time, Proc. 19th IEEE Symposium on Foundations
of Computer Science, 1978, pp. 75-83.

[2] T. BAKER, J. GILL AND R. SOLOVAY, Relativizations of the P ? NP question, this Journal, 4 (1975),
pp. 161-173.

[3] T. BAKER AND A. SELMAN, A second step towards the polynomial-time hierarchy, Theoret. Comput.
Sci., 8 (1979), pp. 177-187.

[4] P. BERMAN, Relationships between density and deterministic complexity of NP-complete languages, Proc.
5th ICALP, Lecture Notes in Computer Science 67, Springer-Verlag, Berlin, pp. 63-71.

[5] L. BERMAN AND J. HARTMANIS, On isomorphisms and density of NP and other complete sets, this
Journal, 6 (1977), pp. 305-322.

[6] S. FORTUNE, A note on sparse complete sets, this Journal, 8 (1979), pp. 431-433.
[7] R. KARP AND R. LIPTON, Some connections between nonuniform and uniform complexity classes, Proc.

12th ACM Symposium on Theory of Computing, 1980, pp. 302-309.
[8] K. Ko, On Self-reducibility and weak P-selectivity, J. Comput. Syst. Sci., 26 (1982), pp. 209-221.
[9] K. Ko AND U. SCH6NING, On circuit-size complexity and the low hierarchy in NP, this Journal, 13

(1984), pp. 41-51.
10] T. LONG, A note on sparse oracles for NP, J. Comput. Syst. Sci., 24 (1982), pp. 224-232.
11] ., Strong nondeterministicpolynomial-time reducibilities, Theoret. Comput. Sci., 21 (1982), pp. 1-25.
12] T. LONG AND A. SELMAN, Relativizing complexity classes with sparse oracles, J. Assoc. Comput. Mach.,

to appear.
13] S. MAHANEY, Sparse complete setsfor NP: solution to a conjecture ofBerman and Hartmanis, J. Comput.

Syst. Sci., 25 (1982), pp. 130-143.
14] A. MEYER AND M. PATERSON, With whatfrequency are apparently intractable problems difficult?, MIT

Technical Report, Massachusetts Inst. of Technology, Cambridge, MA, February, 1979.
[15] U. SCHNING, A low- and a high-hierarchy in NP, J. Comput. Syst. Sci., 27 (1983), pp. 14-28.
[16], A note on small generators, Theoret. Comput. Sci., 34 (1984), pp. 337-342.
[17] L. STOCKMEYER, The polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976), pp. 1-22.
[18] C. WRATHALL, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci., 3 (1976),

pp. 23-33.
[19] C. YAP, Some consequences of nonuniform conditions on uniform classes, Theoret. Comput. Sci., 26

(1J83), pp. 287-300.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
OO9

DIGITAL SEARCH TREES REVISITED*

PHILIPPE FLAJOLETt AND ROBERT SEDGEWICK

Abstract. Several algorithms have been proposed which build search trees using digital properties of
the search keys. A general approach to the study of the average case performance of such algorithms is

discussed, with particular attention to the analysis of the digital search tree structures of Coffman and Eve.
Specifically, the method leads to the solution of a problem left open by Knuth, finding the average number
of nodes in digital search trees with both sons null.

The paper may be of interest as a survey and tutorial treatment of the analysis of the three primary
digital tree search methods: digital search trees, radix search tries, and Patricia tries.

Key words, analysis of algorithms, search trees, path length, asymptotic analysis, partitions

1. Introduction. A fundamental problem in computer science is the so-called
dictionary problem, where various operations, chiefly search and insert, are to be
performed on a set of records possessing key values. To insert a record is to store it
away for later retrieval; to search is to find a previously stored record with a given
key value. The binary search tree is an elementary data structure for solving this
problem: records are stored in nodes which contain two distinguished values (left and
right) which point to other nodes or could be null. One node, called the root, is pointed
to by no other nodes, otherwise each node is referenced by exactly one other node.
To search for a record with value v, we set x to point to the root and perform the
following operations until termination:

If x is null then terminate (v not found).
If key(x)= v then terminate (v found).
Otherwise, if v < key(x) then set x to left(x);

if v > key(x) then set x to right(x).

To insert a new record with a new value v, we search, then replace the null pointer
that caused termination with a pointer to the new record. The analysis of the perform-
ance of this method is well-known: if records with keys from a random permutation
of N elements are successively inserted into an initially empty tree, then the expected
number of nodes examined in a successful search in the resulting tree is

2 1+ Hr-3=(21n2) lgN+2y-3+u N]"
See [9] for details. Throughout this paper we use the notations Hv--EI<_k<=N 1/k
In N+y+I/2N+O(1/N2), where y=.57721. is Euler’s constant; lg N--log2 N;
and In N--log, N. The approximate value of the coefficient of lg N in the leading
term is 1.38630.... For a perfectly balanced tree, the coefficient would be 1, but an
O(N) worst case is possible (for example if the keys are inserted in ascending order).
Several methods are available to make the worst case search time close to lg N. One
technique is to periodically perform structural modifications on the trees to keep them

* Received by the editors April 3, 1984, and in revised form April 24, 1985.
f INRIA, Rocquencourt, France.

* Department of Computer Science, Princeton University, Princeton, New Jersey 08544. The research
of this author was done primarily while visiting at INRIA, and was also supported in part by the National
Science Foundation under grant MCS-83-08806 and by DARPA under contract N00014-83-K-0146 while
the author was at Brown University, Providence, Rhode Island.

748

DIGITAL SEARCH TREES REVISITED 749

"well-balanced" (for example, see [16]). In this paper we consider in detail an
alternative class of methods.

The digital search tree 1 is a data structure which leads to much improved worst
case performance (and asymptotically optimal average case performance as well) by
making use of the digital properties of the keys, if that is appropriate. We simply
assume that the keys can be represented as binary numbers so that it makes sense to
refer to the bth bit of a key, where the bits are numbered, say, from left to right. Then,
to search for a record with value v, we set x to point to the root and b to 1, then
perform the following operations until termination:

If x is null then terminate (v not found).
If key(x)= v then terminate (v found).
Otherwise, if the bth bit of v is 0 then set x to left(x);

if the bth bit of v is 1 then set x to right(x)
Setbtob+l.

Insertion is done exactly as with binary search trees (i.e., the null pointer which caused
termination is replaced by a pointer to the new record).

0 1

FIG.

Figure 1 shows a digital search tree built by inserting the keys 010 (Q), 110 (R), 111
(S), 001 (T), and 000 (U) in that order. Note that the order in which the keys are
inserted is relevant. For example, the tree shown in Fig. 2 results from inserting the
same keys in reverse order: 000 (U), 001 (T), 111 (S), 110 (R), and 010 (Q).

FIG. 2

In some implementations, it may be convenient to assume that the keys are all of
the same length, as in the examples above. The method also is appropriate for varying
length keys, provided that no key is a prefix of another. The number of nodes examined
in a digital search tree of N keys is limited by the number of bits in the keys, which
is larger than lg N but is likely to be within a constant factor for many natural situations.
The average case performance of this method is also known (in the analysis we assume
that the keys are infinitely long): if N records with keys composed of random bit
streams are inserted into an initially empty tree, then the average number of nodes
examined during a successful search in the resulting digital search tree is

lgN+
y-1 3 (! VN)+--a+(N)+O

o

In 2 2

750 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

where a is a constant between 1 and 2, and 8(N) is a small (I(N)I < 10-6) oscillatory
term (8(2N)= 8(N)) which are defined in detail in the next section. This is about
38% less than for binary tree search, but note that the results are not necessarily
directly comparable because the input models differ. The above result is due to Konheim
and Newman [11]; the refinement including the periodic term is due to Knuth [9, Ex.
6.3-27]. In this paper we give an alternate derivation that generalizes to yield other
statistics about the trees, in particular solving a problem left open by Knuth [9, Ex.
6.3-29].

Digital search trees are easily confused with radix search tries, a different applica-
tion of essentially the same idea. A binary trie has two types of nodes: internal nodes,
which consist of left and right pointers only; and external nodes, which consist of keys
only. To search for a record with value v in a binary trie, we set x to the root and b
to 1, then perform the following operations until termination:

If x is external, then terminate
(if key(x)= v then v found, otherwise v not found).
Otherwise, if the bth bit of v is 0 then set x to left(x);

if the bth bit of v is 1 then set x to right(x).
Setbtob+l.

Insertion is more complicated in tries than in binary or digital search trees. On
termination of an unsuccessful search for a key v to be inserted, we have two keys
which belong in the same external node. If the bth bits of those keys differ, we replace
that external node by an internal node which points to two external nodes containing
the keys; otherwise we have to also include an internal node corresponding to each
bit beyond the bth for which the two keys match. Figure 3 shows the trie for our
example set of keys {010 (Q), 110 (R), 111 (S), 001 (T), and 000 (U)}.

0 1

0 1

FIG. 3

In contrast to digital search trees, the same trie is constructed no matter in what
order the keys are inserted. Tries can have more than N internal nodes to store N
keys; also handling multiple node types is inconvenient in many programming environ-
ments. It is possible to eliminate both of these problems (see below). Most interesting
statistics for tries have been fully analyzed; for example, if N records with keys from
random bit streams are inserted into an initially empty trie, then the average number
of nodes examined during a successful search in the resulting trie is

lg N+i-+ + 8(N) + O

even though the average number of internal nodes in the trie is about N/ln2
1.44269... N.

DIGITAL SEARCH TREES REVISITED 751

It is possible to ensure that a trie constructed with N keys has just (N- 1) internal
nodes by collapsing one-way branches on internal nodes. Figure 4 shows the result of
this on our example.

FIG. 4

Equal bits in keys do not affect the structure of such tries. The programming
details of how to accomplish this are not relevant to this paper. We refer to these
structures as Patricia tries [9] because they are the basis of an alogrithm called Patricia
which also manages to store the keys in internal nodes and thus avoid the multiple-node-
type problem referred to above. Patricia is somewhat more complicated than digital
tree searching, but it has applications beyond searching which make it of independent
interest. From an analytic standpoint, direct comparisons between Patricia and digital
searching are suggested because they both build search keys into (the same class of)
binary tree structures, using digital properties of the keys. Knuth has probed many
aspects of Patricia in depth: for example, the number of nodes examined in an average
successful search is one less than for standard tries.

Many more details on the use and application of these methods may be found in
[9] and [16]. In this paper we present new results on the analysis of digital search
trees. The above introductory description is intended to motivate this analysis and to
provide a context within which we can discuss the relationship of the methods we use
to previous analyses of the various algorithms. In the next section, we give an analysis
of the average internal path length of a digital search tree which illustrates our basic
method and provides an alternate derivation to the one provided by Knuth for this
problem. Following that, we use the same general method to find the average number
of nodes in a digital search tree with both links null, a somewhat more complicated
problem left open by Knuth. In 4 we consider M-way branching. Section 5 is a
discussion of various generalizations.

2. Path length. The internal path length of a tree is the sum of the number of
nodes on the path from the root to each node in the tree. The average number of nodes
examined during a successful search in a search tree with N nodes is one plus the
internal path length divided by N.

Let AN be the average internal path length of a digital search tree built from N
(sufficiently long) keys comprised of random bits. Then we have the fundamental
recurrence relation

(1) Av N- 1+ 2N_1k
N=>I

with Ao defined to be 0. This follows from three easily established facts. First, the
internal path length of any tree of N nodes is N-1 plus the internal path length of
the two subtrees of the root. Second, the probability that the left subtree of the root
has k nodes (and the right subtree has N- 1 k nodes) is (k-1)/2N-l, the probability

752 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

that exactly k of the N-1 nodes that are inserted after the first node start with a 0
bit. Third, the subtrees themselves are randomly built according to the same model.
Recurrence relations of this type are used to describe the performance of many
tree-searching methods. As discussed further below, slight differences in the equations
can make the analysis somewhat more intricate.

By symmetry (change k to N- 1 k in the second part of the sum), the recurrence
(1) is equivalent to

AN=N-I+2’21"-i(N-I) N>-I

with Ao defined to be 0. This recurrence is transformed into a functional equation on
the exponential generating function A(z)= N>o Avzn/N! by multiplying both sides
by zV-1/(N 1) and summing for N >- 1"

+2 E 2-1(u-1) (n-2) u-1)N2 OkN-1

ak () -1 1

k0 N= +1

Ak(Z/2)k (z/E)n
=ze+2 E E ,

kO k no N!

A’(z) z e + 2A(z/2) ez/2.

This difference-differential equation can be transformed into a somewhat more manage-
able form by introducing the generating function B(z) >_o BNz!N! with

B(z)=-e-ZA(z).

That is, A(z)=eZB(z) and A’(z)=eZB’(z)+eZB(z). In terms of B(z), the above
difference-differential equation becomes

B’(z)+ B(z)= z+B(z/:Z).

This corresponds to a simple recurrence on the coefficients

1
Bv + Bv-1 2v_2 Bv_,,

or

(1)Bn 1 2N_’"2 BN-1, N >- 3,

with B2-- 1, which telescopes to give an explicit formula for Bn"

j--- N-2

Similar quantities arise in the theory of partitions, and we shall have occasion later to
use classical identities from that theory. We have Bv (-1)NQ_2, where

Ij<--N

As N, this approaches the limit Q .288788.... Now, expanding the formula

DIGITAL SEARCH TREES REVISITED 753

A(z)=eZB(z) shows that AN=k ()Bk, SO (after handling initial conditions) we
obtain an explicit formula for AN"

k>=2 k
(--1)kQk_2.

It remains to evaluate this sum.
At this point, it might be worth noting the relationship between this derivative

and the corresponding derivation for binary tries. The fundamental recurrence for tries
is

(3) A]= N+k- (Akr]+A!k), N>-2,

with Aor and Ar both defined to be 0. This is the number of nodes examined during
all successful searches, but it is the average external path length of the trie. Note that
since no key is stored at the root, the subtrees have a total of N keys. The resulting
functional equation on the exponential generating function is not a ditterence-ditteren-
tial equation but simply a difference equation:

A[r](z)= z(e 1)+2A[r](z/2) ez-2.

It is still convenient to transform the equation with A(z) e B(z) to get the equation

Btr](z) z(1 e-z) + 2Btr(z/2).
This yields directly

and

A]= (N) k(-1)k

k2 k 1-1/2k-1

which is somewhat simpler than (2) and can be handled directly the Mellin transform
techniques [2], as described in full detail in [6] and [9, 5.2.2].

The fundamental recurrence for the average external path length of Patricia tries
is trickier:

(4) A N 1 2_ + + N> 1N-k

with AoP defined to be 0. The external path length of a Patricia trie is the sum of the
external path lengths of the subtries of the root, plus the number of nodes in the
subtries (N) unless one of the subtries is empty (probability 1/2N-1). The functional
equation on the exponential generating function is similar to that for tries"

A[P](z)= z(eZ-e/2)+2A[P](z/2) e/2

with transformed version

BtP](z) z(1 e-z/2) + 2B[P](z2)

which yields directly

754 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

so that

A= E 2k-1 i N
k_2

as mentioned above.
The method used above is equivalent to the "binomial transform" method

described by Knuth, but it is perhaps more transparent.
For the average internal path length of digital search trees, Knuth uses an approach

suggested by Konheim and Newman Ill] to transform (2) into a form which has
essentially the same asymptotics as the above trie sum. This derivation is somewhat
indirect, and does not provide a way to analyze other properties of digital search trees.
But Knuth gives an alternate method for evaluating the trie sum, which he attributes
to S. O. Rice [9, Ex. 5.2.2-53]. We next show how this method applies directly to (2).

Rice’s method is based on a classical formula from the calculus of finite
differences [12]"

LEMMA 1. Let C be a closed curve encircling the points O, 1,.... N, and let f(z)
be a function which is analytic within C Then

(-f(=- (+,-/(a
2’i c

is the classical Beta function defined by B(x, y) F(x)F(y)/where B x, y)
r(x+y).

Proof. Noting that

-B(N-1,-z)=(-1)Nz(z-1) (z-n)
N!

we can write an equivalent version (which has amusing similarities between the left-
and right-hand sides) of the equation in the statement of the lemma:

YN(N-1)’’’(N-k+l)(-1)kf(k)=ikk! cZ(Z 1) (z N)
(- 1)f(z) dz.

To verify this is a straightforward application of Cauchy’s theorem: the integral is the
sum of the residues inside C, and the residue at z= k is ()(-1)kf(k) for each k in
the range 0-<_ k =< N.]

This general identity arises in the study of finite differences, since the sum
Y.k()(--1)kf(k) is precisely vNf(0), were Vf(k)=f(k-1)-f(k) (see, for
example, [12]).

To use Lemma 1 for asymptotic analysis, we change C to a large curve around
which the integral is small, and take into account residues at poles in the larger enclosed
area. This method actually plays a rather fundamental role in the analysis of the class
of problems considered here.

Note that the function B(N+ 1,-z) has poles at the integers 0, 1,. ., N. Thus,
using Rice’s method with Lemma 1 as stated would involve examining only the
singularities of f(z). However, the lemma also clearly holds if the sum is taken over
any subset of the integers 0, 1,..., N (and C is taken to enclose just those points)"
then application of Rice’s method might have to take into account the singularities of
B(N+ 1, -z) outside C. In particular, in the cases of interest in this paper, the points
0 and 1 are not included in C. In fact, we have to cope with double poles at these
points (as well as many singularities for the function f(z)).

DIGITAL SEARCH TREES REVISITED 755

To apply Rice’s method to the evaluation of (2), we need to define an appropriate
meromorphic function to extend Qk, which is defined only on the integers. To this
end, we introduce the function

Note that Q(1)= Qoo and that QN= Q(1)/Q(2-r), so that the’analytic expression
f(z) Q(1)/Q(2-z), which is defined when z is a positive integer, gives the appropriate
extension. Actually, this extension can be derived in a rather mechanical fashion,
because Qv is defined by the recurrence relationship

(1)Qv+l= 1 2v+ Q, N=>I,

with Qo 1, which simplifies to the expression

1
Q l_(1/2)v+l Qv+,"

We simply extend this recurrence relation and telescope it:

1
f(z)= l_(1/2)z+,f(z+ 1)

1 1

1_(1/21z+ 1-(1/2)z+2f(z+2)

1

Q(2_z) !irnf(z)
provided the limit exists. But f(0)= Qo 1 implies that limz_.oof(z)= Q(1), so f(z)=
Q(1)/Q(2-z) is a proper analytic extension. We point out this "mechanical" derivation
because we use essentially the same method for a more difficult problem in the next
section.

Thus, by Lemma 1 (see also the comments following the lemma), we know that

Q(1)1
B(N+ 1, -z) 2_z+2) dz(5/ a 27r---- c Q(

where C encloses the points 2, 3,..., N. To complete the analysis, we expand C to
a larger curve and study the behavior of the integrand at newly enclosed singularities.
These residue computations are simplified somewhat because the functions involved
have a simple product form; the following lemma, which is elementary, will prove
useful for most of the series expansions done in this paper.

LEMMA 2. If F(z)= I-IjR (1-f(z))- for some index set R, then the Taylor series

expansion of F at a, if it exists, is given by

(R 1 fj(a)_f(a) (z-a)+O(z-a)2)F(z) F(a) 1 + .,
Proof Elementary from the use of the "logarithmic derivative": if G(z)=

I-IkR gk(Z) then G’(z)/G(z)=,k

756 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

For example, at a 1, we have the following expansion for the Beta function

z I-[1--B(N-1, z)
1’’Zz

1
N(1 + (HN-I 1)(z-- 1)+ O((z’ 1)2)

1--z

N
N(HN_I-1)+O(z-1).

z-1

Similarly, for the Q function, we have

)()/)(-z/l) O(.) I-I (_-z/s)-i
j<l

2s-
l-In2 E (z-1)+O(z-1):

s< 1 2s-I

1-a ln2(z-1)+O(z-1)

where a 1 + + + +. .. This is a fundamental constant which arises in the analysis
of several algorithms, for example Heapsoa [9, p. 156] and approximate counting [3].

We are now ready to complete the analysis of the average intenal path length of
digital search trees using ce’s method for the asymptotic analysis:

THEOREM 1. (Konheim-Newman, uth). e average internal path length of a
digital search tree built from N records with keys from random bit streams is

(N+I)lgN+ 12 +-+(N) N+O(N/)

where =.577216. i uler’s constant, 1 ++++ 1.606695 ., and
(N) is a periodic function in lg N, with I(N)I < 10-. e approximate value of the
coecient of the linear term is 1.7155 ..
oo Following the discussion above, the value sought is given by the integral

(5). If we change C to a large rectangle Rx with corners at the four points (iY, X
iY), then we know by Cauchy’s theorem that the integral around Rx (which we shall
show to be small) is equal to A minus the sum of the residues of

(
(+,-

at poles within Rx but not within C.
Rewriting B(N+ 1, -) as F(N+ 1)F(-)/F(N+ 1), we can make use of

standard asymptotic expansions of the F function to bound the value of the integral
around Rx. We have the approximations

r(l N-- + o(N---1)
r(N+a)

and

F(x + iY) O(I YI’-/ e-lvl/2)
(see, for example, 17, Chap. XII]). Thus, a bound for our integral along the top and
bottom lines of Rxv is given by

o(f N+ 1)x+iY[y[x-1/2 e-rY/2 dx).

DIGITAL SEARCH TREES REVISITED 757

This bound is valid only if Q(2-z+2) does not get too close to zero; we can insure this
by taking Y to be of the form (r/ln 2)(2 Y’ + 1), with Y’ an integer. Thus, the integral
is exponentially small in Y and vanishes on the top and bottom of Rxy as Y-+ m. A
similar argument shows that the integral vanishes on the right of Rxy as X-+ oo. On
the left, we have the bound

O(I_c F(N+ 1)
gF(N+l/2-iy) dy) O(N/’).

This proves that Av plus the sum of the residues in the halfplane to the right of the
line x 1/2 (but not within C) is O(N’/2). We now proceed to calculate these residues.

The integrand has poles at z =j + (2rrik)/ln 2 forj 1, 0, -1, -2,..., and all k -> 0,
since at these points 2-z+s= 1 which causes one of the factors of Q(2-z+2) to vanish.
The poles at 0 and 1 are double poles because B(N+ 1,-z) is also singular at 0 and
1. Of these, only the poles for j 1 are within the region of interest; thus we have to
compute residues at the double pole 1 and at the points 1 + (2rrik)/ln 2 for k # 0.

At z 1, we use the series expansions derived from Lemma 2 above"

Q(1)
Q(2-z+2)-B(N+I,-z)

1 Q(1)
=-B(N+I,-z)

1 2-z+’ Q(2-z+’)

-(- -z-lN N(Hv_I 1)+O(z 1))
x (-l)ln2++0(-1)
x(1-a ln2(z-1)+O(z-1)2).

The residue at z 1 (the coefficient of 1/(z- 1) in this product) is

N
In 2

(HN-1 1)+N(a) N lgN N T-1)(-i--’- a + + 0(1).

The poles at 1 +/- 2rrik/ln 2 add a small contribution to the linear term: the total residue
at these points is

ln2 o B N+ 1,-1--i-].
As above, we can write B(N+ 1,-z) as F(N+ 1)F(-z)/F(N+ l-z) and use

Lemma 2 to develop an asymptotic expansion. We have

758 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

This estimate is valid just for fixed k as N grows" the calculation of the uniform bound
necessary for the calculation of the error term can be derived from more detailed
asymptotics on the Beta function (see [17, pp. 277-8]). The sum of the residues at the
points 1 +2,n-ik/ln 2 is found to be

-N6(N)+ O(1)

where

1 (2’ik e2,k lg N6(N)]-oF -1- in2/
This and related functions arise in the study ofmany algorithms, for example: evaluating
arithmetic expressions [5], parallel addition 10], extendible hashing 13], approximate
counting [3], and Batcher’s merging networks [15]. The properties of 6(N) cited in
Theorem 1 are discussed in Knuth [9, p. 134].

Thus, subtracting the sum of the residues at z 1 and at z 1 + 2-[rik/ln 2 for k 0
from the estimate of the value of the contour integral around Rxy in the limit, we
have shown that

y-1 1) N1/2A N Ig N+ N ,,ln 2 a +-+ 6(N) + o(

as desired. The same method of analysis can be used to expand Av to any desired
asymptotic accuracy, by using a contour Rxy which includes more poles. The double
pole at z 0 and the poles at z +2,n’ik/ln 2 for k 0 contribute a constant term like
the coefficient of the linear term, and the poles at z =j + 2,n’ik/ln 2 for j =-1,-2,
contribute more complicated (but very small) oscillatory terms. [3

Our interest in this derivation is that it illustrates a general method of evaluating
sums of the form -,k ()(--1)kf(k) even when f(k) is a relatively complicated function.
(As mentioned above, the proof of Theorem 1 is quite specific to Qk-2.) Essentially,
the asymptotic analysis is reduced to a singularity analysis of a meromorphic function
satisfying the same recurrence as f(k). Next, we show how this method applies for a
function satisfying an inhomogeneous recurrence. This problem arises naturally in the
study of other properties of digital search trees.

3. External internal nodes. A property of trees of some interest is the number of
internal nodes which have both links null. An alternate storage representation could
be used for such nodes. The question left open by Knuth (see [9, Ex. 6.3-29]) is to
determine exactly how much storage can be saved. This is of more practical importance
when M-ary trees (not binary) are considered (see the next section). In this paper we
are interested in the problem chiefly because it illustrates the power of Rice’s method,
as contrasted with standard Mellin techniques, which seem difficult to apply directly
to this problem. (Another application of Rice’s method may be found in [7].)

In a fully balanced binary tree of N nodes the number of nodes with both links
null is IN/2]; in a completely unbalanced tree the number is 1. It is a simple exercise
to show that the average number of such nodes for a random binary search tree is
(N+ 1)/3. We expect digital search trees to be somewhat more balanced than binary
search trees; thus the result should be that somewhere between one-third and one-half
of the nodes have both links null. It is mildly surpising that the answer is somewhat
closer to the former than the latter.

DIGITAL SEARCH TREES REVISITED 759

THEOREM 2. The average number of nodes with both links null in a digital search
tree built from N records with keys from random bit streams is

N /3 + 1 Q--- a + 8*(N) + O(N1/2)

where the constants involved have the values

1 1 1
a 1 +_+_+m+ 1.606695 ,

3 7 15

137
Q=2 4 8

.=.288788

and

/3=1.22[__] 2.23[__] .24 [- 1]+.. + + 3 1+_ + 7.74313’’’.
1 1"3 i’3"’ +3 7

Thefunction *(N) is a periodicfunction in lg N, with 16*(N)I < 10-6. The approximate
value of the coefficient of the leading term is 0.372046812....

Proof As before, we use a simple transform with generating functions to derive
an explicit sum, then use Rice’s method to evaluate the sum.

If CN is the quantity sought, then we have the recurrence

with C1 1 and Co=0. This follows from the same argument as for (1), with the
additional observation that the number of nodes with both links null in a tree is exactly
the sum of the numbers of such nodes in the two subtrees of the root, unless the tree
has just one node.

In terms of the exponential generating function C(z) vo Cuzu/N !, this leads
to the equation

C’(z) 1 + 2C(z/2) ez/2

which becomes, in terms of the transform generating function D(z) vo DuzN/N !,
with D(z) defined to be e-ZC(z):

D’(z)+ D(z)= e + 2D(z/2).

This gives a recurrence on the coefficients as before:

1
Dv + Dv-1 (-1)u-1 + 2v:2 Dv-1,

ON (- 1)/v-1 (1 2N1’_’2) D/v_I, N_>-2,

with Do 0 and D 1. But this recurrence is inhomogeneous, so the telescoped solution
is somewhat more complicated than before:

li_N-1 i<--_j<=N-2

760 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

Rewriting this in terms of

,-= 0, ++""" +

and transforming by C() eD(), we have the following explicit sum for the desired
quantity:

This sum is more dicult to evaluate than (2) because R is more complicated than 0.
We might begin by mimicking the mechanical" derivation of Q(), turning the

recurrence defining R around to define a meromorphic function satisfying the same
recurrence. We have

R+=I+ 1-2+ R
or, solving for R and substituting q 1/2"

1 1
(8) R

1 qN+l + 1 qN+l Rs+.

(From this point on, we will use q for 1/2. Not only is this a notational convenience,
but we will see in the next section that this is the only change necessary to solve the
same problem for M-ary digital search trees.) Using this recurrence to extent to a
function on the complex plane would give

1 1
R(Zl=l-qZ+’ 1-q

z+’R(z+l)

1
z+ +) +,+o(-q ’)(-q (-q)"

Unfounately, this sum does not converge when z is a positive integer, so it ceainly
does not extend R. The reason is clear: R itself is not bounded as N increases, so
extending a recurrence to increasing N is doomed to failure. Founately, it is not
dicult to avoid this problem" by studying the asymptotic performance of R we can
find a closely related function which can be extended by the above technique.

This asymptotic development is elementary from Lemma 2 because the generating
function for R/Qs is closely related to a classical identity in the theory of paitions"

LEMMA 3 (Euler).
u 1

(1 q)(1 q2)..(1 q")=(1 u)(1-qu)(1 q2u)’’’"n=0

Proo The coecient of u"q on both sides is the number of ways to write n as
the sum of m nonnegative integers. (See Hardy and Wright [8] for related identities
and many more details.)

In the notation that we have been using, this identity says that so u/Q
1/(1- u)Q(u). This gives a convenient way to write the generating function T(u)=
o(R/Q)u in product form:

1 u 1
T(u)-

1 u oQ (1- u):Q(u)

DIGITAL SEARCH TREES REVISITED 761

Now we can expand Q(u)-1 by Lemma 2"

1 1 .__a)2.Q(u--Q+Qoo u-1)+O(u-1

Thus T(u) 1/ Qoo(1 u)2) a/ Qoo(1 u)) plus a function which is analytic for]u] <= 2
except for a simple pole at u 2, which implies that

+ O(2-).
Q

Since QN/Q= 1 + O(2-) this simplifies to

RN=N+I-a+O(N2-N).

Now, the function R RN-(N+ 1- a) not only satisfies a simple recurrence
but also converges very quickly, so we can apply the recurrence for increasing N to
extend the function. From (8) we have

(9) R*
(N+l-a)q+ 1

N N+I + N+I R+I1-q 1-q

which is extended by the meromorphic function

(z + 1 a)q :’+x 1

l_qz+lR(z)=
1-q

z+lR(z+l)

(z + 1 a)qz+l (z + 2- a)qz+2 1
(10)

1 qZ+l (1 qZ+l)(1 qZ+2) + z+2R(z+2)
1-q

(z + l +j- a)qz+l+j

jo(1-q)(1-q ...(1-qz++j)"

This function is meromorphic except for simple poles at the points z =j+/-2"rrik/ln 2
for j_-<-2 and all k-> 0, and for j =-1 and k > 0. Note carefully that R(-1) exists
(why?).

Substituting in (7), we have

k2 k
(--1)k(R*k-2+k--l--a)"

After applying the elementary identities k ()(--1)k =k ()k(-1)k=0 wc have the
simplified result

(11) CN=(N-1)(a+I)- ()(--1)kR*k-2"
k2

Now, by Lemma 1 we know that

1 f B(N+I,-z)R(z-2)(12) CN-(N- 1)(a / 1)= 2r-- 3c dz.

The same argument as for Theorem 1 shows that the right-hand side of this equation
is equal to the sum of the residues of the integrand at singularities to the right of the
line x 1/2, to within O(NI/2). In this case, the poles at 1 +/- 2rik/ln 2 are all single poles.
The main term is given by N lim_ R(z- 2); the poles for k 0 add a small oscillatory
term.

762 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

The method of calculating R(-1) is to express R(z) in terms of a generating
function which generalizes the function of Lemma 3, then to expand that function and
exploit certain properties of its derivatives. Specifically, we define

qJuj
F(u,v)=

j>_ (1 qv) (1 qJv)"

This is the generating function for restricted partitions (the coefficient of unvmqk is
the number of ways to partition k into m parts not exceeding n). Note that, by
Lemma 3,

1
F(u, 1)+1 (1-qu)(1-qEu)(1-qau)...

so that F(1, 1)--QI_ 1. Also, from Lemma 2 we have

1 + + -q +...F(u’l)=(1-qu)(1-qu)(1-qu) qu 1-qu 1 u

so that F(1, 1)= /Q. Furthermore, we have

q
F(1, qZ+,)=,v (1-q+2) (1-qZ++J)

F(1 q+l)=> (1-q+2)
JqJ

(1 qZ+i+j)

which gives, from (10), the following expansion:
z+lq

R(z)
1 qZ+, ((z + 1 a)(F(1, qZ+,) + 1)+ F(1, qZ+)).

From this formulation, a Taylor expansion around z =-1 is straightforward:

and

so that

qZ+l 1 1 + O(z+l),
1-qz+ (z+l) In q 2

F(1, qZ+,) F(1, 1)+(z + 1) In qF(1, 1)+ O(z+ 1)2

F(1, qZ+l)= F(1, 1)+ (z+ 1)In qF[2(1, 1)+ O(z + 1)2

F(1, 1)+1
R(z) + aF(1, 1)-F’2(1, 1)+ O(z+ 1).

In q

Note carefully the cancellation of-a(F(1, 1)+ 1)+ F(1, 1); this is also implied by
the fact that R(z) exists at z =-1. Thus, to complete the calculation of the main term,
we need only calculate F(1, 1) and F2(1, 1). These are constants which can easily
be calculated from the series representations

qj (q +
q2 qj)(13) F(1,1)=.

(1)(1 q- (1 q)1 q 1-q2+’" 1j_ -q

(14) F(1,1)=
JqJ q + +" "+

j,(1-q)(1-q-) ...(1-q) | q 1-q 1-

DIGITAL SEARCH TREES REVISITED 763

Actually, we can relate F(1, 1) to a and Qo, for the function F(u, v) has a symmetry
property which seems remarkable from an analytic standpoint (though it is more
intuitive from the combinatorial interpretation). We have

qkuk(1-- qkt)
F(u, v)-vF(qu, v)= k_l(1--qo)’’’(1--qko) qu(l+F(u,o)).

This recurrence can be telescoped as follows:

F(u,)-
qu

F(qu, o)
1 qu 1 qu

q2U 2q + q2 F(qEu,
1-qu (1-qu)(1-qEu) (1-qu)(1 u)

=uF(v,u)/v

or vF(u, v)= uF(v, u). (See [14] for some related identities and techniques.)
Differentiating both sides of this symmetric identity with respect to u, we find that

F(1, 1) F(1, 1) + F(1, 1), so F(1, 1) (a 1)Q+ 1. Note that differentiating
again with respect to v produces a trivial identity: there does not seem to be an easy
way to express F’(1, 1) in terms of a and Q, so we denote that constant (defined
in (14)) simply by ft. Collecting terms, we have shown that the residue of the integrand
in (12) at z 1 is N times

fl + l Q +

It remains to calculate the residues of the integrand in (12) at the other singularities.
This calculation is straightforward: the residue of (1-q+)- at z=

-1 (2ik)/ln q is -1/ln q, and the other terms in R(z) contribute a factor of
2ik/Qln q. factor from B(N+ 1,-z) is expanded exactly as for eorem 1;
thus we have the oscillato term

1 2ikF(2ik e2iklg N*(N) Qlno In q k-l-]
This completes the calculation of the coecient of the linear term.

For purposes of comparison, it is of some interest to compute the average number
of internal nodes with both sons external in Patrieia tries. This is a relatively straightfor-
ward derivation similar to the path length calculations given above, so we only sketch
it here. We sta with the recurrence

(15) C= +Ck), N3
k

with C"= C[" =0 and C[P= 1. This corresponds to the functional equation

Ct’(z) (z/2)2 + 2ctP(z/2) e/2

which transforms to

Dte(z) (z/2)2 e + 2D(z/2)
and eventually gives the sum

CI- () k(k-1)(-1)k
-42 1-1/2k-

764 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

Knuth [9, Ex. 6.3-19] gives specific evaluations of such sums. The eventual result is
that the proportion of nodes in Patricia tries with both sons external is 1/(4 In 2)=
.3606. plus a small oscillating term. Thus, according to this measure, digital search
trees are (slightly) more balanced than Patricia tries.

4. Multiway Iranehilag. A natural generalization of the digital tree search (and
trie search) algorithm studied above is to allow M-way branching (not just left and
right), each node containing M links to other nodes. If M 2" and the keys are in
binary, this is conveniently implemented as follows. To search for a record with value
v, set x to point to the root and b to 1, and perform the following operations until
termination:

If x is null then terminate (v not found).
If key(x)= v then terminate (v found).
Otherwise, if the m(b-1)+ 1 through mbth bits of v represent k then set x to
the kth link of x.
Setbtob+l.

Here each node is assumed to have M links, numbered from 0 to M-1. A similar
implementation of tries (with 0 keys and M links per node) is straightforward. (The
generalization of binary search trees is quite different: M-ary search trees have M- 1
keys and M links per node.)

It turns out that the analysis given above survives largely intact for the M-ary
case. For example, to find the average number of nodes in a M-ary digital search tree
with all links null, we begin with the fundamental recurrence"

1 (N-1) C’tMl+rtMl+...+rtM, N>2,(16) Ct= E MN-1 ’-kM/
g+g:+...+k kl, k2, ", kM

(’" k, k2

with C3= 1 and Cto3= 0. This is proven in the same manner as (1) and (6). First,
the number of nodes with all links null in a tree is exactly the number of such nodes
in all the subtrees of the root, unless the tree has just one node. Second, the probability
that the first subtree has k nodes, the second has k2 nodes, etc. with kl d- k2 d-. d- k
N- 1 is exactly

M- k,k,’".kI

Third, all the subtrees are randomly built according to the same model.
By symmetry, (16) is equivalent to

E+kl+k2+-" km=N kl, k2, kM "kl

with CM= 1 and Cto3= 0. Now, by manipulations generalizing those leading to (2),
we define the exponential generating function Ct(z)=vo ctzV/N! and derive
the following difference-differential equation:

d
d-Ct(z) 1 / MCt(z/M)(eZ/M)-1

(17)
1 + MCt(z/M) e(1-1/M)z.

For M =2, this is exactly the equation derived from (6); moreover, none of the
manipulations used for solving (6) depend in an essential way on the value of that

DIGITAL SEARCH TREES REVISITED 765

constant. In fact, we defined q- 1/2 for notational convenience in that derivation: if
we take q 1/M in the solution, we get the solution for M-ary digital trees.

COROLLARY. The average number of nodes with all links null in an M-ary search
tree (for M >-_ 2) built from N records with keys from random bit streams is

(t2-
}’" (1 EM](CM]))lnM+a aN fl[M]+ 1- .-.,M3 1) + 6 Z](N) + O(N1/2)

where the constants involved are given by

1c=
Mk>_l 1

kMk+l 1

k_->I(M-1)(M2-1)...(Mk-1) k Mj-1

and the oscillatory term is

ln---l inM2rik6[4](N)
Qo kO F 1 +

Proof Immediate from the discussion above.

2
| e2,rrik lg N

In M/

Table 1 below gives the approximate value of C[ul and the various constants for
small values of M.

TABLE

M QM] aiM] filial C[]/N

2 .28879 1.60670 7.74313 .37205
3 .56013 .68215 .71399 .47602
4 .68854 .42110 .22414 .53054
8 .85941 .16097 .02748 .62506
16 .93359 .07085 .00510 .68928

Note carefully that, in a perfectly balanced M-ary tree, about (M- 1)/M of the
nodes have all links null. Measured against this standard, the constants in the last
column of the table show that digital search trees are about 70%-75% balanced for
small M. That is, the ratio between the constants given and (M-1)/M is between .70
and .75. Of course, as M--> oo, this ratio approaches 1.

5. General framework. The methods that we have used in the previous sections
can be applied to study many other properties of digital search trees. If X(T) and
x(T) are parameters of trees satisfying

(18) X(T)= Y’. X(T)+x(T)
subtrees Tj

of the root of T

then the exponential generating functions for the expectations Xv and xN for an
M-ary digital search tree built from N records with keys from random bit streams satisfy

X’(z) MX(z/M) e(1-1/M)z -t- x(z).

766 PHILIPPE FLAJOLET AND ROBERT SEDGEWICK

This is derived in exactly the same manner as (17). Now, in terms of the transform
generating functions Y(z)= e-ZX(z) and y(z)= e-Zx(z) this becomes

(19) Y’(z)+ Y(z)= MY(z/M)+y’(z)+ y(z).

This leads to a nonlinear recurrence like (8) satisfied by YN, with the solution sought
given by XN k () Yk. If the quantity (-1)kyk is sufficiently well behaved, we can
study its asymptotics and find a function Yk* which:

(i) is simply related to Yk SO that -,k ()(Yk--(--1)k(Y’)) is easily evaluated,
(ii) satisfies a recurrence of the form Y*+I=(1-g(M,N))Y*+f(M,N),
(iii) goes to zero quickly as N o.

Depending on the nature of g(M, N), f(M, N) and the speed of convergence, condi-
tions (ii) and (iii) may allow the recurrence to be turned around to extend Y* to the
complex plane and so allow the desired expectation to be computed by evaluating the
sum Yk ()(Yk--(--1)k(y*k)) as detailed in the previous sections.

For example, this method could be used to find the distribution of occupancy of
nodes in M-ary digital seai’ch trees, and many other problems.

The same type of generalization applies to the study of tries (and Patricia tries),
and the simpler nature of the recurrences follows through the generalization. For
example, the exponential generating functions for the expectations X and x of
parameters of trees satisfying (18) for a random trie built from N records from random
bit streams is

(20) X(z)= MX(z/M) ez/l +x(z)

which is considerably easier to deal with.
These methods allow quite full analysis of the types of trees considered, and they

clearly expose the fundamental differences and similarities among the analyses.
A final note: the reader who is still awake may have noticed that the "transforms"

that are essential to these computations are not at all arbitrary functions. Indeed, if
x(z) Y v>-o xz:v/N! is the exponential generating function for the expectation of a
parameter X, then Y(z)= e-Zx(z) is the expectation of X if the number of keys is
Poisson with parameter z.

For digital search trees, tries, and Patricia tries, this function satisfies a simple
functional equation like (20) which makes it amenable to direct solution by Mellin
transform techniques. (See [6] for details of the application of this method to the
analysis of tries" essentially the Mellin transform is trivially computed by taking the
transform of both sides of the functional equation, and then a singularity analysis is
done for the reverse transform. Another example of this technique may be found in
[4].) The relationships among the Bernoulli and Poisson models and Mellin transform
and Rice’s method of asymptotic analysis are a fruitful area for further study. More
details will be reported in a future paper.

Acknowledgments. The authors would like to express their gratitude to Janet
Incerpi, who is still awake. Also, thanks are due to our Viennese friends, especially
Helmut Prodinger, for helping us find several bugs in the manuscript.

REFERENCES

E. G. COFFMAN, JR. AND J. EvE, File structures using hashing functions, Comm. ACM, 13, 7 (1970),
pp. 427-436.

[2] E. DAVIES, Integral Transforms and Their Applications, Spdnger-Verlag, 1978.
[3] P. FLAJoLET, Approximate counting: a detailed analysis, BIT, to appear.

DIGITAL SEARCH TREES REVISITED 767

[4] P. FLAJOLET AND C. PUECH, Partial match retrieval ofmultidimensional data, INRIA Research Report,
1983.

[5] P. FLAJOLET, J. C. RAOULT, AND J. VUILLEMIN, On the average number of registers required for
evaluating arithmetic expression, Theoret. Comput. Sci., 9 (1979), pp. 99-125.

[6] P. FLAJOLET, M. REGNIER, AND R. SEDGEWICK, Mellin transform techniques for the analysis of
algorithms, in preparation.

[7] P. FLAJOLET AND R. SEDGEWICK, The asymptotic evaluation of some alternating sums involving
binomial coefficients, INRIA Research Report, 1983.

[8] G. HARDY AND E. WRIGHT, An Introduction to the Theory ofNumbers, Clarendon Press, Oxford, 1960.
[9] D. E. KNUTH, The Art of Computer Programming. Volume 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
10] The average time for carry propagation, P. Kon Ned A, 81 (1978), pp. 238-242.

[11] A. G. KONHEIM AND D. J. NEWMAN, A note on growing binary trees, Discrete Math., 4 (1973), pp.
57-63.

[12] N. E. NRLUND, Vorlesungen iiber Differenzenrechnung, Chelsea, New York, 1954.
13] M. REGNIER, Evaluation des performances du hachage dynamique, Thse de 3me cycle, Universit6 de

Paris-Sud, 1983.
[14] G. P(LYA AND G. SZEGO, Problems and Theorems in Analysis I, Springer-Verlag, Berlin, 1976.
[15] R. SEDGEWICK, Data movement in odd-even merging, this Journal, 7 (1978), pp. 239-273.
[16], Algorithms, Addison-Wesley, Reading, MA, 1983.
17] E. WHITTAKER AND G. WATSON, A Course ofModern Analysis, Cambridge Univ. Press, Cambridge,

1927.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

1986 Society for Industrial and Applied Mathematics
010

REDUCING MULTIPLE OBJECT MOTION PLANNING
TO GRAPH SEARCHING*

J. E. HOPCROFTt AND G. T. WILFONG

Abstract. The motion planning problem for multiple objects is studied where an object is a 2-dimensional
region whose sides are line segments parallel to the axes of R and translations are the only motions allowed.
Towards this end we analyze the structure of configuration space, the space of points that correspond to
positions of the objects. In particular, we consider CONNECTED, the set of all points in configuration
space that correspond to configurations of the objects where the objects form one connected component.
We show that CONNECTED consists of faces of various dimensions such that if there is a path in
CONNECTED between two 0-dimensional faces (vertices) of CONNECTED then there is a path between
them along 1-dimensional faces (edges) of CONNECTED. It is known that if there is a motion between
two configurations of CONNECTED then there is a path in CONNECTED between the configurations.
Thus the existence of a motion between two vertices of CONNECTED implies a motion corresponding to
a path along edges of CONNECTED. Hence the motion planning problem is reduced from a search of a

high dimensional space to a graph searching problem.
From this result it is shown that motion planning for rectangles in a rectangular boundary is in PSPACE.

Since it is known that the problem is PSPACE-hard, we conclude it is a PSPACE-complete problem.

Key words, motion planning, robotics, polynomial space, computational complexity, algorithm

AMS(MOS) subject classifications. 05C40, 68C25, 55N99

Introduction. Finding collision-free motions of objects is an important problem
in robotics and computer-aided manufacture. There are two general ways of posing
motion problems. One problem is to actually plan a motion if one exists. That is, given
initial and final configurations of the objects compute a collision-free motion if one
exists and otherwise report that no such motion exists. This is what is called the motion
planning problem. Another motion problem is the decision problem "Given initial and
final configurations, is there a collision-free motion of the object(s) from the initial to
the final configuration?". This problem is referred to as the mover’s problem. In this
paper we will show that the motion planning problem for rectangles enclosed in another
rectangle can be solved in polynomial space.

Probably the most influential work in motion planning is due to Lozano-Perez
and Wesley [6] whose paper brought to the academic community the realization that
motion planning was a rich mathematical area with practical applications. They
considered the motion of a single object in the presence of obstacles by shrinking the
object to a point and growing the obstacles in such a manner that the original object
could be moved from A to B if and only if the point could be moved from A to B in
the presence ofthe enlarged obstacles. The enlarged obstacles were called configuration
space obstacles thereby introducing the notion of representing a configuration by a
point in a space. The points inside a configuration space obstacle represented illegal
configurations where the moving object overlapped an obstacle.

The next major contribution was a series of papers by Schwartz and Sharir
[10]-[12]. They provided a precise framework for general motion planning sufficient

* Received by the editors January 9, 1985, and in revised form May 20, 1985. This research was supported
in part by the National Science Foundation under grant ECS-8312096 and a National Science and Engineering
Research Council graduate scholarship.

f Department of Computer Science, Cornell University, Ithaca, New York 14853.
t Department of Computer Science, Cornell University, Ithaca, New York 14853. Present address,

AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

768

MULTIPLE OBJECT MOTION PLANNING 769

to encompass not only coordinated motion of multiple rigid objects but also of objects
whose shape could change such as a robot arm. By applying techniques from the
theory of reals they proved that even in this general setting motion planning was
decidable. In fact, for problems with a fixed bounded number of degrees of freedom
they gave a polynomial time algorithm. The consideration ofmultiple objects introduced
a new aspect to motion planning; namely, the coordination of motion. Simply calculat-
ing trajectories was no longer sufficient.

The complexity of motion problems has been considered by a number of research-
ers. For instance, in [9] Reif showed that the mover’s problem for multiple polyhedra
freely linked together was PSPACE-complete. Hopcroft, Joseph, and Whitesides [3]
showed that the mover’s problem for linkages, even in two dimensions, was PSPACE-
hard. Hopcroft, Schwartz, and Sharir [4] considered the mover’s problem for rectangles
inside a 2-dimensional rectangular box and they showed that even if translation were
the only allowable motion then the problem was PSPACE-hard. Thus the problem of
actually planning a motion of rectangles in a box is PSPACE-hard. However, there
was a fundamental difficulty in establishing that these problems were in PSPACE. The
difficulty is that there could conceivably be a motion but not a motion that could be
described in polynomial space. For example, what if the only possible motions involved
moving objects to positions that were not even algebraically related. Although the
work of Schwartz and Sharir [11] showed this not to be the case, it did not rule out
moving objects to algebraic positions of high degree, too high to represent in an obvious
manner in a polynomial amount of space.

Hopcroft and Wilfong [5] considered motion as a special case of a transformation.
In their setting an object was a parameterized mapping from a canonical object to a
region of 3-space. A motion was a path in the space of parameters (i.e., configuration
space) and thus included not only translations and rotations but growth and parameter-
ized continuous deformations. They considered configurations of the objects (called
connected configurations) in which the objects formed one connected piece. That is,
for connected configurations, if G is the graph with a vertex for each object and an
edge between vertices whenever the corresponding objects touch in the configuration
then G is a connected graph. It was shown that any motion of n objects between two
connected configurations could be transformed to one in which the objects formed
connected configurations throughout the motion. This reduced motion planning from
searching an entire space to searching the surface of some generalized configuration
space obstacle (i.e. the set of all connected configurations). An appealing method of
searching the surface of the obstacle would be to show that the space of connected
configurations C consists of various dimensional surfaces and then prove that if a
motion exists on n-dimensional surfaces of C between points on a lower dimensional
surface then a motion exists on (n- 1)-dimensional surfaces of C between these points.
If the points happen to be on 0-dimensional surfaces, then the above method would
be repeated until finally it is shown that there is a motion along 1-dimensional surfaces
(edges) of C between the 0-dimensional surfaces (vertices) of C. If the vertices of C
were connected by paths consisting solely of vertices and edges, then the search of the
geometrical surface could be reduced to the search of a purely combinatorial structure,
i.e., the graph consisting of the vertices and edges of C. Although the number of vertices
of the graph may be astronomical, the entire graph need not be constructed. By means
of some heuristic, a search could proceed by generating an edge only when it was to
be traversed in the search. If in practical cases, where objects are being moved in a
relatively open work space, only a small number of vertices need be generated, then
a practical and effective algorithm might be possible although the worst-case complexity

770 J. E. HOPCROFT AND G. T. WlLFONG

would be prohibitive. The search process envisioned is somewhat analogous to linear
programming where only a small number of vertices of a polytope are examined.

In this paper we study the motion of two-dimensional objects with straight line
surfaces. We call these surfaces faces. The objects will be allowed to translate but not
to rotate. The position of each object is then determined by the location of some fixed
point on the object. Thus if there are n objects moving about then the arrangements
ofthe objects are in an obvious one-to-one relationship with a point in a 2n-dimensional
Euclidean space. That is, in this case configuration space is R2n. We call the points in
configuration space (as well as the corresponding arrangements ofthe objects) configur-
ations. Configuration space is partitioned as follows. We define classes of configurations
by specifying the faces of the objects that touch one another. For example, consider
the case where there are just two rectangles A and B. In this case there are eight classes.
Four classes correspond to where one face of A touches one face of B (e.g. the class
of all configurations where the top face of A touches the bottom face of B) and four
classes correspond to configurations where two pairs of faces touch (e.g. the class of
all configurations where the top, left corner of A touches the bottom, right corner of
B). The classes corresponding to configurations in which the objects form a connected
arrangement are actually various dimensional hyperplanes in configuration space. The
classes that contain only one configuration are called vertex configurations and the
classes that correspond to 1-dimensional hyperplanes are called edges. We show that
if there is any motion of the objects between two vertex configurations then there is
a motion that follows edges from vertex to vertex. This edge connectedness of the
vertex configurations is not true for more general situations in which rotation is allowed.

Consider the situation in Fig. 1 where rotations are allowed. This is an example
of a vertex configuration but the only other vertex configuration that can be reached
from this one along edges is the one resulting from moving the objects as a rigid piece
to the left. Notice that when corners a and b of objects A and B come apart, object
A is free to rotate by sliding c along L and d along M, and object B is free to rotate
and move corner e along N. Such configurations lie on a higher dimensional surface
and not on an edge. A similar phenomenon occurs if any other constraint is moved.

(a)

l

(b)

FIG. 1. Vertices not connected by edges when rotations allowed.

MULTIPLE OBJECT MOTION PLANNING 771

Thus the vertex configuration shown in Fig. lb cannot be reached by edges from the
vertex configuration shown in Fig. l a.

Using the result about edge connectedness of vertex configurations, we show how
to calculate a motion between two configurations in polynomial space. This is done
by showing that a vertex can be stored in polynomial space since it is the solution of
a linear system of equations with O(n) unknowns where n is the number of objects.
Thus, a nondeterministic algorithm using polynomial space can guess the path vertex
by vertex and the result follows from the fact that PSPACE NSPACE. Thus, deciding
if a motion of rectangles within a rectangular boundary exists is in PSPACE. Combining
this result with the result of [4], we conclude that the problem of deciding if a motion
of rectangles in a rectangular boundary exists is PSPACE-complete.

1. Definitions. This section defines the various concepts that will be used
throughout the paper. We will describe how configuration space will be partitioned
into various dimensional surfaces (which we will call faces). The main goal of the next
section will be to show that the existence of a path in the face between two points in
the boundary of the face implies a path in the boundary between the points. It will
then be shown in 2 that the boundary consists of surfaces that are of lower dimension
than the dimension of the face and so the search for a path will be reduced to searching
lower dimensional surfaces.

We will say that a function p is a path in a set S from x to y ifp is a homeomorphism
p: [0, 1 --> $ such that p(0) x and p(1) y. A set is said to be path connected ifbetween
any two points in the set there is a path completely contained in the set.

In this paper we will consider the motion of objects that are 2-dimensional, path
connected, compact regions with a finite number of faces that are closed line segments
parallel to one of the two axes of R2. The faces of an object that are parallel to the
x-axis of R2 are called horizontal faces of the object and the ones that are parallel to
the y-axis are called verticalfaces of the object. Each object is the closure of its interior
but is not necessarily convex. Figure 2 illustrates some typical objects. Unless otherwise
stated we will assume there are n+ 1 objects. The objects will be denoted by
Ao, A1, , A,. Object Ao has its position fixed and the others are allowed to translate
but not to rotate. Fix some point on each object and call it the origin of the object.
Thus the location of object Ai, 1 -< =< n, is completely determined by the position (xi, y)
of its origin in R2. Therefore a point (Xl, yl,"" ", x,, y,)R2" completely defines an
arrangement of the objects. We will call such a point a configuration. When we speak
about a configuration, we may be talking about a point in R2n or an arrangement of
the objects but the two notions are interchangeable. The set of all configurations, R2",

FIG. 2. Examples of objects.

772 J. E. HOPCROFT AND G. T. WILFONG

is called configuration space. For notational purposes we use lower case v’s to denote
points in configuration space.

Notice that a path in configuration space corresponds to a motion of the objects.
Clearly the relationship "there is a path from x to y" is a symmetric, reflexive and
transitive relation (i.e. it is an equivalence relation). Thus a space can be partitioned
into components called path connected components where two points are in the same
path connected component if and only if there is a path between them. Since a path
in configuration space corresponds to a motion of the objects, deciding whether two
points are in the same path connected component of some subspace of configuration
space is the same as determining whether there is a motion of the objects between the
two configurations such that all intermediate configurations during the motion are
configurations in the specified subspace. Also because of this relationship between the
notion of a path in configuration space and a motion of the objects, the words "path"
and "motion" can be used interchangeably without causing confusion. Thus when we
speak of a motion within a subspace of configuration space we mean that every point
on the path in configuration space that represents that motion is in the specified
subspace.

We are interested in finding a motion of the objects between configurations such
that during the motion no two objects "collide". To make this notion more rigorous
we first define some subspaces of configuration space. Two objects are said to overlap
if the intersection of their interiors is nonempty. Let NONOVERLAP denote the set
of all configurations in which no two objects overlap. Thus the motions that are of
interest are those motions within NONOVERLAP. Throughout this paper when we
say that a motion exists we will usually mean that a motion in NONOVERLAP exists
unless otherwise stated. Two objects touch if the intersection of the objects is nonempty
but the objects do not overlap.

For every configuration v we define the graph of v, denoted by G, to be the graph
with a node corresponding to each object of v and an edge between nodes if the
corresponding objects intersect in v. We say that a configuration is a connected configur-
ation if the graph of the configuration is connected. Define CONNECTED to be the
set of all connected configurations in NONOVERLAP. Notice that if two objects in
a configuration vCONNECTED intersect then they must touch because v
NONOVERLAP. By the result in [5] we know that if there is a motion between two
configurations both of which are in CONNECTED then there is a motion completely
contained in CONNECTED between them. Hence it is sufficient to deal with motions
in CONNECTED.

Next we will describe how the subspace CONNECTED will be partitioned.
Towards this end we classify the various faces of the objects as follows. Remember
that a face of an object is a closed straight line segment parallel to one of the axis of
R. Let a be a face of object A and let b be some point of a such that b is not an
endpoint of a. Notice that we can draw a disc with center b and with small enough
radius so that the half-disc on one side of a does not intersect the interior of A and
the half-disc on the other side of a is contained in the object A. See Fig. 3. If a is a
horizontal face and the half-disc above a is the one that does not intersect the interior
of A, then we say that a is an upper face of A. If however, the half-disc below a is
the one that does not intersect the interior of A, then a is a lowerface of A. Similarly
if a is a vertical face and the half-disc to the left of a does not intersect the interior
of A then we call a a left face of A. If the half-disc to the right of a is the one that
does not intersect the interior of A then a is called a right face of A.

We say that the face a of object A touches face a of object A if the intersection
of a and a is nonempty and a and a are an upper and lower face respectively, or

MULTIPLE OBJECT MOTION PLANNING 773

Cli cli

UPPER FACE LOWER FACE

0 CI

LEFT FACE RIGHT FACE

FIG. 3. Classification offaces.

a left and right face respectively. Thus objects Ai and Aj touch if and only if some
face of Ai touches some face of Aj. For every pair of faces that touch, we can write a
corresponding linear equation relating the horizontal or vertical distance between the
origins of the objects as follows. Suppose face al of object A1 touches face a2 of object
A2 where one of a and a2 is a left face and the other is a right face. Let be the
horizontal distance between the origins of A and A2 whenever al touches a2. Assume
that the origin of A2 is no further to the left than the origin of A1 whenever a and a2
touch. Thus x2-xl where the position of the origin of A is given by (x, y) for

1, 2. Then the corresponding linear equation relating the horizontal distance between
the origins is x2-Xl t. If the faces that touch one another are upper and lower faces,
then the corresponding linear equation would be y2-Yl t.

A description is a predicate that is a conjunction of clauses of the form "face a
of object Ai touches face a of object A." If "face a of object A touches face a of
object A" is a clause of description D then we say that face a and face aj touch
according to D. A configuration v is said to satisfy the description D if each pair of
faces that touch according to D touch in v.

With each description D we associate a linear system Mov= co where the
equations in the system are the linear equations corresponding to the clauses in D as
described above. Notice that a configuration can satisfy the system of linear equations
without satisfying the predicate D. In Fig. 4 the objects have faces that are aligned
and so satisfy the linear equation but the faces do not touch.

(xi,Yi)

(xj,yj)

FIG. 4. Objects satisfy the linear system but do not touch.

We say that a configuration v satisfies a description D exactly if v satisfies D and
the only faces that touch in v are those implied by D. Notice that for each configuration
v there is a description D such that v satisfies D exactly. Thus when we speak of the
matrix My for configuration v we mean the matrix Mo where D is the description

774 J.E. HOPCROFT AND G. T. WILFONG

that v satisfies exactly. Throughout this paper we will consider only descriptions D
such that any configuration that satisfies D is a connected configuration.

Define Ho to be the set of all configurations that satisfy the linear system
corresponding to D. That is Ho {vlMov= co}. Thus if k =rank (Mo) then Ho is a
(2n k)-dimensional hyperplane.

Let Eo be the set of all configurations in NONOVERLAP that satisfy description
D exactly. Notice that Eo is not necessarily path connected. In Fig. 5 the description
D states that the lower faces of A and C touch the upper face of B. However there
is one path connected component of Eo where A is to the left of C and another path
connected component of Eo where A is to the right of C. We will denote the path
connected components of Eo by Po(1)," ., Po(to). Let Ko(i) be the closure of Po(i)
in Ho. The notation we will use to denote the closure of a set $ in the space B is
cln(S). Each Ko(i) is called a face of CONNECTED of dimension d if rank (Mo)
2n- d. We will refer to a 0-dimensional face of CONNECTED as a vertex of CON-
NECTED. Also, a 1-dimensional face of CONNECTED will be called an edge of
CONNECTED.

.,c cil IA

FIG. 5. ED with two path connected components.

Notice that a face as defined here may not conform to what one would usually
call a face. For example, in Fig. 6 consider faces K1 and K2. Although they are collinear
surfaces with nonempty intersection, they are two distinct faces by the definitions used
in this paper.

AO

OBJECTS CONNECTED

FIG. 6. Surface of CONNECTED divided into more than one face.

Since a configuration can not satisfy more than one description exactly, the sets
of configurations that satisfy descriptions exactly partition CONNECTED. As noted
earlier, not all Eo’s are path connected, and since distinct path connected components
must be disjoint, we can further partition CONNECTED into the path connected
components of the sets of configurations that satisfy descriptions exactly. That is, we
partition CONNECTED into the various Po(i)’s whose closures are the faces of
CONNECTED.

We have now divided up CONNECTED into faces of dimension 2n or less. In
this sense CONNECTED is very much like a polytope in that it is made up of various
dimensional surfaces. Also, suppose F1 and F2 are two faces of CONNECTED that
intersect one another and the dimension of Fi is ni. Then, as will be shown in 3, the
intersection of the two faces consists of faces whose dimensions are lower than the
maximum of nl and n2. This is a property shared by polytopes. In 2 we will discuss

MULTIPLE OBJECT MOTION PLANNING 775

a property of the faces of CONNECTED that is not a general property of polytopes.
In particular we will show that a face Ko(i) of CONNECTED and its boundary
Ko(i)-Po(i) have the same number of path connected components. We will then
conclude that if there is a path in a face between two points in the boundary of the
face then there is a path in the boundary of the face between the points. In Fig. 7 we
see that the face a of the general polytope shown consists of one path connected
component whereas its boundary contains two path connected components b and c.
Clearly there is no path from x to y in the boundary of a even though there is a path
p from x to y in a.

FIG. 7. Boundary offace ofpolytope not path connected.

For illustration, think of CONNECTED as the surface of a cube in R3. Then
CONNECTED consists 26 faces, 8 of which are vertices, 12 of which are edges, and
6 of which are the 2-dimensional "sides" of the cube. The boundary of any of the
2-dimensional faces is path connected and consists of 8 faces of CONNECTED of
lower dimension (4 vertices and 4 edges).

Using the result of 2 which shows that a path in a face between two points on
the boundary of the face implies the existence of a path in the boundary of the face
between the points and another result of 2 which says that the boundary of a face
consists of faces of lower dimension, we will show in 3 that a path in CONNECTED
between two vertices of CONNECTED implies a path along edges of CONNECTED
between the vertices.

2. Existence of paths in the boundary of a face. We will now show that if there is
a path in Ko(i), a face ofCONNECTED, between two configurations in Ko(i) Po(i),
the boundary of the face, then there is a path between them in the boundary. This is
accomplished by first showing that Ko(i)- Po(i) has the same number of path con-
nected components as Ko(i). To do this, we will need the following facts:

(1) I-Io is contractible to a point and is path connected.
(2) Ko(i) is closed in H
(3) Ho-Po(i) is closed in Ho and is path connected.
Note that a set S is contractible to a point y s S if there is a continuous function

f: S x [0, 1 --> S such that

f(x,O)=x} xeS,
f(x, 1)=y

f(y, t) y, e [0, 1].

776 J. E. HOPCROFT AND G. T. WILFONG

Since Ho is a hyperplane (1) is immediate and (2) is trivial because ofthe definition
of Ko(i). Lemmas 2.1 to 2.4 will be used to establish (3). The above facts along with
Lemma 2.5 allow us to conclude in Lemma 2.6 that a face and its boundary have the
same number of path connected components. Starting with Lemma 2.7 we will show
that each path connected component of a face of CONNECTED contains exactly one
path connected component of its boundary. Thus if x and y are two points in the
boundary of a face Ko(i) and there is a path in Ko(i) between them (i.e., they are in
the same path connected component C of Ko(i)), then there must be a path in the
boundary of Ko(i) between them (i.e. they are in the same path connected component
of the boundary of Ko(i) because C contains only one such path connected com-
ponent).

First it will be shown that Eo, the set of configurations that satisfy the description
D exactly is open in Ho, the set of configurations that satisfy the linear system of the
description. We will then conclude that those configurations that satisfy the linear
system of the description but are not in some fixed path connected component of the
configurations that satisfy the description exactly, form a closed set.

LEMMA 2.1. Eo is open in Ho.
Proof. Let v Eo. We wish to show that there is an open ball B about v such that

B Eo. By definition v satisfies D exactly and v NONOVERLAP. Let e > 0 be the
minimum distance between any two right and left faces or upper and lower faces of
objects such that the faces do not touch in v. Then any configuration v’ in Ho where
the objects are closer than e!2 from their positions in v is such that no faces touch in
v’ that do not in v. That is, there is an open ball B in Ho about v such that any faces
that touch in v’ B also touch in v. Also we can conclude that B___ NONOVERLAP
because v NONOVERLAP.

Suppose v’ B and there is a face al of A1 and a face a_ of A2 that touch according
to D, and hence touch in v, but do not touch in v’. Since B is a ball, between v’ and
v there is a path contained in B Ho. Let m be the motion corresponding to the path.
Throughout m, A1 and A2 must be aligned along a and a2. Since a and a2 touch in
v but not in v’ and rn is continuous, we conclude that there is a point in the motion
when A and A_ touch at corners. That is, at this point there are two faces that touch
but they do not touch in v. This contradicts the property of B that was shown above.

Therefore, for any v’ B, faces touch in v’ if and only if they touch according to
D and v’ NONOVERLAP. That is B ED and so ED is open in HD. l-]

We can now prove one of the facts that we have stated will be needed in order
to establish that a path exists in the boundary of a face of CONNECTED between
two configurations in the boundary whenever there is a path in the face between the
configurations.

LEMMA 2.2. For any PD(i), HD- PD(i) is closed in HD.
Proof. HD is locally pathwise connected and ED is open in HD. Thus any path

connected component of ED is open. See Willard [14]. In other words, PD(i) is open
in Ho and so Ho-Po(i) is closed in Ho.

In order to show that Ho- Po(i) is path connected, we introduce the following
notion. Let D be some description and S be a subset of the objects. Choose one of
the objects of S(take it to be Ao if A0 S) to be considered the object of S whose
position is fixed. We construct a matrix M(S) from the matrix Mo for the objects in
S as follows. There is a column in M(S) for
and A is not the chosen fixed object. Let As be the fixed object of S. Let r be the sum
of some of the rows of Mo. If r has a 1 in a column corresponding to an object in S
and a -1 in a column corresponding to an object in S and all other entries in r are

MULTIPLE OBJECT MOTION PLANNING 777

0, then there is a row in M(S) which is r with the columns not corresponding to the
moveable objects in S removed. If Ao is in S then if r has one 1 in a column
corresponding to an object in S and all other entries 0 then also add a row to M(S)
with a 1 in the same column and all other entries 0. The matrix M(S) has the same
dependencies between the variables corresponding to objects in $ as the matrix Mo.
If the rank of M(S) is full and S is maximal with respect to this property, then we
say that S is a vertex object of D. Intuitively, a vertex object of a description D is a
maximal collection of the objects that have the same positions relative to one another
in any configuration that lies in the hyperplane Ho. Thus if one is considering only
configurations in a particular Ho then one could think of each vertex object as one
rigid object. As we mentioned before, for every configuration there is a description
such that the vertex satisfies that description exactly. Thus when we speak of the vertex
objects of a configuration we mean the vertex objects of the description that the
configuration satisfies exactly.

In Fig. 8 there are two vertex objects S1 {Ao, A1} and S2 --{A2, A3, A4}. Notice
that although taking $3 {A2, A3} results in a coefficient matrix of full rank, $3 is not
maximal and so {A2, A3} is not a vertex object.

x y,

M(St): [t0 0.t I
_x: y: X4 Y4

1M(S2)= 0 0 0
0 0

0 0

FIG. 8. Two vertex objects.

LEMMA 2.3. Let D be such that rank (Mo)<-_ 2n- 2. Then D has at least three
vertex objects.

Proof. If D has only one vertex object then by definition rank (Mo) 2n. Suppose
D has exactly two vertex objects and one has ml objects and the other has mE objects
where m -t-mE --n + 1 the total number of objects. Then the number of independent
rows of Mo that correspond to two objects ofthe first vertex object touching is 2(ml 1).
Similarly we have 2(mE--1) independent rows for the second vertex object. Since the
two vertex objects must touch, there must be an additional independent row. Thus
rank (Mo)>-2(ml + mE- 2) + 1 2(n- 1)+ 1 2n- 1. Hence ifrank (Mo)<-2n-2then
D has at least three vertex objects, lq

We are now in the position to prove the last result that we stated would be needed
in order to establish that a path exists in the boundary of a face between two points
in a face if a path in the face exists between the points. In particular, we show that
the complement of any of the path connected components Po(i), with respect to the
hyperplane Ho, is path connected in the case where the dimension of Ho is greater
than 1.

778 J.E. HOPCROFT AND G. T. WILFONG

LEMMA 2.4. If rank (Mo) <-_2n -2 then Ho- Po(i) is path connected.
Proof. It will be shown that there is a fixed configuration Vo in Ho-Po(i) such

that there is a path in Ho-Po(i) from any v in Ho-Po(i) to Vo. The existence of
such a Vo establishes that Ho- Po(i) is path connected.

By Lemma 2.3 we know that D has at least three vertex objects. Notice that if B
is a vertex object of a configuration in Ho, then B is some union of vertex objects of
D. Let Vo Ho Po(i) be a configuration such that if any two vertex objects of D are
held fixed to their positions in Vo, then any motion of the remaining vertex objects of
D can not result in a connected configuration and thus can not result in a configuration
in Eo. Such a configuration can be visualized as one where the three or more vertex
objects of D are moved so far apart that no two can be joined by a "bridge" consisting
of the remaining ones.

We will show that there is a path in Ho-Po(i) from any configuration in
Ho-Po(i) to Vo. We proceed in two steps. First, we show how to move within
Ho-Po(i) from any configuration in Ho-Po(i) to one in Ho-Eo. Then we show
how to move within Ho- Po(i) from any configuration in Ho- Eo to Vo.

Let v Ho Po(i). If v

_
Eo then our first step is completed. Suppose v Eo but

v Po(i). Move a vertex object along an edge of another vertex object that it is touching
until a new pair of faces touch. The resulting configuration is in Ho-Eo (because
there are faces that touch in the configuration for which there is not a corresponding
clause in D). The entire motion except the final configuration is in Eo-Po(i) and so
the motion is in Ho Po(i).

Next we show that any v Ho-Eo can be moved in Ho-Eo (and hence in
Ho-Po(i)) to Vo. Let B1 and B2 be two vertex objects of D that touch according to
D but in v they either touch along faces not specified by D, overlap one another, or
do not touch along some face specified by D. Without loss of generality we can assume
that B is the vertex object that contains Ao, the fixed object. Thus B is in the same
position as it is in Vo. Since B and B2 touch according to D their relative positions
have only one degree of freedom in Ho. Fix the relative positions of B and B2 as
they are in v. This adds one constraint to the system. Since rank (Mo) -< 2n- 2 there
is still a collection C of vertex objects that is unconstrained in one of the x or y
directions. Notice that any configuration in which B and B2 have the same positions
that they have in v must be a configuration in Ho- Eo.

Without loss of generality assume that C is unconstrained in the x direction.
Move C until the distance from C to B1 in the x direction is so great that no motion
of B2 can create a configuration in CONNECTED and hence no motion of B2 will
create a configuration inE Then move B2 until it is in its position in Vo. By construction
this motion must be in Ho- Eo. The motion of B2 may require moving objects in C
but only in the y direction so this does not cause a problem. Then since B and B2
are in the same positions as they are in Vo and by the definition of Vo we can move
the remaining vertex objects to their positions in Vo and the motion will not be in
CONNECTED and hence will not be in Eo. 1-]

The following lemma shows that a certain sequence of groups is an exact sequence
where an exact sequence

h h h hn
O..,O, G ,... ,{0)

is such that the image of hi, Im (hi), is the kernel of h/l, ker (h+l) where G is a group
and hi is a homomorphism. Let Z be the group of integers under addition. The notation
H and Ho in the lemma is as follows:

MULTIPLE OBJECT MOTION PLANNING 779

(i) Ho(S) is the zeroth homology group of $, where Ho(S)= Z... 0)Z (m
copies of Z) if $ has m path connected components.

(ii) Hi(S) is the first homology group of S where Hi(S) {0} if HI(S) is contract-
ible to a point.

LEMMA 2.5. (Mayer-Vietoris). Let A and B be two closed sets. Then the sequence
h h h h

HI(A LJ B) Ho(Afq B) Ho(A)O) Ho(B) Ho(A LJ B) {0}

is an exact sequence.
Proof. See Massey [8]. l-1

We will not be interested in the particular hi’s of Lemma 2.5 except for the fact
that they form an exact sequence. Next we will use Lemma 2.5 with A of the lemma
replaced with Ho-Po(i) and B of the lemma replaced with Ko(i). Notice that
Ho Po(i) (q Ko(i) Ko(i) Po(i) which is the boundary of the face Ko(i). The
following result shows that the number of path connected components of the boundary
of a face of CONNECTED is equal to the number of path connected components of
the face of CONNECTED.

LEMMA 2.6. Ho(Ko(i)- Po(i))" Ho(Ko(i)) when rank (Mo) <=2n -2.
Proof. Ho Po(i) and Ko(i) are closed sets in Ho by Lemma 2.2 and the definition

of Ko(i). Ho (Ho-Po(i))LJ Ko(i) is clearly contractible to a point and path con-
nected and so Ho(Ho)={O}. By Lemma 2.4, Ho-Po(i) is path connected and so
Ho(Ho-Po(i))"Z. Thus taking A= Ho-Po(i) and B Ko(i) in Lemma 2.5, we get
the situation shown in Fig. 9. Then since we have an exact sequence, we conclude
that h2 is 1-1 and h is onto. Thus ZHo(Ko(i))’ZO)Im(h2)’ZO)
Ho((no-Po(i))fq Ko(i)). In other words, we have that Ho((no-Po(i))fq Ko(i))=
Ho(Ko(i)-Po(i))-Ho(Ko(i)). By the definition of the zeroth homology group we
conclude that Ko(i) has the same number of path connected components as Ko(i)-
Po(). r

ONE-TO-ONE ..---

HO (KD(i)- PD(i)) Z() HO(KD(i)) Z

FIG. 9. Mayer- Vietoris sequence.

We have now shown that a face of CONNECTED and its boundary have the
same number of path connected components. However, we further need the result that
each path connected component of a face of CONNECTED contains exactly one path
connected component of its boundary. In order to prove this, the following two lemmas
are needed.

LEMMA 2.7. Each path connected component ofKo(i) Po(i) intersects exactly one
path connected component of Ko(i).

Proof. This follows from the fact that Ko(i)-Po(i)

780 J.,E. HOPCROFT AND G. T. WILFONG

Next it is shown that each path connected component of a face of CONNECTED
contains a path connected component of its boundary provided that the objects do
not form a vertex object.

LEMMA 2.8. Each path connected component of Ko(i) contains at least one path
connected component ofK(i) Po(i) if rank (Mo) -< 2n 1.

Proof It is sufficient to show that for any configuration Vl in Ko(i) there is a

configuration v2 in Ko(i)-P(i) and a path in Ko(i) from vl to v2.
Thus the result is trivial if vlKo(i)-Po(i). Otherwise VlPo(i). Since

rank(Mv,)=rank(M)<=2n-1 there is a vertex object B1 of Vl with a face bl that
touches a face b2 of another vertex object BE of ol. Moving
moves across b2 until some face of B touches some face that was not touching in
results in a configuration v2 where /)2 Eo and so v2 Po(i). Clearly v2 Ko(i) by
definition of v2. Thus the lemma follows.

The preceding results can be combined to conclude that there is a one-to-one
correspondence between the path connected components of a face of CONNECTED
and those of its boundary. This is stated in the following lemma.

LEMMA 2.9. Each path connected component of Ko(i) contains exactly one path
connected component of Ko(i) Po (i).

Proof The lemma follows from Lemma 2.6 and Lemmas 2.7 and 2.8 by a simple
counting argument.

As a consequence of Lemma 2.9 we can now conclude that a path in the boundary
of a face exists between configurations in the boundary if there is a path in the face
between the configurations.

LEMMA 2.10. If rank (Mo) <- 2n-2 and there is a path in Ko(i) between two
configurations in Ko(i) Po(i), then there is a path in Ko(i) Po(i) between these
configurations.

Proof Let Vl, v26 Ko(i)-Po(i) and p be a path in Ko(i) between vl and v2.
Thus, vl and v2 are in the same pathconnected component of Ko(i) and hence by
Lemma 2.9, v and v2 are in the same path connected component of Ko(i)-Po(i).
That is, there is a path in Ko(i)-Po(i) between v and v2.

We will show that the boundary of a face Ko(i) of CONNECTED consists of
faces of CONNECTED of dimension less than that of the face Ko(i). Thus using
Lemma 2.10, we will conclude that if there is a path in a face of CONNECTED
between two configurations in the boundary of the face, then there is a path between
the two configurations contained in faces of CONNECTED of dimension less than
that of the face Ko(i). We begin by showing that a configuration in a face satisfies
the description that defines the face.

LEMMA 2.11. Let v be a configuration in Ko(i). Then v satisfies D and so
rank (My) >= rank (Mo).

Proof. Suppose v does not satisfy D. Then there must be two faces that touch
according to D but do not touch in v. Let e > 0 be the distance between the two closest
such faces in v. Any configuration in HD where each object has been moved less than
e/2 from its position in v also does not satisfy D. Thus there is a ball B in Ho about
v such that B f-) Po(i) . Since Ko(i) is the closure of Po(i) in Ho, v is not in Ko(i),
a contradiction. Hence each v in Ko(i) satisfies D and thus M has at least the rows
of Mo. Therefore rank (M) => rank (Mo).

We now show that a configuration v in the boundary of a face, Ko(i) of CON-
NECTED lies in a face of CONNECTED with dimension less than that of the face
Ko(i).

LEMMA 2.12. Ifv K(i)-P(i) then rank (M)> rank (M).

MULTIPLE OBJECT MOTION PLANNING 781

Proof Suppose v Po(j) where j # i. By Lemma 2.2, Po(j) is open in Ho and
so there is an open ball B about v such that B Po(j). However, v is in Ko(i), the
closure of Po(i) in Ho. This implies that B fq Po(i) f. Thus Po(j) f3 Po(i) f. This
contradicts the assumption that Po(i) and Po(j) are distinct path connected com-
ponents of Eo. Thus v : Eo. That is, v does not satisfy D exactly.

By Lemma 2.11, rank (My)>-rank (Mo). Suppose rank (My)=rank (Mo). Let
be the description that v satisfies exactly (i.e. Mo, Mv). By Lemma 2.11 we have that
v satisfies D and so all of the clauses of D are clauses of D1. Therefore, Ho c_c_ Ho.
By the above, we know that D D and hence Ho, Ho. Thus Ho c Ho. But this
implies that the dimension of Ho must be less than the dimension of Ho and so
rank (Mol) rank (M) > rank (Mo).

It is now possible to prove that the boundary of a face of CONNECTED,
Ko(i)- Po(i), is exactly the set of configurations in Ko(i) that lie in faces of CON-
NECTED of dimension less than that of the face Ko(i).

LEMMA 2.13. Ko(i)-Po(i)= Ko(i)f-l{v[rank (M)> rank (Mo)}.
Proof. Let v Ko(i) Po(i). By Lemma 2.12, rank (M) > rank (Mo) and so

Ko(i)-Po(i)_ Ko(i)fq{vlrank (Mo)> rank (Mo)}.
Let v Ko(i)fq{vlrank (M)> rank (Mo)}. Then v Ko(i). Since rank (My)>

rank (Mo) we know that v does not satisfy D exactly (i.e. re: Eo) and hence v can
not be in any path connected component of Eo. Thus v Ko(i)-Po(i) and so
Ko(i) fq {v[rank (M) > rank (Mo)} Ko(i)- Po(i). Therefore, we can conclude that
Ko(i)--PD(i)=KD(i)fq{v[rank (Mo)> rank (MD)}. l"!

Lemma 2.10 showed that if a path in the face of CONNECTED exists between
two points in the boundary of the face then there is a path in the boundary between
the points. Combining this result and Lemma 2.13 allows us to conclude that if there
is a path in a face of CONNECTED of dimension d between two configurations in
the boundary of the face then there is a path between them contained in faces of
CONNECTED of dimension less than d.

3. Edge connectedness. In this section we will show that there is a path consist-
ing of edges of CONNECTED between two vertices of CONNECTED whenever
there is any path in NONOVERLAP between them. In order to further examine
the structure of CONNECTED, we introduce the notion of a complex. A d-complex,
Ca, is the union of all faces of CONNECTED of dimension d or less. The faces of
CONNECTED in Co and C are thus the vertices and edges of CONNECTED,
respectively.

We can interpret the results of the previous section as follows. Let Ko be a face
of CONNECTED such that Ko

_
Cd+. Then we conclude that if there is a path in

Ko between two points in the boundary of Ko (hence the points are in Cd) then there
is a path in the boundary (hence a path in Cd) between them. Now we wish to extend
this to show that a path in Cd exists between two configurations in Cd if there is a
path in Cd/l between them, even if the path goes through more than one face of Cd+.
The proof proceeds by showing in Lemma 3.2 that configurations in the intersection
of two faces of dimension d lie in faces of dimension d- or less. This result is used
to show in Lemma 3.3 that any two configurations in Cd, d > 0, that are connected by
a path in Cd+I are connected by a path in Cal. An inductive argument is then used in
Theorem 3.6 to show that there exists a path consisting of vertices and edges. To begin
the induction, we use a result from [5] to argue that a path in NONOVERLAP implies
a path in CONNECTED and Lemma 3.5 that establishes that CONNECTED equals
c..

782 J.E. HOPCROFT AND G. T. WILFONG

We now proceed to establish these results. Lemma 3.1 is a technical lemma
concerning the intersections of closed sets. The reader may wish to skip immediately
to Lemma 3.2. In the following when we say p: [0, 1]--> P is a path in set $ we mean
that P G S and P is the range of p.

LEMMA 3.1. Let A and B be closed sets and letp: [0, 1]--> Pbe a path in At.J Bfrom
xA to yB. Then PNANB#.

Proof. Suppose PNANB=Q. Then p-I(PNANB)=f and so p-l(PnA)n
p-i(p n B) Q. Since P is in A U B, p-i(p n A) U p-(P n B) [0, 1]. Since p-i(p n A)
and p-(Pn B) are closed, we conclude that [0, 1] is not connected, a contradiction.
Therefore, P n A n B Q. E]

Suppose there is a path p in C,-k between two configurations v and w in C2,-k-.
Let Ko,(i), Ko(i2),’", Ko,(i) be the sequence of faces that the path p intersects
between v and w. Let K denote Ko(i). Thus K K+I. By Lemma 3.1 for each
j, 1 _<-j_-< t- 1 there must be a t [0, 1] such that p(b)E KN K+. Let p(b) v and p
be the section of p on K. Also let v0 v and v- w. To be able to apply Lemma 2.10
to p, we must show that v_ and v are in K- P where P denotes Po(i). By Lemma
2.13 it is sufficient to show that rank (Mo)> k and rank (Mo_,)> k. Lemma 3.2 will
establish this fact.

LEMMA 3.2. Let the dimensions ofK and K+I be at most 2n k (i.e. rank (Mo,) >- k
for i=j, j / 1). That is K and K+I are contained in C2,-k. Let v be in their intersection.
Then rank (M,) > k. In other words v CEn_k_lo

Proof. Suppose D D+. Since K K+I it must be that P P+ where .K is
the closure of P in Ho, for i=j, j + 1. Thus P and P+ are two distinct path connected
components of Eo and so P n P+l Q. In particular, v P n P+l and so v K P
or v K+I- P+. In either case, by Lemma 2.12, rank (Mo) > k.

Suppose D D+. Then v cannot satisfy both D and D+ exactly and so
v P n P+I and hence v K P or v K+I P+I. Then, again by Lemma 2.12,
rank (Mo) > k. fl

We will show that there is a path in C,-k-1 between v and w. If the dimension
of K is less than 2n- k then p is contained in C2,-k-1. Suppose the dimension of K
is 2n k (i.e., rank (Mo) k). By Lemma 3.2, rank (M,_,) > k and rank (Mo) > k and
so v, V+l K-P by Lemma 2.13. Thus p is a path in K between two configurations
in K-P and so by Lemma 2.10 there is a path in K-P between them. By Lemma
2.13 we conclude that there is a path in C2,-k- between v_ and v in this case. Thus
there is a path in C,-k- between each v_ and v and so there is a path from v to
w in C2,-k-1.

LEMMA 3.3. If there is a path in C,-k from v to w where v, w C2,-k- then there
is a path in C2,-k- from v to w where k <-2n- 2.

Proof. See preceding discussion.
We are going to want to apply Lemma 3.3 inductively and so we will first show

two results about CONNECTED to provide a starting point for the induction.
LEMMA 3.4. If v is a connected configuration of n + 1 objects, then rank (Mo)_-> n.

Proof. The proofis by induction on the number ofobjects. Suppose v is a connected
configuration of 2 objects. Then there is at least one face of the moveable object that
touches a face of the fixed object. Thus Mo has at least one nonzero row and so
rank (Mo) _-> 1.

Assume the result holds for configurations of n objects. Let v be a connected
configuration of n + 1 objects. As before, let Go be the graph with a node for each
object and an edge between nodes if the corresponding objects touch in v. Let T be
a depth first spanning tree of G with the node corresponding to Ao, the fixed object,

MULTIPLE OBJECT MOTION PLANNING 783

as the root. Then the leaves of T are not articulation nodes of Go (see 1]). That is,
removing an object corresponding to a leaf of T results in a connected configuration
w of n objects. By the induction hypothesis, rank (Mw) ->- n 1. Without loss of general-
ity assume that the object removed was A,. Then

where B contains nonzeros because A. touches at least one of the other objects. Thus
rank (My) -> rank (Mw) + 1 -> n as required. I-1

LEMMA 3.5. CONNECTED
Proof. By Lemma 3.4, v CONNECTED implies rank (My) >= n. But rank (Mo) -> n

means v Cp for some p =< n. Since p-< n implies Cp
_
Cn we conclude that v C,.

Let v C. Then v Kc (i) for some D and with rank (Mo) >= n. Let Po(i)
be the path connected component of Eo such that clHo(Pd(i))= Ko(i). By defini-
tion of Eo, Po(i)

_
CONNECTED fq Ho which implies that Ko(i)

CIHo(CONNECTEDf) Ho) CONNECTED f’) Ho. Therefore Ko(i)_ CON-
NECTED and so C, CONNECTED. Hence CONNECTED C,.

We are now in a position to prove our main goal. That is, we will show that if
there is a path in NONOVERLAP between two vertices of CONNECTED then there
is a path contained in the edges of CONNECTED between them.

THEOREM 3.6. Let v and w be vertices of CONNECTED. If there is a path in
NONOVERLAP between v and w then there is a path contained in the edges of
CONNECTED between v and w.

Proof. By [5] we know that there is a path in CONNECTED from v to w. Thus
by Lemma 3.5 there is a path in Cn from v to w. Applying Lemma 3.3 inductively we
conclude that there is a path in C1 from v to w. In other words, there is a path along
edges from v to w.

4. A PSPACE-comlMete motion lrolflem. In this section we will show that the
problem of determining whether a motion exists between two configurations of two-
dimensional rectangles within a rectangular enclosure with integer sizes where the
fixed object is at an integer location is in PSPACE. To accomplish this, a nondeterminis-
tic method will be described and will be shown to require polynomial space. Since
NSPACE equals PSPACE, we will conclude that the problem is in PSPACE.

First it must be shown how to get from an arbitrary configuration to a vertex
configuration. Move the object which is closest to the fixed object in the x or y direction
until it touches the fixed object. Considering these two objects as one fixed object,
repeat this until a configuration in CONNECTED results. Now the motion in Lemma
2.8 can be repeated until a vertex configuration is encountered.

It is now sufficient to show how to determine if there is a motion between vertex
configurations. From a vertex configuration, nondeterministically guess a subset of
objects and face of an object to move this subset along. Check to see if this is a motion
along an edge of CONNECTED. If so, move the subset of objects until a new pair
of faces touch. By the previous results, this new configuration must be a vertex
configuration. Continue this process until the desired vertex configuration is encoun-
tered.

Since the position of the objects in a vertex configuration is the solution to an
integer linear system of equations, the positions of the objects in a vertex configuration
can be stored in polynomial space (see [2]). Clearly, finding the next faces that touch
when moving objects in the direction of one of the coordinates axes can be done in

784 J.E. HOPCROFT AND G. T. WILFONG

polynomial space. Calculating the rank of the matrix Mo where D is the description
resulting from moving the subset of objects to see if the motion is along an edge of
CONNECTED also can be done in polynomial space. Thus the problem is in NSPACE
and so in PSPACE.

In [4] it was shown that the problem of deciding whether there is a motion between
two configurations oftwo-dimensional rectangles in a two-dimensional box is PSPACE-
hard. Hence the problem is PSPACE-complete.

5. Conclusions. Using the concept that determining if a coordinated motion of
multiple objects exists is equivalent to searching for a path in a high dimensional space
(configuration space), it has been shown that for very general two-, three-dimensional
objects, the search in configuration space can be restricted to CONNECTED, the
configuration space body whose points correspond to configurations in which all the
objects form one connected piece [5]. Making use of the above result, it was shown
in this paper that for two-dimensional objects with sides parallel to the coordinate
axes, the search for such a path in configuration space can be reduced to searching
for a path in a graph when translations are the only motions allowed. The path in the
graph corresponds to a path in configuration space that consists of zero and one-
dimensional faces of CONNECTED.

In the case of two-dimensional objects with linear sides that are not necessarily
parallel to the coordinate axes of the plane and where only translations are permitted,
similar results to those developed in this paper could be obtained.

With more general objects, analyzing the structure of CONNECTED is much
more difficult because the faces will not necessarily be portions of hyperplanes and
so the intersection of faces will be more complicated.

All of the results of this paper up to Lemma 2.3 remain valid for three-dimensional
objects with planar faces parallel to the planes of the coordinate axis of R3. Basically
Lemma 2.3 says that the faces of CONNECTED of dimension two or more correspond
to cases where there are at least three vertex objects. This property is needed in the
construction in the proof of Lemma 2.4. In the case of the three-dimensional objects
it can only be shown that the faces of dimension three or more correspond to cases
where there are at least three vertex objects. Thus we can conclude only that faces of
dimension three or more have the same number of path connected components as the
boundary of the face in the case of three-dimensional objects. Therefore, in this case,
the search for a motion can be reduced to searching for a path within the faces of
CONNECTED of dimension two or less. It appears that the search for a path in
configuration space could be reduced even further to searching for a path in the vertices
and edges of CONNECTED even for three-dimensional objects. Unfortunately there
are faces of CONNECTED in this case, such that the vertices of the face are not
connected by edges of the face. Thus, the method of proof used in this paper will not
suffice to prove the desired result because the analysis consisted of studying one face
of CONNECTED at a time and although vertices on a face may not be connected by
edges of that face, there may be a path consisting of edges and vertices of other faces
that join the two points. Thus a more global study of the structure of CONNECTED
would have to be performed to obtain this result rather than the restricting one’s view
to one face at a time.

The structure of configuration space has an additional complexity when rotations
are allowed. There are two choices of how to define configuration space. One can
identify configurations in which an object is rotated in a complete circle or one
can think of these two as distinct configurations. In the first case configuration space

MULTIPLE OBJECT MOTION PLANNING 785

is no longer merely a high dimensional Euclidean space but some sort of quotient
space.

Understanding the structure of the various sets in configuration space should be
a valuable aid in deciding if a motion exists between two configurations. In the cases
where searching for a path among the vertices and edges ofCONNECTED is sufficient,
this special structure of CONNECTED will help in the actual planning of a motion
because we know that only motions that correspond to paths along edges have to be
considered. Thus in the case of a small number of objects moving about in a relatively
open workspace, the graph could be small enough to search for a path. In any case,
it at least provides a tool that a heuristic could make use of. Even in the cases indicated
above where searching a graph is not sufficient, a more complete knowledge of the
structure of configuration space should be useful in developing heuristics for motion
planning.

Acknowledgment. The authors would like to thank the referees for their valuable
comments.

REFERENCES

1] A. V. AHO, J. E. HOPCROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] I. BOROSH AND L. B. TREYBIG, Bounds on positive integral solutions of linear diophantine equations,
Proc. Amer. Math. Soc., 55 (1976), pp. 299-304.

[3] J. E. HOPCROFT, D. JOSEPH AND S. WHITESIDES, Movement problems for 2-dimensional linkages,
this Journal, 13 (1984), pp. 610-629.

[4] J. E. HOPCROFT, J. T. SCHWARTZ AND M. SHARIR, On the complexity ofmotion planningfor multiple
independent objects; PSPACE hardness of the "warehouseman’s problem", Robotics Research
Technical Report No. 14, Computer Science Division, New York Univ., New York, February 1984.

[5] J. E. HOPCROFT AND G. T. WILFONG, On the motion of objects in contact, Proc. 2nd International
Symposium on Robotics Research, Kyoto, Japan, 1984, pp. 81-90.

[6] T. LOZANO-PEREZ AND M. A. WESLEY, An algorithmforplanning collision-free paths amongpolyhedral
obstacles, Comm. ACM, 22 (1979), pp. 560-570.

[7] T. LOZANO-PEREZ, Automatic planning of manipulator transfer movements, IEEE Trans. Syst., Man,
Cybern., SMC-11 (1981), pp. 681-698.

[8] W. S. MASSEY, Homology and Cohomology Theory, Marcel Dekker, New York, 1978.
[9] J. REIF, Complexity of the mover’s problem and generalizations, in Proc. 20th IEEE Foundations of

Computer Science Conference, Institute of Electrical and Electronics Engineers, New York, 1979,
pp. 421-427.

[10] J. T. SCHWARTZ AND M. SHARIR, On the piano mover’s problem I. The case ofa two-dimensional rigid
polynomial body moving amidstpolygonal barriers, Comm. Pure Appl. Math., 36 (1983), pp. 345-398.

11 ., On the piano mover’s problem II. General techniques for computing topological properties of real
algebraic manifolds, Adv. Appl. Math., 4 (1983), pp. 298-351.

12] ., On the piano mover’s problem III. Coordinating the motion of several independent bodies. The
special case of circular bodies moving amidst polygonal barriers, Intern. J. Robotics Research, 2, 3,
Fall 1983.

[13] M. SHARIR AND E. ARIEL-SHEFFI, On the piano mover’s problem IV. Various decomposable two-

dimensional motion planning problems, Comm. Pure Appl. Math., 37 (1984), pp. 479-493.
[14] S. WILLARD, General Topology, Addison-Wesley, Reading, MA, 1970.

SIAM J.COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
011

CHURCH-ROSSER THUE SYSTEMS THAT PRESENT
FREE MONOIDS*

FRIEDRICH OTTOt

Abstract. It is undecidable in general whether the monoid presented by a given Thue system is a free
monoid. Here it is shown that this question is decidable for Church-Rosser Thue systems.

Key words. Thue congruence, Church-Rosser Thue system, monoid presentation, free monoid, Markov
property, Tietze transformation

AMS(MOS) subject classifications. 03D03, 20M05

1. Introduction. Let Tbe a Thue system on E, where E is a finite alphabet. Then
the ordered pair (E; T) is called a (monoid) presentation, and the monoid M it presents
is the quotient of the free monoid E* by the smallest congruence including T [4]. How
much information about the algebraic structure of M can be deduced from a given
presentation of M? In general, it is impossible to derive much information, since even
the following problem is undecidable in general [7]:

Instance. A finite (monoid) presentation (E; T).
Question. Is the monoid M presented by (E; T) trivial, i.e., does M consist only

of the identity?

Many decision problems can be formulated for monoids given by finite presenta-
tions, e.g., the word problem, the power problem, and the conjugacy problem. Although
being undecidable in general, all these problems are decidable for monoids presented
by certain restricted classes of presentations, e.g., the word problem and the conjugacy
problem are decidable for monoids presented by finite Church-Rosser Thue systems
1], 10], and the power problem is decidable for monoids presented by finite monadic
Church-Rosser Thue systems [2]. In fact, in [2] Book develops a technique for solving
a whole class of decision problems for monoids presented by finite monadic Church-
Rosser Thue systems.

In this note we are dealing with the following problem:

Instance. A finite (monoid) presentation (E; T).
Question. Is the monoid M presented by (E; T) a free monoid?

Since the property ofbeing free is a Markovproperty for finitely presented monoids
[7], this problem is also undecidable in general. Does it become decidable when it is
restricted to monoids presented by finite Church-Rosser Thue systems?

It seems that the property of being free is not expressible by a "linear sentence"
as defined in [2]. Hence, the results of [2] cannot be used here. Furthermore, since
they only hold for monadic Church-Rosser Thue systems [12], they would not meet
our demand anyway. So, we have to find a different way to solve the above problem
for monoids presented by finite Church-Rosser Thue systems.

After giving some basic definitions and notation in 2, we prove the following as
a first step in 3. Assume that the monoid M presented by (E; T) is free. Then M is
freely generated by a subset Eo of E. Hence, M is also presented by (Eo; C). This

* Received by the editors September 4, 1984, and in revised form May 1, 1985.
t Fachbereich Informatik, Universitit Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, West

Germany.
786

CHURCH-ROSSER THUE SYSTEMS 787

implies that there is a finite sequence of Tietze transformations [6] that transforms the
presentation (E; T) into (Eo;). In fact, this is true for every two finite presentations
of the same monoid, the problem being how to find such a finite sequence of Tietze
transformations.

If the Thue system T is reduced and Church-Rosser, then we can derive some
information about the form of the rules of T. This is done in 4. Since for every finite
Church-Rosser Thue system T, there is a unique reduced Church-Rosser Thue system
T’ that is equivalent to T, and since T’ is computable from T in polynomial time using
linear space [9], we lose no generality by restricting our attention to reduced Church-
Rosser Thue systems. Now this additional information on the form of the rules of T
is sufficient to effectively construct a finite sequence of Tietze transformations from
(E; T) to (Eo;), if such a sequence exists. In 5 an algorithm is given that, based
on this observation, on input a presentation (E; T) where T is a finite Church-Rosser
Thue system, decides whether the monoid defined by this presentation is free or not.
The correctness of this algorithm is proved from the results of the previous sections.

So the problem of deciding freeness of monoids gives another example of a
decision problem, that, although being undecidable in general, becomes decidable
when being restricted to monoids presented by finite Church-Rosser Thue systems.
Hence, it again underlines the usefulness of the Church-Rosser property for solving
decision problems for monoids.

2. Thue systems. Let E be a finite alphabet and E* the set of all words over E
including the empty word e. For w E*, the length of w is denoted by wl’lel- 0, and
Iwal--Iwl/l for all weE*, acE.

A Thue system T on E is a subset of E*x E*. The elements of T are called rules.
Given a Thue system T on E, domain(T)={ll:lrE*" (l,r) T}, and range(T)=
{rlllE*" (l, r) T}.

For a Thue system T on E, let oT be the following relation" if (l, r) is a rule of
T, then for all x, y E*,

xly -> xry and xry ->r xly.

The reflexive and transitive closure *r of ->r is a congruence on E*, the Thue
congruence generated by T. If u ->* v one says that u and v are congruent (modulo T).
The congruence class [u]r of u is the set

Since the relation -->r is symmetric, we can assume without loss of generality that no
rule of T is length-increasing, i.e., if (l, r) T then I/[--> rl.

Two Thue systems T1 and T2 are equivalent, if they define the same Thue con-
gruence, i.e., they are both on the same alphabet E, and

PROPOSITION 2.1. [4]. Let T be a Thue system on ,. Then the set of congruence
classes {[u].lu E*}forms a monoid under the operation u]r v]7- uv]r with identity
e]r. This monoid is denoted as E*/*T"

Let M be a monoid. If M-E*/,-->*7-, i.e., if the monoids M and E*//->*7- are
isomorphic, then the ordered pair (:E; T) is called a presentation of M with E being
the set of generators, and T being the set of defining relations of this presentation. M
is called finitely presented, if there exists a finite presentation of M, i.e., if there exists
a presentation (E; T) of M with E and T being finite.

788 FRIEDRICH OTTO

A monoid M is free, if it has a presentation of the form (E;), i.e., if it has a
presentation with an empty set of defining relations. Now, two words u, v E* are
congruent modulo if and only if they are equal. Hence,

Let T be a Thue system on 5:. For u, v E*, if u or v and [u[> [v], then define
u r v. The reflexive and transitive closure ’7- of r is the reduction relation defined
by T. Since words cannot have negative length, the relation 7- is Noetherian, i.e.,
there exists no infinite chain Ua r u2 ru3 r’". If u ’7- v, one says that u reduces
to v, u is an ancestor of v, and v is a descendant of u (modulo T). A word u is
irreducible if it has no descendant except itself, otherwise it is reducible (modulo T).
Obviously, each word has at least one irreducible descendant (modulo T).

Following the notation of Book [1], we call a Thue system T Church-Rosser if
every two congruent words have a common descendant. In other words, for every
choice of u and v, u o*r v implies that for some z, u *r z and v *r z. Equivalently,
a Thue system is Church-Rosser if every congruence class contains a unique irreducible
word, which can then be considered as a representative for that class.

Obviously, a Church-Rosser Thue system T is equivalent to the subsystem T’
consisting of all the length-reducing rules of T. Hence, we may assume without loss
of generality that a Church-Rosser Thue system T contains length-reducing rules only,
i.e., l/l> Irl for each rule (1, r) T. So the class of Church-Rosser Thue systems is a
very restricted one. On the other hand, this restriction has been justified by many
interesting results, e.g., the word problem for a finite Church-Rosser Thue system is
decidable in linear time [1], it can be checked in polynomial time and linear space
whether a given finite Thue system is Church-Rosser [3], and the conjugacy problem
for a finite Church-Rosser Thue system is decidable 10], while the conjugacy problem
is undecidable in general even for finite Thue systems that define unique representatives
without being length-reducing 11].

3. Thue systems presenting free monoids. A property P of monoids is called
invariant if every monoid that is isomorphic to a monoid possessing property P itself
possesses this property. An invariant property of finitely presented monoids is a Markov
property [7], [8], if it satisfies the following conditions:

(1) There is a finitely presented monoid M1 which does not have property P, and
which is not isomorphic to a submonoid of any finitely presented monoid having
property P, and

(2) there exists a finitely presented monoid M2 having property P.
Obviously, the property of being free is an invariant property of finitely presented

monoids, and it satisfies (2). On the other hand, each finitely generated submonoid of
a free monoid has a decidable word problem. Thus, a finitely presented monoid with
an undecidable word problem is neither free nor isomorphic to a submonoid of a free
monoid, i.e., condition (1) is also satisfied. So the property of being free is a Markov
property. Hence, by the main result of [7], the following problem is undecidable in
general:

Instance. A finite presentation (E; T).
Question. Is the monoid E*/--*r a free monoid?

Although this problem is undecidable, we do at least have the following informa-
tion on presentations of free monoids.

THEOREM 3.1. If the monoid ,*/-*r presented by (E; T) is free, then there exists
a subset ,o of , that freely generates this monoid.

CHURCH-ROSSER THUE SYSTEMS 789

Proof. Let {al, a2,""", a,}, and assume that the monoid M E*/*r is free
of rank m. Then E*/-->*r F* for some alphabet F {bl, b2,’"", b,,}. Hence, for each
ai e E, there exists a word ui e F* such that ai and u represent the same element of
M. Analogously, for each bj e F, there exists a word vj e E* such that b and v represent
the same element of M. Since M F*, no b e F represents the identity of M, and so

v e,j 1,. ., m. Further the words vj e E* can be chosen in such a way that no v
contains an occurrence of a letter a e E with a *->’7- e. On the other hand, u e if and
only if ai ,-->*r e, i= 1,. ., n.

Let b e F, and assume that v ai,a...a. For each A, 1-<_ h <_-k, u represents
the same element of M as a. Hence, b and the word ui,u. u e F* represent the
same element of M. Since M is free on F, this implies that bj u,u...ui. By the
choice of v, we have

Take Eo {a e [:lb e F: a= v}. Then Eo {vj[j 1,..., m} is a subset of E that
freely generates M.

Let T be a Thue system on E such that the monoid M E*/*-*r is free, and let
Eo be a subset of E that freely generates M. Then, for each a e E, there is a unique
word u e Eo* with a
for all a e E. Then we have the following.

LEMMA 3.2. For all u, veE*, u o*r v if and only/fq(u) q(v).
Proof Since q(w) --*r w for all weE*, u --*r v if and only if o(u) *-*r q(v). But

o(u), o(v) eEo*, and o freely generates M implying that q(u)-*r o(v) if and only
if q(u)= (v). [3

4. Church-Rosser Thue systems presenting free monoids. Many decision problems
for monoids, that are undecidable in general, are decidable for monoids presented by
finite Church-Rosser Thue systems, e.g., the word problem [1], and the conjugacy
problem [10]. Does the problem of deciding whether the monoid defined by a given
presentation (E; T) is free also become decidable, when it is restricted to presentations
involving finite Church-Rosser Thue systems? We will show that this is indeed the
case. To this end some properties of Church-Rosser Thue systems presenting free
monoids are derived in this section. These properties will be used in the next section
to prove the correctness of our decision procedure for the problem stated above.

A Thue system T {(1, r)li e I} is called reduced if, for each e I, the word r is
irreducible modulo T and the word li is irreducible modulo T-{(l, ri)}. For each finite
Church-Rosser Thue system T, there exists a reduced Church-Rosser Thue system T’
that is equivalent to T. In fact, T’ is uniquely determined by T, and T’ is computable
from T in polynomial time using linear space [9]. Hence, we can restrict our attention
in the following to reduced Church-Rosser Thue systems.

So, for the remainder of this section let T be a fixed reduced Church-Rosser Thue
system on E such that the monoid M E*/-* is free. By Theorem 3.1 there exists a
subset Eo of E that freely generates M. Let p" E*-Eo* be the corresponding
homomorphism, and let ,-{ae,[p(a)=e}. Obviously, we have Eof)E1 =.

LEMMA 4.1. TO (E*X {e})= E1X {e}, i.e., the only rules with right-hand side e that
T contains are the rules {(a, e)ltp(a)= e}.

Proof. Eo freely generates M, and p(w)* w for all weE*, implying that
Eo*={p(w)} for all weE*. Thus, p(w)=e if and only if w-*e, and so E=
{ae,[a -* e}. Now T being Church-Rosser implies that E={aeE[a-re}, and
therefore, {(a, e)[p(a)= e}= {(a, e)la eEl}_ T.

It remains to show that T does not contain rules of the form (u, e) with [u[_>-2.
Assume that (u, e)e T for some u with lu[>_-2. Then u --* e, and hence q(u) q(e) e
by Lemma 3.2, implying that u e E* since after all p" E*- Eo* is a homomorphism.

790 FRIEDRICH OTTO

But this contradicts the fact that T is reduced. Thus, Tt3(Z*x{e})=Elx{e}, as
claimed.

Eo and E1 are disjoint subsets of Z. Let E. denote the remaining letters of E, i.e.,
2 := 2 (Zo U 2,).

LEMMA 4.2. 22 range T CI 2, i.e.,for each a Z2, there exists a word u Z* such
that u, a) T, and these are the only rules of T with right-hand sides of length 1.

Proof. Let a 22. Then a 21 implying that a * e, and hence, a is irreducible
modulo T.

Now (a)2o* with q(a)*r a. Since T is Church-Rosser, we have q(a)*r a.
In particular, this shows that Iq(a)l -_> 2. The Thue system T is reduced. Hence, the
Thue system T := T-{(a, e)la 2} is contained in (2oU 2:)* (2oU 2:)*, i.e., no rule
of T1 contains an occurrence of a letter from 21. The words ,(a) and a are in (2o t.J 22)*
with q(a)* a, and so we actually have (a)-*1 a, since during the reduction
(a)-* a no letter from 21 can be introduced. By Lemma 4.1, the Thue system
contains no rule with right-hand side e. Therefore, it must contain a rule with right-hand
side a, implying that 22

_
range (T).

As already mentioned, no rule of T contains an occurrence of a letter from
Thus, 21range(T)=. Now assume that (u,a)T1 for some aEo. Then u
(2oLZ2)* with lull2. But Ip(b)l-> 1 for all bEoU22, which gives
On the other hand, q (u) q (a) by Lemma 3.2, and q(a) a since a o, implying
1 =lc(a)l=lq(u)l->2, a contradiction. This proves that Eorange(T)=, and so
range (T) Z 2.

Since q(u)- q(v) if u -* v, and since Iq(b)l>0 for all bEoUE2, we have the
following as an easy consequence of Lemma 3.2.

COROLLARY 4.3. For each a 2, if u (Zo LJ 2)* with u -* a, then either u a

Here, lul denotes the a-length of u, i.e., the number of occurrences of the letter
ainu.

5. The algorithm. We are now going to present an Algorithm (A), that decides
the following problem:

Instance: A presentation (g; T), where T is a finite Church-Rosser Thue system.
Question: Is the monoid M presented by (g; T) free?

After stating the algorithm we will prove its correctness. For doing so we need
the results of the previous two sections.

Algorithm (A) is defined as follows:

(A) begin input a finite alphabet X, and a finite Church-Rosser Thue system T on X;
(1) compute the reduced Church-Rosser Thue system that is equivalent to T,

(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)

and call it T;
,l:={a,[(a, e) T};

T:= T-{(a, e)la
if e range (T) then reject;
E2 := range (T) f’l E;
while Z2 do
begin choose a letter a E2 together with a rule (u, a) T;

if ul 0 then reieet;

CHURCH-ROSSER THUE SYSTEMS 791

(11)
(12)
(13)

E:=E-{a};
T:=T-{(u,a)};
substitute each occurrence of a in a rule of T by the word u

end;
if T

_
(w, w)] w E* then accept else reject

LEMMA 5.1. Algorithm (A) accepts an input (E; T), where T is a finite Church-
Rosser Thue system on E, ifand only ifthe monoid Mpresented by (E; T) is afree monoid.

Proof Let E be a finite alphabet, and let T be a finite Church-Rosser Thue system
on E. Then there exists a unique reduced Church-Rosser Thue system on E that is
equivalent to T, and this reduced system can be computed from T in polynomial time
using linear space [9]. Therefore, we may assume without loss of generality that T is
a reduced system. Since T is Church-Rosser, we have for all a E, a -*r e if and only
if (a, e)s T. Hence, E1 {a eEl(a, e) T} contains all the letters from E that present
the identity of the monoid M E*/*-*r. Since T is reduced, the letters from E1 do not
occur in the rules of T other than {(a, e)laE1} and so M is also presented by
(E-E1; T-{(a, e)laE1}). Hence, after executing lines (1) to (4) of (A) we have a
presentation of M by a finite reduced Church-Rosser Thue system containing no rules
of the form (a, e) with lal- 1. This presentation is again called (E; T).

If M is a free monoid, then there is a subset Eo of E that freely generates M. Let
E2 E E0, then E2 range (T) fq E by Lemma 4.2. Further, by Lemma 4.1 T contains
no rules with right-hand side e, i.e., erange (T). Hence, (A) does not reject in
line (5).

Let a E2. Then there is at least one rule of the form (u, a) in T. Choose one such
rule (u, a). Since lul->2 and U (EoI,.JE2)g, we have]ula =0 by Corollary 4.3, and so
(A) does not reject in line (9). In lines (11) to (13) (A) performs a Tietze transformation
[6] that results in deleting the letter a and the rule (u, a) from the presentation (E; T).
Also, a is deleted from the set E2 giving the set E_.

Let (E’; T’) denote the presentation of M this Tietze transformation yields. Then
for each b E., T’ contains at least one rule of the form (v, b) with v E’*. Hence,
/) (XoU E):gC: (EoU E2)g, and v* b implying that Ivl -0. Thus, (A) performs the
loop (7)-(13) until E2= without rejecting in line (9).

When this loop is left, the presentation of M at this point is (Eo; T’) for some
T’ Eo* X Eo*. But M is freely generated by Eo, and so T’c__ {(w, w)lwEo*}, i.e., (A)
accepts.

Now assume that (A) accepts, i.e., (A) transforms the presentation (E; T) into a
presentation (Eo; T’) for some Eo E with T’ {(w, w)lw Eo*}. During this transforma-
tion (A) only applies Tietze transformations to presentations ofM starting with (E; T).
Hence, (Eo; T’) is a presentation of M showing that M is a free monoid generated by
Xo. E3

Hence, we have shown the following.
THEOREM 5.2. The following problem is decidable:

Instance. Apresentation (E; T), where Tis afinite Church-Rosser Thue system on E.
Question. Is the monoid presented by (E; T) free ?

Notice that it is decidable in polynomial time and linear space whether a given
finite Thue system is Church-Rosser [3]. So, what is the complexity of Algorithm (A)?
Letters from E2 may represent long words from Eo*. Thus, if all the words created
during the execution of (A) are actually written down as words, then exponential time

792 FRIEDRICH OTTO

and space may be used. However, if only pointers to the subwords inserted in line
(13) are stored, then (A) can be executed in linear space. This gives the following.

COROLLARY 5.3. The problem described in Theorem 5.2 is decidable in linear space.
So the problem of deciding whether the monoid defined by a given presentation

is free gives another example of a decision problem, that, although being undecidable
in general, becomes decidable when it is restricted to presentations involving finite
Church-Rosser Thue systems.

We conclude with an example of a nontrivial presentation of a free monoid.
Example 5.4. Let E={a,b,c, dl,...,d,/l,f,g for some nl, and let T=

((aEbaEc, dl), (bd,cE, f), (d,/lC, g), (df,, g)((dbd,c, d,/l)li 1,..., n. Then T is a
finite Thue system on E, and it can be checked easily that T is reduced and Church-
Rosser.

Take Eo {a, b, c), and define " E*- Eo* by (a) a, (b) b, (c) c, (d)
aEbaEc, tc(di/l)=(d)b(d)c for i=l,...,n, (f)=b(d,)c2, and (g)=
(d,)(f). Applying (A) to the input (E; T) yields the presentation
(Eo; {((d,/l)C, (g)))). Since (g)= (d,)(f)= (d,)b(d,)c2= (d,/l)C, the
monoid M presented by (; T) is free on o, and (A) accepts. In particular, is the
homomorphism that for each word w E*, gives the corresponding word from Eo*. It
is easy to see that, for all i=l,...,n/l, I(di)1=2/2-2, I(f)1=2"/2/1, and
I(g)l 2"+3 --1. So in fact the letters f and g represent long words from o*.

Acknowledgments. The author wishes to thank Prof. K. Madlener and
Dr. C. Wrathall for fruitful discussions concerning the results presented here.

REFERENCES

1] R.V. BOOK, Confluent and other types ofThue systems, J. Assoc. Comput. Math., 29 (1982), pp. 171-182.
[2] ., Decidable sentences of Church-Rosser congruences, Theoret. Comput. Sci., 24 (1983), pp.

301-312.
[3] R. V. BOOK AND C. O’DNLAING, Testing for the Church-Rosser property, Theoret. Comput. Sci., 16

(1981), pp. 223-229.
[4] G. LALLEMENT, Semigroups and Combinatorial Applications, Wiley-Interscience, New York, 1979.
[5] M. LOTHAIRE, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983.
[6] W. MAGNUS, A. KARRASS AND D. SOLITAR, Combinatorial Group Theory, 2nd rev. ed., Dover, New

York, 1976.
[7] A. MARKOV, Impossibility of algorithms for recognizing some properties of associative systems, Dokl.

Akad. Nauk SSSR, 77 (1951), pp. 953-956.
[8] A. MOSTOWSKI, Review of [7], J. Symbolic Logic, 17 (1952), pp. 151-152. (In Russian.)
[9] P. NARENDRAN, Church-Rosser and related Thue systems, Doctoral Dissertation, Rensselaer Polytech-

nic Institute, Troy, NY, 1984.
[10] P. NARENDRAN AND F. O’vFO, Complexity results on the conjugacy problem for monoids, Theoret.

Comput. Sci., 35 (1985), pp. 227-243.
11], The problems of cyclic equality and conjugacyforfinite complete rewriting systems, submitted for

publication.
12] F. OTTO, Some undecidability results for non-monadic Church-Rosser Thue systems, Theoret. Comput.

Sci., 33 (1984), pp. 261-278.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
012

THREE-DIMENSIONAL CIRCUIT LAYOUTS*

FRANK THOMSON LEIGHTONt AND ARNOLD L. ROSENBERG*

Abstract. Recent advances in fabrication technology have rendered imminent the fabrication of multi-
layer (i.e., three-dimensional) chips, wafers, and packages. In this paper, we examine the savings in material
(as measured by Area in a two-dimensional medium and Volume in a three-dimensional one) and in
communication time (as measured by the length of the longest uninterrupted run of wire) afforded by this
developing technology. We derive close upper and lower bounds on the efficiency with which circuits can
be realized in a multilayer medium, based on the sizes of the smallest bifurcators of the circuit. We find
that the smallest Volume of any three-dimensional layout of an N-device circuit is no more than (roughly)
(NA) t/2, where A is the smallest Area of any two-dimensional layout of the circuit. We then refine our
layout techniques so that we can deal with multilayer layouts having a fixed number of layers. We find that
we can efficiently transform a two-dimensional layout of Area A and Maximum Wire Run R into a
three-dimensional layout of Volume (roughly) V AH and Maximum Wire Run R* R/’H for moderate
numbers of layers H. Two noteworthy features of the study are: (1) that, within logarithmic factors, the
indicated savings can be realized with layouts that use the third dimension only for interconnect; and (2)
that the indicated savings can be realized algorithmically: we present polynomial-time algorithms that
transform a given two-dimensional layout into a more efficient three-dimensional one.

Key words, graph embeddings, graph layouts, VLSI theory, multilayer circuit realizations, one-active
layer layouts, area-volume tradeoffs

AMS(MOS) subject classifications. 94C15, 68C25, 05C99, 68E10

1. Introduction. Recent advances in fabrication technology [4]-[8], [10]-[12],
17]-[19], [22], [28] have allowed circuit and system designers to begin using the third
dimension in realizing their designs. Multilayer packages with impressive performance
have been fabricated [9], [10], [20], and there has been extensive research toward the
goal of three-dimensional chips [8], [12], [17]-[19], [28]. The rapid rate of progress
in VLSI technology suggests that multilayer chips and packages will be commonplace
in the not-distant future. Indeed, the president of Texas Instruments (quoted in [8])
predicts the production of three-dimensional chips by the end of the decade.

One expects at least two benefits to accrue from the use of the third dimension
in circuit realization. First, since one can avoid obstacles by using the third dimension,
runs of wire should be shorter, at least in the worst case. Second, since avoiding
obstacles in a two-dimensional environment can require area-consuming circuitous
routing of wires, one would expect savings in material: the Volume of a three-
dimensional realization of a circuit should be less than the Area of any two-dimensional
realization of the circuit. In order to realize these expected benefits, we must develop
effective techniques for devising and analyzing multilayer circuit layouts. Such is the
goal of this paper: we develop and analyze an algorithmic strategy for laying out VLSI
circuits (viewed here as undirected graphs) in three-dimensional chips (viewed here
as three-dimensional grids).

Our notion of the layout of a circuit follows the two-dimensional framework of
[2], [13], [14], [16], [26], [27], as adapted for the third dimension in [23], [24]: circuits
are undirected graphs whose vertices correspond to active devices (transistors, gates,

* Received by the editors February 17, 1984, and in revised form May 13, 1985.

" Department of Mathematics and Laboratory for Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts 02139. The research of this author was supported in part by a Bantrell
Fellowship, in part by DARPA contract N00014-80-C-0622, and in part by Air Force contractOSR-82-0326.

* Department of Computer Science, Duke University, Durham, North Carolina 27706. The research of
this author was supported in part by National Science Foundation grants MCS-81-16522 and MCS-83-01213.

793

794 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

etc.) and whose edges correspond to wires connecting these devices. The media in
which the circuits are to be realized are (two- or three-dimensional) rectangular grids.
A circuit layout is an edge-disjoint embedding of the circuit-graph in the grid.

Two models have been proposed for studying three-dimensional VLSI [23], [24].
The first, one-active-layer, model requires that all active devices be placed on a
designated layer of the chip. The second, unrestricted, many-active-layer, model allows
devices to be placed arbitrarily throughout the chip. It is clear how these two possibilities
manifest themselves in our formal setting. Although the many-active-layer model attords
one more flexibility when laying out one’s circuits, it places significantly more stringent
demands on the fabrication technology; cf. [24]. There is thus a tradeott between the
cost of fabricating a chip with multiple layers of devices and the savings (in terms of
Volume and Maximum Wire Run) resulting from the increased layout flexibility. One
of our more surprising results here is that, at least within our abstract framework,
many-active-layer layouts are little or no more efficient than one-active-layer layouts
when the number of layers is relatively small: either mode of using the third dimension
attords one appreciable but similar savings over any two-dimensional layout. Addi-
tionally, we show that multiple layers are effective in reducing Volume and Maximum
Wire Run only up to a certain point, after which they are wasteful. Although these
results are definitive only for the theoretical model our analysis is based on, they
suggest strongly that VLSI chips that have a higher (and costlier) degree of sophistica-
tion (in terms of number of layers and placement of devices) may not be more efficient
for many applications than significantly more modest chips.

Although there has been a substantial amount of work on the two-dimensional
version of the layout problem, related work on the three-dimensional problem has
largely been confined to one of:

the study of routing in the presence of a few extra layers [3], [9], [21];
the study of optimal multilayer layouts for a few special networks [20], [23], [29];
the study of optimal multilayer layouts for the class of "hardest-to-realize"
networks [23], [24].

Notable among the results in these papers, for our purposes, is the use in [23], [24]
of optimal three-dimensional layouts of the N-input Benes permutation network [1]
to prove:

Every small-degree N-vertex graph can be laid out in a three-dimensional grid
with Volume O(N3/2) and wire-length O(N/2).

There exist graphs that do not admit any more compact layout; for such graphs, these
bounds contrast with the lower bounds of Area ’(N2) and wire-length f/(N) [13],
[26] in the two-dimensional case. In effect, the contribution of the present paper is to
generalize the specialized three-dimensional results of Rosenberg and Preparata (among
others) to a level of generality comparable to the two-dimensional work of Bhatt,
Leighton, Leiserson, Thompson and Valiant (among others). Perhaps the most impor-
tant contribution of this paper is an algorithm that transforms a two-dimensional circuit
layout of Area A and Maximum Wire Run R into a three-dimensional layout of the
circuit that is within logarithmic factors of Volume A/H and Maximum Wire Run
R/H, for moderate values of H. The layouts produced are close to optimal in the sense
that using H layers rather than just one layer (which is how the two-dimensional case
is viewed in our formal framework) can never improve Area or Maximum Wire Run
by a factor smaller than 1/H. Certain special situations where the logarithmic
factors can be avoided are described in [15], wherein is also a special case of our
algorithm.

THREE-DIMENSIONAL CIRCUIT LAYOUTS 795

The remainder of the paper is divided into four sections. In 2 we review basic
definitions and cite work on two-dimensional layouts that is relevant to our study.
Sections 3 and 4 are devoted to the development and analysis of our three-dimensional
layout strategy, with particular attention paid to issues of Volume and Maximum Wire
Run. We conclude in 5 with some remarks on the implications of our work.

2. Preliminaries. Underlying assumptions. The formal framework of our study
carries with it certain implicit assumptions:

1. Our associating circuits with graphs limits our study to circuits with two-point
nets.

2. Our associating chips with grids limits our circuits to having small vertex-
degrees, specifically _-<4.

3. Our adherence to the models of VLSI layout theory renders the vertices of our
circuits as unit-side squares or cubes.

4. Our method of extending the two-dimensional model assumes isometry in all
dimensions" a unit of height is equivalent to a unit of width.
It is worthwhile placing these assumptions in perspective.

1. The restriction to two-point nets is a significant one" although extending our
results to circuits with three- or four-point nets is not difficult, extending the results
to circuits with arbitrary multipoint nets remains an inviting challenge.

2. Techniques that are now standard can be used to generalize our results to
include circuits with high vertex-degrees, but the associated analysis is technically
somewhat more complicated.

3. Restricting attention to unit-side devices is a purely clerical device; extending
the analysis to any uniform-size devices should present no problem [2], [13].

4. Aside from clerical simplification, the isometry assumption acknowledges the
potential problem of cross-talk between parallel runs of wire [24]; moreover, our results
concerning fixed-height layouts can be applied to a non-isometric model.

The formal framework. An undirected graph comprises a finite set V of vertices
and a set of two-element subsets of V, called edges. We say that the edge {u, v} is
incident to vertices u and v. The degree of the vertex v is the number of edges incident
to v; the degree D(G) of G is the largest degree of any of its vertices. As noted earlier,
our desire to embed graphs in grids forces us to look at graphs with small degrees. In
particular, our desire to compare three-dimensional layouts with competing two-
dimensional layouts restricts us to graphs of degree at most four.

The W x L planar grid is the graph whose vertex-set is the set of pairs W] x ILl
and whose edges connect vertices (a, b) and (c, d> just when la- c + Ib- d 1. (Here
and throughout, In] denotes the set In]= {1,2,..., n}.) The H x Wx L solid grid is
the graph whose vertex-set is the set oftriples HI x W] x [L] and whose edges connect
vertices (a, b, c) and (d, e,f) just when la-dl+lb-el+lc-fl= 1.

An embedding or layout of the graph G in the grid F (solid or planar) is a
one-to-one association /3 of the vertices of G with vertices of F, together with a
one-to-one association a of the edges of G with edge-disjoint paths in F, subject to
the constraint that the path c(u, v) cannot pass through any vertex-image/3(w) other
than/3(u) and/3(v). An embedding in a solid grid F of dimensions H x Wx L is a
one-active-layer embedding if it associates all vertices of G with vertices of F of the
form (io, j, k) for some fixed layer io in [HI.

We gauge the cost of an embedding of a graph in a grid in terms of the amount
of material consumed by the embedding (Area in the two-dimensional case and Volume

796 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

in the three-dimensional case), and in terms of the maximum length of any run of wire
that does not encounter a device.

The Volume (resp., Area) ofan embedding of the graph G in a solid (resp., planar)
grid F is the product of the dimensions of F. The Volume (resp., Area) of the graph
G, VOL (G) (resp., AREA (G)), is the minimum Volume (resp., Area) of any embed-
ding of G in a solid (resp., planar) grid. The one-active-layer Volume of the graph G,
VOL1-AL (G), is the minimum Volume of any one-active-layer embedding of G in a
solid grid. When we relativize either VOL(G) or VOLI-AL (G) with the integer
parameter H, as in VOL (G; H) or VOLI_AL (G; H), it is to be understood that the
volume minimization is done over all H-layer embeddings (of the appropriate kind).

Say that we are considering an embedding of the graph G in a grid, with the
(graph edge)-(grid path) association a. The wire-length ofthe embedding is the maximum
length of any path a(e) over all edges e of G. This corresponds informally to the
Maximum Wire Run of the layout, i.e., the length of the longest run of wire that does
not encounter a device. The solid (resp., planar) wire-length of the graph G, WE (G)
(resp., WL2 (G)), is the minimum wire-length of any embedding of G in a solid (resp.,
planar) grid. The one-active-layer wire-length of the graph G, WLI_A (G), is the
minimum wire-length of any one-active-layer embedding of G in a solid grid. As
before, relativization of these measures with the integer parameter H, as in WE (G; H)
or WL-AL (G’, H), restricts the indicated minimization to H-layer embeddings of the
appropriate kind.

Leiserson [16] and Valiant [27] showed that the "decomposition structure" of a
graph could be exploited in order to find an efficient two-dimensional layout of the
graph. Leighton [14] and Thompson [26] proved that the Leiserson-Valiant strategy
could not be improved in general, though it often produced layouts that could be
dramatically improved. Bhatt and Leighton [2], 13] significantly improved the layout
strategy by recasting its framework. Specifically, they reformulated the underlying
notion of the "decomposition structure" of a graph to one in which the Leiserson-
Valiant strategy yielded layouts that were provably good, in the sense of being within
logarithmic factors of optimal, for any graph. One of the central ideas in the Bhatt-
Leighton framework is that of a decomposition tree for a graph. The graph G has an
(Fo, F,..., Fr)-decomposition tree if G can be decomposed into two subgraphs Go

GO0

/F2/OIGIO GII

GOI0 GOI

FIG. 1. An Fo, FI, Fr)-decomposition tree.

THREE-DIMENSIONAL CIRCUIT LAYOUTS 797

and G1 by removing at most Fo edges from G; each of Go and G1 can be decomposed
into two subgraphs by removing at most F1 edges from each; and so on, until each
subgraph produced by the decomposition is either empty or an isolated vertex. See
Fig. 1.

Decomposition trees for which the F decrease at a uniform rate are of particular
importance to us. A graph that has an (F, F/p, F/p2,..., 1)-decomposition tree for
some real p > 1 is said to have an (F, p)-bifurcator or, equivalently, a p-bifurcator of
size F. Since the decomposition tree of an N-vertex graph must have at least log N
levels, it is clear that F_-> Ng’. (Unless otherwise indicated, all logarithms are to the
base 2.) For convenience, we shall also assume that F <-N/2 for all graphs.

Returning to the issue of efficient two-dimensional layouts, Bhatt and Leighton
proved that finding a small 21/2-bifurcator for the graph to be laid out was the entire
story, in the sense of the following result.

THEOREM 2.1 [2], [13]. Let F be the size of the smallest 2/2-bifurcator of the
N-vertex graph G. Then

F2 <-_ AREA (G) <- (const)F2 log2 (N/F)
and

(const)F2/N <-_ WL2 (G) _-< (const)V log (N/V)/log log (N/F).

Moreover, these bounds are existentially tight in the sense that each ofthefour inequalities
is sometimes an equality.

A key step in the proof of Theorem 2.1 is the demonstration that an arbitrary
decomposition tree can be fully balanced at little or no cost, in the sense that

(1) each graph Gi in the tree is split into two equal-size subgraphs, Gio and G;
and

(2) the number of edges of G having precisely one end in the (arbitrary) tree-
vertex/subgraph Ga of G is at most a small fixed multiple of the number of edges
leaving Ga to go to its brother subgraph G.

The notion "fully balanced" applies to p-bifurcators in the obvious way. Bhatt
and Leighton prove the following basic result, via a polynomial-time algorithm for
constructing a fully balanced bifurcator from a given arbitrary one.

LEMMA 2.2 [2], [13]. There is a fixed constant c > 0 such that, if the graph G has
a p-bifurcator of size F, then it has a fully balanced p-bifurcator of size cF.

Lemma 2.2 guarantees that any graph with an (F, p)-bifurcator has a decomposi-
tion tree in which any subgraph Gw on level of the tree is incident to at most cF/p
edges of G that are not wholly contained within Gw. Lacking Lemma 2.2, we would
know only that at most F/pi edges of G link Gw to its brother in the decomposition
tree (as opposed to any other subgraph at level of the tree).

A second technical lemma is crucial to our layout strategy. A multigraph comprises
a set V of vertices and a multiset M of doubleton subsets of V, called edges. Thus a
multigraph can be viewed as a graph in which each pair of vertices can be connected
by several edges. The multigraph notions of "incidence", "degree of a vertex", and
"degree of a multigraph" derive immediately from the corresponding notions for
graphs. An edge-coloring of a multigraph is a labelling of the edges of the multigraph
with "colors" in such a way that edges incident to the same vertex get labelled with
distinct colors. Shannon [25] showed, via an efficient algorithm for edge-coloring
multigraphs, that one needs never use a lot of colors to edge-color a small-degree
multigraph.

LEMMA 2.3 [25]. Any multigraph G can be edge-colored using at most [3D(G)/2]
colors. Moreover, this bound is existentially tight.

798 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

3. Efficient three-dimensional layouts.
3.1. One active-layer-layouts. We consider first the problem of embedding a graph

in a three-dimensional grid in accordance with the one-active layer model, i.e., so that
all of the graph’s vertices reside on a single layer of the layout. We assume that we
have in hand a minimal-size (F, 21/2)-bifurcator for the graph to be laid out, as well
as an associated recursive decomposition of G.

THEOREM 3.1. The One-Active-Layer Layout Theorem. Let G be an N-vertex
graph, and let F be the size of its minimum 21/2-bifurcator.

Height-H layout. There is a constant h > 0 such that, for any height H in the range

1 _-< H <_- h NiF/2 log (N/F),

the height-H one-active-layer layouts of G satisfy

max FN1/2, N VOLI_a (G; H) _-< (const) - log2 (N/F)

and

F F) F
(const) max N1/2, N <- WLI-AL (G; H) _-< (const) log (N/F).

Unrestricted-height layout. The minimum-resource one-active-layer layout of G
satisfies

and

FN/2 <- VOLI_AL G) <-_ (const)FN/2 log (N/F)

F
(const) Ni/2 -< WL_At. (G) _<- (const)N1/2"

moreover, the number of layers (H) that minimizes VOL-AL is at most (const)-
F/N1/2) log NF).

Given F and an associated recursive decomposition of G, the embeddings yielding
the upper bounds can be found in time polynomial in N.

Proof. Let G and F be as in the statement of Theorem 3.1.
The lower bounds. We present two proofs that expose different aspects of the

situation.
Proof 1. Consider an arbitrary one-active-layer layout of G, having Volume V,

height H, and base area B. Let us recursively bisect this "box" across the smaller of
its base dimensions in such a way that the base area is halved with each bisection.
The boxes we bisect at stage of this recursion (we start at stage 0) have height H
and base area B/2i. When we bisect each of these boxes, we are severing no more
than (B/2i)l/EH edges of G, since the area of the cutting plane is no greater than this,
and since wires have unit cross-sections. This means that G has a (B1/EH, 21/E)-
bifurcator. Given that F is the size of G’s smallest 21/2-bifurcator, it is immediate that
F <- B1/EH, so F2 <- BH2 VH, so

F2

V>_
H"

Moreover, the fact that all vertices of G lie on one layer implies that B _-> N; hence,

V V
B/2 N1/2,

THREE-DIMENSIONAL CIRCUIT LAYOUTS 799

whence

V >= FN1/2.

Since we have been looking at an arbitrary height-H one-active-layer layout of G, the
lower bounds on Volume follow.

Proof 2. Our second, indirect, proof yields a lower bound on wire-length also.
The key step here is to transform an H-layer layout of the graph G with Volume

V BH (B being the area of the base of the layout) into a two-dimensional layout
with Area 9BH2. We shall then be able to conclude that

AREA G) <- 9BH2 9 VH,
so that

A

Since (as before) B >= N, we shall also be able to conclude that

so that

AREA (G) -< 9BH2 9 V2 9 V2

B N

V>-_ (NA)/2/9.
By Theorem 2.1 we know that AREA (G) -> F2, and thus

V>- (const) max (FN/2, F).
The desired transformation has two steps. First we project the H-layer grid holding

the layout of G onto the plane, as illustrated in Fig. 2. Ignoring for the moment that
the projection produces diagonal edges (corresponding to the edges that changed layers
in the solid grid), it converts an Hx Wx L solid grid into an HWx HL planar
pseudo-grid ("pseudo-" because of the diagonal edges). The second step of our
transformation replaces this planar pseudo-grid by a 3HWx 3HL planar grid by: (1)
adding two new vertical grid lines to the right of each vertical line in the pseudo-grid;
(2) adding two new horizontal grid lines below each horizontal line in the pseudo-grid;
(3) deleting the diagonal edges.

LAYERS:
BOTTOM

"’,,_ MIDDLE
""% TOP

FIG. 2. The two-dimensional projection of the 3-layer 4 x 4 grid.

800 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

We must now show how to reroute those edges of G that used the diagonal
(layer-changing) grid-edges in the layout--all edges that used only rectilinear edges
are extended in the obvious way through the new gridpoints with no changes in
direction. To this end, note that the net effect of the second step of our transformation
has been to surround each "old" gridpoint p by a box of eight "new" gridpoints, of
the generic form"

a--b--c

d

f-- g---h

Our task is to reroute diagonal runs of wire that run within these boxes, as well as
those that run between boxes.

Edges between boxes. Diagonal edges that run between boxes are easy to reroute:
each can simply be rerouted in the neighboring "right angle". (All segments of that
right angle are new, hence devoid of wires.)

Edges within boxes. The rerouting of diagonal runs of wire within the boxes will
be described by reference to our generic box above. We consider two cases.

Gridpoint p holds a vertex of graph G. Let the vertex v of G reside at gridpoint
p. Since v has degree _-<4, if k (= 0, 1 or 2) of the diagonal edges incident to p hold
wires that realize edges of G that are incident to v, then a like number of rectilinear
edges incident to p do not hold wires that realize edges of G. One can, therefore,
reroute the diagonal edge(s) by using the peripheral edges of the box followed by one
rectilinear edge. For example, if both diagonal edges a-p and p-h are used, and if
rectilinear eges b-p and d-p are unused, then we can reroute

and

a-p by a-b-p

p-h by p-d-f-g-h.

Gridpoint p does not hold a vertex of graph G. In this case, all six of the edges
incident to p could hold wires. We shall never reroute wires passing through p that
use only rectilinear edges, so we can restrict attention to the wires passing through the
diagonal edges. We consider three subcases.

(1) Say first that an edge of G runs through both diagonal edges (i.e., in the
original layout it changed at least two layers at point p). Then we can reroute

a-p-h by a-b-c-e-h.

(2) Say next that an edge of G uses a diagonal edge and makes an acute angle,
such as a-p-d. We replace the acute angle by the peripheral edge connecting its
endpoints, as when replacing

a-p-d by a-d.

(3) Say finally that an edge of G uses a diagonal edge and makes an obtuse angle,
such as a-p-e. If there is only one such obtuse angle, then we replace that path by a
peripheral path connecting its endpoints, as when replacing

a-p-e by a-b-c-e;

one of the peripheral paths must be free if there is only one obtuse angle. If there are
two obtuse angles, such as a-p-e and b-p-h, then we replace the first by a peripheral

THREE-DIMENSIONAL CIRCUIT LAYOUTS 801

path connecting its endpoints, and the second by a Z-shaped path using the inner
rectilinear edge freed up by the rerouting of the first, as when replacing

and

a-p-e by a-b-c-e

b-p-h by b-p-e-h.

The area of the two-dimensional layout resulting from our transformation and
rerouting is

9 WLH2 9BH2,
as was claimed.

The same transformation yields the lower bound on wire-length" the projection
maps unit-length vertical and horizontal segments onto length-H segments. Unit-length
segments that run between layers are transformed into segments of length -<4 when
rerouted. Thus a wire of length L in the H-layer layout is transformed into a wire of
length L2<-4HL3 in the two-dimensional layout. We can now apply Theorem 2.1 to
conclude that

F2

L3 >- (const) NH"
Since all of the vertices lie on a single layer, we know also that the longest wires have
length L3-> H if all H layers are used. This combines with the previous inequality to
show that

F
L --> (const) N1/2

as was claimed.
Although we did not do so here, we could also show that the average H-layer

wire-length for any N-vertex graph is at least

(const) max
N1/2’N

The upper bounds. The upper bounds are substantially more intricate to establish.
Our task is lightened, though, by the fact that we can establish both the restricted-height
and unrestricted-height upper bounds via a single construction, the latter bound
following from the former by assigning to H its maximum allowed value. We shall,
therefore, prove only the restricted-height upper bound, assuming that a legitimate
target height H has been specified; this H is fixed henceforth. We establish the bound
by means of a construction that recursively produces an embedding with the desired
Volume for a subgraph Gi of G on level of G’s decomposition tree, given the
appropriate embeddings of the four subgraphs comprising Gi, which occur on level
+ 2 of the tree. Our main task will be to route wires for those edges that have precisely
one endpoint in a subgraph. Our strategy will be to route wires for such edges in a
bottom-up manner, and to connect up these edges only when we process the level of
the decomposition tree where these edges were removed. To aid the reader in following
this procedure, we include Figs. 3 and 4.

Let us concentrate on one graph Gi at level of G’s decomposition tree, and on
the four subgraphs comprising G at level / 2 of the tree. By Lemma 2.2, we know
that G has a fully balanced 21/2-bifurcator of size bF for some constant b and thus

802 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

Hi+2 PORTS,.:.:. :. :..,
S+2

FIG. 3. The given one-active-layer layouts of the four subgraphs of Gi.

that each of the four subgraphs comprising Gi has a fully balanced 21/2-bifurcator of
size bF/2(i+2)/2. Hence we assume inductively that we have in hand one-active-layer
layouts for these four subgraphs, each layout having height Hi+2 and a square base of
side

Si+2 _.defh
F log (N/F) 2_(i+2)/2

H

(h being the constant in the statement of the theorem). (Since S+2 >- (N/2i+2) 1/2 when
H is in the indicated range, the base of the layout is indeed big enough to accommodate
one-fourth of G’s vertices.) Assume further that each edge of G that has precisely
one end in one of the subgraphs, is represented by a wire routed from the appropriate
vertex of that subgraph to the top layer of the layout. Finally, assume that each one
of these "dangling" edges terminates at a port at the top of the layout and that these
ports are evenly distributed across the top layer of the layout. (By a port here we mean
an end of a wire that can be extended upwards if additional layers are added to the
top of the embedding; our assumption about even distribution means that the ports
are spaced uniformly, as suggested in Fig. 3.) We show now how to construct from the
layouts of these level-(i + 2) subgraphs of G an inductively consistent layout of G,

si+2
FIG. 4. Coalescing the one-active-layer layouts of the subgraphs of Gi.

THREE-DIMENSIONAL CIRCUIT LAYOUTS 803

having height

H
Hi Hi+2 + a log (N/F)

for some suitably large constant d.
We begin by merging the layouts of the four subgraphs into a single "box" having

height H+: and having a square base of side

S, =derh
F log (N/F) 2_,/2.

H

We then add H/(d log(N/F)) new (empty) layers to the top of the box, thereby
building it up to height Hi; see Fig. 4. Next we establish the ports at the top of the
new box, that will be needed to extend this construction to a yet-higher level of G’s
decomposition tree. By Lemma 2.2, no more than bF/2i/2 edges of G have precisely
one end in Gi, for some specified constant b; hence we need create at most this many
ports at the top of the new box. We create these ports, spaced evenly throughout the
top layer. Finally, we are ready to turn to the task of routing the wires incident to the
ports of the original boxes (in layer Hi/2). Some of these wires must get routed to
other ports in the same layer and some to the new ports at the top of the new box.

We effect the necessary routings by using each of the new layers to route an
average of Si/2 wires to their appropriate row and column (in one of the new layers).
Final connections will then be a simple matter. Since we need to route at most bF/2i/2

wires in all, the allotted number of empty layers (namely, H/(d log (N/F))) will
suffice, provided that h was chosen sufficiently large. We now describe the details 6f
the routing.

Layer assignment. The first phase of the routing assigns each wire to the layer of
the embedding on which it will be routed. To this end, we temporarily superimpose
layers Hi+2 and Hi of the embedding; and we partition the resulting pseudo-layer into
Si/4 square regions of area 4Si each. Let M denote the multigraph which has one
vertex corresponding to each of these square regions and one edge linking vertices Rx
and Ry of M for each wire that must be run in the embedding to connect a port of
the square region Rx with a port of the square region Ry. Since the number of ports
per unit area in the pseudo-layer is at most

F/2/2 3b 2/2H2

3b------
S2 hE F log2 (N/F)’

the maximum vertex-degree of M does not exceed

12b H
D-

h log (N/F)

(-the number of ports per square region). Recall that (by Lemma 2.3) M can be
edge-colored using at most 3D/2 colors. Therefore, provided only that the constant h
is chosen sufficiently large (h > 18bd suffices), it is now an easy matter to allocate
wires to layers: we use each layer Hi+2-- k of the embedding to route all wires that
correspond to edges of M that received the color k.

Intra-layer routing. The second phase of the routing gets each wire to the appropri-
ate row and column of its assigned layer. This is a two-dimensional problem consisting
of routing Si/4 wires in a square grid of side Si. In the absence of further information,
this might be an impossible task, since the endpoints of the wires to be routed might

804 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

be configured in a way that did not afford enough room to route the wires. In our
case, however, we have distributed the wires’ end-points sufficiently sparsely that the
routing is guaranteed to be possible: at most four wires terminate in each square region
of area 4Si. We have the luxury, therefore, to assign dedicated rows and columns to
the wires to be routed. We leave to the reader the details of verifying that this phase
of the routing can be accomplished. Note that this routing phase completes the
processing of wires that correspond to edges of Gi: all connections are made at one
of the levels Hi+2 + k.

Port connections. The final phase of the routing connects those wires that corre-
spond to edges having an endpoint outside of Gi to one of the ports at level Hi. This,
however, is a triviality, since wires are already in the appropriate row and column,
and there is no contention for the interlayer route that the wire must traverse.

The costs of the layout. It remains to assess the efficiency of our embedding. If
we apply Lemma 2.2 carefully (as do Bhatt and Leighton [2], [13] when treating
two-dimensional layouts), we find that we can always force the edges in a fully balanced
decomposition tree of a graph having an (F, 21/2)-bifurcator to stay in the top
c log (N/F) levels of the tree, for some appropriate constant c. We find thereby that
if we have chosen the constant d in the height-recurrence judiciously (it suffices that
d > c), then the recurrence for the height Ho of the final layout solves to Ho-<- H. The
area of the base of the layout never changes throughout the construction: it is always

So2= hlog(N/F)

Since the Volume of the layout is just HoS2o, we have established the claimed upper
bound on VOL1-AL (G; H).

With regard to Wire-Length, it is straightforward to verify that the longest path
an uninterrupted wire is stretched over, is proportional to the sum of the linear
dimensions of the layout, namely (const)(So+ H0), whence the claimed bound.

Finally, we remark that no appreciable further decrease in Volume can be obtained
by further increasing the height: when H assumes its maximum value, the area of the
base of the layout is just some small constant multiple of N. Since all of G’s N vertices
must reside on a single layer, this area cannot be decreased further, so subsequent
increases in the height can only increase the Volume.

Computation time. The only part of the described layout procedure that cannot
clearly be done in polynomial time is the generation of an (F, 2/2)-decomposition tree
for G. And, we assume that we are given such a tree as input to the layout procedure.
As an equally efficient alternative to our being given the decomposition tree, we could
be given a two-dimensional layout for G as our starting point. We expand on this
momentarily.

Theorem 3.1 affords us the following strengthened version of Rosenberg’s [24]
results about arbitrary graphs.

COROLLARY 3.2. For any N-vertex graph G and any height H <-hN/2,

N2

VOL1-AL (G; H) _-< (const)

and

N
WL1-AL (G; H) -< (const) "77..

THREE-DIMENSIONAL CIRCUIT LAYOUTS 805

At most (const)N1/2 layers are needed to minimize VOL1-AL. Constructions achieving
these results can always be found in time polynomial in N.

Proof. The worst case in Theorem 3.1 is when F= N/2, whence the claimed
bounds. In this case, the bifurcator is trivial, and the recursive construction has just
one level. [-I

By judiciously combining two-dimensional layout results with Theorem 3.1, it is
not difficult to derive the following AREA-VOLI_AL tradeoit.

THEOREM 3.3. The One-Active-Layer Area-Volume Tradeoit. Let G be an N-vertex
graph, and let A AREA (G).

Height-H layouts. There is a constant h > 0 such thatfor any height H in the range
1 <-_ H <- h(A/N)1/2 loh (NE/A),

max (NA)’/, NOL_aL(G; H)_-<(const)-log (N/A);

and

and

A1/2 A)(const) max N1/2 log (NE/A) HNlog2 (NE/A) <-- WLI_Az(G; H)

A1/2
_-< (const) --H--log (NE/A).

Unrestricted-height layouts.

NA 1/2 <- VOLI_A. (G) _-< (const)(NA)1/2 log NE/A

(const)
A1/2

< WLI-AL (G) _-< (const)N/2.
N1/2 log (N2/A)

Moreover, the value ofH that minimizes VOL-AL is at most

(const) log (N/A).

Finally, given the Area-A layout of G, the embeddings yielding the upper bounds can be
found in time polynomial in N.

Proof
The lower bounds. The lower bounds follow from the lower bound arguments of

Theorem 3.1 and the fact [2], [13] that A<_-F2 log2 (N2/A).
The upper bounds. As in Theorem 3.1, we can establish both the restricted-height

and unrestricted-height upper bounds simultaneously, since the latter bound follows
from the former by merely plugging in the maximum permissible value for H. We
obtain the restricted-height upper bound in stages. First we recall from Theorem 3.1 that

F2

VOLI_AZ (G; H) -<_ (const) log2 (N/F),

and

F
WL-AL G’, H) <- (const) log (N/F).

We next note from Theorem 2.1 that

F2<__A.

806 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

Finally, we claim that 1/F < N/A so that

log (N/F) < log (N2/A),
which completes the proof of the upper bound. This final claim is the culmination of
the following sequence of inequalities, each following from its predecessors and/or
Theorem 2.1.

For x > 1, x < 2; hence, log (N/F) <NF, so F log (N/F) < N. By Theorem
2.1, then, A < FN, whence the claim.

The efficiency of actually computing the embeddings that yield the upper bounds
follows as in Theorem 3.1, once one performs a recursive decomposition of G by
cutting the two-dimensional layout recursively along the lines of the proof of the lower
bound in Theorem 3.1. []

It is worth noting that the upper bounds in Theorem 3.1 are everywhere existentially
tight (within constant factors) for every value of N, F, and H; i.e., the factors of
log (N/F) cannot be avoided. To verify this, one needs to recall that Leighton [13]
proved that the upper bounds in Theorem 2.1 are everywhere existentially tight:

For all N and F, there exist N-vertex graphs G whose smallest 21/2-bifurcators
have size F such that

cl[F log (N/F)]E<-AREA (G) <- c2[F log (N/F)]2.

For any one of these maximal-AREA graphs G, the lower bounds of Theorem 3.3
assure us that VOLI-AL (G; H) is no smaller than some constant multiple of

max N1/2F log (N/F), -- log2 (N/F)

This information combines with the upper bounds of Theorem 3.1 to establish the
claimed tightness. We do not know that the upper bounds of Theorem 3.3 are similarly
tight; indeed, we conjecture that they are not.

CONJECTURE 3.4. The One-Active-Layer Area-Volume Tradeoff. Let G be an
N-vertex graph, and let A--AREA (G). There is a constant h > 0 such that, for any
height H in the range

1 <- H <- h(NA) 1/2,
we have

A
VOL1-AL (G; H) (const) .

For larger H, no additional decrease in Volume can be obtained.

3.2. Unrestricted layouts. We turn now to the task of proving analogs of Theorems
3.1 and 3.3 for many-active-layer three-dimensional layouts. We shall be less thorough
in our pursuit of these analogs, for the following reasons:

1. The major ideas required to obtain compact three-dimensional embeddings
appear already in the one-active-layer case, which we have looked at in great detail.

2. While the one-active-layer case can already be considered to have been realized
(say, in IBM’s TCM [10], [22]), it is not yet clear that many-active-layer three-
dimensional layouts will ever be more than a theoretical construct.

3. The many-active-layer results that we develop suggest that only relatively minor
gains are achieved by abjuring the one-active-layer restriction.

THREE-DIMENSIONAL CIRCUIT LAYOUTS 807

4. The technical details of obtaining height-restricted many-active-layer layouts
are substantial and may not be worth the gains over the one-active-layer case.

The major change in layout strategy in the many-active-layer model is that we
must use 22/3-bifurcators in order to obtain compact layouts. Indeed, the feature that
renders restricted-height layouts prohibitively complicated with the many-active-layer
model is that one must play off 21/2-bifurcators against 22/3-bifurcators. We satisfy
ourselves, therefore, with the following many-active-layer results.

THEOREM 3.5. The General Three-Dimensional Layout Theorem. Let G be an
N-vertex graph, let F be the size of its minimum 22/3-bifurcator, and let A AREA (G).
The many-active-layer three-dimensional layouts of G satisfy

F3/2 <- VOL (G) -< (const)[F log (N/F)]3/2

and

F3/2
(const) =< WL3 (G) =< (const)[F log NF)] 1/2.

Proof. We establish the lower and upper bounds in turn.
The lower bounds. Let G be laid out in an H x Wx L grid, where with no loss of

generality, H -< W<- L.
We establish the lower bound on Volume by recursively bisecting the layout of

G, much as we did in the lower-bound proof of Theorem 3.1. We slice the H x Wx L
grid holding the layout into two H x Wx (L/2) grids, choosing purposely to bisect
the biggest of the dimensions. We then recursively continue this bisecting, each time
halving the biggest dimension ofthe grid being sliced. Now, at stage of this procedure,
we are bisecting boxes of volume HWL/2 (we started at stage 0). When slicing each
such box, the plane of the slice has area at most (HWL/2i)2/3--the longest dimension
is at least (HWL/2i) 1/3, leaving only the indicated area for the plane. Since wires have
all unit cross-sections, each slice cuts no more than (HWL/2)2/3 wires. Since G can
be so bisected recursively, and since we have been looking at an arbitrary three-
dimensional layout of G, it follows that G has a 22/3-bifurcator of size (VOL (G))2/3.
Since this bifurcator is at least as big as G’s minimum such bifurcator F, we have thus
shown that

F3/2<_VOL(G).
The lower bound on Wire-Length is more complicated. We shall establish it by

showing that the total volume of wire, to(G), used to lay out G (i.e., the sum of the
lengths of all G’s edges) is at least (const)F3/2. This bound on to(G) will yield the
desired bound on WL3 (G) since G, having degree at most four, has no more than 2N
edges; hence, the average (all the moreso the maximum) length of a run of wire in
the layout is at least (const)to(G)/N.

To show that to(G)_>- (const)F3/2, it suffices to show that there exists a fraction
0 < q < 1 and a constant r > 0 such that one can partition any three-dimensional layout
having wire-volume to into two sublayouts, each with wire-volume at most qto, by
removing at most rto2/3 edges: by iterating such a partitioning, we could partition the
original layout into two sublayouts each having wire-volume to/2 by removing at most
(const)to2/3 edges. We could then repeat this latter partitioning recursively to construct
a 22/3-bifurcator for G of size (const)to2/3. It would thence follow (since F is the size
of G’s smallest 22/3-bifurcator) that to => (const)F2/3, as desired.

So, we set ourselves the goal of partitioning G’s layout. Say that we are presented
with appropriately chosen constants q and r and with an arbitrary three-dimensional

808 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

layout with wire-volume to. Find that horizontal layer of the grid that partitions the
layout into two pieces, each of wire-volume no greater than qto; call this the middle
layer of the layout. Say first that the middle layer has passing through it at most rto 2/3

connections with the rest of the layout. Then we are done, since removing all wires
that touch the middle layer effects the desired partition. Otherwise, if the middle layer
touches too many wires, then find both the lowest layer above the middle layer and
the highest layer below the middle layer that each contain at most rto2/3 connections
with the rest of the layout; call the former the upper layer and the latter the lower layer
of the layout. Remove the upper and lower layers, thereby partitioning the layout into
upper, middle, and lower regions. We consider two cases. If either the upper or the
lower region contains at least qto wire-volume, then we are done, since we shall choose
as the two parts of our partition that "packed" region plus the union of the other two
regions. If both the upper and lower regions are sparse, then most of the wire in the
layout resides in the middle region, so it suffices to partition only that region. Since
each layer of the middle region contains or is incident to more than rto 2/3 unit segments
of wire, there can be no more than (1/r)tol/3 layers in the region (or else there would
be too much total wire). An analysis symmetric to the "horizontal" one we have been
considering proves that the length and width of this region are also bounded above
by rtol/3. Hence, the entire layout volume of the middle region is at most (const)to. By
the earlier cutting plane argument, then, the middle region can be partitioned by
removing at most rto2/3 wires, provided only that r is chosen appropriately.

The upper bounds. As with Theorem 3.1, the upper bounds here are significantly
more complicated to establish than the lower bounds. Once again, our proof is via an
explicit inductive construction. In this case, the construction will lay out a subgraph
Gi of G that resides at level of a 22/3-decomposition tree of G, by combining the
layouts of the eight subgraphs of Gi that reside at level + 3 of the tree.

Let us assume" (1) that we are given layouts of the eight level-(i + 3) subgraphs,
in "boxes" of dimensions Hi/3 x W/3 x Li+3 each; (2) that the boxes are all similarly
oriented in space (so we can talk about their fronts and tops, etc.); (3) that each of
the boxes has on its front face a connection grill, which, letting

is a set of

F
Fi+3--clef (2i+3)2/3,

F/+3

length-H+3 columns, spread evenly across the width W/+ front face, collectively
comprising the bE/+ ports through which we shall wire these subgraphs to each other
and to the remainder of G; see Fig. 5. As in the proof of Theorem 3.1, the constant
b is derived from Lemma 2.2.

As the first step in laying out G, we place our eight boxes in a big box ofdimensions
Hi x W x Li, where

ni 2ni+3,

F+3W 2 W/+3 --2bHi+3’
Li 2Li+3 + 3b "Fi+3 Fi+4c

/-/,/ W,

THREE-DIMENSIONAL CIRCUIT LAYOUTS 809

ROUTING AREA

CONNECTION
GRILLS

BOX_
h,. I. BO BxBOX X :
x ,.
xt.

FIG. 5. Coalescing the many-actioe-layer layouts of the subgraphs of G.

for a sufficiently large constant c. We place the small boxes as follows. Four of the
boxes go at the four corners of the back of the big box. In front of these boxes we
reserve bFi+3/Hi+ empty layers that will be used for wire-routing. In front of these
empty layers, we place the four remaining small boxes, in the corners. In front of these
boxes we reserve 2bFi+3/Hi+3-I-4cFi/W empty layers for wire-routing. We complete
the placement phase by reserving 2bFi+3/Hi+3 empty layers between the left and right
tiers of small boxes. Finally, on the front face of the big box, we uniformly spread out
a new connection grill with bF/Hi columns of Hi ports each, containing the bF ports
that are guaranteed to be sufficient to wire Gi up to the rest of G. See Fig. 5.

Now we turn to the task of routing the wires that leave the level-(i + 3) graphs
(through their connection grills), both among each other and to the new connection
grill. As the first step of this routing, we use the bFi+3/ni+3 empty layers in front of
the four rear boxes to route the wires from these boxes’ connection grills into one big
[Hi 2(bFi+3/Hi+3)] rectangular connection patch in between and in front of the four
rear boxes (a grill is spread out, while a patch is compressed); this can be accomplished
by having the innermost columns ofthe grills move in on one layer to meet one another,
the next-to-innermost move in on the next layer to be adjacent to the innermost ones,
and so on; see Fig. 6. The next step is to run the connection patch, which occupies
the 2bFi+3/Hi+3 routing layers between the left and right tiers of boxes, to the empty
layers that we have placed front of all the boxes (also depicted in Fig. 6). Now we
take the big connection patch we have just run from the back of the layout, and the
small connection grills on the front tier of small boxes, and we use 2bF/+3/Hi+3 of the
empty layers at the front of the box to distribute these columns of ports so that they
are evenly spaced across the front of the layout, i.e., so that they become a connection
grill. (There are 4bFi+3/Hi+3 columns to be distributed across a face of width W, so
the columns are spaced with

4bE/+3

empty columns intervening between full columns.) As the next-to-final step, we assign
the ports of this new connection grill to the layers on which they will be routed to
their appropriate rows and columns. This assignment is done using the same device
as in Theorem 3.1. We first superimpose the front face, with its (bFJHi)-column

810 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

BOX BOX

BOX BOX

SPACE FOR FINAL ROUTING

FIG. 6. A view from above of the coalescing of the wires from the subgraphs.

connection patch, on the just constructed (4bF+3/ Hi+3)-column connection patch. We
then partition the superimposed faces into rectangles of height cF/W and width
(WHi+3)/(4bF+3). By design, each of these rectangles contains no more than 2cF/W
ports. Hence, when we follow our ploy from Theorem 3.1 and form the multigraph M
from the partition, and edge-color M, we are assured by Lemma 2.3 that we need use
no more than 3cF/W colors. Hence, when we assign wires to layers by their colors,
as in Theorem 3.1, we need use no more than 3cF/W layers. Provided that bW cH/3
and 2b =< c, it is an easy matter from this point to complete the routing using the
as-yet-unused reserved routing layers, once having assigned layers. We leave details
to the reader.

It remains to assess the efficiency of the layouts produced by the preceding
construction. If we arbitrarily set

n Ho hiF log (N/F)]1/2,
which is acceptable provided that the constant h is chosen judiciously, then we find
that the recurrences for length and width solve to

W= Wo (const)[F log (N/F)]1/2,
and

L= Lo (const)[F log (NIF)]’/2.

(In solving these recurrences, one must keep in mind that F is the size of G’s smallest
22/3-bifurcator.) The claimed upper bound on Volume follows by just multiplying these
linear dimensions; the upper bound on Wire-Length follows by summing them, for

THREE-DIMENSIONAL CIRCUIT LAYOUTS 811

our wire-routing scheme requires a wire to traverse each linear dimension only a small
number of times. [3

The bounds of Theorem 3.5 can be shown to be existentially tight by generalizing
the methods and networks of [2], [13] to three dimensions.

As with one-active-layer embeddings, we can derive from our general layout
theorem an Area-Volume tradeoff.

THEOREM 3.6. The General Area-Volume Tradeott. Let G be an N-vertex graph,
and let A AREA G). The many-active-layer three-dimensional layouts of G satisfy

max (N, (1/4)A3/4) _-<VOL (G) -< (const)(NA)/2

and

WLa (G) -< (eonst)(NA) /6.

Proof sketch.
The lower bounds. The lower bounds follow by previously enunciated principles:

the vertices of G alone, ignoring wires, consume volume N; and any H x Wx L layout
of G (where H =< L, W) can be transformed into a 3 WH x 3LH two-dimensional layout
for G, whence AREA (G) <= 9VOL (G)4/3.

The upper bounds. The upper bounds follow from the construction of Theorem
3.5 and the fact that any graph admitting an Area-A layout has a 21/2-bifurcator of
size A/2, hence a 22/3-bifurcator of size (NA)1/3. If we plug this 22/3-bifurcator into
the upper bound of Theorem 3.5, we find that

VOL (G) _-< (const)(NA) 1/2 log3/2 (N2/A)
and

WL3 (G) =< (eonst)(NA)1/6 log1/2 (N2/A).

A careful analysis of the layout of G hidden in this upper bound indicates that
we are really cutting more edges of G at each step than a smaller 22/3-bifurcator would
force us to (since our bound on F is very conservative). Hence, when we calculate in
detail the dimensions of the layout produced with this big bifurcator, we find that we
actually avoid the logarithmic factor, and we obtain the bounds of Theorem 3.6.

4. Conclusions. The work in this paper leaves the reader with a number of
messages, which we now encapsulate.

Three-dimensional layouts can be appreciably more conservative of resources,
both material and wire-length, than can two-dimensional layouts.

Three-dimensional layouts are not appreciably harder to "compute" than are
two-dimensional layouts; in fact the former can be produced from the latter via
polynomial-time algorithms.

For many classes of graphs, one-active-layer three-dimensional layouts are as
efficient as many-active-layer layouts. In general the best bounds that can be proved
in terms of A (optimal two-dimensional Area) and N (number of vertices) for the two
classes of layouts differ by at most a logarithmic factor. Thus no general layout
procedure is uniformly better than our one-active-layer layout procedure. If this
phenomenon occurs also in practice, then the value offabricating transistors on multiple
levels is limited.

Even in the one-active-layer model, only a limited number of layers are helpful.
Roughly speaking, only (A/N)/2 or F/N/2 layers lead to increased efficiency of
multilayer layouts: additional layers cannot further decrease Volume. It is worth noting

812 F. THOMSON LEIGHTON AND ARNOLD L. ROSENBERG

that the quantity (A/N)1/2 is closely related to the complexity of two-dimensional
placement and routing" this is the average channel width in a two-dimensional layout
of the circuit. Although we did not prove it in this paper, we suspect that additional
layers are also not useful in decreasing wire-length. We know this to be the case for
many families of graphs.

Although we have not paid attention to issues like the sizes of constants here,
it seems likely that the method oflayer assignment that we employed in the upper-bound
proof of Theorem 3.1 can be adapted to produce computationally efficient assignments
in practical situations.

REFERENCES

[1] V. E. BENES (1964), Optimal rearrangeable multistage connecting networks, Bell Syst. Tech. J., 43,
pp. 1641-1656.

[2] S. N. BHA’rr AND F. T. LEIGHTON (1984), A framework for solving VLSI graph layout problems, J.
Comp. Syst. Sci., 28, pp. 300-343.

[3] M. L. BRADY AND D. J. BrtOWN (1984), VLSI routing: four layers suffice, Advances in Computing
Research 2, Fo P. Preparata, ed., JAI Press, Greenwich, CT, pp. 245-257.

[4] R. D. ETCHELLS, A. D. CUMMINGS, J. GRINBERG AND G. R. NUDD (1982), Cellular array architecture

for microelectronic implementation, Typescript.
[5], (1982), A yield-redundancy policy for wafer-scale integration, Typescript.
[6] ., (1982), Power dissipation in 3-D VLSI, Typescript.
[7] R. D. ETCHELLS, J. GRINnERG AND G. R. NUDD (1981), Development of a three-dimensional circuit

integration technology and computer architecture, Soc. Photographic and Instrumentation Engineers,
282, pp. 64-72.

[8] J. F. GInnONS (1982), SOI--a candidate for VLSI? VLSI Design III, pp. 54-55.
[9] L. S. HEATH (1983), Multilayer channel routing, MCNC Tech. Rpt. 83-06.

[10] C. W. Ho (1982), High performance VLSI computer packaging, 1982 MIT Conference on Advanced
Research in VLSI, p. 42.

[11] HUGHES RESEARCH LABORATORIES (1982), A cellular VLSI architecture for image analysis and
two-dimensional signal processing, Typescript.

12] H. W. LM, A. F. TASCH, JR. AND T. C. HOLLOWAY (1980), Characteristics of MOSFETsfabricated
in laser-recrystallized polysilicon islands with a retaining wall structure on an insulating substrate,
Electron Dev. Let., EDL-1 (1980), pp. 206-208.

[13] F. T. LEIGHTON (1982), A layout strategy for VLSI which is provably good, 14th ACM Symposium on
Theory of Computing, pp. 85-98.

14], (1983), Complexity Issues in VLSI: Optimal Layouts for the Shuffle-Exchange Graphs and other
Networks, MIT Press, Cambridge, MA.

[15] F. T. LEIGHTON AND A. L. ROSE,BERG (1983), Automatic generation of three-dimensional circuit

layouts, 1983 IEEE International Conference on Computer Design: VSLI in Computers, pp. 633-
636.

[16] C. E. LEISERSON (1983), Area-Efficient VLSI Computation, MIT Press, Cambridge, MA.
[17] D. B. LENAT, W. R. SUTHERLAND AND J. GIBBONS (1982), Heuristic search for new microcircuit

structures: An application of artificial intelligence, The AI Magazine, 3, pp. 17-33.
[18] W. R. LOCKE (1983), Three-dimensional integration: A critical survey, MCNC Tech. Rpt. 83-06.
19] E.W. MAnY AND D. A. ANTONIADIS (1981), Device structuresfor three-dimensional integration, Lecture

at MIT Research Review, December, 1981.
[20] F. P. PREPARATA (1981), Optimal three-dimensional VLSI layouts, Math. Systems Theory, 16, pp. 1-8.
[21] F. P. PrtEPARATA AND W. LIPSKI (1982), Optimal three-layer channel routing, 23rd IEEE Symposium

on Foundations of Computer Science, pp. 350-357.
[22] D. ROSEN (1981), TCM--it’s a new wordfor density in logic packaging, THINK, p. 23.
[23] A. L. ROSENnERG (1981), Three-dimensional integrated circuitry, in VLSI Systems and Computations,

H. T. Kung, B. Sproull and G. Steele, eds., Computer Science Press, Rockville, MD, pp. 69-80.
[24], (1953), Three-dimensional VLSI: A case study, J. ACM, 30, pp. 397-416.
[25] C. E. SHANNON (1949), A theorem on coloring the lines ofa network, J. Math. Physics, 28, pp. 148-151.
[26] C. D. THOMPSON (1980), A complexity theory for VLSI, Ph.D. Thesis, Carnegie-Mellon University;

see also Area-time complexity for VLSI, lth ACM Symposium on Theory of Computing, 1979,
pp. 81-88.

THREE-DIMENSIONAL CIRCUIT LAYOUTS 813

[27] L. G. VALIANT (1981), Universality considerations in VLSI circuits, IEEE Trans. Comp., C-30, pp. 135-
140.

[28] Z.A. WEINBERG (1981), Polysilicon recrystallization by CO2 laser heating of SiO2, IBM Report RC-8835.
[29] D. S. WISE (1981), Compact layouts ofbanyan/FFT networks, VLSI Systems and Computations, H. T.

Kung, B. Sproull and G. Steele, eds., Computer Science Press, Rockville, MD, pp. 186-195.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

1986 Society for Industrial and Applied Mathematics

013

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES I.
PLANAR GRAPHS*

JUSTIN R. SMITH."

Abstract. This paper presents an unbounded-parallel algorithm for performing a depth-first search of
a planar undirected graph. The algorithm uses O(n4) processors and executes in O(log n)-time. It had
previously been conjectured that the problem of computing a depth-first spanning tree was inherently
sequential.

Key words, parallel algorithms, depth-first search, computational complexity, inherently sequential
problems

Introduction. Let G=(V, E) be an undirected connected graph. A depth-first
spanning tree, T, of G is a spanning tree constructed as follows"

Starting at the root (some selected vertex of G) successively add edges to T until
a vertex is reached all of whose exit edges (i.e. incident edges other than the one used
to arrive at the vertex) are incident upon T. At this point backtrack a minimal distaoce
until a vertex is reached that has exit edges not incident upon T and continue. Since
the backtracking is allowed, it is clear that the process can continue until all of the
vertices of G are exhausted.

Depth-first spanning trees of graphs have, in the past, been used as a basis for
many other graph-theoretic algorithmsmsee 14] for a survey. More recently they have
played an important part in the implementation of certain artificial intelligence
languages like PROLOG.

Note that, if there are several exit edges from a vertex, more of which are incident
upon T, we may arbitrarily choose the edge to be added to T next. The choice will
have a drastic effect upon the later stages of the construction above, however. Because
of this it has been conjectured (see 13]) that the construction of a depth-first spanning
tree of a graph is inherently sequentialmi.e, it cannot be performed in poly-logarithmic
time with a polynomial number of processors. This is related to the question of whether
the two classes of problems P and NC are the same--where P is the class of problems
solvable in polynomial time and NC is the class ofproblems solvable in poly-logarithmic
time in parallel with a polynomial number of processors. See [2, 6].

The main result of the present paper is"
THEOREM (DFST). If G is an undirected planar connected graph with n vertices,

there exists a parallel algorithm for constructing a depth-first spanning tree of G that
executes in O(log3 n)-time using O(n4) processors.

Remarks. 1. We use the unbounded-parallelism model of computation herethis
corresponds to the SIMD model in [4]. We assume that any number of processors can
read a given memory location simultaneously but only one processor can write to a
memory location at a time (i.e. the result of more than one processor writing to one
location at a time is undefined). We also assume that each processor has a unique
number that can be referred to in instructions that the computer executes.

2. It is straightforward to go from the depth-first spanning tree constructed by
DFST above to a depth-first search of G. See Appendix A.

* Received by the editors December 20, 1983, and in final revised form July 10, 1985.
t Department of Mathematics and Computer Science, Drexel University, Philadelphia, Pennsylvania

19104.

814

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 815

3. Although a parallel algorithm for depth-first spanning trees was discovered by
Eckstein and Alton (see [3])Hits execution time was linear in the number of vertices
so that it was not in the class NC like the algorithm presented in this paper.

4. The results of Eli Upfal in [16] imply that the algorithm presented here can
be converted to a probabilistic (in the sense of execution time) version of the DFST
algorithm that executes in O(log n) expected time on an ultracomputer (a set of
processors communicating through a bounded-degree network, with no common
memory).

The actual construction of the depth-first spanning tree makes crucial use of the
following result, which may be of independent interest:

THEOREM (PARTITION). Let G be a planar, biconnected graph (equipped with an
imbedding into the plane) with n vertices. Then there exists a parallel algorithmforfinding
a simple cycle in G with the property that its interior and exterior subgraphs have <-2n/3
vertices. This algorithm executes in O(log2 n)-time using O(n4) processors.

Remarks. 1. In general, the simple cycle produced by this algorithm will depend
upon the planar imbedding of G. Section I ofthis paper describes how the PARTITION
algorithm can be used to find a depth-first spanning tree for G, and 2 describes the
algorithm itself.

2. This is a generalization of Lemma 2 of Lipton and Tarjan (see [8] and [9]).
That result was sequential and required that all of the mesh cycles of the graph be
triangular.

3. Gary Miller recently proved a sequential version of the PARTITION result--it
executes in linear time (thus it is superior to what one would get by making the
PARTITION algorithm into a sequential one in the straightforward way) (see [10]).

Future installments of this paper will explore applications of these and generaliz-
ations to nonplanar graphs.

All graphs in this paper will be assumed to be undirected.

1. Proof of DFST using PARTITION. It is first necessary to recall a well-known
characterization of depth-first spanning trees.

DEFINITION 1.1. Let T be a spanning tree of a graph G. Define the following
partial order on the vertices of G"

/)1 (/)2 if V2 is an ancestor of vl in T.

This partial order will be called the partial order induced by T.
Remarks. In general, if /)1 and /)2 are arbitrary vertices of G they will not be

comparable in this partial order, i.e. neither vertex will be an ancestor of the other.
The following result can be found in [14]:
LEMMA 1.2. A spanning tree T in a graph G is a depth-first spanning tree if and

only iffor each edge in G the end vertices of the edge are comparable in the partial order
induced by T.

Now we will discuss a preliminary decomposition of a graph that must be
performed before the main operations of the DFST algorithm can be carried out.

DEFINITION 1.3. A connected graph G is defined to be biconnected if it cannot
be separated into more than one component by the deletion of one vertex. If G is not
biconnected, the vertices whose deletion separates G are called articulation points and
the components into which G separates (together with the articulation points connected
to them via edges) are called biconnected components of G.

The characterization of depth-first spanning trees given by 1.3 implies that:

816 JUSTIN R. SMITH

PROPOSITION 1.4. Let G be a connected graph with biconnected components Gi, and
with a selected vertex x. For each biconnected component Gi let (xi) be the articulation
point closest to x. If T is a depth-first spanning tree of Gi rooted at x then the union of
the T is a depth-first spanning tree of G rooted at x.

Remark. It is not difficult to see that all depth-first spanning trees of G can be
gotten by taking the union of depth-first spanning trees of its biconnected components.

DEFINITION 1.5. Let G be a graph and suppose that P is a simple path in G with
a distinguished end vertex called its root such that G\P is a disjoint union of
components {G}. If e is an edge in G define e to:

a. touch P is precisely one end vertex of e is in Pcall this vertex the point which
e touches P;

b. be inessentialfor G if it touches P and there exists an edge e’ in G that touches
P at a point further (in P) from the root than the point at which e touches P;

c. be essentialfor Gi if it touches P and the condition of statement b is not satisfied.
Remark. We are using the standard notation A\B to denote the complement ofB

in A, or the set difference.
DEFINITION 1.6. Assume the conditions of Definitions 1.5 above and suppose G’

is the result of deleting all of the inessential edges (for the components of G\P) from
G (and not deleting their end vertices). Then G’ is defined to be the reduction ofG by
P, or the result of reducing G by P.

.Remarks. The result of reducing G by P will consist of the union of:
i. P;
ii. the essential edges of G;
iii. the components {G} of the graph that results from deleting all of the vertices

of P from G.
This graph will not be biconnectedthe points at which the essential edges of the

G touch P will be articulation points.
The following result will be the basis of the proof of the validity of the DFST

algorithm.
PROPOSITION 1.7. Assume the conditions ofDefinition 1.5 and the remarksfollowing

Definition 1.6. Let e be an essential edge for G connecting Gi to P and let T be a
depth-first spanning tree ofG rooted at the end vertex ofe that is in G. Then the union

of P, the {e} and the { T} is a depth-first spanning tree of G.
Proofi We will verify the conclusions of Lemma 1.2. Let T denote the union

described in the conclusion of the proposition. Clearly if an edge connects two vertices
of a T its end vertices will be comparable in the partial ordering induced by T because
the T are depth-first spanning trees of the Gi. If an edge connects a T to P, it will
either be inessential or essential for G. If it is inessential, then its end vertices are
comparable because all of the vertices of the T are descendants of any vertex of P.
If it is essential, the same will be true because no edge touches P at a lower point, at
least in Gi.e. the essential edge in question and the edge used to connect T to P
will have a common end vertex and the other end vertex of the essential edge will be
lower (in the partial ordering in G) than the other end of the edge that connects T
to P. Furthermore, no edges can connect a T to a T with #j since they will be
contained in distinct components of G\P.

Before we can present the DFST algorithm, it is necessary to make one more
definition"

DEFINITION 1.8. Let G be a connected graph. Define:
1. G, the solid subgraph, to consist of all edges of G that are contained in some

cycle;

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 817

2. Gt, the treelike subgraph, to consist of all edges of G that are not in any cycle.
Remarks. 1. If G is a planar graph equipped with an imbedding into the plane,

Gs, is clearly the union of all of the mesh cycles.
2. G itself is clearly the union of Gs and Gt.
3. G can be decomposed into G and G in O(Iog2 n) time using O(n2) processors.

This follows from the determination of a fundamental system of cycles in [1].
We are now in a position to present the main result of this section"

ALGORITHM 1.9 (DFST). Let G be a connected planar graph and let e be a selected
vertex (which will be the root of the depth-first spanning tree). All edges that are selected
will appear in the output (i.e. in the depth-first spanning tree).

1. Imbed G in theplanemthis can be done in O(log2 n) time using O(n4) processorsm
[6];

2. Determine the biconnected components ofGthis can be done in O(log2 n) time

using O(n2/log2 n) processors (see [15]);
3. Determine G and Gt and select Gtthe remainder of the algorithm is performed

upon G;
4. For each biconnected component, C, do in parallel:
4.1. For C find a partitioning cycle using the PARTITION algorithm described in

2 ofthepresentpapermthis requires O(log2 n) time using O(n4) processors.
4.2. Find a path connecting the entry vertex to the partitioning cycle. This can be

done in O(log2 n) time using O(nE/log2 n) processors:
a. find a spanning tree using the algorithm of [1];
b. direct the spanning tree with the entry vertex as its root (and edges pointing

away) using the Euler Tour method of [15, 5]mthis requires O(log n)-time
using O(n) processors;

c. delete all branches of the spanning tree going away from the partitioning
cyclemthis can be done in O(log n)-time using O(n) processors;

d. select a branch ofthe directed spanning tree coming into the partitioning cycle
and propagate a marker backwards i. e. in the reverse of the directed edges)
to the root. This is the path connecting the root to the partioning cycle. This
step can be done in O(log n) time using O(n) processors.

4.3. Delete an edge of the partitioning cyclefound in 4.1 that is adjacent to the point
where the path found in 4.2 intersects itthis requires unit time with O(n2)
processorscall the resulting path P and select it.

4.4. Compute the set { Ci} ofcomponents ofCs\Pthis can be done in O(log2 n)-time
using O(nE/log2 n) processors (see [1]);

4.5. For each of the Ci found in the previous step compute the set of all edges in C
that touch P and determine which are essentialsee 1.5. This requires that
the vertices of P be numbered, which requires O(log n) time using O(n)
processors; and requires that the edge with the lowest numbered end vertex
be pickedmthis can be done in O(log n) time with O(n2) processors;

4.6. Select any one of the essential edges found in 4.5 and determine the end vertex
that is not in Pcall this vertex v;

4.7. Apply steps 3 and 4 of this algorithm to each component using vertex v found
in 4.6 as the entry vertex.

Remarks. 1. The proof of the validity of this algorithm follows immediately from
1.7 and induction.

2. Since each of the components found in step 4.4 has <-_2n/3 vertices, it is clear
that this whole process need only be carried out O(log n) times.

818 JUSTIN R. SMITH

3. The depth-first spanning tree constructed above can be converted to a depth-first
search (see Appendix A).

4. Note that step 4.2d above requires that both orientations of each directed edge
be savedmone is marked as the forward direction and the other is marked as the reverse.

5. Here is an example of this procedure. Consider the graph in Fig. 1.1. The
PARTITION algorithm will give a partitioning cycle--after steps 4.2 and 4.3 we will
get the graph in Fig. 1.2, where the dark shaded lines represent the edges of the
partioning cycle (after (2.8) was deleted in step 4.3) and the path connecting the root
to the partioning cycle. In the second iteration of steps 2 through 4 of 1.9 we will get
Fig. 1.3.

13

FIG. 1.1

FIG. 1.2

FIG. 1.3

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 819

Here the light-shaded edges represent edges that were deleted and the slightly
darker edges resulted from the second iteration of steps 2 through 4 of 1.9. Edge
(10, 13) was the essential edge connecting path P to the complementary subgraph.
Edge (11, 13) was deleted in the second iteration of 4.3 and edges (9, 11), (7, 11),
(1, 12), etc. were inessential We now have the complete depth-first spanning tree.

2. The PARTITION algorithm. In this section we will describe the PARTITION
algorithm and prove its validity. In this section G will be assumed to be a planar
biconnected graph equipped with an imbedding into the plane. This essentially means
that there will be given a decomposition of G into m<sh cycles. Throughout this section
all statements whose numbers are prefixed with a P will be steps in the PARTITION
algorithm.

Here is a brief outline of the initial stages of the PARTITION algorithm:
Essentially, in order to compute the partitioning cycle, we must form unions of

mesh cycles of G until we find one whose boundary is a simple cycle that encloses
the appropriate number of vertices. The simple-minded way of doing this is sequential
(and slow, at that)--in order to carry out the procedure in parallel, it is necessary to
compute a large number of such unions simultaneously and to order the partial unions
in a way that, at least roughly, corresponds to the number of vertices enclosed by the
boundary.

This is accomplished by regarding G as the union of an increasing sequence of
subgraphs G[i] (i.e. each term in the sequence is a subgraph of the next term). This
must be done in such a way that the terms in the sequence have boundaries that are
simple cycles. This last requirement will turn out to be the chief technical problem in
constructing the partitioning cycle. Appendix B studies this question and shows that,
essentially, a subgraph G’ of G that is a union of mesh cycles has a boundary that is
a simple cycle if and only if G’ and its complement have connected images in the dual
of G. Recall that the dual, D, of G is a graph whose vertices correspond to the mesh
cycles of G and whose edges are defined in such a way that an edge in D connected
two vertices if and only if the corresponding mesh cycles in G have a common edge
(see [5, Chap. 11]).

We will construct the sequence G[i] of subgraphs by defining a function on the
mesh cycles of G and defining the terms of the sequence to be unions of all mesh
cycles on which the value of the function is <- some integer. This construction was
motivated by the methods of Morse Theory (see [11]).

It turns out that there does not seem to be any easy way to guarantee that the
boundaries of the G[i] are simple cycles--the most we can accomplish is to construct
the G[i] in such a way that they can be decomposed into subgraphs that have boundaries
that are simple cycles (these are the uniform components referred to in Appendix B).
Even this much makes the construction of the function used to define the G[i] fairly
complicated.

The function is defined in the following way:
DEFINITION 2.1. Let G be a planar graph that is equipped with an imbedding

into the plane.
1. G is defined to be"

a. labeled if a number -> 0 is assigned to each vertex;
b. filtered with respect to a labeling if it is labeled and a number ->_ 0 is assigned

to each mesh cycle equal to the maximum of the labels of the vertices of
the mesh cycle. The numbers assigned to mesh cycles in a filtration will be
called their filtration indices;

820 JUSTIN R. SMITH

2. If S is a set of mesh cycles in a graph that is filtered with respect to some
labeling, its closure is defined to be the subgraph of G spanned by all vertices in the
mesh cycles of S.

3. If is an integer such that 0-< and G is filtered with respect to some labeling,
then G[i], the i-section of G is defined to be the closure of the set of mesh cycles
whose filtration indices are <-_i and G{i}, the residual i-section of G is defined to be
the closure of the set of mesh cycles whose filtration indices are > i.

4. If G’ is a subgraph of G that is a union of mesh cycles, then G’ is defined to
be uniform if its image in the dual of G is connected.

Remarks. 1. Note that G’ has a natural image in the dual of G since it is a union
of mesh cycles of G.

2. Throughout this section the following convention will be in effect:

If S is a subgraph of G, then IS will denote the number of vertices in S.
If S is a set of mesh cycles IS will denote the number of vertices in the closure
of S.

3. Note that a planar graph that is filtered with respect to some labeling has a
natural induced labeling of its dual graph. This will be important in the determination
of the uniform components of the G[i]msee Appendix B.

Here is an outline of some of the latter portions of the PARTITION algorithm:
a. We will construct a labeling of G and an induced filtration (as defined above)m

this is done in P.1 below;
b. With respect to this filtration the G[i] will consist of a number of uniform

components (see Appendix Bthese are somewhat similar to biconnected com-
ponents), each of which will turn out to have a boundary that is a simple cycle. These
are the subgraphs in the decomposition of G alluded to above.

c. We will test each of these components to determine whether they enclose a
suitable number of vertices. If one of them does then its boundary can be used as the
partitioning cycle. This is done by steps P.2 through P.7.

d. If not we find the smallest component that is too large--this is step P.8. It will
contain a number of sub-components, each of which will be too small, and there will
be a particularly simple combinatorial relationship between the large component and
the small sub-components. This combinatorial relation is essentially the result of the
way a filtration of G was definedall of the sub-components that are too small will
either contain a common vertex, v, or be wedged between a set of mesh cycles that
contain v (here the term "wedged between" means that all boundary edges of the
sub-components that do not contain v are in the mesh cycles that contain v). Step P.9
checks to see if any of the mesh cycles here are suitable partitioning cycles.

e. Aggregate (form unions of) the mesh cycles that contain v and the sub-
components wedged between them until a union is found whose boundary encloses a
suitable number of vertices of Gthis is steps P.10 through P.12.

This is possible because the union of all of these mesh cycles and sub-components
is too large, as mentioned above, and each of the items being aggregated is too small.
Although this procedure would appear to be a sequential one, it can actually be carried
out in parallel by using a labeling and filtering process somewhat similar to the one
used to arrive at the components in the first place.

DEFINITION 2.2. Let G’ be a subgraph of G. Define the boundary of G’ to be the
ring sum of all the mesh cycles in G’. This boundary will, in general, consist of the
union of a number of simple cycles, some enclosing others (i.e. separating them from
the unbounded mesh cycle).

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 821

We will begin with the initial labeling algorithm. Basically we want to label the
vertices of G in such a way that each vertex has a unique label and any two vertices
are connected by a path such that the labels of all the vertices in the path are > at least
one of the labels of the end vertices. Furthermore, we want every vertex (except the
highest labeled one) to be adjacent to a higher-labeled vertex--i.e, we do not want label
values to have any local maxima. This will turn out to ensure that the sets G(i) (with
respect to the filtration associated with this labeling) will be uniform (i.e. their images
in the dual of G will be connected). This will guarantee that the uniform components
of the G[i] will have boundaries that are simple cycles. We will adopt the following
scheme:

a. Build an arbitrary rooted spanning tree;
b. Number the vertices in preorder;
c. For each vertex compute the label value as IGI+ 1-(preorder index).
That this scheme has the required properties follows by a straightforward induction

on the height of the spanning tree: it is trivially true for a tree of height 1; it is also
easy to see that it is true for a larger tree if it is true for all subtrees of the root.

P.1. 1. Construct a spanning tree--this can be done in O(log2 n)-time with
O(n/log processors (see [1]);

2. Root the spanning tree and give it the preorder numberingthis can be done in
O(log n)-time using O(n -processors using the Euler Tour technique ofTarjan and Vishkin
(see [15]).

3. Compute the labels as described above--this requires O(1)-time using O(n)-
processors

Remarks. 1. I am indebted to the referee for pointing out the Euler Tour technique.
2. Applied to the graph in Fig. 1.1, this algorithm gives Fig. 2.1 (where the edges

of the spanning tree used have been highlighted).

Root 10 9

14

3 2

FIG. 2.1

3. In the remainder of this paper we will assume that the vertices of G have been
labeled by the procedure described above and that G has the corresponding filtration
(see 2.1). Construction of the filtration from the labeling can be accomplished in
O(log n)-time using O(n2) processors. If v is a vertex of G let f(v) denote its labelma
nonnegative integer. The following two propositions give the main reason for using
the procedure P.1 to order the vertices.

PROPOSITION 2.3. Let Vl and v2 be two vertices of G. Then there exists a path
connecting Vl and v2 with the property that if v is any vertex of the path f(v)>-_
min (f(v), f(v2)).

822 JUSTIN R. SMITH

PROPOSITION 2.4. The residual sections, G{j}, are uniform for all j.
Remarks. 1. See Definition 2.1 for the definition of the G{j}.
2. Recall the definition of uniformity in statement 5 of Definition 2.1. Also see

Appendix B.
3. If we number the mesh cycles of the graph in Fig. 2.1 with the maximum of

the labels of their vertices, we get the graph in Fig. 2.2 (where the numbers in ovals
are the numbers associated with the corresponding mesh cycles).

Root
14

3

10 9

FIG. 2.2

The residual sections are easy to make out in this example--they are the subgraphs
spanned by all edges in mesh cycles such that the numbers in the ovals are -> k for
each value of k that occurs in the graph.

Proof. This follows immediately from the definition of uniformity and a filtration
with respect to a labeling. Given any two mesh cycles, M1 and ME, of G{j}, the
definition of a filtration with respect to a labeling implies the existence of vertices Vl
in M and v2 in M2 that have labels >j. Proposition 2.3 implies that there is a path
connecting Vl with v2, all of whose vertices have labels >j. But the definition of a
filtering with respect to a labeling then implies that every mesh cycle containing a vertex
of this path is in G{j}, and it isn’t hard to see that these mesh cycles connect the
original two mesh cycles M and M2 in the dual graph. [3

P.2. Form the dual, D, of G and assign labels to the dual vertices.
Remarks. This can be done in O(log n) time with O(n4) processors (see [7]).

Here, the labels assigned to vertices of the dual are equal to the filtration indices of
the corresponding mesh cycles.

P.3. Form the subgraphs, D[i], ofDfor all >- O, where D[i] is the image of G[i].
Remarks. 1. Recall that the vertices of D correspond to the mesh cycles of G and

inherit their labels from the mesh cycles of Gmi.e. the label of a vertex of D is equal
to the filtration index of the corresponding mesh cycle of G.

2. The construction of the {D[i]} can be done in unit time with O(n3) processors.
P.4. Compute functions di: {the vertices of D[i]}-->{D{i,j]} where, for a fixed i,

{D[i, j]} is the set of components of D[i].
Remarks. 1. This can be done in O(log2 n) time with O(n3/log2 n) processors,

using the algorithm of Chin, Lam and Chen of 1J--which is carried out in parallel
for each D(i), 1,. ., n. That algorithm constructs a function mapping each vertex
into the smallest-indexed vertex in the same component.

2. There will be, at most O(n2) of the D[i,j].
3. In this step it will not be enough to just determine the set of connected

components of the D[i]wwe will actually use the functions {di} in later steps--i.e, all
parts of the algorithm from P.8 on.

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 823

P.5. Map the D[i, j] back into G to get the uniform components G[i, j] of the G[i].
Remarks. 1. These uniform components will all have boundaries that are simple

cycles by Proposition B.5 in Appendix B and Proposition 2.4 above. This is the reason
we form the D{i,j} (and why we deal with the dual graph at all).

2. This involves several steps:
a. Form a boolean array Ax,y.z, where x runs over all of the D[i,j], y runs

over all of the vertices of D (i.e. the mesh cycles of G), and s runs over all
of the vertices of Gmthis array has O(n4) elements. For each of the n
vertices (ut) of D in the n2 sets {D[i,j]}, found in P.4, set the entries in
Ax,y,z to 1 that correspond to the vertices in G contained in the mesh cycle
that ut represents. This can be done in unit time with O(n4) processors (i.e.,
there is one processor for each possible combination of the subscripts of
the A-matrix).

b. Now, for each value of x and z, form the result of taking the binary OR
operation of Ax.y,z. This can be done in O(log n) time with O(n4) processors.
This matrix (with two subscripts) represents the set of vertices in G[i,j],

P.6. For each pair (i, j) compute the set of edges and vertices in the boundary of
(3[i, j], and the set of vertices in the interior of G[i, j].

Remarks. 1. We proceed as in P.5, except that the last subscript of the matrix
now represents edges rather than vertices and we use the exclusive OR operation over
the middle subscript rather than the OR operation. The same estimates for time and
number of processors apply. After computing edges in the boundary we compute all
of the vertices that appear in the edges using a matrix operation similar to that in P.5
(except the middle subscript represents edges and the last subscript corresponds to
vertices that appear as endpoints of those edges). In the last step we delete all of the
vertices in G[i, j] that also appear in the boundary matrix to get a matrix representing
the interior of G[i, j]mthis can be done in unit time using O(n3) processors.

2. By B.5 in Appendix B, the boundaries computed here will be simple cycles.
P.7. Determine whether, for any pair (i, j):

the number of vertices in the interior of (3[i, j] is
<-2IGI/3, the and number of vertices in G[i,j] is-> 161/3.

If so, use the boundary of (3[i, j] as the partitioning cycle and halt the algorithm.
Remarks. 1. This happens to occur for the graph in Fig. 2.1. In this case G[7, 1]

has 8 vertices so we can use its boundary as the partitioning cycle; see Fig. 2.3.

FIG. 2.3

2. It is straightforward to compute the number of vertices in the interior of G[i, j]
given the information now at our disposal.

3. If step P.7 is not successful then all of the G[i, j] have the property that either:

the number of vertices in the interior of (3[i,j]> 21G1/3 or

the number of vertices in G[i,j] <

824 JUSTIN R. SMITH

We execute the following steps:
P.8. Determine the lowest value, h, such that the number of vertices of G in the

interior of G[h,j] is <21G[/3.
Remarks. 1. Note that, as h increases the number of vertices in G[h] also

increases.
2. This can clearly be accomplished in O(log n) time using O(n2) processors.
3. In the remainder of this section we will restrict our attention to G[h,j] and

certain subgraphs of it. G[h,j] will consist of:
a. mesh cycles of filtration index h;
b. some uniform components, G[h 1, j]i.e. G[h 1 is a subgraph of G[hi

and we are considering the uniform components of G[h 1 that are subgraphs
of G[h,j].

The G[h-1,j] can be determined by plugging vertices of the components of
D[h- 1 into the function dh computed in step P.4 above. The remarks following P.6
imply that the number of vertices in each of the G[h- 1,j], 1,... ,j is < IG]/3.

4. Note that the subgraphs {G[h 1, j]} are edge-disjoint since they are represen-
ted by disjoint subgraphs of D.

P.9. Determine whether any one of the mesh cycles in G[h,j] with filtration index
equal to that ofh has >- GI/3 vertices. Ifso, use that mesh cycle as the partitioning cycle,
and halt the algorithm.

Por,osITION 2.5. Each of the subgraphs G[h- 1,j] has edges in common with at
least one mesh cycle offiltration index equal to h.

Remarks. 1. This follows from the fact that"
i. (3[h, j] is biconnected.

ii. G[h, j] contains only G[h- 1, j] and mesh cycles whose filtration indices are
equal to that of h;

iii. the G[h 1, j] are edge disjoint.
2. Note that all of the mesh cycles of G[h, j] with filtration index equal to h have

a common vertex (it is the unique vertex of G that was assigned the label equal to h
in step P.1), when we will call x throughout the remainder of this section.

3. At this point the image to bear in mind is that of a "wagon wheel"the hub
is the vertex x, each wedge or sector of the wheel (i.e. cycle formed by two adjacent
spokes and a portion of the rim) is a mesh cycle of filtration index h. Here the wheel
may be "incomplete" in the sense that some of the wedges may be missingthey might
not be included in G[h,j]. In fact, it is not hard to see that the wheel will only be
complete if x is the vertex with the highest label in all of G (the way that the graph
was labeled implies that the label values will not have any "local maxima"). Neverthe-
less the whole object will be uniform (see statement 5 of Definition 2.1 in this section
or Definition B.1 in appendix B for the definition) so that if wedges are missing they
must be adjacent to each other or the hub would become an articulation point (uniformity
implies biconnectivityas pointed out in Appendix B, it is a strictly stronger condition
on a subgraph of G).

Figure 2.4 illustrates these points:
Here the shaded regions are in G[h,j]. The lightly shaded regions are mesh cycles

of filtration index h, and the darkly shaded regions (a, b, and c) are G[h- 1,j]’s. The
latter cannot include x because then their filtration indices would be h. Note that the
regions labeled a and b are distinct G[h-l,j]’sthey are edge-disjoint. We are
assuming that y > x so that the mesh cycles containing y cannot be in G[h, j]. In this
example the "wagon wheel" is "incomplete".

PROPOSITION 2.6. Let M be a mesh cycle that contains x. Then M has filtration
index equal to h. In particular, none of the G[h- 1, j] contains x.

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 825

FIG. 2.4

Proofi This follows immediately from the definition of filtration index.
Our strategy at this point will be to form unions of mesh cycles and G[h- 1,jk]’S

until we find one that encloses the appropriate number of vertices. This is done, again,
by labeling the mesh cycles and G[h-1,jk]’S.

Incidentally, in this portion of the algorithm, the G[h- 1,jk]’S are treated as single
objects--we never make further use of the "fine structure" of the G[h- 1,jk]’S except
in counting the number of vertices enclosed by a simple cycle. They might be thought
of as "weighted mesh cycles" where the weight of a G[h 1, jk] is equal to the number
of vertices it hasmand this may be strictly greater than the number of vertices in the
boundary of the G[h 1, jk].

After labeling, we consider subgraphs of G[h, j] that are unions of objects whose
labels are _-< various label values. (Note: this labeling procedure is similar to, but not
the same as that introduced at the beginning of this sectionmthat labeling procedure
has given us G[h,j], the mesh cycles of filtration index h, and the G[h-1,jk] and
will not be used for anything further in the remainder of this section.) We want these
subgraphs to have the following properties"

C.I" each subgraph must be uniform and have a uniform complement in G. This will
imply that its boundary is a simple cycle, by Proposition B.5 in Appendix B.

C.2: if, in the labeling scheme used, the label value v’ is the immediate successor of
v then (the subgraph associated with v)\(that associated with v) must have
<-[GI/3 vertices. This will imply (by a kind of "discrete mean value theorem"
or pigeonhole principal) that at least one of the subgraphs in question will have
the property that the number of vertices in the interior or the whole of the
subgraph is >- GI/3.

We will begin by labeling the mesh cycles of G[h,j] that contain x (the "sectors
of the wagon wheel"). We will make use of the dual of G, computed in step P.2. Let
W denote the image in the dual of the mesh cycles of G[h,j] that contain x.

Since all of the vertices of W (in the dual of G) represent cycles with a common
vertex (x) in G it follows that W is either a simple path or a simple cyclemthese
possibilities correspond to the cases, respectively, where the "wagon wheel is incom-
plete" and where the "wagon wheel is complete" mentioned above.

P.10: If W is a path, then number its vertices, beginning at either end. If it is a
simple cycle then"

a. delete the vertex that represents the unbounded mesh cycle;
b. number the vertices in the resulting path, beginning at either end and label the

unbounded mesh cycle with a value higher than any of the other label values assigned.
Remarks. 1. In the first case we can number the vertices by measuring the distance

of each vertex from the endmthis case can be done in O(log2 n) time with O(n3)
processors.

826 JUSTIN R. SMITH

2. In the second case we use the fact that the unbounded mesh cycle will be in
W--this follows from the way the original labeling was done in P.l--the root of the
spanning tree used to label the vertices of G was picked to be on the unbounded mesh
cycle, and this root ends up being the vertex x.

P.11: Assign a pair of numbers (el, e2) to each mesh cycle of G[h,j] as follows:
a. if m is a mesh cycle in W set el to the label computed in P.10 and set e2 to zero;
b. If m is in one of the G[h- 1,jk] set el to the minimum of the labels computed

in P.10 for the mesh cycles of W that have edges in common with G[h- 1, jk] and set e2
to k.

Remarks. 1. This can be done in O(log n) time with O(n2) processors.
2. Step b can be easily done in the dual since an image of a G[h- 1,jk] in the

dual will be adjacent to one of the vertices of W if and only if the subgraphs in G
have a common edge.

DEFINITION 2.7. Define the L(el, e2) to consist of the closure of the set of mesh
cycles of G(h) with labels-< (e, e2), where we assume that these pairs of labels are
given the lexicographic ordering.

PROPOSITION 2.8. The L(e, e) are uniform and have uniform complements in G.
Consequently their boundaries are simple cycles.

Proof. Uniformity of L(el, e2) follows from the fact that L(e, e2) is a union of
mesh cycles along common edges. This is immediate for the mesh cycles containing x
since their image in the dual will simply be a sub-path of W. For the G[h- 1, jk] this
follows from the fact that the G[h- 1,jk] are uniform and we adjoin to a mesh cycle
of Wall of the G[h- 1,jk] that are adjacent to it in D (which implies a common edge).
We prove uniformity of the complements by induction on the pair (el, e2). Since L(0, 0)
is a single mesh cycle the second statement is clearly true in the lowest possible case.
Now suppose it is known to be true up to (e, e_). There are two cases to be
considered"

a. The next higher pair has a higher value of e2. In this case we are adjoining one
of the G[h 1, jk] to a union of mesh cycles whose boundary is a simple cycle.
Since the G[h- 1,jk] are edge-disjoint this procedure will not separate any
G[h- 1, jk’] with k k’ from the complement (actually, the images in the dual
graph will not be separatedan equivalent way to think of this is that it will
not make them edge-disjoint (unless all edges of G[h- 1,jk,] are in common
with mesh cycles of L(el, e2). This can happen in two ways:
i. G[h- 1,jk,] edge-adjoints a mesh cycle of filtration degree h with a lower

label than e. But is this case G[h-1,jk,] will be included in L(el, e2)
because the pairs of labels are regarded as being lexicographically ordered--
so the G[h- 1,jk,] would have first index < e and its overall label value
would be < (el, e2).

ii. All of the boundary edges of G[h- 1,jk,] are shared with the mesh cycles
in L(el, e2) with label equal to (e, 0) (i.e. the top-labeled mesh cycle), and
this contradicts the biconnectivity of G.

b. The next higher pair has a higher value of el. In this case we are adjoining a
mesh cycle represented by a vertex of W. If any of the G[h- 1,jk] is caught
between this new mesh cycle and L(e, e2) (i.e. if its image in the dual is
separated from the image of the complement of L(e, e2) in the dual) it will
be edge-adjacent to L(el, e2) (since it must be adjacent to at least one of the
mesh cycles containing x) and will, consequently, be included in it (because
it will have a label that is -<(e, e2).

The remainder of the algorithm consists in:

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 827

P.12: Compute the number of vertices in G in the interior of each of the L(el, e2)
and select an L(el, e2) with the property that it or its interior has >-IGI/3 and <-21GI/3
vertices. Use its boundary as the partitioning cycle.

Remarks. The computation of the number of vertices can be done by a process
similar to that used in P.7--alternatively it can be accomplished by labeling the vertices
of G with the minimum of the filtration indices of all the mesh cycles containing them
and counting the number of vertices whose labels are --<(el, e2). This can be done in
O(log n) time with O(n4) processors.

That it is possible to find an L(el, e2) with the required number of vertices follows
from:

a. L(0, 0) is a single mesh cycle whose interior has no vertices.
b. Each of the G[h-1, jk] and each of the other mesh cycles in G[h-1, j]

has <lG[/3 vertices, so that each time a G[h-l, jk] is adjoined to the
union of mesh cycles already present the number of vertices increases by
<IGI/3.

c. The total number of vertices in O[h- l, j] is > 2lGI/3.

Appendix A. In this appendix we will show how to convert the depth-first spanning
tree found at the end of 1 into a depth-first search. In other words the spanning tree
will be labeled so that each vertex has a number associated with it equal to the order
in which it would have been encountered during a depth-first search. Frequent refer-
ences will be made to the results and notation of 1, particularly 1.9.

First we consider the case in which the original graph was biconnected. The idea
here is that vertices encountered along P found in step 4.3 of Algorithm 1.9 should
get higher labels the further they are from the entry vertex (within an iteration of steps
2 through 4 in Algorithm 1.9). In addition essential edges coming out of P represent
backtracking so their descendants-should get higher labels--and the closer they are to
the entry vertex the later the backtracking took place. Consequently, in the case where
G is biconnected the vertices of G are ordered as follows:

DEFINITION A.1. Let Vl and v2 be distinct vertices of G.
a. If vl and v2 are on a path P constructed in an iteration of steps 2 through 4

to 1.9 then v > v2 if Vl is further from the entry vertex.
b. If v is on a path P as before and v2 is a descendant of an essential edge

coming out of P, found in the same iteration of steps 2 through 4 of i.9, then

Remarks. 1. In any iteration of steps 2 through 4 of Algorithm 1.9, if two essential
edges are found that are the same distance from the entry vertex an arbitrary ordering
must be imposed and used in the statement above.

2. This order relation can be easily implemented as follows"
Associate a list of numbers with each vertex and some edges of G--the maximum

length of any such list is 2 x (the number of iterations of steps 2 through 4 of Algorithm
1.9). The lists will be ordered lexicographically and each vertex will be labeled with
the ordinal position of its associated list.

1. Associate the empty list with the first edge of the depth-first spanning tree;
2. If v is a vertex of G encountered in an iteration of step 4.3 of Algorithm 1.9,

associate with v the concatenation of the list associated with the entry edge
(i.e. the essential edge leading out of the previous iteration of step 4.5) with
the pair of numbers (-oo, distance of v in P from entry vertex);

3. If e is an essential edge found in an iteration of step 4.5 determine the list
associated with e as follows: if the list (L1,-oo, d) is associated with the end

828 JUSTIN R. SMITH

vertex of e in P (where L1 is some set of terms) then associate the list (L1, -d)
with e.

Remarks. 1. In the first iteration of Algorithm 1.9 we regard the root of the tree
as the entry vertex and the first edge (with the empty list associated with it) as the
entry edge.

2.-oo represents some number that compares low with all other numbers
encountered in this algorithm---i.e., if G has n vertices we could use -n- 1 in place
of" -OOo

3. In step 3 if several essential edges have the same end vertex in P they must be
ordered in some way so that we get distinct lists associated with themwe could use
rational numbers for the distance, d, in statement 3 above.

In the rest of this appendix we will regard an order relation as a boolean function
of two variables that measures whether the first variable is larger than the second.

DEFINITION A.2. If vl and v2 are in Gs, define v > v2 or oW(v, v2)= 1 if the list
associated with v is lexieographieally > the list associated with v2.

Now we will extend this ordering to an ordering, r, defined for all pairs of vertices
of G in the case when G is not biconnected. If v is a vertex of G, in a component C,
let M(v) denote the vertex of Gs to which C is attached. Now define

a. If v and v2 are both G set r(vl, v2)= 5e(v, v2).
b. If v is in G and v2 is in G then r(v, v2) 5(v, M(v2)), unless vl M(v2)in

this case v2> Vl. The ease where v2 is in G and Vl is in Gt is covered by
anti-symmetry.

c. If v and v2 are in distinct components of Gt define r(Vl, v2)= 5(M(Vl), M(v2))
unless M(v)= M(v2)in this ease order these components in some arbitrary
way (that is fixed throughout the algorithm) and order the vertices correspond-
ingly.

d. If v and v2 are in the same component of G, define r to be an order-relation
that is the inverse of the relation defined over a tree in P.1 in 2 of this paper.

The last step is to simply sort the vertices via the order-relation defined herethis
can be done in O(log n) time using O(n) processors.

Appendix B. In this appendix we will prove some technical results concerning
when the boundary of a subgraph of a graph is a simple cycle. Throughout this appendix
we will assume that G is a planar, biconnected graph that is equipped with an imbedding
into the plane and D is its dual

DEFINITION B.1. Let G1 be a subgraph of G that is a union of mesh cycles. Then
a. G1 will be said to be uniform if its image in the dual of G is connected.
b. A subgraph, G2, will be called the complement of G1 in G if G2 is the union

of all mesh cycles of G not in G.
c. The boundary of G1 is the ring sum of all the mesh cycles in G1;
Remarks. 1. This definition depends upon the imbedding of G into the plane.

Clearly, since G1 is a union of mesh cycles it has a natural image in D.
2. It is not difficult to see that any uniform subgraph of G will be biconnected--i.e.

it will be a union of mesh cycles along common edges.
Not all biconnected subgraphs of G are uniform, however. Consider the case

where G is the graph in Fig. B. 1 and Gt be the shaded subgraph. Then G is biconnected
but clearly not uniform.

PROPOSITION B.2. Let (31 be a subgraph of G that is a union of mesh cycles and
let G2 be its complement in G. Then the boundary ofG is equal to the boundary of G2
and equal to the intersection of G1 and G2.

PARALLEL ALGORITHMS FOR DEPTH-FIRST SEARCHES 829

FIG. B.1

Proof. This follows from the definition of the boundary and the fact that every
edge of G is contained in precisely two mesh cycles because G is planar--see [5, p. 115].
If an edge is contained in the boundary of G one of these mesh cycles must be in
and the other must be in G2.

The main result of this appendix is"
PROPOSITION B.3. Let G be a subgraph of G that is a union of mesh cycles. Then

the boundary ofG1 is a simple cycle ifand only ifG1 and its complement are both uniform.
Proof. Let G2 be the complement of G in G and suppose the boundary of G1

(and that of G2) is a simple cycle. Let D1 be the image of G1 in the dual. Suppose D
has distinct components E and F (there might be more). These components correspond
to mesh cycles in G that have no common edges. Consequently, when we form the
boundary of G1 we will get boundary components that are either completely disjoint
or only have vertices in common. In any case the boundary will not be a simple cycle.
Since this boundary is also the boundary of G2, the same line of reasoning applies to
the complement.

In order to prove the if part of the statement, we will assume that the boundary
of G is not a simple cycle and show that D or DE (or both) cannot be connected. If
the boundary is not a simple cycle, it will be a union of simple cycles. Furthermore
two distinct cycles in this union must only intersect at common vertices, by the definition
of the boundary (since the boundary is formed by taking a mod 2 sum of edges so any
edge common to two boundary cycles would be in neither of them).

Now we will make explicit use of the imbedding of G into the plane. Regard each
mesh cycle Mi as aface of the plane--i.e, label the portion of the plane it enclosesmsee
[5, p. 103]. Delete the image of the boundary of G in the plane from the plane. Since
the boundary is not a simple cycle, the result will have >_-3 componentsmthis follows
from the Eulerpolyhedronformula--[5, p. 103] (here we temporarily replace G by the
boundary of G and consider the set of its mesh cycles when it is regarded as a planar
graph). Call these components Pi and define U to be the union of the mesh cycles of
G contained in P (if we regard a mesh cycle to be a face of the plane).

Since there are more than two of the U at least one of G1 and G2 must be a
union of more than one of the U--assume that G1 has this property and it contains
U and U2. Proposition B.2 implies that whenever an edge of G is contained in U
and Ui (1 i) and U1 is in G1 then U must be in G2. But this implies that the image
of U1 and U2 in the dual can’t be connected by a path contained in the image of G
since such a path would correspond to a sequence of mesh cycles in G that are
connected by common edges.

DEFINITION B.4. If G is a subgraph of G that is a union of mesh cycles, the
uniform components {C} of G are defined as follows:

a. map G into the dual of G;
b. If {D} are the connected components of the image of G1 then C is the union

of the mesh cycles of G corresponding to the vertices of Di.

830 JUSTIN R. SMITH

Remark. G1 is clearly equal to the union of the Ci.
PROPOSITION B.5. Let G1 be a subgraph of G that is a union of mesh cycles and

let G2 be its complement in G. If G2 is uniform then the boundary of each of the uniform
components of G1 is a simple cycle.

Proof. Let U be a uniform component of G1. Proposition B.3 implies that we
only have to verify that the complement of U is uniform. The complement of U is the
union of G2 with the other uniform components of G1. That result must be uniform
because each of the other uniform components of G must have at least one edge in
common with G2.

Acknowledgments. I am indebted to Professors Jane Cameron and Gomer Thomas
for encouraging me to enter this field. I am also indebted to Drexel University for
providing me with a research grant.

I am also indebted to the referees for an extremely careful reading of this paper
and many helpful comments.

REFERENCES

F. Y. CHIN, J. LAM AND I. CHEN, Optimal parallel algorithmsfor connected-component problems, Proc.
1981 International Conference on Parallel Processing, 1981, pp. 170-175.

[2] S. COOK, An overview of computational complexity, Comm. ACM, 26 (1983), pp. 401-408.
[3] D. ECKSTEIN AND D. ALTON, Parallel graph processing using depth-first search, Proc. Conference on

Theoretical Computer Science, University of Waterloo, 1977, pp. 21-29.
[4] M. FLYNN, Very high-speed computing systems, Proc. IEEE, 54(1066), pp. 1901-1909.
[5] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1972.
[6] J. JA’JA’ AND J. SIMON, Parallel algorithms in graph theory: Planarity testing, this Journal, 11 (1982),

pp. 314-328.
[7] O. JOHNSON AND S. VENKATESAN, Parallel algorithmsfor minimum cuts and maximumflows in planar

graphs, Proc. IEEE Symposium on Foundations of Computer Science, 1982, pp. 244-254.
[8] R. LIPTON AND R. TARJAN, A separator theorem for planar graphs, SIAM J. Appl. Math., 36 (1979),

pp. 17-189.
[9], Applications of a planar separator theorem, this Journal, 9 (1980), pp. 615-627.

[10] G. L. MILLER, Finding small simple-cycle separators for 2-connected planar graphs, Proc. 16th Annual
ACM Symposium on the Theory of Computing, 1984, pp. 376-382.

[11] J. MILNOR, Morse Theory, Ann. Math. Studies 51, 1963.
[12] F. PREPARATA, Parallelism in sorting, International Conference on Parallel Proc., Bellair, MI, 1977.
[13] E. REGHBATI AND O. CORNEIL, Parallel computations in graph theory, this Journal, 7 (1978), pp.

230-237.
[14] R. TARJAN, Depth-first search and linear graph algorithms, this Journal, (1972), pp. 146-160.
[15] R. E. TARJAN AND U. VISHKIN, Finding biconnected components and computing tree functions in

logarithmic parallel time, 25th Annual Symposium on Foundations of Computer Science (1984),
pp. 12-20.

16] E. UPFAL, A probabalistic relation between desirable and feasible models ofparallel computation, Proc.
16th Annual ACM Symposium on the Theory of Computing, 1984, pp. 258-265.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
014

RECURSION SCHEMES AND RECURSIVE PROGRAMS
ARE EXPONENTIALLY HARD TO ANALYZE*

H. B. HUNT III" AND D. J. ROSENKRANTZ$

Abstract. Deterministic exponential lower time bounds are presented for analyzing recursion schemes
and recursive programs. The lower bounds for recursion schemes hold for any interpretation with a nontrivial
predicate, i.e. a predicate that is neither identically true nor identically false. The lower bounds for recursive
programs hold for very simple programs in any recursive programming language with a nontrivial predicate.
These lower time bounds hold for the executability, computational identity, totality, divergence, partial
correctness, and total correctness problems.

Key words, recursion, recursion schemes, recursive programming languages, computational complexity,
exponential time, decision problems, strong equivalence, totality, total and partial correctness

AMS(MOS) subject classifications. 68Q55, 68Q60, 68N15, 68Q25

1. Introduction. Often one wishes to analyze computer programs for properties
of interest such as isomorphism, strong equivalence, totality, partial correctness, total
correctness, etc. Unfortunately, most interesting questions about programs in general
computer languages are undecidable. However, there are two obvious ways in which
the decidability of program analysis might be circumvented. First, the undecidability
of such problems may depend on the programming language features present in the
programs considered; and these problems may be decidable for sufficiently stripped
down programming languages [2], [8], [13], [15]. Second and more likely, it may be
possible to analyze those programs that are actually written in practice. Hopefully, a
person who writes a "good" program understands how and why the program works.
Since such "good" programs are written and understood by people, they may also be
analyzable by machine. Thus, it is desirable to characterize classes of programs that
can be analyzed efficiently and that are broad enough to contain many practical
programs [14].

Here, we show that no such class of easily analyzable recursive programs can be
described solely in terms of semantic restrictions on the predicates and functions
allowed in a program. We show that the only semantic restriction on the predicates
and functions of a recursive program that suffices to guarantee deterministic poly-
nomially time-bounded analyzability is--

"All predicates are trivial, i.e. either identically true or identically false."
Our results provide an answer to the following question--

1.0. "What is the inherent complexity of recursive program analysis due only to
the presence of recursive function calls and predicate tests?"

They show that the answer to the question 1.0 is--
"Analyzing recursive programs requires deterministic exponential time."

* Received by the editors July 17, 1984, and in final revised form August 1, 1985. A preliminary version
of some of these results was presented at the 21st Annual IEEE Symposium on Foundations of Computer
Science, Syracuse, New York, October 1980.

" Computer Science Department, State University of New York at Albany, Albany, New York 12222.
The research of this author was supported in part by the National Science Foundation under grants MCS
77-27197 and 80-03353.

Computer Science Department, State University of New York at Albany, Albany, New York 12222.
The research of this author was supported in part by the National Science Foundation under grants MCS
78-03157 and 82-03237.

831

832 H. B. HUNT III AND D. J. ROSENKRANTZ

This answer holds for very simple programs in any recursive programming language
with a nontrivial predicate, and is independent of any other properties of the language
such as the data types, constants, basis functions, or actual predicates of the language.

Our paradigm for proving these results is of independent interest. Unlike most
other work on program or recursion schemes [5], [6], [9], 11], 12] etc., our determinis-
tic exponential lower time bounds do not depend upon consideration of arbitrary
Herbrand interpretations. In order to state our paradigm, we need the following
definitions and notation. Readers who are unfamiliar with the definition of recursion
schemes should see 2.

DEFINITION 1.1. An interpretation I of a recursion scheme S consists of the
following:

1. a nonempty set D called the domain of the interpretation;
2. an assignment of a function from D" to D to each n-ary function symbol of S;
3. an assignment of a predicate from D to {True, False} to each n-ary predicate

symbol of S;
and

4. an assignment of an element of D to each constant symbol of S.
An augmented interpretation I’, written a-interpretation I’, of a recursion scheme

S consists of an interpretation I of S together with an assignment of an element of
the domain of I to each input variable symbol of S. An a-interpretation I’ of a recursion
scheme S is said to be compatible with interpretation I of S if and only if I’ consists
of I together with an assignment of an element of the domain of I to each input
variable symbol of S.

Let I be an interpretation or a-interpretation of a recursion scheme S. Let p, f,
x, and c be a predicate symbol, basis function symbol, input symbol, and constant
symbol of S, respectively. Then PI, f, xl, and ct are the predicate, function, element,
and element associated by I to p, f, x, and c, respectively. 0

Our paradign consists of the following. We construct a class C of very simple
recursion schemes. Each element of C is total, has only one predicate symbol p, has
only two input variable symbols x and y, and has no occurrences of basis function or
constant symbols. (A scheme in C can only shuffle around the values of its input
variables. Thus, it cannot compute a value other than the value of one of its input
variables.) We show that, for all classes I of a-interpretations such that

(:lJ c l)[pj(xj) True and pj(yj) False],

the problem of determining for S c C if there exists an a-interpretation I in I such
that the defined function symbol B is called (i.e. expanded) during the computation
of S under I requires deterministic exponential time. In particular our deterministic
exponential lower time bound holds even when I consists of a single a-interpretation
I such that p(xt)- True and p(yt)= False. Any recursive programming language
with a nontrivial predicate embodies such a class I of a-interpretations. Thus our
deterministic exponential lower time bounds for analyzing recursion schemes imply
deterministic exponential lower time bounds for analyzing very simple programs in
any such recursive programming language. We used a similar paradigm in [8] to prove
PSPACE-hard lower time bounds for analyzing program schemes and very simple
programs in any flowchart programming language with a nontrivial predicate.

The rest of this section consists of definitions, notation, and basic properties of
strings, relations, computational complexity, and auxiliary pushdown machines. Sec-
tion 2 consists of definitions and basic properties of recursion schemes and recursive
programs. We assume that the reader is familiar with proofs of lower complexity

RECURSION SCHEMES AND RECURSIVE PROGRAMS 833

bounds that involve efficient reducibility between decision problems, otherwise see
[1], [4].

We denote the length of a string S or the cardinality of a set S by ISI; we denote
the empty string by A.

DEFINITION 1.2. Let D be a nonempty set. Let p, r and z be binary relations on
D such that

(i) if xpy then xtry, and
(ii) if xtry then

Then we say that the relation
DEFINITION 1.3. Let and A be finite nonempty alphabets. Let Lc X*, and let

M c A*. We say that L is polynomially reducible to M (L is O(n log n) time reducible
to M) if and only ifthere exists a functionf from X* to A* computable by a deterministic
polynomially time-bounded Turing machine (computable by a deterministic O(n log n)
time-bounded Turing machine) such that

for all x X*, x L if and only if f(x) M.

By a linearly space-bounded deterministic auxiliary pushdown machine, abbreviated
linearly space-bounded DAPDM, we mean a deterministic linearly bounded automaton
augmented with an auxiliary pushdown store. Such a machine M is specified in terms
of--

1. a finite nonempty set Q of states,
2. a finite nonempty input tape alphabet
3. a finite nonempty pushdown store alphabet F,
4. a start state qo Q,
5. two distinct endmarkers
6. a bottom of stack marker Zo F,
7. a finite set F c Q of accepting states, and
8. a transition function 8 from

Qx(XU{I-,-I})xF to Qx (XU{I-,-I})xF*x{O, 1,-1}.

We interpret the transition 8(s, a, Z) (t, b, 7, d) as follows--when in state s, scanning
input tape symbol a, and having top stack symbol Z, the machine in one move

(i) changes state to t,
(ii) replaces its scanned input symbol by b,
(iii) replaces its top stack symbol by the (possibly empty) string ,/, and
(iv) moves its input tape head one cell to the left, moves its input tape head one

cell to the right, or keeps its input tape head stationary if d =-1, 1, or 0, respectively.
The transition function 8 preserves the integrity of the endmarkers and - as

follows--
(a) if a = then b=- and d {0, 1},
(b) if a - then b - and d {0, -1}, and
(c) ifa then beE.
DEFINITION 1.4. A configuration of a linearly space-bounded DAPDM M

(Q, X, F, qo, {-, -}, Zo, F, 8) is a four-tuple (s, z, /,j) where s Q, z {-}. X*. {},
F*, and l<-j<-Iz I. A transition holds between configurations (s,-x-, l,J) and
(t, -y-, :, k), denoted by

(s, x-q, /,j) b- (t, -y--q, :, k),

if and only if, letting the jth symbol of -x- be a and the rightmost symbol of the

834 H. B. HUNT III AND D. J. ROSENKRANTZ

string r/be Z,
(i) (s, a, Z)= (t, b, % d),
(ii) the string }--y--q is the string x-q with its jth symbol replaced by b,
(iii) the string is the string r/with its rightmost symbol replaced by the string

y, and
(iv) k =j + d.
For configurations a and/3 of M, if/3 is obtained from cr by means of a sequence

of transitions, we denote this by

a -/3, and

we say that there is a computation ofMfrom a to . The language that M accepts by
final state and empty pushdown store, denoted by L(M), is the set of all strings x
such that

(qo, -x-q, Zo, 2) - (q -y-, A, k)

for some integer _>- 1, state off F, string y E*, and integer k _-> 1.
The deterministic exponential lower time bounds presented here are based upon

well-known time hierarchy results for deterministic Turing machines [7] and the
following property of linearly space-bounded DAPDMS due to Cook [3].

PROPOSITION 1.5. The class of all languages accepted by linearly space-bounded
DAPDMs equals the class of all languages accepted by deterministic Turing machines
that operate within time 2 for some c > O.

Inspection of the proof of this result (in particular the proof that (c) implies (a)
of [3, Thm. 1]) and known time hierarchy results for deterministic Turing machines
[7] yield the following corollary of Proposition 1.5 and its proof.

PROPOSITION 1.6. There exists c > 0 and a linearly space-bounded DAPDM Msuch
that

1. any deterministic Turing machine that accepts the language L(M) makes more
than 2 moves infinitely often;

2. M’s input tape alphabet is {0, 1};
3. L(M) {00}. {01, 10}*. {11} and, thus, is prefix-free;
4. M halts for all inputs with an empty pushdown store;
5. for all inputs in {00}. {01, 10}*. {11}, M never moves its input tape head onto

an input tape cell containing an endmarker; and
6. M pushes at most one stack symbol at a time.
Assertions 3-6 of the statement of Proposition 1.6 are included to simplify the

proof of Theorem 3.1 below. The automaton M treats strings in {00}. {01, 10}*. {11}
as images of strings in {}. {0, 1}* {-q} under the string homomorphism h defined by
h() =00, h(0)=01, h(1)= 10, and h(--q)= 11.

2. Definitions and properties of recursion schemes and recursive programs. We
present the basic definitions and properties ofrecursion schemes and recursive programs
needed to read this paper. Our definitions closely follow those in [6] and 12].

The alphabet Y, of a recursion scheme is a finite subset of the following set of
symbols:

1. n-ary basisfunction symbolsf’/(i >_- 1, n >_- 0), basis function symbolsf are called
constant symbols;

2. n-ary predicate symbols p’/(i >= 1, n >- O);
3. input variable symbols x(i ->_ 1);
4. program variable symbols y(i >_- 1);

RECURSION SCHEMES AND RECURSIVE PROGRAMS 835

5. an output variable symbol z; and
6. function variable symbols F >= 1).
A quantifier-free wff r over X is a quantifier-free wff in the sense of first-order

logic construction from basis function symbols, predicate symbols, input variable
symbols, program variable symbols, and the output variable symbol z. A term over
: is a term in the sense of first-order logic constructed from basis function symbols,
input variable symbols, program variable symbols, the output variable symbol z, and
function variable symbols. A conditional term 7. over F, is defined recursively as follows:

(a) Each term over : is a conditional term.
(b) If ,r is a quantifier-free wff over X and 7" and 7.2 are conditional terms over

X, then

if r then 7.1 else 7.2

is a conditional term over X.
A recursion scheme S over X is of the form

where

F(,) :- ,(, , F)

FN(X, Y) := 7.v(, Y, F)

where and y denote finite sets of input variable symbols and program variable
symbols, respectively, and F {F1," ", FN}. Here, 7.o(, F) is a conditional term over
X that contains no input variable symbols other than those in , contains no function
variable symbols other than those in F, and contains no program variable symbols and
no occurrences of z. Also for 1-<_i=< N, 7.i(, 37, F) is a conditional term over X that
contains no input variable symbols other than those in , contains no program variable
symbols other than those in 37, contains no predicate symbols other than those in F,
and contains no occurrences of z.

For 1 -< _-< N, the statement

Fi(,)7)= 7.(, , F)

is called the defining statement for F. We assume that each function variable s3)mbol
F appearing in a recursion scheme S has exactly one defining statement for it in S.

We denote the set of all recursion schemes by R.
DEFINITION 2.1. The size of a recursion scheme M, denoted by IIMII, is the

number of occurrences of symbols appearing in M where we consider where, if, then,
else, and := to be single symbols.

Example 2.2. Let $ be the recursion scheme--

Z F(x, x) where

F(yl, Y2) := if P(Yl) then fl (Yl) else f2(y2).

Then sII 31.
Recursive programs and recursive programming languages are defined in terms

of R as follows.
DEFINITION 2.3. Let I be an interpretation. Let S R. The pair P ($, I) is called

a recursive program. The pair L= (R, I) is called a recursive programming language.
The basis function symbols, constant symbols, predicate symbols, input variable

symbols, program variable symbols, output variable symbols, function variable symbols,

836 H. B. HUNT III AND D. J. ROSENKRANTZ

and defining statement for the function variable symbol F of a recursive program
P (S, I) are the basis function symbols, constant symbols, predicate symbols, input
variable symbols, program variable symbols, output variable symbol, function variable
symbols, and defining statement for the function variable symbol F, respectively, of
S. The size of a recursive program P (S, I), denoted by IIPII, is the size of S.

The definitions of a computation of a recursion scheme $ under an a-interpretation
I and of a computation of a recursive program S, given values : to its input variables,
are standard and will not be duplicated here. The sequence of function symbols called
in a computation is inside-out, left-to-right, as in [6].

DEFINITION 2.4. Let T be a recursion scheme or recursive program. Let F be a
function variable symbol of T. Let the defining statement for F in T be F(&)7):=
r(, 37, F).

1. We say that F is called during the computation of recursion scheme T under
a-interpretation I if some occurrence of F is replaced by r(,)5, F) during the computa-
tion of T under L We say that F is called during a computation of T if there exists an
a-interpretation I such that F is called during the computation T under L

2. We say that F is called during the computation of recursive program T, given
values to its input variables if some occurrence of F is replaced by r(,)7, F) during
the computation of T, given values : to its input variables. We say that F is called
during a computation of T if there exists values : to its input variables such that F is
called during the computation of T, given values : to its input variables.

In 3 and 4 below we consider the computational complexity of a variety of
problems for various classes S of recursion schemes or of recursive programs. These
problems include the following:

1. The Executability Problem or EP: Given P in S and function variable symbol
F, is F called during a computation of P?

2. The Computational Identity Problem" Given P and Q in class S of recursion
schemes, for all a-interpretations I of P and Q, during the computations of P and Q
under I, are the sequences of function variable symbols called, together with their
associated defining statements, identical? Given P and Q in class S of recursive
programs, for all given values : to P and Q’s input variables, during the computations
of P and Q given :, are the sequences of function variable symbols called, together
with their associated defining statements, identical?

3. The Strong Equivalence Problem" Given P and Q in class S ofrecursion schemes,
for all a-interpretations I of P and Q, do the computations of P and Q under I both
diverge or both halt with the same values for their output variables? Given P and Q
in a class S of recursive programs, for all given values : to P and Q’s input variables,
do the computations of P and Q given : both diverge or both halt with the same
values for their output variables?

4. The Totality Problem" Given P in S, do all computations of P halt?
5. The Divergence Problem" Given P in S, do all computations of P diverge?
6. The Containment Problem" (defined in [6] or [12]).
7. The Weak Equivalence Problem" (defined in [6] or [12]).
We denote computational identity, strong equivalence, containment, and weak

equivalence by =, ---, c_, and =, respectively. For a class I of interpretations or
assignments of values : to input variables, we also consider the restrictions of problems
1-7 to I. Thus, for example, for recursion schemes P and Q in S, we write P =i O if
and only if, for all a-interpretations I in I of P and Q, the sequences of function
variable symbols called during the computations of P and Q under I, together with
their associated defining statements, are identical. We define -=, , and

RECURSION SCHEMES AND RECURSIVE PROGRAMS 837

analogously. Let k => 1. If I consists of all a-interpretations with domains of cardinality
k, we denote =i, =i, i, and -i by k, k, --k, and =k, respectively.

In 4 below we also consider the computational complexity of partial and total
correctness for various input and output assertions [6], [12] and for various classes S
of recursion schemes or of recursive programs.

DEFINITION 2.5. Let S be a recursion scheme with set g {x, , Xm} of input
variables and output variable z. Let P and Q be wffs in the sense of first-order logic
such that all free variables in P are elements of g and such that all free variables in
Q are elements of g {z}. Then P and Q are said to be uninterpreted input and output
assertions, respectively, for S.

DEFINITION 2.6. Let S be a recursion scheme with set g {Xl,’’’, Xm} of input
variables and output variable z. Let P and Q be uninterpreted input and output
predicates, respectively, for S. Let I be an interpretation of S such that under I, P
and Q become predicates denoted by P, and Q, respectively. Let I’ be an a-interpreta-
tion compatible with I. We say that the scheme S is partially correct with respect to P,
Q, and I’ if

(i) P,,((xl)r,’" ", (x,,)r) True,
and, provided that the computation of S under I’ terminates,

(ii) Q,((xl),,, ., (Xm)r, zr) True.
We say that S is totally correct with respect to P, Q, and I’ if S is partially correct with
respect to I’ and the computation of S under I’ terminates.

The definitions ofpartial and total correctness for recursive programs are analogous
and will not be duplicated here, see [6] and [12].

In 3 and 4 below, we show that variants of the EP for a class C of very simple
recursion schemes are efficiently reducible to a variety of problems for R and for any
recursive programming language with a nontrivial predicate. These problems include
problems 2-7 above, together with the problems of determining partial and/or total
correctness with respect to many input and output assertions.

3. Simple recursion schemes with "Hard" EPs. We construct a class C of very
simple recursion schemes with a provably deterministic exponential time hard EP.
Each member S C has only a single predicate symbol p, has only two input symbols
x and y, has no basis function or constant symbols, and is total. In addition the
following are equivalent for S"

3.1. the defined function symbol B is executable in S, i.e. there is an a-interpreta-
tion I such that the defined function symbol B is called during the computation of S
under I;

3.2. there is an a-interpretation I for which p(x) True and p(y) False such
that the defined function symbol B is called during the computation of S under I; and

3.3. for all a-interpretations I for which p(x)=True and p(y)= False, the
defined function symbol B is called during the computation of S under I.

All our deterministic exponential lower time bounds in this paper follow directly
from the properties of the class C.

In order to construct the class C, we show how to simulate the behavior of a

linearly space-bounded DAPDM M of the form of Proposition 1.6 on an input
w {00}. {01, 10}* {11} by a recursion scheme Mw. In order to obtain the deterministic
exponential lower time bound of Theorem 3.1, the size of Mw must be -<k. Iwl for
some constant k independent of w. The construction of Mw and a detailed discussion
of how it simulates M on w appears in the proof of Theorem 3.1 and in the Appendix.
The construction of Mw is complicated by the fact that we can only assume that calls

838 H.B. HUNT III AND D. J. ROSENKRANTZ

of its defined function symbols return single bits of information. This restriction is
necessitated by our requirement that conditions 3.1, 3.2, and 3.3 be equivalent for M.

THEOREM 3.1. There exist a class C of recursion schemes such that, for all S C,
(i) the only predicate symbol ofS is the monadie predicate symbol p;
(ii) the only input variables of S are x and y;
(iii) B is a defined function symbol of S;
(iv) conditions 3.1, 3.2, and 3.3 are equivalent for S; and
(v) S is total.

In addition, there exist constants c, d > 0 such that the problem of determining for S C
if the defined function symbol B is called during some computation of S requires more
than d. 2llsll steps infinitely often on any deterministic Turing machine.

Proof. The proof is by explicit construction. Let M be a linearly space-bounded
DAPDM such that

(a) M’s input tape alphabet is {0, 1};
(b) L(M) {00}. {01, 10}*. {11};
(c) M halts for all inputs with empty pushdown store;
(d) for all inputs in {00}. {01, 10}*. {11}, M never shifts its input tape head off

its input tape;
and

(e) M pushes at most one stack symbol at a time.
Noting assumption (c) we also assume that

(f) M has only a single accepting state.
Thus, M=(Q, {O, 1},F, q, {-,-t},Zo, F, ,) where m--IQ[and F={qm}.

We show that there is a constant k > 0 and a functionfcomputable by a determinis-
tic O(n log n) time-bounded Turing machine such that, for all w {00}. {01, 10}* {11},

(g) Mw =f(w) is a recursion scheme of size -<k. [w{;
(h) w L(M) if and only if B is called during some computation of M,; and
(i) M satisfies (i)-(v) of the statement of Theorem 3.1.
The proof has three parts.
Part 1. Construction and explanation of the recursion scheme Mw: Let n Iwl.

The defining statements of M are given in Fig. 1.
1. The defining statements of (1) and (2) guarantee that, for all a-interpretations

/, either
1.1. px(xl)#True or PI(yl) False in which case the computation of Mw halts

without calling B
or

1.2. p(xx)=True and Pt(Yt)= False.
2. For each stack symbol Z of M, Mw has a defined function symbol Fz. A call

on Fz during a computation of M under an a-interpretation I satisfying 1.2 corre-
sponds to a point r in the computation of M on w when Z is the top stack symbol.
The defined function symbol Fz has 4n +2m + 2 parameters as follows--

Fz(x, y, sl," ", Sm, tl," ", tn, hi," ", h,,’ rl," ", r2n+m).

If at point r, M is in state qi, then formal parameter si is passed an actual parameter
equal to x, otherwise si is passed an actual parameter equal to y. Similarly, parameter
tj is passed an actual parameter equal to xx or to y if and only if the jth input tape
cell of M at point 7r contains 1 or 0, respectively. Also parameter hk is passed an
actual parameter equal to x or to y if and only if at point 7r the input tape head of
M is reading cell k, respectively. Hence, the state and input tape of M at point r are
encoded into the value of the 2n + m parameters s for 1 -< -< m, tj for 1 -<j -< n, and

RECURSION SCHEMES AND RECURSIVE PROGRAMS

Defining Statements of M,"

z := F(x, y) where

(1) F(x,y):=if p(x) then F(x,y) else x

Fl(x, y):=if p(y) then x else F2(FZo(x, y, s,. ., sin, tl," ", t,, hi,. ., h,, rl," ", r2,,+m))

where Z0 is the bottom of stack marker of M;

x ifj=l, and
sj=

Y otherwise;

x if the kth symbol of w is 1, and
tk

y if the kth symbol of w is O;

x ifl=l, and
h

y otherwise; and

x ifp=m, and
rp

Y otherwise.

(2) F2(u):=if p(u) then B(u) else u

B(u):=u.

(3) For all Z F,

Fz(x, y, s,. , s,,,, t,. , t,, h,. , h,,, r,. , r2n+m

:=if p(sl) then Fz’qt(x, y, t, t,, h, h,, r, r2,+,)

else if p(s2) then Fz’q2(x, y, t, ., t,, h, ., h,, r, ., r2,+,,,)

else FZ’qm(x, y, t, .., tn, hi,. ., hn, rl, ., r2n+m).

(4) For all Z e F and q e Q,

Fz’q(x, y, t, t,, hl, ., h,, r,. , rEn+m
:= FINDHEADZ’q(x, y, t,. , t,, hi,. , h,, x, r,. ., r2,+m)

FINDHEADZ’q(x, y, t," ", t,, h," ", h,+, r,. , r2,+m)

:= if p(hl) then if p(t) then

FZ’q’l(x, y, t2,. ., tn, tl, h2," h,, h,,+, h, rl,. r2n+m

else Fz’q’(x, y, t2, ., t,, t, h2, , h,, h,,+, ht, r, , r2,,+m)

else FINDHEADZ’q(x, y, t2, , t,, t, h2, , h,, h,+, h, r, , r2,+,,).

(5) For all Z F, q Q, and a {0, 1} where

6(q,a,Z)=(p,b,y,d),

(5.1) FZ’q’a(x, y, t, ", t,, h, ., h,+, r, ", rEn+m

:= GV’"b’a(x, y, t, ", t,, h, ", h,+, r, ., r2,+,,);

(5.2) G"P’’d(x, y, t, ., t,, h, ., h,+, rl, ., r2n+m

:= G’"d(x, y, t, , t,_, y, h, , h,+, rz, , r2,+,,, if b =0, and

G’r’P’I’d(x, Y, tl, tn, h, h,+, r, , r2n+m

:= Gv’P’d(x, y, t, , t,_t, X, h, , h,+, r, , r2,,+m) if b 1"

FIG.

839

840 H. B. HUNT III AND D. J. ROSENKRANTZ

(5.3) Gv’P’(x, y, tt, ", t,, hi," ", h,+, rt, r2n+m

:= HY’P(x, y, tl, tn, hi,. ., hn+l, rl, r2n+m if d =0,

G’v’P’t(x, y, t, , t,, h, ., h,+, r, , r2n+m

:= H’P(x, y, t2, tn, tl, h2, ., hn, y, x, rl, r2n+m if d 1, and

G"P’-I(X, Y,/1," ", tn, hi," ", hn+l, rl," ", r2n+m)

:= H/’P(X, y, tn, tt, in_l, y, ht, hn_t, x, rl, tEn+m) if d -1"

(5.4) Hr’P(x, y, t, t,, h, h,+, r, r2,+,,,)

:=if p(h) then Gv’P(x, y, tl, in, h2, ", hn+l, rl, "’, r2n+m)

else HV’P(x, y, rE,. ., tn, tl, hE," hn+l, hi, rl, r2n+m);

and

(5.5) G3"P(x, y, t, ", t,, h, ", h,, r, r2n+m

:= G(x, Y, qt, qm, tl, tn, hi," hn, rl, r2n+m)

x ifi=pand
where q

y if ip.

(6) For each Gv appearing in a defining statement of the form of (5.5),

(6.1) if y is a single stack symbol A, then

GA(x, Y, ql," ", qm, /1," ", in, hi," ", hn, rl," ", r2n+m)

:= FA(X, Y, ql, qm, tt," tn, hi, hn, rl," r2n+m);

(6.2) if y is the empty string, then

G(x, Y, q!, ", qm, t, ", t,, hi," hn, r, , rEn+m

:= POP(q," ", q,,, t," ", t,, hi,. ., h,, r,. ., r2,+m)

POP v, ", t)2n+m r, ., r2n+m

:=if p(r) then v else POP(v2,’’’, v2,+,,, v, r2,..., r2,+,, r);

and

(6.3) if y BC, then

Gnc(x, y, s," ., s.,, t,," ", t., h," ", h., r,. , r2.+m

:= PUSH1nc (x, y, s,’" ", s.,, t," ", t., h,’" ", h., rl,." r2.+,., ,y, ",..y x),
2n+m y’s 2n+m-i y’s

PUSH1nc (x, y, u," , u2.+., rl," ", rE.+,., V," ", V2.+.,, C," ", C2.+m)

:= PUSH2nc (x, y, u,. ., u2.+,., r,. , rE.+,., Fc(x, y, u," ", u2.+,., c," ", c2.+.,),

I)2 l)2n+m Cl, C2n+m),

and

PUSH2nc (x, y, ut," ", u2,+,,, r,. ., r2,+,,, v,. , V2,+m, C," , C2,+m)

:=if p(c) then Fn(x, y, v, v2,+m, r, r2,+m)

else PUSH1nc (x, y, Ul, ", U2,+m, r, ", r2,+,,, V2,+m, V, ", V2,+m-1,

C2, C2n+m, Cl).

FIG. (cont.)

RECURSION SCHEMES AND RECURSIVE PROGRAMS 841

hk for 1 _-< k <- n. Parameter r for 1 _<- _-< 2n + m is passed an actual parameter x if the
call on pZ should return the/th bit of the encoding

of the state and input tape of the configuration of M that occurs immediately after Z
is popped off the stack. Otherwise, r is passed an actual parameter y.

Corresponding to a single push of Z by M, Mw calls Fz 2n / m times. Each of
these calls of Fz is passed the values of the s, t, and h parameters that encode the
state and input tape of M at the time Z is pushed on the stack. The kth call of Fz

has rk equal to x and all other r parameters equal to y. The effect of the 2n / m calls
of Fz is to compute, bit by bit, the encoding of the state and input tape of the
configuration of M that occurs immediately after Z is popped off the stack. (We sketch
the proof of this in the Appendix.)

3. The defined function symbol Fz determines the state, input tape head position,
and input tape symbol being read at point r. This is accomplished by the defining
statements of (3) and (4). The determination of which input tape symbol is being read
is accomplished by the defining statement for FINDHEADz’q. This is accomplished
by simultaneous rotation of the and h parameters until the first h parameter equals
x, at which point the first parameter encodes the input tape symbol being read at
point ,r. (Note the additional h parameter added in the call of FINDHEADz’q. This
additional h parameter serves as a right endmarker.) When FZ’q’ or Fz’q’ is called
(in the defining statement for FINDHEADZ’q), it is the last and h parameters that
represent the input tape cell being read and the input tape head position, respectively.

4. Let 8(q, a, Z) (p, b, y, d) be a state transition of M. The scheme Mw simulates
this state transition by means of the defining statement of (5) and (6). The defining
statements of (5.2) for Gv’p’b’d simulate the rewriting of the currently read input tape
cell. The defining statements of (5.3) for Gv’p’d simulate the change of position of the
input tape head. This is accomplished so that the and h parameters, that represent
the input tape cell being read and the input tape head position after the state transition,
are simultaneously rotated to the ends of the parameters and the h parameters,
respectively. (See Fig. 2.)

Parameter Rotation in Defining Statements (5.3)

Case 1. d l.

Input tape tj parameters hk parameters
Before: 10_1 0 yxxxxyx yy_xyyyx
After: _01 01 xyxxxxy yyyy_xyyx

Case 2. d 1.

Before: 10 10 yxxxxyx yyyx_yyyx
After: 10 _0 xxxxyxy yyx_yyyyx

In the above figure x x1; y yl; the underlined tape cell is the tape cell being read; and the underlined
h parameter is the "right endmarker".

FIG. 2

5. When H’v is called in the defining statements of (5.3), the "right endmarker"
occurs earlier in the sequence of h parameters than that h parameter that represents
the current input tape head position. (See Fig. 2.) Thus if the and h parameters are
simultaneously rotated as in the defining statement for Hv’v, the first h encountered
that equals x, equivalently such that p(h)= True, represents the "right endmarker".

842 H. B. HUNT III AND D. J. ROSENKRANTZ

The defining statement for Hv’p rotates the and h parameters, finds the "right
endmarker", and then dispenses with it. Upon dispensing with the "right endmarker",
the and h parameters of Gv’p encode the input tape of the configuration of M after
execution of the state transition.

6. The call of Gv in the defining statement for G’p, defining statement (5.5),
causes the q parameters of G to correctly encode the state of M after execution of
the state transition. Thus upon execution of the defining statement of (5.5), the
parameters of Gv correctly encode the state, tape contents, and tape head position of
M after execution of the state transition.

7. The defining statements of (6) simulate the stack change made by M at point
r. The length of the stack string y is 0 (corresponding to a POP), 1 (corresponding
to no change in stack height) or 2 (corresponding to a PUSH). The form of the defining
statement of Gv depends upon y.

7.1. If 3’ is a single stack symbol A, the defined function FA is called (see defining
statement (6.1)).

7.2. If y is the empty string A, the appropriate bit of the encoded state and input
tape are returned (see defining statement’(6.2)).

7.3. If 3, is BC where B replaces the old stack symbol and C is to be pushed
above the B, the defined function symbol PUSH1ac calls the defined function symbol
Fc 2n + m times to compute the 2n + m bit encoding of the state and input tape of
the configuration produced by processing stack symbol C. (See the defining statements
of (6.3).) The function symbol PUSH1ac has parameters ui for 1 <= =<2n + m to record
the state and input tape of the configuration at the time C is first pushed, parameters
vi for 1-<_ <_-2n + m to record the values returned by the series of calls on Fc, and
parameters c for 1 <-i =< 2n + m to keep track of the number of calls on Fc and to
ensure that each call returns the appropriate bit of the encoding of the state and input
tape. (See Fig. 3.)

Parameter Rotations in Defining Statements (6.3)

Function called with v parameters and c parameters

PUSH1Bc y y y y y x
PUSH2Bc F yy yy x
PUSH1ac yF y y xy
PUSH2ac F2c F y y xy
PUSH1ac yFF xyy
PUSH2ac Fc F F3c xy y

Here, x denotes x;, y denotes Yt, and Fc denotes the value returned by the call.

Fc(x,y,u, "’,u2n/m,C,’"

y for j= i. Thuswhere c =x and cj

Fc denotes FC(x, y, u, u2, u3, x, Yt, Y),

F2c denotes Fc(x, y, u, u2, u3, yt, xt, Yt), and

F3c denotes Fc(x, y, u, u2, u3, yt, yt, x).

FIG. 3

Part 2. Verification that Mw satisfies assertions (i)-(v) of the statement of the
theorem:

By inspection of the defining statements of M,, M, satisfies assertions (i)-(iii).
By inspection of the defining statements (1) and (2) if ! is an interpretation such that
p(x) True or pt(y) False, then the computation of M under I halts without

RECURSION SCHEMES AND RECURSIVE PROGRAMS 843

calling B. The proof that Mw satisfies assertions (iv) and (v) follows from the manner
in which the computation of Mw under an a-interpretation I such that

p(x) True and p(yt) False

simulates the computation of M on w. This simulation is described as follows.
II.1. Let I be an a-interpretation such that p(x)=True and p(y)= False. Let

a (qi, -x-, A, l) and/3 (tb, -y-, A, k) be configurations of M such that]x[n and
a -*/3. (Note by our definition of linearly space-bounded DAPDMs, at no earlier
point in the computation of M from a to/3 is the stack empty.) Let

a (FA)(x,y, Sl," ", sin, tl," ", t,, hi," ", h,, rl," ", rE,+m)

where Sl," , s, tl," ", tn, hi," ", hn is the encoding of the state and input tape of
configuration a and exactly one of the r-parameters, say rg, equals x and all other
r-parameters equal y. Then a equals the ioth entry in the encoding of the state and
input tape of the configuration ft.
(A proof of II.1 is sketched in the Appendix.)

Let a (ql, -w-, Zo, 1). Let fl (q, -y-, A, t) be that configuration with empty
stack such that a - ft. (By the properties of M such a configuration fl exists.) Then
w L(M) if and only if q q. By II.1 q q(q q) if

FZo(x, y, sl, ., sm, t, ., tn, hi," ", hn, rl, ", rEn+) x(= y),

where Sl, , s,, tl," tn, h,. h is the encoding of the state and input tape of
the configuration a, r, x, and all other r parameters equal y. Hence by inspection
of the defining statements of Mw as described in Part I of this proof, B is called during
the computation ofM under I if and only if w L(M). Additionally, the computation
of M under I halts since the computation of M on w halts by assumption.

Part 3. Definition of the class C and verification of lower time bound:
Let N be a linearly space-bounded DAPDM satisfying conditions 1-6 of the

statement of Proposition 1.6. Without loss of generality we assume that N has m states
where q. is N’s start state and qm is N’S single accepting state. By inspection of the
defining statements in Fig. 1 for M N, there exists a constant k depending upon N
but not on w such that, for all we {00}. {01, 10}*. {11}, INl_-< k. Iwl, Also by inspection
of the defining statements in Fig. 1, there is a deterministic O(n log n) time-bounded
Turing machine that, given input w {00}. {01, 10}* (11}, outputs Nw. Bythe argument
of Part 2 for all w(00}. (01, 10}*. {11}, wL(N) if and only if B is called during
some computation of N. Thus there exist c, d > 0 such that the problem of determining
for S s C if the defined function symbol B is called during some computation of S
requires more than d. 2c’llsll steps infinitely often on any deterministic Turing machine.
Otherwise, the recognition of the language L(N) would not require deterministic
exponential time, contradicting Proposition 1.6.

4. Exponential lower deterministic time bounds. Theorem 3.1 and its proof easily
imply exponential lower deterministic time bounds for a variety of decision problems
for very simple recursion schemes for any class I of a-interpretations such that

(4.0) (=:lJ I)[pj(xj) True and pj(yj) False].

Any recursive programming language with a nontrivial predicate can be viewed as
such a class I of a-interpretations. Thus Theorem 3.1 and its proof also easily imply
exponential lower deterministic time bounds for a variety of decision problems for
very simple progr.ams in recursive programming languages with a nontrivial predicate.

844 H. B. HUNT III AND D. J. ROSENKRANTZ

We present examples of such exponential lower deterministic time bounds for
decision problems for very simple recursion schemes in the first six results of this
section. Each of these exponential lower deterministic time bounds follows easily from
Theorem 3.1 and its proof.

THEOREM 4.1. Let I be any class ofa-interpretations satisfying condition (4.0). Then
there exist constants c, d > 0 such that the recognition ofeach of thefollowing sets requires
more than

(i) d. 2 c’(llsll+llTII) steps for the sets of 1 and
(ii) d-2 c’llsll steps for the sets of 2 and of 3

infinitely often on any deterministic Turing machine:
1. for all binary relations p on R between and "-’, {S, T CISpT} and {S, T

RISpT},
2. {S R[S halts for all a-interpretations in I}, and
3. {S RIS diverges for all a-interpretations in I}.
Proof. 1. For all M C, letM andM be defined as M except that the defining

statement for F is replaced by

FI(X, y):= if p(y) then x else

F2(x, y, FZ(x, y, sl, Sm, tl, t,, hi,’", h,, r,

in both ofM and M2w, and that the defining statements for F2 and B are replaced by

F2(u, v, w):= if p(w) then B(u, v, w) else u,

B(u, v, w) := u

in M and are replaced by

F2(u, v, w):= if p(w) then B(u, v, w) else u,

B(u, v, w) := v

in M. Then, for all interpretations/, the following are equivalent:
(a) B is called during the computation of Mw under I;
(b) B is called during the computation of M under I; and
(c) B is called during the computation of M2 under/.

Thus, MI M2, if B is not called during some computation of Mw, and (Mw - Mw),2
otherwise.

2. For all M C, let Mw be defined as Mw except that the defining statement
for B is replaced by

B(u):=B(u).

Then, for all interpretations/, the computation of MI under I halts if and only if B
is not called during the computation ofM under L ThusMhalts for all interpretations
! in I if and only if B is not called during some computation of M.

3. For all Mw C, let M be defined as M except that the defining statements
for F, F1, and F2 are replaced by

F(x, y):= if p(x) then Fl(X, y) else F(x, y),

F(x, y):= if p(y) then Fl(X, y) else

F(FZo(x, y, s,, Sm, tl, tn, hi,’", h,,, r,, /’2n+m)),

and

F2(u) :=if p(u) then u else F:(u).

RECURSION SCHEMES AND RECURSIVE PROGRAMS 845

Then, for all interpretations I, the computation of MI under I diverges if and only
if B is not called during the computation of Mw under I. Thus M diverges for all
interpretations I in I if and only if B is not called during some computation of Mw.

COROLLARY 4.2. Let p be any binary relation on R between and -2. Then there
exist constants c, d > 0 such that the recognition of the sets

{S, T C]SpT} and {S, T R]SpT}
requires more than d 2 ’llsll/ll rll steps infinitely often on any deterministic Turing machine.
These binary relations p include all binary relations z and, for all k >-2, ’ for -Proof. The corollary follows immediately from Theorem 4.1 since the class of all
a-interpretations with domains of cardinality 2 satisfies condition (4.0).

THEOREM 4.3. Let I be any class ofa-interpretations that includes an a-interpretation
J that satisfies condition (4.0). Let So be any fixed recursion scheme with input ariables
Xl, Xk (k >-2) whose computation under J terminates. Let p be any binary relation
on R between =- and -. Then there exist constants c, d 0 such that the recognition of
the set (S RISpSo) requires more than d. 2’llsll steps infinitely often on any deterministic
Turing machine.

Proof Without loss of generality we assume that the variables x and y are input
variables of So, i.e. x, y {x,. ., Xk}. For all M C, let Mw be the recursion scheme
that results from So and M as shown in Fig. 4. By inspection of the defining statements
of (4.1) of Fig. 4, for all a-interpretations I not satisfying condition (4.0), either both
zl and z are undefined or zl z[G((x),. ., (Xk)l). Let I be an a-interpretation
in I that satisfies condition (4.0). By assumption at least one such a-interpretation J
exists for which the computation of So under J terminates. By inspection of the defining
statements of (4.1) and (4.2) of Fig. 4 and by the proof of Theorem 3.1, the following
two assertions hold.

The scheme So:
z G(xl," ", xt) where

(4.0) {Defining statements of So}

The scheme Mw:
z’ F(xl, ., Xk) where

(4.1) F(x,. ., Xk):= if p(x) then Ft(x,. ., Xk) else G(x,. ., Xk)

Ft(x, ., x,) := ifp(y) then G(x, Xk)

else F2(Xl, ", X/o FZo(x, y, s, ", sin, tt, ", t,, h, ", hn, r, ", r2n+m))

(4.2) FE(X, ", Xk, U):= if p(u) then B(x, y, G(x,. ., Xk)) else G(x,. ., Xk)

B(u, v, w) := if p(w) then v else u

(4.3) {Defining statements of (3) through (6) of Mw}

(4.4) {Defining statements of So}

FIG. 4

(i) If B is not called during a computation of M, then B is not called during
the computations ofM and ofM under I. Thus, either both z and z[are undefined
or z, z G,((x),,..., (Xk)i).

(ii) If B is called during a computation of Mw, then B is called during the
computations of M and of M under L Thus, either

(a) both zl and z are undefined,

846 H. B. HUNT III AND D. J. ROSENKRANTZ

(b) p,(GI((xl)I,"’, (Xk),)) =True and z’=yl, or
(c) p,(G,((y,),..., (Xk),))= False and z x,.

Thus if B is not called during some computation of M,, then M So. Otherwise, the
computations of M and of So under J both terminate but p(z’)#p(z). Hence
z’j zj and, thus -(M ---I SO)" [’]

THEOREM 4.4. Let p be a monadic predicate symbol; let x and y be distinct input
variable symbols; and let f be a monadic basis function symbol. Let rn >=2; and let
x,. ., Xm be input variable symbols where x, y {xi,. ., Xm}. Let P(x," ", Xm) and
Q(x, , Xm, Z) be uninterpreted input and output predicates, respectively. Let Io be any
a-interpretation such that

1. elo((X1)io, (Xm)io) True,
2. p,o(X,o) Plo(Y*o), and
3. Q,o((X,),o,..., (Xm)Io, flo(XIo))t Q,o((Xl),o,... (Xm),o, flo(Y,o))"
Then there exist constants c, d > 0 such that the recognition of each of the sets
(i) {S RIS is partially correct with respect to P, Q, and Io} and
(ii) {S RIS is totally correct with respect to P, Q, and Io}

requires more than d. 2c’llsll steps infinitely often on any deterministic Turing machine.
Proof. Without loss of generality we assume that po(Xlo)= True. For all Mw C,

let Mw be the recursion scheme that results from Mw by replacing the defining statement
for F2 in (2) of Fig. 1 by

F2(u) := f(u).

By inspection of the defining statement for F1 in (1) of Fig. 1, F2 is called during the
computations of M and of M under Io. Moreover by the proof of Theorem 3.1 if
B is called during the computation of Mw under Io, then the value of the parameter
u when F2 is called during the computation ofM under Io is xo. Otherwise, the value
of the parameter u when F2 is called during the computation of M under Io is Yo.
Thus Valo(Ml)=fo(Xlo), if B is called during the computation of M under Io; and
Valto(M) =fo(Yo), otherwise. By assumption one of Qo((Xl)o,..., (x,,) io, fo(Xo)) and
Qto((Xl)o, (Xm)o,fo(Yto)) equals True and the other equals False.

COROLLARY 4.5. Let p, f, x, y, xl,.’., Xm, P, Q, and Io be as in the statement of
Theorem 4.4. Let D be the class of recursion schemes S such that

1. the input variables of S are xl,. Xm,
2. the only predicate symbol of S is p,
3. there are no occurrences of constant symbols in S,
4. the only basis function symbol of S is f, and
5. there is only one occurrence of the basis function symbolf in S.

Then there exist constants c, d > 0 such that the recognition of each of the sets
(i) {S DIS is partially correct with respect to P, Q, and Io} and
(ii) {S DIs is totally correct with respect to P, Q, and Io}

requires more than d. 2c’llsll steps infinitely often on any deterministic Turing machine.
Proof. For all M C, the recursion scheme M of the proof of Theorem 4.4 is

an element of D. 13
Theorem 4.4 and Corollary 4.5 show how Theorem 3.1 and its proof can be used

to derive exponential lower deterministic time bounds for the partial and total correct-
ness problems for very simple recursion schemes for many different uninterpreted
input and output predicates P and Q. The next proposition shows how simple such
uninterpreted input and output predicates can be.

PROPOSITION 4.6. Let p be a monadic predicate symbol, and let x and y be distinct
variable symbols. Let Io be any a-interpretation such that pto(Xlo)= True and Po(Yto)=

RECURSION SCHEMES AND RECURSIVE PROGRAMS 847

False. Let P(x, y) be the uninterpreted input predicate

p(x) ^ p(y).
Let Q(z) be the uninterpreted output predicate

p(z).

Then there exist constants c, d > 0 such that the recognition of each of the sets
(i) {S CIs is partially correct with respect to P, Q, and Io} and
(ii) {S CIS is totally correct with respect to P, Q, and Io}

requires more than d. 2llsll steps infinitely often on any deterministic Turing machine.
Proof. The proof closely follows that of Theorem 4.4. For all Mw C, let M be

the recursion scheme that results from Mw by replacing the defining statement for F2
in (2) of Fig. 1 by F2(u):= u. Then Valxo(M) equals Xxo, if B is called during the
computation of M under Io, and equals Yo, otherwise. 71

The simplicity of the recursion schemes and the generality of the classes I of
a-interpretations of results 4.1 through 4.6 enable us to derive analogous lower time
bounds for decision problems for very simple programs in any recursive programming
language with a nontrivial predicate test. Such decision problems include the totality,
divergence, computational identity, strong equivalence, weak equivalence, and contain-
ment problems as well as the partial and total correctness problems for many fixed
input and output predicates. For example, the following theorem is an easy corollary
of Theorem 4.1 and its proof.

THEOREM 4.7. Let L be any recursive programming language with a nontrivial
predicate test ,r. Let C’ be the class of all programs P in L such that

(a) the only predicate occurring in P is r, and
(b) no basis functions or constants appear in P.

Then there exist constants c, d > 0 such that the recognition of each of the following sets
requires more than

(i) d" 2 c’(IIPII+IIQII) steps for the sets of 1 and
(ii) d. 2 IIPll steps for the sets of 2 and of 3

infinitely often of any deterministic Turing machine:
1. for all binary relations p on L between and =, {P, Q c’IPpQ},
2. {P C’IP is total}, and
3. {P C’IP is divergent}.
Additionally, Theorem 3.1 and its proof also imply exponential lower deterministic

time bounds for program testing for many fixed inputs for very simple programs in
any recursive programming language L with a nontrivial predicate test ,r. Finally with
a little additional information about a recursive programming language L many
additional exponential lower deterministic time bounds can be obtained. For example,
the following theorem holds.

THEOREM 4.8. Let L be any recursive programming language with a monadic
predicate p and constants a and b such that p(a) # p(b). Let ,r be any predicate on the
set ofpartial functions computed by the programs ofL for which

there exist programs P1 and P2 ofL
each with >-0 input variables, such that
,rr Fp, # ,n" Fp2

Then there exist constants c, d > 0 such that the problem of determining, for P L, if
zr(F1,) True requires more than d. 2IIPII steps infinitely often on any deterministic Turing
machine.

848 H. B. HUNT III AND D. J. ROSENKRANTZ

Proof. For simplicity we assume that p(a)= r(Fp)= True. Let Go and Ho be the
initial defined functions of P1 and P2, respectively. For all Mw C, let M be the
program in L that results from Mw as follows:

1. The defining statements of (1) and (2) of Fig. 1 are replaced by

where

and

z := F(Xl," ", xi) where

F(xl, ", xi) := F(x, ., x,, FZo(a, b, s, ., S’m, t, ", t’,,

h, h’ r2n+m))rl,

[a ifj=l, and
sj= b otherwise,

a if the kth symbol of w is 1, and
t,

b if the kth symbol of w is 0,

a ifl=l, and
h b otherwise,

a ifp=m, and
rp

b otherwise.

FI(X1, ", xi, U):-- if p(u) then Go(x, ", xi) else Ho(x, ", Xi)o

2. All occurrences of x and y on the right-hand sides of the defining statements
of (3) through (6) of Fig. 1 are replaced by a and b, respectively.

3. The defining statements of P1 and P2 are added after renaming defined function
symbols as necessary to prevent name duplications. Then, F4 Fp, if B is called
during a computation of Mw; and F Fp:, otherwise.

The results of (4.1) through (4.8) enable us to answer the question 1.0 above as
follows:

Recursive program analysis due only to recursion and predicate tests requires
deterministic exponential time.

Finally, there are recursive programming languages with nontrivial predicate tests
for which such decision problems as divergence, totality, strong equivalence, etc. are
decidable deterministically in exponential-time, e.g. the language FMPaEc in [10].
Thus, our answer is the best possible answer in general.

5. Conclusion. PSPACE-hard lower bounds for problems concerning procedure-
valued parameters in recursive programs appears in [16]. Deterministic exponential
lower time bounds for the divergence and strong equivalence problems for a particular
simple programming language with recursion appear in [10]. Our results generalize
the results in 10] in three important ways. First, our lower time bounds hold for pure
recursive programming languages. The language FMPREc in [10] is a flowchart pro-
gramming language augmented with recursion. Second, our lower time bounds hold
for very simple programs in any recursive programming language with a nontrivial
predicate test. Third, our lower time bounds hold for the executability problem and,
thus, are applicable to many other decision problems besides divergence and strong
equivalence. These decision problems include computational identity, isomorphism,
totality, and partial and total correctness.

RECURSION SCHEMES AND RECURSIVE PROGRAMS 849

It is pointless to include predicate tests as a language feature if the only predicate
tests allowed are identically true or identically false. Thus, we have shown that
deterministic exponential lower time bounds hold for analyzing very simple programs
in recursive programming languages. Avoiding these lower bounds by imposing restric-
tions on the predicates and basis functions in the programming language can only be
done by restricting all predicates to be trivial, which is unreasonable for any language
with tests. Our constructions, however, do assume that there is no restriction on the
number of parameters of defined functions.

Intuitively, any system in which recursion is used seems to require a predicate to
stop the recursion, where the predicate is applied to a parameter or other data object.
Furthermore in the recursive call when the recursion stops, the predicate produces a
different truth value than in preceding calls and, thus, is nontrivial in the sense of this
paper. This suggests that deterministic exponential lower time bounds may be intrinsic
in the analysis of more general classes of recursively defined and/or presented objects.

Appendix. Proof of II.1. The proof is by induction on the number k of steps in
the computation of M from a to/3. Let the first state transition executed during this
computation be (q, a, Z) (p, b, % d). Bythe discussions in 2-6 of Part 1 of the proof
of Theorem 3.1,

(FA)I(XI, Yl, Sl, ", Sm, t, tn, hi," ", h,, rl, "’,

=(GV),(x,yi, s, ,s’ t,...,t’, h h’ rl r2n+m)

t t’, h,..., h’ is the encoding of the state and input tapewhere s, s,,
of the configuration / of M that follows from a by a single application of the state
transition -.

If k 1, then fl ,/and fl follows from a by a single POP move. Thus y A. By
the defining statement (6.3) of Fig. 1, a equals the (io+2)th parameter of the call of
(G)I. Thus, a equals the ioth entry in the encoding of the state and input tape of the
configuration ft.

Now suppose claim II.1 is true for all computations with at most k_-> 1 steps.
Suppose that a- ft. Thus

Since k + 1 > 1, 5’ # A. Thus, either 5’ B or 5’ BC for some stack symbols B and C.
If 5’ B, then by the defining statement (6.1) of Fig. 1,

a (G),(x, y, s, ., s,,’ t, t’, h, h’, r, ", r2+,)

(F)l(Xl, YI, s,..., s’,, t,..., t’, h,..., h’, rl,"" r2+m),

which by the induction hypothesis equals the ioth entry in the encoding of the state
and input tape of configuration ft.

If 5’- BC there is a configuration : such that q _im -- fl, i/j k, the stack of
7 equals BC, the stack of : equals B, and at no earlier point in the computation from

to : is the stack equal to B. Define

zi (FC)l(X,, y,, s, s’, t, t’, h, h’, c,, CEn+m)

t t’ hwhere c equals x and c equals y forj i. Since s,..., Sin,

is the encoding of the state and input tape of the configuration 7, the induction
hypothesis implies that z equals the ith entry in the encoding of the state and the
input tape of configuration :. Thus z, , ZE,+m is the encoding of the state and input

850 H. B. HUNT III AND D. J. ROSENKRANTZ

tape of configuration :. By the defining statements (6.3) of Fig. 1,

t t’,,h,.., h’a (GBC),(x,, y,, s,..., s,, ,, r,, r2n+,)

(PUSH1BC)t(x,, y,, s," ", s’n, t,..., t’, hi, h’,, rl, r2,+,)

(Fa),(x,, y,, z,,..., z2,+,, r,, ,
Since :/3 where j =< k, the induction hypothesis implies that a equals the ioth entry
of the encoding of the state and the input tape of the configuration/3.

REFERENCES

1] A. V. Argo, J. E. Ho,cRor AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] J. C. CHERNIAVSKY, Simple programs realize exactly Presburger formulas, this Journal, 4 (1976), pp.
666-677.

[3] S. A. COOK, Characterizations of pushdown machines in terms of time-bounded computers, J. Assoc.
Comput. Math., 18 (1971), pp. 4-18.

[4] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman, San Francisco, 1979.

[5] S. J. GARLAND AND D. C. LUCKHAM, Program schemes, recursion schemes, andformal languages, J.
Comput. System Sci., 7 (1973), pp. 119-160.

[6] S. A. GREIBACrt, Theory of Program Structures: Schemes, Semantics, Verification, Lecture Notes on
Computer Science 36, G. Goos and J. Hartmanis, eds., Spdnger-Verlag, Berlin, 1975.

[7]-J. E. HOPCROFT AND J. D. ULLMAN, Formal Languages and Their Relation to Automata, Addison-
Wesley, Reading, MA, 1969.

[8] H. B. HUNT, III, On the complexity offlowchart and loop program schemes and programming languages,
J. Assoc. Comput. Math., 29 (1982), pp. 228-249.

[9] H. B. HUNT, III AND D. J. ROSENKRANTZ, The complexity ofmonadic recursion schemes: exponential
time bounds, J. Comput. System Sei., 28 (1984), pp. 395-419.

10] N. D. JONES AND S. S. MtCHNCK, The complexity offinite memory programs with recursion, J. Assoc.
Comput. Math., 25 (1978), pp. 312-321.

11 D.C. LUCKHAM, D. M. R. PARK AND M. S. PATERSON, Onformalized computerprograms, J. Comput.
System Sci., 4 (1969), pp. 220-249.

[12] Z. MANNA, Mathematical Theory of Computation, McGraw-Hill, New York, 1974.
[13] A. R. MEYER AND D. M. RITCnIE, The complexity of loop programs, Proc. 22nd National ACM

Conference, Washington, DC, 1967, pp. 465-470.
[14] N. SUZUKI AND D. JErFERSON, Verification decidability of Presburger array programs, J. Assoc.

Comput. Math., 27 (1980), pp. 191-205.
15] D. TSICnlITZlS, The equivalence problem ofsimple programs, J. Assoc. Comput. Math., 17 (1970), pp.

729-738.
16] K. WINKLMANN, On the complexity ofsomeproblems concerning the use ofprocedures, Acta Informatica,

Part I, 18 (1982), pp. 299-318; Part II, 18 (1983), pp. 411-430.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
015

A BINARY SEARCH WITH A PARALLEL RECOVERY OF THE BITS*

BENJAMIN ARAZI"

Abstract. In this paper we consider the problem of assigning a numerical value of each of N elements
which are arranged in a linear array, for the purpose of being able to recover the location of any specified
element (with respect to the first element), with this aim being achieved using a small number of possible
different assigned values. An obvious solution is using a binary search approach, characterized by the
features: (a) At least [log N]+ 2 different values are needed for implementing the process. (b) The bits
forming the binary representation of the specified location are recovered sequentially (starting with the least
significant bit).

A new approach in assigning values to elements, for the purpose of recovering efficiently their location,
is presented in this paper, for the case where N is of the form 2"-1. Its main features are (a) less than
[log N]+ 2 different values are sufficient for achieving this task (even 2 are enough!). (b) The bits forming
the binary representation of the specified location are recovered in parallel. This is achieved by very simple
means, where the value of each bit in the binary representation is recovered by considering the numerical
values assigned to 4 elements having fixed location with respect to the element whose location is to be found.

Key words, location recovery in ordered sets, binary search, modular arthmetic, finite fields

AMS(MOS) subject classifications, lT21, 12J15, 11S20

1. General. Consider the problem of assigning different numerical values to N
elements arranged in a linear array, for the purpose of being able to recover the location
of any specified element (with respect to a defined starting point), based on the
numerical value assigned to it and the numerical values assigned to a small number
of other elements whose relative location with respect to the specified one are well
defined. This task has to be carried out using a small number ofpossible different values.
(The problem is trivially solved if we are allowed to use N different values.) An obvious
way for performing the described task would be to assign one unique value to all the
elements having an odd location index. Another unique value will be assigned to all
the elements having an index congruent to 2, when taken modulo 4, and in general:
all elements with location index X, for X mod 2i-- 2i-1, are assigned a unique value,

1, 2,..., [log2 N]+ 1. An additional unique value should be assigned to the first
element (location index 0). As an example take the case where N 13. Assigning
respectively the values A, B, C, D for 1, 2, 3, 4, and assigning E to location 0 yields
the following structure.

0 1 2 3 4 5 6 7 8 9 10 11 12
E A B A C A B A D A B A C.

Specifying any element, the parity of its location index I is instantly recovered
from the value assigned to it. If I is even, then I mod 4 is also recovered. Otherwise,
I mod 4 is recovered from the value assigned to the element in the I-1 place. The
process then continues by going to the element in the (I- 1)- 2 place (if and when
needed), etc, until all the bits in the binary representation of I are recovered.

DEMONSTRATION 1. The location of the element underlined in the preceding
demonstrated structure (of 13 elements) is recovered as follows.

Least significant bit: Since the value assigned to the element is A, I is odd. (LSB
is 1) Go now to location I- 1.

* Received by the editors March 27, 1984, and in revised form July 17, 1985.

" Department of Electrical and Computer Engineering, Ben Gurion University, Beer Sheva, Israel.

851

852 BENJAMIN ARAZI

More significant bit: The value B in location I- 1 means that (I- 1) mod 4 2.
The more significant bit in the binary representation of I is then 1. Go now to location
(I- 1)-2, etc.

The way just described by which the bits of the binary representation of I are
recovered, requires a reference to a table which indicates which value was assigned
to any of the described [log2 N] + 2 sets of indices. However, it is possible to recover
these bits without knowing which specific value was assigned to each set of indices.
If I is the location whose value is to be recovered, note that I is odd itt the value
assigned to locations I and I-2 is the same (for I-2 > 0). If I is even then the next
bit in its binary representation is 1 iff the values assigned to locations ! and I-4 are
the same. If I is odd compare the values assigned to locations I- 1 and I- 5, etc.

The described process (either the recovery based on specific values or the
recovery based on comparing values) is characterized by: (a) [log2 N]+2 different
values are needed for its implementation. (b) The process is sequential. For example,
the more significant bits in the binary reprsentation of I are recovered only after
recovering the least significant ones.

In this paper we treat the following problems.
(a) Is it possible to assign numerical values to the elements such that the bits in

the binary representation of I can be recovered in parallel? (For example, each bit is
recovered independently, and simultaneously with the other.)

(b) Is it possible to recover I by assigning less than [log2 N] + 2 different values
to the N elements ? (The recovery will then be based, of course, on value comparisons.)

(c) If the answer to any of the above questions is positive, what is the trade-off
between the ability to perform the described task and the complexity of performing it?

It is shown in this paper that a parallel recovery of the bits of I is possible and
can be performed easily even if only two ditterent values are used. The penalty paid
is the necessity of dealing with the values assigned to 4 elements when recovering each
bit, rather than comparing 2 values when each bit is recovered using the standard
binary search described above. The offered solution is valid for the case where N is
of the form 2"- 1.

It should be clarified that for a given n there is a known way of constructing
sequences up to length 2" having the property that the patterns consisting of n
consecutive elements in such a sequence are all different. These sequences which also
include the binary case are the DeBruijn sequences 1]. A DeBruijn sequence can then
be used for the purpose of recovering the location of elements in an array by assigning
the values of such a sequence, in order, to the elements.

Given then the values assigned to n consecutive elements, it is possible in principle
to recover their location since this combination of n values is unique. However, given
a pattern consisting of n consecutive elements of a DeBruijn sequence there is not a
known algorithm with polynomial complexity for recovering their location with respect
to a reference point. The sequences presented in this paper (which also include the
binary case) have the property that the algorithm for recovering the location of elements
based on their values is of complexity O(n) (for 2" 1 being the length ofthe sequence).

2. Theory.
2.1. Constructions based on cyclotomic cosets.
DEFINITION. The cyclotomic coset modulo 2"- 1 of an integer x [0, 2"-2]

consists of all the distinct numbers from the set {x, 2x mod (2"-1), 4x mod (2"-
1),..’, 2"-1x mod (2" 1)}.

BINARY SEARCH WITH PARALLEL BIT RECOVERY 853

DEMONSTRATION 2. The cyclotomic cosets modulo 31 are:

{0}, {1, 2, 4, 8, 16}, {3, 6, 12, 24, 17}, {5, 10, 20, 9, 18},
{11,22, 13,26,21}, {15,30,29,27,23}.

{7, 14, 28, 25, 19},

DEFINITION. A sequence B of length m is obtained from a sequence A of the
same length by h-decimation of A, if B is constructed by taking everty hth element
of A and repeating the process cyclically (the last element is considered to be followed
by the first one) until m elements are obtained.

It should be noted that if (n, m)= 1, the elements of B consist of all the elements
A. If (h, m)> 1 then B consist of repetitions of certain elements of A. This means, as
a special case, that if the length of A is odd and h 2, then B consists of all the
elements of A.

Notation. C, denotes an ordered sequence of 2"-1 numerical values, where the
same values are assigned to locations whose indices belong to the same cyclotomic
coset modulo 2" 1.

The proof of the following theorem is self explanatory and is omitted.
THEOREM 1. The sequence obtained by 2i-decimation of C, starting with location

X, equals the sequence obtained by scanning C, continuously (1-decimation) starting
with location (X/2i) mod (2" l), for any 0_-<X-<_2"-2 and O<-_ <-_ n -1.

DEMONSTRATION 3. The general structure of C5 (based on the cyclotomic cosets
listed in demonstration 2) is"

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B B C B D C E B D D E C E E F

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
B C D E D E E F C E E F E F F.

4-decimating the sequence, starting with location X 13 for example, yields the
sequence ECEEFBC. . This same sequence is obtained by scanning C5 continuously,
starting with location (13/4) mod 31 11.

Remarks. (a) According to the definition of C,, the values A, B, C, D..- are not
necessarily different.

(b) Starting with X 0, the 2i-decimated sequence is identical to the continuous
sequence starting at the same point. If C, is arranged in a circular form, such that its
starting point is not indicated, the starting point can be defined as being the one starting
with which all the sequences obtained by 2-decimation 0, 1, , n 1 are identical.
(Note that a decimation process performed on a sequence arranged in a circular form
is well defined even without a reference to a starting point since the process is cyclic
by definition.)

(c) We treat in this paper only those sequences Cn with a single starting point
having the property described in (b).

2.2. A special case of the sequences Cn.
Notation. HW(x) denotes the Hamming weight of the binary representation of

a nonnegative integer x.
If the binary representation of x consists of n bits, then the binary representation

of y (2. x) mod 2" 1 consists of that of x shifted cyclically to the left for places.
It then follows that HW(x)= HW(y). This means that if a and b belong to the same
cyclotomic coset modulo 2"-1, then HW(a)= HW(b). This trivial property will be
used extensively later.

854 BENJAMIN ARAZI

Notation. B, denotes any sequence of 2" 1 elements where (B,)i (B,)j for
HW(i)= HW(j). ((B,)i denotes the ith element of B, where the first one is no. 0.)

DEMONS’rRA’rION 4. The structure of B5 is

a b bcbccdbccdcddebccdcddecddedee.

Since HW(i) HW(j) for and j belonging to the same cyclotomic coset modulo
2"-1, it follows that Bn has equal elements in locations belonging to the same
cyclotomic coset modulo 2"-1. We then have the following theorem.

THEOREM 2. The sequences Bn are a subclass of the sequences C,.
A connection between HW(x) and the parity of x is shown next. The final aim

will be to show how to recover the location of a specified element in
THEOREM 3. IfHW(x) HW(x 4-1) and HW(x+ 2) HW(x + 3) for a certain x,

then x is even.
Proof. It is simply shown that HW(x)=HW(x+I) for x mod4=l. Since

HW(x) HW(x+I) and HW(x+2) HW(x+3) it follows that xmod4# 1 and
(x 4-2)mod4 1. Since one integer out of x, x 4-1, x 4- 2, x 4- 3 modulo 4 equals 1, it
must be either x 4-1 or x 4- 3 and in any case, x is even.

Based on Theorem 3 we have:
THEOREM 4. If a, b, c, d are four successive elements ofa sequence Bn where a b

and c d then the location index of a (in the sequence Bn) is even.
THEOREM 5. Let B* be a sequence B having the property (Bn)2i-1 (Bn)2i+ 1-1,

O, 1,..., n-2. Given at most 4 successive values in B*,, starting with index x, the
parity ofx is recovered.

Proof. B,* has the property that its values in locations and j are different for
IHW(i) HW(j)I 1. Based on the fact that HW(x) HW(x+ 1) 1
HW(x+ 2) 1 HW(x+ 3) 2 for x mod 4 0, it follows that it is impossible to have
more than two successive identical values in B*. Having two successive identical values,
the first out of the two has an odd location index. Given any 4 successive elements
from B*, then at least one out the following two possibilities occurs. (a) The 4 values
satisfy the condition specified in Theorem 4. (b) Two successive elements have identical
values. In both cases the parity of location indices of the elements are recovered.

The above result includes, of course, the special case where B,* is binary. In a
binary B*, the and j elements have the same value iff HW(i) and HW(j) have the
same parity. There are two such sequences, one being the complement of the other.
(One of these sequences is actually the last column of a Hadamard matrix of order
2"x 2", with its last element dropped.)

DEMONS:RATION 5. One of the binary B* is

0110100110010110100101100110100.

The case treated from now onwards is the one where B,* is scanned cyclically, i.e.,
it is considered to be arranged on the circumference of a circle, where the last element
in the original order is considered to be followed by the first element. Each element
is however indexed in the original linear order. When trying to apply Theorem 5 under
such an arrangement of B*, the theorem still holds of course, except maybe for the
case where the 4 elements contain the original last one followed by the first one. Taking,
for example, the binary B* listed in Demonstration 5, it is observed that under a cyclic
arrangement the last two O’s are followed by a 0. The argument that two successive
identical values indicate odd-even location indices is invalid here. However, this is the
only possible place in the cyclic arrangement where 3 successive identical elements
can appear, and the location of these elements is then instantly recovered. The only

BINARY SEARCH WITH PARALLEL BIT RECOVERY 855

troublesome case is the one where 4 successive elements in the cyclically arranged
sequence, (selected for recovering the parity of some x, according to Theorem 5) start
with the last original element. There is a possibility that the first two elements out of
the four will be identical, in which case the parity of the first element out of the four
(which was the last element in the original sequence with index 2" -2) will be recovered
wrongly as being odd. Even if the first two elements out of the described four are not
equal, its last two are equal for sure. (They have indices 1 and 2 in the original sequence
and belong to the same cyclotomic coset.)

CONCLtSION 1. Theorem 5 applies to a cyclically arranged B* except for the case
where x 2"-2, in which case its parity is recovered as being odd.

The following theorem is based directly on Theorems 2, 1, 5 and Conclusion 1.
THEOREM 6. The first 4 elements obtained by 2 decimation of a sequence B*,

starting with X, yield the parity of (X/2i) mod (2"-1).
This applies to all X [0, 2"-2] except for the case where (X/2i) mod (n"- 1)=

2"-2. (In which case the parity of X/2 is recovered as being odd.)
The binary representation of (X/2i) mod 2"-1 is obtained by shifting cyclically

the binary representation of X, places to the fight. In other words, the coefficient of
20 (i.e. the parity bit) in the binary representation of (X/2) mod 2" 1, is the coefficient
of 2 in the binary representation of X. This observation and Theorem 6 lead to the
following major result.

Result. The first 4 elements in the 2-decimated sequence B*, starting with location
X, yield the coefficient of 2 in the binary representation of X, 0, l m..., n- 1.
This enables recovering X by n different decimations of B*, starting with element No.
X. If the recovered binary representation of X is "all 1", this indicates that X
{2"-1-21i =0, 1,..., n-1}, in which case X is recovered by recovering X+ 1 or
X-1.

The result stated above offers a direct solution to the first two problems out of
the three posed in 1. It presents a method for recovering independently the bits in
the binary representation of X. Each bit is recovered from the values assigned to 4
elements whose location is well defined with respect to X. This recovery can be achieved
by assigning only two possible values (the case of a binary B*).

REFERENCE

[1] S. W. GOLOMB, Shift Register Sequences, Holden-Day, San Francisco, 1967.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

1986 Society for Industrial and Applied Mathematics
016

RELATIVE INFORMATION CAPACITY
OF SIMPLE RELATIONAL DATABASE SCHEMATA*

RICHARD HULL"

Abstract. Fundamental notions of relative information capacity between database structures are studied
in the context of the relational model. Four progressively less restrictive formal definitions of "dominance"
between pairs of relational database schemata are given. Each of these is shown to capture intuitively
appealing, semantically meaningful properties which are natural for measures of relative information capacity
between schemata. Relational schemata, both with and without key dependencies, are studied using these
notions. A significant intuitive conclusion concerns the informal notion of relative information capacity
often suggested in the conceptual database literature, which is based on accessibility of data via queries.
Results here indicate that this notion is too general to accurately measure whether an underlying semantic
connection exists between database schemata. Another important result of the paper shows that under any
natural notion of information capacity equivalence, two relational schemata (with no dependencies) are
equivalent if and only if they are identical (up to re-ordering of the attributes and relations). The approach
and definitions used here can form part ofthe foundation for a rigorous investigation of a variety of important
database problems involving data relativism, including those of schema integration and schema translation.

Key words, relational database, relative information capacity, calculous dominance, generic dominance,
internal dominance, absolute dominance

AMS(MOS) subject classifications. 68, 94

1. Introduction. A central issue in the area of databases is that of data "relativism",
that is, the general activity of structuring the same data in different ways. Considerable
effort has been directed at understanding data relativism as it arises in the areas of
user view construction [10], view integration [19], [21], [31], [32], [40], "derived"
data [17], [24], [33], schema "simplification" [8], [9], [24], translation between data
models [7], [11], [12], [22], [25], [26], [27], and relational database normalization
theory [4], [6], [13], [28], [41]. A predominant theme in much of this work has been
to build new schemata from existing ones using various structural manipulations [8],
[19], [24], [31], [32], [40]. The new schemata are intended to have equivalent informa-
tion capacity with the original schema, or to "subsume" the information capacity of
the original schemata in some sense. In these investigations there is typically no formal
definition ofthe notions of equivalent or dominant information capacity. The intuitively
appealing approach usually taken is to say the one schema is dominated by another
if any query directed at the first can be translated into an equivalent query of the
second [7], [8], [13], [17], [24], [31], [32], [40]. (In addition, it is often assumed
implicitly that data structured according to the first schema can be transformed into
the second schema by some "nice" mapping, for instance, a fixed query which maps
instances of the first schema into instances of the second.) We informally call this
"query-dominance". The objective of the current paper is to introduce and use simple
but rigorous theoretical tools for studying this and related measures of relative informa-

* Received by the editors October 1, 1984, and in revised form August i5, 1985. This work was supported
in part by the National Science Foundation grants IST-81-07480 and IST-83-06517. An extended abstract
of this paper appeared in Proc. Third ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, April, 1984, pp. 97-109. Copyright 1984, Association for Computing Machinery, Inc.

t Department of Computer Science, University of Southern California, Los Angeles, California 90089-
0782.

This notion has its roots in the notion of O-equivalence introduced by Codd [13], and a variant of
query-dominance was used to formally investigate horizontal and vertical decomposition in [2].

856

INFORMATION CAPACITY OF DATABASE SCHEMATA 857

tion capacity in the very simple context of schemata from the relational database
model.2

The present investigation makes two fundamental contributions. The first consists
in several theoretical results which yield conceptual insights into the area of relative
information capacity. For example, one result (Theorem 5.2) indicates that the notion
of query-dominance described above does not correspond to a natural, semantically
meaningful type of information capacity dominance. In particular, it appears that the
notion of query-dominance is too broad to accurately measure whether an underlying
semantic connection exists between database schemata (Example 5.3). A second result
(Corollary 6.3) shows that with virtually any reasonable measure of relative information
capacity, two relational schemata without dependencies are equivalent if and only if
they are identical (up to re-ordering of the attributes and relations). This substantiates
the intuition that the relational model in the absence of dependencies does not provide
enough data structuring mechanisms to represent a given data set in more than one way.

The second fundamental contribution ofthe paper is to develop a solid mathemati-
cal foundation upon which to base an extensive theoretical investigation of relative
information capacity between database schemata. This foundation finds its roots in
some early work on query-dominance (usually in connection with relational database
normalization [2], [3], [13]), and in the more recent, abstract work of [20]. In the
present work, notions from these earlier works (along with one new one) are presented
in a simple, rigorous manner and shown to correspond to intuitive and significant
properties of natural measures of relative information capacity. The approach here
provides mechanisms for studying relative information capacity using a variety of
different mathematical techniques, including mathematical logic, combinatorics, and
finite permutation group theory. Although the scope of the current paper is somewhat
limited, it is clear that the definitions for measuring relative information capacity
presented here can be generalized to other contexts within the relational model, and
also to other database models. Thus, the approach here can serve as part of the
foundation for theoretical investigations of many aspects of data relativism.

In the paper, four progressively less restrictive formal measures of relative informa-
tion capacity are defined. Suppose that P and Q are two relational database schemata.
Speaking informally, we say that Q dominates P if there are functions cr and - such
that (i) cr maps the family of instances of P into the family of instances of Q, (ii) "
maps the family of instances of Q into the family of instances of P, and (iii) the
composition of cr followed by " is the identity on the family of instances of P. Three
of the measures of information capacity are based directly on this fundamental notion,
and are obtained by making certain restrictions on the maps cr and ’. The first, called4

calculous dominance, is the measure which arises if cr and - are required to be

The investigation here is fundamentally different than investigations such as [5], [30] and [15] into
the equivalence of relational database schemes. The basic concern in [5], [30] is the equivalence of two
views of an underlying universal relation, where the views are defined simply by projections. In [15] the
focus is the equivalence and dominance between relational views constructed from a given underlying
relational scheme using rojection and join. In the current paper we do not restrict ourselves to views of a
fixed underlying schema, nor to schema manipulation via projection and join alone.

The first of these, calculous dominance, has its roots in the notion of "query equivalence" as described
in [13], and a variant of calculous dominance has been formally studied in [2], [3]. Another two of these
measures, namely absolute and generic dominance, were originally introduced in the more general Format
Model [20]. Generic dominance was also studied in [34].

4 We choose to call this type of dominance "calculous" rather than "algebraic", because it appears that
a definition based on the first order predicate calculus is easier to generalize to other data models than one
based on the relationally-based algebraic operators.

858 RICHARD HULL

(essentially) expressions of the relational calculus. (It is known [3] that this notion is
equivalent to query-dominance, although easier to work with.) The second notion,
called generic dominance, is less restrictive than calculous dominance and captures the
notion that "natural" database transformations treat domain elements as "essentially
uninterpreted objects" [1], [20]. (This is accomplished by requiring that tr and "
commute with essentially all permutations of the underlying set of basic domain
elements.) The third measure, internal dominance (which is even less restrictive),
captures the intuitive notion that (at a logical or conceptual level) "natural" database
transformations are not based on numeric computations or string manipulations. This
is accomplished by requiring that tr and do not "invent" or "construct" new domain
elements (or data values) from the set of domain elements already occurring in an
instance (aside from a finite set of data values, which corresponds to the set of constants
occurring in a relational expression). The fourth measure, absolute dominance, is based
on a family of cardinality conditions implied by internal dominance, and is relatively
easy to work with.

This report is organized as follows. In 2 the slightly modified version of the
relational model used for this investigation is described. (The modification allows us
to easily express the fact that some attributes of a relation share the same set of possible
domain values, while other attributes have fundamentally distinct sets of possible
domain values.) In 3 the four measures of relative information capacity are formally
defined and motivated. Section 4 presents some basic results concerning the four
measures. In particular, several results are obtained which demonstrate that one schema
is not query-dominated by another schema. In 5, results indicating that query-
dominance does not accurately measure the presence of semantic correspondence
between schemata are given, and the result concerning equivalent schemata is given
in 6. Concluding remarks are made in 7. (Finally, some of the more technical proofs
are presented in three Appendices.)

2. Relation specifiers and schemata. The purpose ofthis short section is to introduce
and motivate the slightly modified version of the relational model that will be used in
this investigation. It is assumed here that the reader is familiar with the fundamental
concepts of the relational model [29], [39]. Since the focus here is different than that
of most investigations of this model, the reader is warned that we shall use some
symbols here in a manner different than found elsewhere.

Speaking informally, a fundamental premise of our investigation is that the
structure of relations is determined primarily by two things: the number of "columns"
that a given relation has, and the sets of possible values which can appear in each of
these columns. For example, if a column is intended to contain salary data, then we
would expect that only positive integers are permitted as entries in that column, whereas
in a column for person-names we would expect only names (or perhaps, alphabetic
strings).6 To formally capture these ideas we establish a set of "basic types" (or domain
designators), along with a fixed domain of possible values associated with each basic
type.

This notion highlights the fact that the current investigation is concerned with "pure" database access
and transformation languages, i.e., those which focus primarily on the data structures provided by the
database model.

6 R. Fagin studied this notion using "domain dependencies" 16]. Also, R. Reiter has studied this using
the logic-based formalism of "typed" databases [36], [37].

INFORMATION CAPACITY OF DATABASE SCHEMATA 859

Notation. Let be a fixed countable set of basic types with a fixed, unspecified
total ordering. Let the function Dom be defined on such that

a. Dom (B), the domain of B, is a countably infinite set of abstract symbols for
each B ; and

b. Dom (B) f Dom (C) whenever B # C.
The set DOM of all domain elements is the set Ua Dom (B).

In many cases, two or more columns of a relation may have exactly the same
domain (e.g., STARTLDATE and END-DATE). For this reason, relations are specified
using (finite) sets of basic types, where each basic type may occur more than once. To
formalize this, we first review the notion of multiset.

DEFINITION. A multiset over a set X is a total function M:X N (the natural
numbers). A multiset M is finite if {x s XIM(x)> 0} is finite. If x X then x is an
element of M, denoted x s M, if M(x)> 0. The cardinality of a multiset M is IMI
,,x M(x). Finally, if L and M are multisets then their union, LU M, is the multiset
KJ such that K (x) M(x) + L(x) for each x s X.

We now have:
DEFINITION. A nonkeyed (relation) specifier is a finite multiset over . The support

of a nonkeyed specifier R is the set supp (R) {B IR(B) > 0}.
While not all possible real-world relations can be modeled within the framework

that is being developed here, the results obtained in this limited context are of sufficient
interest to warrant investigation; furthermore, in this new area it is important to resolve
simple problems before tackling the more complicated ones.

We generally denote a nonkeyed specifier by listing its elements, with multiple
occurrences where appropriate. For instance, if R is a specifier with support {A, B, C}
and R(A)= 2, R(B)= 1, and R(C)= 3, we denote R by AABCCC or AEBC3.

Formally, (relational) instances are associated with nonkeyed specifiers as follows.
DEFINITION. If R is a nonkeyed specifier, an instance of R is a finite subset of7

Xasupp(a) (Xj=I (Dom (B))). The family of instances of R is denoted I(R).
We now extend our notation to include one key dependency per relation. Key

dependencies, especially in the case of one key dependency per relation, are funda-
mental to many semantic data models, including the functional data model [23], [38]
and the entity-relationship model [11]. Key dependencies are incorporated into our
notation in the following convenient manner.

DEFINITION. A keyed (relation) specifier is an ordered pair (R, $) of multisets
over , usually written as R:S. The support of R:S, supp (R:S), is8 supp (RS). An
instance of R:S is a total function from an instance I of R to

s(a) (Dom (B))). (We typically view such instances as ifthey are membersXu(X,=,
of I(RS), i.e., as finite sets of ordered tuples.) The family of instances of a keyed
specifier R:S is denoted I(R:S).

Note that a nonkeyed specifier R can be viewed as the keyed specifier R:.
Speaking informally, a relation scheme consists of one or more relations, some

of which may share the same underlying (column) structure. For this reason, we
formally define a relation schema to be a multiset of relation specifiers.

We view Cartesian products such as this one as "flattened", that is, we view this product as a single
product of subsets of DOM rather than as a product of products of subsets of DOM. Furthermore, we view
the columns of this product to be ordered by the context of the discussion. If no order is specified by that
context, then the underlying ordering on is used.

Following relational tradition, if R and S are nonkeyed specifiers, we denote their union R U S by RS.

860 RICHARD HULL

DEFINITION.9 A (relational) schema is a finite multiset1 P P1, P2," ", P, of
relation specifiers. The support of P is the set supp (P) t_J jl supp (P). An instance
of P is an element of11 I(P)- Xj=I I(P). If P is nonkeyed for 1 _-<j<_-n, then P is a
nonkeyed relational schema.

As an aside, we note that the family of nonkeyed relational schemata as defined
here corresponds precisely, in the terminology of the Format Model [20], to the family
of formats which are constructed using a composition of one or more subformats, each
of which is a collection of a composition of one or more basic types (except that here
we do not associate "tokens" with the various components of our relational schemata).

Finally, we mention the version of the relational calculus used here. We assume
that the reader is familiar with the calculus as described in [14], [29], [39]). In the
current investigation we use, in the terminology of [39], the domain relational calculus
in the sense that the variables and constants in our calculus range over individual
domain elements. (Results in [39] and elsewhere indicate that the calculi obtained by
letting variables range over tuples or domain elements are equivalent.) In keeping with
our definition of basic types and the fact that their associated domains are disjoint,
we assume that each (domain-value) variable occurring in our calculus expressions is
associated with a given basic type. (Formally, we assume that for each basic type B
there is an infinite set V of B-variables, where V f’)Vc whenever B C.) As
noted earlier, we assume here for each relation specifier R (or keyed specifier R:S)
that a fixed ordering of the occurrences of the basic types in R (RS) is given by the
context of the discussion (or that an unspecified default ordering is used), and similarly
that for each relational schema P a fixed ordering of the occurrences of the specifiers
in P is given. These fixed orderings are used in calculus expressions to specify the
specific "relation" (i.e., specifier occurrence in a schema) and the specific "column"
(i.e., basic type occurrence in the specifier) that a given variable refers to. In the
terminology of [39], only safe calculus expressions will be used. (Intuitively, the
definition of safe expressions prevents them from yielding an infinite relation when
evaluated on an n-tuple of finite relations.) Also, since no ordering is associated with
the domains of basic types, we do not permit the predicates < or > (or more correctly,
the symbols for these predicates) to occur in our calculus expressions. Finally, given
relational schemata P- P1,..., P,, and Q- Q,..., Q,, a (relational) calculus
expression from P to Q is an n-tuple s=(:l, so,) where is a (conventional)
calculus expression which takes as input an instance of P and yields as output an
instance of Q (1 -<_j _-< n). In this case we write s: P Q.

3. Four measures of relative information capacity. In this section the four measures
of relative information capacity are introduced and motivated. As noted in the Introduc-
tion, the first of these, calculous dominance, has its roots in the notion of "query
equivalence" as described in [13], and a variant of it has been formally studied in [2],
[3]. As will be seen, this notion is equivalent to the notion ofquery-dominance described
in the Introduction, but is easier to work with. Two other measures of relative
information capacity, namely absolute and generic dominance, were originally

We use the term "schema" here to distinquish it from the usual notion of a relational "scheme",
where a set of attributes as opposed to a multiset of basic types is specified for each relation [29], [39].

0 When listing the occurrences of elements in a schema we separate them by commas to avoid
ambiguities. (For example, A2, B denotes a schema with two specifiers, while A2B denotes a single specifier
(or a schema with one specifier in it).)

Elements of I(P) are n-tuples (thus, we do not view this product as "flattened"); and as before the
order of the coordinates in this product are given by the context of the discussion, or if no such order is
determined, by some unspecified but fixed ordering.

INFORMATION CAPACITY OF DATABASE SCHEMATA 861

introduced in the more general Format Model [20], and generic dominance was
also studied in [34]. Finally, the notion of internal dominance is a new notion which
is based solely on the intuition that natural database transformations do not "invent"
or "construct" new domain elements from old ones. The section concludes with a
result stating that the four measures of information capacity are progressively less
restrictive.

To begin the formal discussion, we present a notion fundamental to our approach.
DEFINITION. Let P and Q be relational schemata. A (schema) transformationfrom

P to Q is a map tr:l(P)-> I(Q). In this case we write or:P--> Q.
Note that a calculus expression ::P--> Q can be viewed as a transformation.
In the spirit of [2], [3], [13], [20], we define relative information capacity using

a pair oftransformations, the composition ofwhich forms the identity on the dominated
family of instances"

DEFINITION. Let P and Q be schemata, and let tr:P Q and z: Q- P. Then Q
dominates P via (tr, ’), denoted P_-<Q via (tr, -), if -ocr (i.e., the composition of
followed by) is the identity on I(P).

Suppose that P-<_ Q via (tr, z). This means that information structured according
to P can be restructured (via tr) to "fit" into Q, and restructured again (via z) to "fit"
into P, in such a way that the result is the same as the original. This suggests that Q
has at least as much capacity for storing information as does P.

It should be noted that Q dominates P via some pair tr, if[there is an injection
of I(P) into I(Q). Our definition is given in terms of both tr and , because we shall
restrict both tr and - to have certain properties (e.g., that both be calculous mappings).

The first of our measures is based on restricting the class of permissible database
transformations to be calculus expressions. We note that the notion in [2] of one
schema being included in a second one is the same as our notion here of calculous
dominance, except that in their formal investigation the query language used includes
only the operations of projection, selection, join and union, which does not have the
full power of the relational calculus. (For example, set difference cannot be realized
using these operators).

DEFINITION. Let P and Q be schemata. Then Q dominates P calculously, denoted
P<-_ Q(calc), if there is a pair of calculus expressions :: P- Q and to :Q P such that
P-<_ Q via (:, to). P and Q are calculously equivalent, denoted P--Q(calc), if P-< Q(calc)
and Q-_< P(calc).

It is easily verified that calculous dominance is transitive and reflexive, and that
calculous equivalence is an equivalence relation.

To compare the notion of calculous dominance as just defined with the notion of
query-dominance described in the Introduction, we present a formal definition of
query-dominance for the current setting.

DEFINITION. Let P and Q be schemata. Then Q query-dominates P if there is a
calculus expression/z:P- Q such that for each relation specifier R and each calculus
expression a:P- R, there is a calculus expression fl:Q- R such that

The next result formally states the equivalence of calculous dominance and
query-dominance. (The proof is omitted because the techniques of [3], [13] are easily
modified to fit the current context.)

PROPOSITION 3.1 [3], [13]. Let P and Q be the schemata. Then Q query-dominates
P iff P<-_ Q(calc). [q

There are two advantages to the definition here of calculous dominance over the
definition of query-dominance. First, calculous dominance is easier to work with
because it involves only two calculus expressions (as opposed to infinitely many).

862 RICHARD HULL

Second, as will be seen shortly, the form of the definition of calculous dominance is
easily generalized to provide a variety of techniques for studying it.

The second measure of relative information capacity, called "generic dominance,"
is somewhat more general than calculous dominance, and is useful in showing that
one schema does not calculously dominate another (see Proposition 4.5 below). Generic
dominance formally captures an intuitively natural restriction on database transforma-
tions, namely that any transformation used should "... treat data values as essentially
uninterpreted objects..." 1], [20]. (However, we do allow our transformations to use
a bounded number of domain elements as "constants", which correspond intuitively
to the constants occurring in calculus expressions.) As in [20], to define generic
dominance we first formalize this property of genericity.

DEFINITION. Let Z DOM. A Z-permutation (of DOM) is a function r" DOM-->
DOM such that

(a) r(z)= z for each z Z, and
(b) the restriction of r to Dom (B) is a 1" 1 onto function from Dom (B) to

Dom (B) for each B 3.
Permutations on DOM are extended to families of instances in the natural manner. A
transformation tr’P--> Q is Z-generic if for each Z-permutation r and each instance
I of P, roo-(I) cror(I) (i.e., tr and r commute on I(P)).

Speaking informally, a Z-permutation r leaves Z fixed, and the restriction of r
to Dom (B) is a permutation of Dora (B) for each basic type B. And, again speaking
informally, a transformation is Z-generic if for each B it treats all elements of
Dora (B) Z as "equals".

Using an induction on subformulas, the following result is easily verified (proof
omitted).

LEMMA 3.2. Let P and Q be schemata, " P--> Q be a calculus expression, and let
Z be the set of constants occurring in . Then is a Z-generic transformation. [3

It is easily seen that an analogous result holds for any query language that preserves
Z-permutations. For example, the result applies to the query language of [1], which
includes a least fixed point operator.

Following [20], generic dominance is now defined by requiring that the transforma-
tions tr and z which restructure data be generic. (While technically different than the
original definition of generic dominance given in [20], it can be verified that the notion
used here and the original notion are equivalent in the current context.)

DEFINITION. Let P and Q be schemata. Then Q dominates P generically, denoted
P-<_ Q(gen), if there is a finite Z DOM and Z-generic transformations tr" P--> Q and
z’Q--> P such that P-_<Q via (tr, z). P and Q are generically equivalent, denoted
P- Q(gen), if P<_- Q(gen) and Q_-< P(gen).

As with calculous dominance and equivalence, it is easily verified that generic
dominance is reflexive and transitive, and that generic equivalence is an equivalence
relation.

Generic dominance is of particular importance because it is independent of any
data-access language, but captures a property of all such languages discussed in the
literature. 12 (For example, each query in the language consisting of the relational
algebra plus the least-fixed point operator is generic although this language is strictly
stronger than the relational algebra or calculus [1].) Thus, results stating that one
schema is not generically dominated by another can be used to support an intuitive

12 AS noted earlier, this investigation is concerned only with "pure" database query or transformation
languages which do not encompass numeric computation or string manipulation.

INFORMATION CAPACITY OF DATABASE SCHEMATA 863

claim that the first schema is not query-dominated by the other, where any natural
query language is being used.

Our third measure of relative information capacity is more general than generic
dominance, and focuses on the natural property that database transformations (at
least, those used for restructuring data sets) are not typically based on numerical
computations or string manipulations, and thus do not typically "invent" data values.
(For example, a mapping which encodes the pair (i, j) of integers into the single integer
2i3 j is based on a computation, and in essence "invents" the value 2i3J.)

To formally capture this property of not inventing data elements, we first need"
DEFINITION. Let I be an instance of a relation schema. Then the set of symbols

of I, denoted Sym (I), is the set of elements of DOM which occur in I.
In the following we allow each given transformation to "invent" a (finite) set of

data elements, these corresponding intuitively to the set of constants that might occur
in a calculus expression. (As noted in 7, it would also be interesting to study
transformations which do not "invent" any domain elements at all.)

DEFINITION. Let Z DOM. A transformation tr" P Q is Z-internal if
Sym (tr(I))

__
Sym (I) t_J Z for each I I(P).

Note that if tr is Z-internal for some finite Z and Sym (I) Z, then Sym (tr(I))
__

Sym (I). As implied by the following result, each Z-generic transformation is Z-internal.
(And by Lemma 3.2, each calculus expression is Z-internal for some finite Z.)

LEMMA 3.3. Let P and Q be schemata, Z DOM, and tr" P Q be Z-generic.
Then tr is Z-internal.

Proof. Suppose that tr’P- Q is Z-generic, and let I I(P). Suppose further that
Sym (tr(I))_ Z (_J Sym (I). Let B be a basic type such that there is some b Dom (B)
with bSym(tr(I))-(Zt.JSym(I)), and let cDom(B)-(Zt.JSym(I)U
Sym(tr(I))). (Such a c exists because Dom (B) is infinite while Z, Sym (I) and
Sym (tr(I)) are all finite.) Let r be the Z-permutation such that r(b) c, 7r(c)= b,
and r is the identity on all other elements of DOM. Then r(I)= I (since b and c are
not in Sym (I)) but tr(I)# r(tr(I)) (since c occurs in 7r(tr(I)) but not in tr(I)).
Therefore tr(Tr(I)) tr(I) # r(tr(I)), contradicting the assumption that tr is Z-
generic.

We now have:
DEFINITION. Let P and Q be schemata. Then Q dominates P internally, denoted

P<= Q(int), if there is a finite Z DOM and Z-internal transformations tr" P--> Q and
z" Q --> P such that P -< Q via (tr, z). P and Q are internally equivalent, denoted P Q(int),
if P-<_ Q(int) and Q-<_P(int).

As before, internal dominance is reflexive and transitive, and internal equivalence
is an equivalence relation.

Our final measure of relative information capacity does not have the form of the
other three, and is more general than all of them. The primary advantage of this final
measure is that it is easily characterized in terms of the cardinalities of certain families
of instances (see Theorem 4.2), and is therefore relatively easy to work with.

To define this type of dominance we need the following.
Notation. Let P be a relation schema and Y__DOM. Then Iy(P)=

{I I(P)I Sym (I) Y}.
Suppose now that tr’P->Q is Z-internal and Y Z. Then for each IIy(P),

tr(I) Iy(Q). In other words,13 tr[Iy(P)]___ Iy(Q). Finally, if P-<_ Q via (tr, z) where

t3 If f: M- N and K = M, then f[K] denotes {f(k)lke K}.

864 RICHARD HULL

cr and r are Z-internal, then tr is 1-1 and SO
14 I,,(P)I-<I,,(Q)I for each Y Z. This

motivates"
DEFINITION. Let P and Q be schemata. Then Q dominates P absolutely, denoted

P-<_ Q(abs), if there is a finite Z___ DOM such that II,.(P)l_-< I (o)l for each (finite)
Y=Z. P and Q are absolutely equivalent, denoted P---Q(abs), if P<=Q(abs) and
Q_<- P(abs).

(While technically different than the original definition of absolute dominance
given in [20], it is easily verified that the notion used here and the original notion are
equivalent in the current context.)

We conclude the section by showing that each of the formal measures of relative
information capacity introduced above are indeed progressively less restrictive, in the
sense that if P is dominated by Q according to one of the measures, then P is dominated
by Q according to each of the subsequent measures.

THEOREM 3.4. Let P and Q be schemata. Then P-<_Q(calc) implies P<=Q(gen);
P_<- Q(gen) implies P_-< Q(int); and P-<_ Q(int) implies P<-_ Q(abs).

Proof Lemma 3.2 yields the first implication, and Lemma 3.3 yields the second
one. Finally, suppose that P<_-Q(int). Then there is a finite Z

DOM and Z-internal

transformations tr’P-Q and r’Q-P such that zotr is the identity on I(P). In
particular, then, tr is 1-1 on I(P). If Y is finite with Z YDOM, then tr(Ig(P))=
Iy(Q) since tr is Z-internal, and so IIy(P) _-< II,,(Q)I since tr is 1-1. Thus, a_-< Q(abs). l-!

As we shall see, the converse of each of these implications is also true for nonkeyed
relational schemata P and Q where Q consists of only one relation specifier (Theorem
5.2), and for nonkeyed relational schemata involving only one basic type (Theorem
5.6). However, if Q contains more that one specifier, or if key dependencies are
incorporated, then at least one of these converse implications fails. More specifically,
Proposition 4.5 shows that in either of these situations there are P, Q such that
P<_-Q(int, abs) but P;Q(calc, gen). It remains open whether calculous and generic
dominance can be separated, or whether internal and absolute dominance can be
separated.

4. Some basic results. In this section we present several basic results concerning
the notions of information capacity dominance defined above. The first result gives a
characterization of absolute dominance in terms of certain functions. A simple applica-
tion of this result is given to indicate how it can be used to show that calculous
dominance does not hold, and this result is also used as the basis for Theorem 6.2.
The second major result ofthe section (Theorem 4.4) gives a characterization of internal
dominance. The third major result (Proposition 4.5) shows that absolute and internal
dominance are different from generic and calculous dominance, and illustrates a
technique for showing that generic dominance does not hold. The section concludes
with a number of results giving sufficient conditions for dominance (of one sort or
another) to hold. Most important of these is Theorem 4.7, which concerns schemata
constructed from other schemata through "re-namings" of the basic types used.

The functions needed for the characterization of absolute dominance are now
presented.

DEFINITION. Let R be a nonkeyed relation specifier and let B1,"’, B, be an
enumeration of basic types that includes all basic types in supp (R) and possibly
including other basic types as well. Then the cardinality expression of R (relative to
this enumeration) is the expressionfg(Xl," , x,) --fR(X) for indeterminates x, , x,

1, If X is a set then IX] denotes the cardinality of X.

INFORMATION CAPACITY OF DATABASE SCHEMATA 865

defined by

f(x)= I-I (xje())
l<__j<_n

Now suppose that R is the keyed specifier S" T and supp (R) {B1,’"", B,}. Then
the cardinality expression of R is

fR(X)=[I-I (/]())]’[Iog2((I-I 1(5))+1)]<--j<=n <--j<=n

fs(x) log2 (fr(x) + 1).

Finally, let P P1," "’, P,, be a relational schema with supp (P) {B1,. ", B,}. Then
the cardinality expression of P is

A(x)= X (/,(x)).
l<=i<_m

The significance of the cardinality expressions is given by:
LEMMA 4.1. Let P be a relational schema with support contained in Bl,’’’, B,,

and let X DOM be a finite set with IX f’) Dom Bj) xj, <-_j <-_ n. Then

Proof Suppose first that P consists simply of one occurrence of a nonkeyed
specifier R, where IRI- m. The number of distinct m-tuples in
Xnsupp(R) (x/R) (Dom (B))) with coordinate values taken from X is clearlyfg(X)-
I-Ii<=<=, (x()). Thus, the number of distinct instances of R with values taken from X
is the number of possible sets of these tuples, namely 2fR(x) as desired.

Suppose now that R S’T, where T is nonempty. Recall that an instance of R
is a total function from an instance I of S into Xnsupp(r)(X (Dom (B))). In the
present situation, we are concerned exclusively with such functions where the domain
and range involve only elements of X. Thus, we are concerned with the number of
partial functions from

into the set

Sx X (X f’l Dom (B))
Bsupp (S) \ i=1

Bsupp (T)
(X f’)Dom (B))

To count the number of such functions, note that there is a 1-1 correspondence
between the collection of these (partial) functions, and the collection of total functions
from Sx into Tx U{"NOT_THERE"}. (Intuitively speaking, if K is in this new
collection of functions and if a tuple u of Sx is given the value "NOT_THERE" in
K, then the tuple u does not occur in the domain of the instance of I(R) which
corresponds to K.) The number of functions in the latter collection is easily seen to be

El Txl/ 1]lsl Eft(x) + 1 fs(x).

The logarithm of this expression is precisely fR(X) as desired. (Note that if T is empty,
and if we define 1-Ii_<_<_o n 1, then the logarithm term of fR(X) is log2 (1 + 1)= 1, SO

the result also holds in this special case.)
Finally, the extension of this result to schemata involving more than one specifier

is straightforward, lq

866 RICHARD HULL

The following characterization of absolute dominance is now immediate (proof
omitted).

THEOREM 4.2. Let P and Q be relational schemata. Then P-<Q(abs) iff there is
some >= 0 such that f,(x) -<fQ(x) for each x with xj >= t(1 <-j <- n).

The above result provides an easy mechanism for showing that calculous domin-
ance does not hold in many cases. For example, the following corollary yields the
intuitive conclusion that a relation with two NAME columns and one NUMBER
column is not query-dominated by a relation with one NAME column and two
NUMBER columns.

COROLLARY 4.3. AAB : ABB(abs), and hence AAB , ABB(calc).
Proof. Suppose AAB <- ABB(abs), and let {A, B} be enumerated A, B. By Theorem

4.2 there is some t>_-0 such that for each ordered pair (x,y) with x_> and y-> t,
fp(x, y) <-fQ(x, y), i.e., xEy <- xy2. But this is false for x 2s and y s, where s > (and
hence, s > 0). Thus AAB ABB(abs) after all. Finally, AAB ; ABB(calc) follows from
Theorem 3.4.

It is clear that the technique of the above proof can be applied in many situations
to infer that one schema is not calculously dominated by another one.

We now turn to the second major result of the section, namely a characterization
of internal dominance. In particular, this result shows that internal dominance is
equivalent to a cardinality condition which is similar in spirit to the definition of
absolute dominance. To state the result we need"

Notation. Let P be a schema, and let X and Y be finite subsets of DOM. Then
P(X, Y) denotes {I I(a)l r = Sym (I) S X}.

Thus, instances in P(X, Y) involve all the symbols of Y, and no symbols outside
of X. Note that for each P and finite X

DOM, P(X,)- Ix(P). Also, it is easily

verified that P(X, Y) itI Y X fq t.J n,upp (1,) Dom (B). Finally, speaking intuitively
note that if triP(X, Y)]

Q(X, Y), then tr in some sense "preserves" Y.

We now have:
THEOREM 4.4. Let P and Q be schemata. Then P-<_ Q(int) iff there is some finite

Z DOM such that IV(YZ, Y)I <-- IQ(YZ, r)l for each finite Y = DOM- Z.
Proof. Suppose that P<_- Q(int). Then there is a finite Z and Z-internal transforma-

tions tr" P-> Q and ’" Q--> P such that -oo- is the identity on I(P). Let Y DOM-Z
be finite. Since tr is 1-1, to show that IP(rz, r)l =< IQ(rz, r)l it suffices to show that
r[P(YZ, Y)]

__
Q(YZ, Y). Suppose I P(YZ, Y). Then Y

__
Sym (I)

_
YZ. Since tr is

Z-internal and YZZ, Sym(tr(I)) YZ. Suppose that Sym(tr(I)) Y. Let
Y-Sym(tr(I)). Since YSym(I), bSym(I). But since - is Z-internal,
b Sym (-(tr(I)))= Sym (I), a contradiction. Thus tr(I) Q(YZ, Y), and more gen-
erally tr[a(YZ, Y)] Q(YZ, Y). With this we have shown that IP(YZ, g)l--< IQ(YZ, r)l
for each finite Y such that Y f’)Z .

Suppose now that IP(rz, r)l--< IQ(rz, r)l for each finite Y where Y f’)Z
Note that {P(YZ, Y)I Y-_ t_J)upp o,)Dom (B)-Z is finite} forms a partition of I(P)
and {Q(YZ, Y)lY_ [.J),pp(o)Dom (B)-Z is finite} forms a partition of I(Q). Fur-
thermore, note that supp (P) supp (Q). (For suppose that B supp (P) -supp (Q),
and let Y = Dora (B) Z be finite. Then P(YZ, Y) , whence 0 < IP(YZ, Y)I <-
IQ(YZ, Y)i. It follows that Q(YZ, Y), and hence that B supp (Q).) Therefore,
{Q(YZ, Y)lY t.J ,upp (,)Dom (B)-Z is finite} forms a partition of a subset of I(Q).

Let some finite Y t_Jasupp () Dom (B) Z. By assumption, IP(YZ, Y)I <-

IQ(YZ, Y)I, so there is a 1-1 map try’P(YZ, Y)->Q(YZ, Y). Letting

For this discussion, if M and N are subsets of DOM we use MN to denote M LI N, etc.

INFORMATION CAPACITY OF DATABASE SCHEMATA 867

[.J{cry[Y_cz[..JBesupp(p Dom (B)-Z is finite} it follows that cr is 1-1 on I(P). Finally,
letting z be defined so that zis cr-1 on cr[l(P)] and z(J) for each J in I(Q) cr[I(P)],
it is easily verified that z is Z-internal and that P-<_Q via (cr, z). Thus P-<_ Q(int) as
desired, l-]

We now turn to the third major result of the section, which shows that there are
examples where absolute and internal dominance hold, but generic and hence calculous
dominance do not. The general proof technique used to show that generic dominance
does not hold is of interest, because it provides one of the few known methods for
demonstrating that one schema is not calculously dominated by another one, even
though absolute dominance holds.

PROPOSITION 4.5.
a. ABAA, BB(abs, int) but16 AB[AA]n, [BB]"(gen, calc) for each n >0; and
b. A" AA <= AA(abs, int) but A" AA AA(gen, calc).
Proof. We first show that internal dominance (and hence absolute dominance)

holds in both cases. To show that AB <= AA, BB(int) we use Theorem 4.4 with Z
Let P AB and Q AA, BB. Suppose Y c__ DOM is finite, and set YA Y f’l Dom (A)
and Yn= Yf’lDom (B). If IYal>-lYl let f" Yn YA be a 1-1 function, and define
cry’P(Y, Y) Q(Y, Y) so that an instance I P(Y, Y) is mapped into (J, K) Q(Y, Y)
where J={(a,f(b))[(a, b) I} and K ={(b, b)[be Y}. It is clear that Cry is 1-1 and that
Cry[P(Y, Y)] Q(Y, Y). It follows that IP(Y, Y)[_<-[Q(Y, Y)[in this case. A similar
argument yields the same inequality if YA[--< Ya[. Theorem 4.4 now implies the result
(using Z).

We next show that A" AA<-_AA(int). Let P-A" AA and Q-AA, and let Z___
Dom (A) be a set with 5 distinct elements. As above, we now show for each finite
Y Dom (A) Z that [P(YZ, Y)I <- [Q(gz, Y)I, and then apply Theorem 4.4 to obtain
the desired result. To begin, let Y c__ Dom (A)- Z be finite. Let <- be a fixed total
ordering of Dom (A). Let17 f: YZ x YZ) -, 2 gz be a 1-1 function which satisfies the
following conditions: For each a YZ, f(a, a)= {a}; for each pair a, a’ in YZ with
a < a’, f(a, a’)= {a, a’}; and finally, f: {(a, a’)la > a’}- 2 vz is defined so that for each
pair, {a, a’} c=f(a, a’). (One strategy for accomplishing this is as follows: Suppose that
Z {al,. , as}, where ai < aj in the ordering of Dom (A) iff <j. Now let a, a’ YZ
with a > a’. If {a, a’} f’) Z c__ {a2,. ", as}, then define f(a, a’) to be {a, a, a’}. If {a, a’}
Z {al}, then define f(a, a’) to be {a2, a3, a, a’}. Finally, if a {a, a’}

Z then (a, a’)

(ai, a) for some i, 2-< i_-<5. If 2-< i_-<3 set f(a, a’) {a, ai, a4, a}, and if 4_-< i-<_5 set
f(a, a’)= {al, a2, a3, ai}. It is easily verified that f has the desired properties.) Now,
given I e P(YZ, Y), let Cry(I)={(a, a")[for some a, a’ in YZ, (, a, a’) I and a"
f(a, a’)}. It is easily verified that Cry is 1-1 and that Cry[P(YZ, Y) Q(YZ, Y). Theorem
4.4 now yields that A" AA<-_ AA(int) as desired.

We now show for each n>0 that AB[AA]",[BB]"(gen) (and hence,
AB;[AA]", [BB]"(calc)). Let n>0 be fixed, and suppose to the contrary that AB<=
[AA]",[BB]"(gen), and more specifically that ZDOM is finite, that Cr’AB-,

[AA]",[BB]" and z’[AA]",[BB]n- AB are Z-generic, and that zoCr is the identity
on I(AB). In particular, then, Cr is 1-1 on I(AB). Note that the range of Cr is
I([AA] n, [BB]"), and that each instance of [AA]", [BB]" is a 2n-tuple, where each
coordinate is a set of ordered pairs from Dom (A) or a set of ordered pairs from
Dom (B). Let Cr’AB-,[AA]" be the transformation such that for each I e I(AB),
Cry(I) is the n-tuple consisting of the first n coordinates of Cr(I), and let Cr2" AB - [BB]"

If R is a specifier and k => 0, then [R]k denotes the schema with k occurrences of R.
For a set X, 2x denotes the power set of X.

868 RICHARD HULL

be defined analogously, that is, such that for each II(AB), O’2(1) is the n-tuple
consisting of the latter n coordinates of 0"(1). Note that 0"1 and 0"2 are Z-generic. Now
let a, a’ be in Dom (A) Z; let b, b’ be in Dom (B) Z; and set I {(a, b), (a’, b’)}
and J={(a, b’), (a’, b). Also, let erA be the Z-permutation such that rA(a)=a’,
rA(a’)-a, and era is the identity elsewhere. Let OrB be defined analogously, with
OrB(b) b’, r(b’)= b, and OrB the identity elsewhere. Note that OrB is the identity on
I([AA] n) and erA is the identity on I([BB]n). We now claim that 0"(1)= 0"(J). To see
this, first note that 0"1(J) 0"1(OrB(I)) rB(0"1(I)) (since 0"1 is Z-generic) 0"1(1) (since
OrB is the identity on I([AA]")). Similarly, 0"2(J) 0"2(rA(I)) rA(0"2(I)) 0.2(1). This
implies that 0.(I)=0"(J), and hence that 0" is not 1-1, a contradiction. Thus
AB [AA]", [BB]"(gen) as desired.

Finally, the proof that A" AA: AA(gen) is moderately involved, and is presented
in Appendix A. D

Speaking intuitively, the fact that A’AAAA(gen) indicates that two finite
functions from a set to itself cannot be generically encoded into a binary relation over
that set.

As noted earlier, it remains open whether absolute and internal dominance can
be distinguished in the context of information capacity dominance between (keyed)
relation schemas, or whether generic and calculous dominance can be distinguished
in this context. With regard to the latter question, it is interesting to recall the result
of 1] which states that the generic query operation of transitive closure (of a binary
relation) is not realizable by any calculus expression. In other words, the notions of
generic and calculous can be distinguished in the context of query operations.

Returning to general results, we now present several sufficient conditions for
inferring dominance of one sort or another. The first result presents cases where the
existence of one transformation (from P to Q) rather than two (both from P to Q and
back) are needed. For this result we use terminology of [34].

Notation. Let P and Q be schemata. Then P is internally embeddable in Q if there
is a finite set Z

__
DOM and a 1-1 Z-internal transformation 0"" P- Q. The notions of

generically embeddable and calculously embeddable are defined analogously.
We now have:
THEOREM 4.6. Let P and Q be schemata. Then
(a) P Q(gen) iff P is generically embeddable in Q; and
(b) P Q(int) iff P is internally embeddable in Q.
Proof. We give the proof of part (a) here, and present the more involved proof

of part (b) in Appendix B. For part (a), it is clear that ifP Q(gen) then P is generically
embeddable in Q. For the converse, suppose now that 0." P Q is a 1-1 Z-generic
transformation for some finite Z c__ DOM. Define "QP so that -(J)= I for each
J 0.If(P)] where J= 0.(I), and (J)= for each JI(Q)-0"[I(P)]. It is clear that
-o0" is the identity on I(P); it therefore suffices to show that - is Z-generic.

Let r be a Z-permutation, and let J I(Q). Suppose that J 0"[I(P)]. This implies
that r(J) 0"[I(P)] as well. (Otherwise, or(J) would equal 0.(1’) for some I’ I(P).
But then J r-l(r(J))= r-1(0.(I’))- 0.(r-1(I’)) 0.[I(P)], a contradiction.) We now
have r(’(J)) r()== ’(r(J)).

Now suppose that J=0.(I) for some II(P). Then -(J)= I. Also, r(J)=
r(0"(I)) 0.(r(I)), and so ’(r(J))= or(I). Thus, ’(r(J))= r(’(J)) as desired. [3

The techniques used to prove the above theorem are quite general, and so it
appears that these results also hold in more general database models. In particular,
both parts of this theorem hold in the Format Model [20] (assuming that the definition
of family of instances used there is modified in analogy to the definition used here).
It remains open whether the theorem also holds for calculous dominance.

INFORMATION CAPACITY OF DATABASE SCHEMATA 869

The next result examines the impact of changing the basic types occurring in
schemata. Speaking informally, the result states that dominance is preserved by renam-
ings of basic types (even if different basic types are identified by the renaming.) For
this result we use"

DEFINITION. A homomorphism (on) is a function h:. If h is a
homomorphism and R is a nonkeyed specifier, then h(R) denotes the nonkeyed
specifier U where U(A) hm=A R(B) for each basic type A. If R and S are nonkeyed
specifiers then h(R: S)- h(R): h(S), and if P= P,..., P, is a schema then h(P)=
h(P1),’’ h(P).

The proof of this theorem is straightforward but lengthy, and is presented in
Appendix C.

THEOREM 4.7. Let P and Q be schemata, and h a homomorphism on . If
P<-_ Q(xxx) then h(P)-_< h(Q)(xxx), where "xxx" ranges over "ePic", "gen", "int", and
"abs".

As an application of this result, note that since A" AA; AA(gen, calc) by Theorem
4.7, we also have A: BB AB(gen, calc). Also, the argument used to show that A: AA -<_
AA(abs, int) in the proof of that theorem can be modified to show that A" BB<-_
AB(abs, int).

The converse of Theorem 4.7 does not hold for any of the types of dominance,
since ABB : AAB(xxx) (by Corollary 4.3) but AAA <= AAA(xxx), where "xxx" ranges
over each of the four types of dominance.

We conclude the section with three relatively simple results for inferring dominance
between two schemata, given dominance by two other schemata. The first one provides
for a kind of "additivity" among schemata. (The straightforward proof is omitted.)

PROPOSITION 4.8. Let P, Q, and R be schemata. Then
(a) P<_-Q(xxx):=>RP_-<RQ(xxx), where "xxx" ranges over "calc", "gen", and

lnt and
(b) P-<_Q(abs)RP<_-RQ(abs). [3

It remains open whether the converse of part (a) in the above result holds for any
of calculous, generic or internal dominance.

Two applications of the above result along with the transitivity of dominance
yield (proof omitted)"

COROLLARY 4.9. Let P, Q, R, and S be schemata, with P<-_ Q(xxx) and R-< S(xxx).
Then PR<-_ QS(xxx), where "xxx" ranges over "ePic", "gen", "int", and "abs". 1-1

The final result provides for a kind of additivity within single specifiers. (The
straightforward proof is again omitted.) It remains open whether the converse of part
(a) of this result holds.

PROPOSITION 4.10. Let R, S, U, V and T be nonkeyed specifiers. Then
(a) R S-<_ U: V(xxx)=> TR S <- TU: V(xxx), where "xxx" ranges over "ePic",

"gen", and ""lnt and
(b) R S <_- U: V(abs):> TR S <- TU: V(abs). [3

5. Calculous dominance vs. semantic correspondence. In this section we present
results which indicate that the notion of calculous dominance (and hence, query-
dominance) does not accurately reflect or measure the presence of "semantic correspon-
dence" between schemata. Our first result, Theorem 5.2, characterizes calculous domin-
ance between nonkeyed relational schemata, where the dominating schema consists
of a single specifier. This result implies that calculous dominance holds in a variety
of counter-intuitive situations (see Example 5.3). The section concludes with a result
which implies that each of the types of dominance is the same in the context of
nonkeyed relational schemata which involve only one basic type.

870 RICHARD HULL

For the first result, we use the natural partial ordering of nonkeyed specifiers,
considered simply as multisets.

Notation. For nonkeyed specifiers R and S, write R S if R(B) - S(B) for each
B . Write R c S if R

S and R(B) < S(B) for some B .

Using an argument based on cardinalities, it is easily verified that (proof omitted):
LEMMA 5.1. Let R and S be nonkeyed specifiers. Then R <-_ S(abs) iff R = S and

g--- S(abs) iff R S. [3

We now have:
THEOREM 5.2. Let P R1, , R, be a nonkeyed schema and S a nonkeyed specifier.

Then the following are equivalent"
(a) P_-< S(calc);
(b) P-<_ S(gen);
(c) P-<_ S(int);
(d) P-<_ S(abs); and
(e) either n 1 and R1

_
S, or n > 1 and R Sfor each j, 1 <-_j <- n.

Before proving this result we present an example illustrating its significance.
Example 5.3. Assume that a (large) set of NAME-values and a (large) set of

NUMBER-values is fixed (where there is no ordering or other predicate on either of
these sets). Suppose further that a relation scheme R consists of 50 relations R, each
of which has one column with NAME-values and two columns with NUMBER-values;
and also 50 relations Sj, each of which has two columns with NAME-values and one
column with NUMBER-values. Also, let T be a relation scheme with a single relation
in it, where that relation has two columns for NAME-values and two columns for
NUMBER-values. By Theorem 5.2, R<-_T(calc) and so R is query-dominated by T.
Since it appears that there is no intuitively appealing, semantically meaningful 1-1
mapping of instances of R to instances of T, this indicates that query-dominance does
not accurately measure whether there is a "semantic" connection between pairs of
schemata.

We now consider the proof of Theorem 5.2. In view of Theorem 3.4, it suffices to
show that (d):=(e) and that (e)=:(a). The first of these is given by:

LEMMA 5.4. In the statement of Theorem 5.2, (d) implies (e).
Proof. Suppose that P_-< S(abs). If n 1, then R

__
S by Lemma 5.1. Suppose now

that n> 1, and suppose further that Rj S for some j, l_-<j_-< n. Without loss of
generality we can assume that j 1. If R # S, then R

_
S, from which Lemma 5.1

implies that R S(abs). Since R -<_ R,. , Rn(abs) (by Corollary 4.9, along with the
fact that is dominated by every schema) and absolute dominance is transitive, this
implies that P R,..., Rn S(abs) in this case.

Finally, suppose that R S. It is then clear that fp(x)-fs(x)=fR2....,nn(X)> 0 for
eachx (Xl," , xn) (with x; > 0, 1 _-<j <-_ n). Thus, P S(abs) also holds in this case.

We now present a lemma which lies at the heart of the proof that (e)=(a) in
Theorem 5.2. Speaking intuitively, this lemma examines the "worst case" values for
P and S. The reader will note that in the lemma, each basic type occurs only once in
the specifier S. This result will be used in connection with Theorem 4.7 to yield the
general result.

LEMMA 5.5. Let S B B,, be a nonkeyed specifier (with B B for #j), let
R=BI" B_Bj+I’’. Bin for each j, l<-j<=m, and let P= [R]", .,[Rm]"forsome
n > O. Then P_-< S(calc).

Proof. To establish this lemma, we describe a 1-1 function y’I(P)->I(S) which
has the properties that (i)), is realizable by a calculus expression, and (ii) the inverse
of y (on y[I(P)]) is realizable by a calculus expression. The function , will be defined
as/3 a, where a and/3 are defined below.

INFORMATION CAPACITY OF DATABASE SCHEMATA 871

Let = Xl-<j-_<m [Dom (Bj)U {1, , n}], and define a" I(P)-> 2x by

a(I,..., I’,..., i1,,,... ,i,,,)

={(bl,’’’, bg_, i, bj+, bn)l(b, bj_, bg+l,’’’, bn) I}.
Intuitively, 3V is essentially a subset of I(S), except that each tuple of X includes one
integer between 1 and n. Note that the function a is a straightforward encoding of
instances of P into subsets of ’’, and that a is 1-1.

z;)Dom(B).Let h > n. m, and for each j, 1 =<j <= m, choose Z {z,
(Speaking intuitively for a moment, it appears that it is now sufficient to define
/’a[I(P)]-,I(S) so that it maps J in all(P)] to {(b,,...,b_,,zj, b+,,...,
b,,)l(b,"" ", b-l, i, b+,..., b,)J}. In other words, /3 would encode each tuple
(b,,...,b_,,i,b+,,.’.,bm) in J by the tuple (b,,’",b_,,zj-,b+,,"’,bm)
in/3(J). However, a problem arises if for some q, ba Za. For example, suppose that
q >j, and that ba z. In this case, it will be unclear whether the tuple (b,. ., z,. ,
z,...,bz) is an encoding of (b,...,i,...,z,...,19,,,) or (b,...,z),...,
p,. ., b,,). For this reason, a more sophisticated encoding must be used.)

Let U {B,..., B,} (= supp (S)). For each set V satisfying V__ U, let

Iv=/)< [ZU{1,..., n}][exactly one coordinate of w is in {1,...,
B’

and

BV

total function flv’Iv--> Jr. Note that since Iv is finite for each nonempty V U, fly
is finite and thus, intuitively speaking, describable using first order predicate calculus.

We now define fl" a[I(P)]-> I(S) bys

fl(I) {w[U- V]flv(w[V])lw (wl, ", Win) I and V= {Bg[wj e Z O {1,.. ", n}}}.

Note that for each Ia[I(P)], Im(i)l=l l and for each I=(I,...,
I’, ., Ilm, 17,) I(P), I/3o a(1)l Y. IIjI. Clearly/3 is 1-1 and it is straightforward
to verify that it is realizable by a first order predicate calculus expression. It follows
that the mapping y=floa’I(P)->I(S) is 1-1 and realizable by a relational calculus
expression. Finally, it is also clear that there is a calculus expression ’I(S)-> I(P)
such that for each J s I(S), if J s T[I(P)] then $(J) is the unique I such that y(I) J;
and if J T[I(P)] then $(J)= . This completes the proof.

We now have:
Conclusion ofproofof Theorem 5.2. As previously observed, Theorem 3.4 implies

that (a)=:>(b), (d)=:>(c), and (c)(d) in the statement of Theorem 5.2. By Lemma 5.4
we have (d):=(e), and so it now suffices to show that (e)::>(a).

To this end, suppose that (e) holds. If n 1 then clearly (a) holds. Now let
P= R1,..., R, be a nonkeyed relational schema with n > 1 satisfying (), and let
S Ak Akin be a nonkeyed relation specifier such that R c S for each j, 1 -<j _-< n.
Let {B,..., B,} be a set of new basic types, where t-IsI--,<_<_ k, and let the

s If x (x, ., Xm) and V {Bit," ", BilvI} {B, ., Bin} (where
denotes the tuple (xt,. ., xlvt). Also, if x (x,. ., xlvi))<B v Dom (B) and y (y,. ., Ylv-vl)
)<av-v Dom (B), then xy denotes the (unique) tuple z=(z,... ,Zm))<nv Dom (B) formed from x
and y in the natural manner (i.e., where z is the unique element ofDom (B) 13 {x,. , Xlvl, y,. , Ylu-vl};
this is well defined, since each of the basic types of U occurs only once in S).

872 RICHARD HULL

function h:{B1,’",Bt)-{A1,’",An) be defined so that h(Bs)=Ai for each s,
lji kj s -< Y-I-J k. For each j, 1 j n, let R be a nonkeyed specifier such that
supp (R) {B1,’", Bt}, h(R)= R, and each basic type occurs at most once in R.
Also, let P’= R,. , R’; and let S’= B1 Bt. Note that R c S’ for each j, 1 -j- n.
Also, h(P’)- P and h(S’)= S. Theorem 4.7 now implies that in order to show that
P S(calc) it suffices to show that P’ S’(calc). To accomplish this, we shall "expand"
P’ into a new schema P’" which has the properties that (i) P’-P’"(calc); and (ii) P’"
has the form of the schema P in Lemma 5.5, whence P’" S’(calc).

To begin, for each j, 1-j- n, let R’ be chosen such that R R’; R’ S’;
and JR;I--Is’l-1. (This is accomplished by "adding" basic types from {B1,’’’, Bs)
to R until all but one have been used.) Letting P"-R"I, R"m it is clear that
P’ "(calc).

Now let T1," ", T be an enumeration of all specifiers T such that T S’ and

TI- S’I- 1, and let q 0 be the maximum number of occurrences of any of these
specifiers in P". Finally, let P’"= [T1]q, T,] q. It is now clear that P" P’"(calc).
And since P’" and S’ satisfy the conditions of Lemma 5.5, we have P’" S’(calc). By
two applications of transitivity, P’ S’(calc). Finally, Theorem 4.7 yields P S(calc)
as desired.

We briefly consider a natural analog of Theorem 5.2 for keyed specifiers.
Specifically, suppose that the statement of the theorem were changed to allow keyed
specifiers, and that condition (e) were changed to read "either n- 1 and P1 R(xxx),
or n 1 and both Pj R(xxx) and Pj R for each i, 1 n" (where "xxx" ranges
over one (or more) of the four types of dominance). A counterexample to this modified
version of the theorem is easily obtained. For example, it is easily verified that
A:B-A:BB(calc) (and hence for each of the types of dominance) but
[A: B] A: BB(abs) (and hence for none of them).

The final result of this section concerns dominance between nonkeyed schemata
which involve only one basic type. (Note that many of the early investigations of the
relational calculus were essentially based on relational schemata of this type.)

THEOREM 5.6. Let P and Q be nonkeyed relational schemata oer a single basic
type B. Then the following are equivalent:

(a) P Q(calc);
(b) a Q(gen);
(c) P Q(int);
(d) PQ(abs); and
(e) the 19 leading coefficient (as a polynomial) of fQ(x)--fl(X) is a nonnegative

integer.
Proof In light of Theorem 3.4, it suffices to show that (d):::(e) and (e)(a). To

see that (d)::(e), suppose that PQ(abs). Theorem 4.2 now implies that there is
some 0 such that for each x - t, fv(x)-fo(x). It follows that the leading coefficient
of fo-fl is nonnegative, i.e., that (e) holds.

To complete the proof, assume now that (e) holds, and assume that P and Q are
defined over the basic type B. If the leading coefficient of f-fv is 0, then fl =fo,
whence P Q. In this case, clearlyP Q(calc). Suppose now that the leading coefficient
of f-fv is positive. Then there is some n 0, some k with 0k n, and some
nonnegative integers pj and qj (li-n) such that (t)f,(x)=pnx+...+plx,
().fo(x)=q,x+...+qlx, (),)q. =p for kj<-n, and (8) qkPk--O. (Thus, Q has

9 The leading coecient of a polynomial of one variable is the coefficient of the term having the highest
exponent. If the polynomial is identically 0, the leading coefficient is defined to be 0.

INFORMATION CAPACITY OF DATABASE SCHEMATA 873

q, occurrences of A", qn-1 occurrences of An-l, etc., and similarly for P; and the
coefficients of the terms for n down to k + 1 agree.)

Let P, =[A"]-, [A"-]--’, [Ak+]+’, let P2 [Ak], and let P3 P-P,P2.
Also, let Q1 P1, Q2 P2, Q;_ [Ak] qk-pk, and Q3 Q-QQ2Q;_. Since P Q1 and
P2 Q2, P1 -<- Ql(Calc) and P2 -< Q2(calc). Since qk > Pk, Q #, and so Theorem 5.2
implies P3=< Q(calc). Finally, <= Q3(calc). Three applications of Corollary 4.9 now
yield P= PIP2P3 <- QQ2Q(calc), and furthermore, Q1Q2Q -< QQ2QQ3(calc). This
last term is equal to Q, and so we have P-<_ Q(calc) as desired. [3

It should be noted that the above result cannot be generalized to apply to pairs
of relational schemata including keyed specifiers. In particular, Proposition 4.5(b)
shows that A A2-<_ A2(abs, int) but A: A2 ; A2(gen, calc).

6. Equivalence implies equality. This section presents the result that if P and Q
are nonkeyed schemata and they are equivalent under any of the notions of dominance,
then P Q (up to re-ordering). A corollary of this result (presented at the end of the
section) implies that for any "natural" motion of information capacity equivalence, a
pair of nonkeyed relational schemata are equivalent if and only if they are equal. This
supports the intuition that in the relational model (with no dependencies) there is
essentially at most one way to represent a given data set. It .is interesting to note that
a result of [20] concerning the Format Model provides contrast with the results
mentioned here. In particular, it is shown there that two formats may be generically
equivalent and yet be unequal.2

To begin the development, we present some notation and a straightforward lemma
concerning polynomials of several variables. Speaking informally, the lemma states
that such a polynomial is ultimately zero iff all of its coefficients are zero.

Notation. If x (x1, , Xn) and p (p,. ., p,), then xp denotes I-Ii=l x,.
LEMMA 6.1. Let n > O, H = N" be a finite set, and for each pc H let ap be an

integer. Let f" N"--> N be defined by f(x)=pH apxo. If there is some >-0 such that
f(x) 0 for each x with xi >= (1 <= <= n), then ao 0 for each p H.

Proof Suppose that at least one of the terms ao is nonzero. Define the ordering
< on N" by (y,...,y,)<(z,...,z,) if there is some k, l<=k<-_n, such that y=z
for k < < n and Yk < Zk. (Intuitively speaking, < is the reverse lexicographic ordering
on N".) Let q be the greatest element p in H (under <) with the property that ao 0.
Without loss of generality, we may assume that a> 0. Thus a_-> 1.

Let Yo max {2 Inl" Yo ,, laol} and s > max {pll =< i-<_ n and p H}. For each i,
1 -< -< n, set Yi Yi-1 Yo2S5’, and let y (Yl," ",Y,). It is clear that y => for each i,
1 -< <- n, and hence that f(y) 0.

A straightforward induction shows that for each i, 0 < < n, y+ > Yo" I-Ij_<_ yjo
(Clearly this is true for =0. Supposing it is true for i-1, then y+ y2S>_ y.y[>
(Yo" I-Ij<-i j) y yo" I-[__< yj.) Now suppose that p and p’ are in H with p< p’. It
follow that Yo’YO<Y. (For suppose that P=(Pl," ",P,) and p’=
(P," , P’k, Pk/l," ", P,) where 1 <= k -< n and p> Pk. Then Yo" YP
Yo" I-I,_<_k Yf’" I-I,>k Yf’ <---- [Yo" I-I,<k Y]" Yk" H,>k Y,P" < [Yk]" YPk"" 1-I,>k Y,P"--<-- 1-I,__<k YP;"
l-I>k Y/P’ YP")

Since f(y) =0 and by the choice of q, aqyq=pH,p<q (--ap).yp. However, aqyq=>
a yP>yq> yo’max {yPlps H, p<q}>lHl’Yp lap[’max {yPlp H, P<q)>-p,,p<ql pl"

20 Furthermore, in [20], it is shown that two formats are generically equivalent if and only if one can

be formed from the other using a set of six natural, local, structural transformations (called "reductions")
and their inverses.

874 RICHARD HULL

"p/./,p<q (--ap)yp. This is a contradiction, and implies that each of the terms ap in H
are zero as originally desired. [3

We now have:
THEOREM 6.2. Let P and Q be nonkeyed relational schemata. Then the following

are equivalent:
(a) P- Q(calc);
(b) P--- Q(gen);
(c) P- Q(int);
(d) P-- Q(abs);
(e) P Q.
Proof. In view of Theorem 3.4, and the trivial implication (e)=(a), it suffices to

prove that (d)=(e). To this end, let us assume that (d) holds, i.e., that P-Q(abs).
Letting {B1," ", Bn} be an enumeration of the basic types in P and Q, Theorem 4.2
implies that there is a number t>_-0 such that fp(x)--fQ(x) for each x-(xl,’’’, xn)
with xi >_- t, 1 <_- <= n. From Lemma 6.1, each coefficient off(x) =fp(x)-fQ(x) is 0, and
so P=Q as desired.

As noted in 2, the family of nonkeyed relational schemata corresponds to the
family for formats [20] which are constructed using a composition of one or more
subformats, each of which is a collection of a composition of one or more basic types.
An alternative proof of the above theorem can be developed using this correspondence
and Theorem 4.6 of [20].

Also, while it appears that the above theorem can be generalized to keyed relational
schemata, no proof is currently known.

The following corollary of Theorem 6.2 can be interpreted as a result concerning
any "natural" notion of relative information capacity dominance in the following
sense: The corollary considers all relative information partial relationships << which
lie in the "region" between equality (i.e., isomorphism) and absolute dominance. Since
we would expect any "natural" measure of information capacity (which does not
involve computation) to lie in this region, the corollary applies to all such "natural"
measures.

COROLLARY 6.3. Let << be any binary relation on nonkeyed relational schemata
such that for each pair P, Q of schemata,

(a) P<< Q=P<= Q(abs); and
(b) P= Q==>P<< Q.

Also, let " be defined so that PQ iff P << Q and Q << P. Then for each pair P, Q of
schemata, P Q iff P Q.

7. Concluding remarks. The model of relative information capacity introduced
here can serve as part of the foundation for the theoretical study of data relativism as
it arises in a variety of database areas. While several interesting results have been
reported above, the investigation also raises a number of important questions. In this
section some of these are briefly mentioned.

A major area demanding further investigation is to seek measures of relative
information capacity other than the ones presented here. For example, the results of
5 indicate that none of the types of dominance studied here correspond closely to

the intuitive notion of "semantic correspondence". A more "natural" measure might
be obtained by modifying calculous dominance (and the other types as well) so that
constants are not allowed. Alternatively, other "abstract" properties of natural database
transformations (such as being generic or internal) might be formalized and investi-

INFORMATION CAPACITY OF DATABASE SCHEMATA 875

gated. For example, a transformation tr"PQ can be called additive if for each I
and I’, we have-1 tr(I tA I’) tr(I) U tr(I’).

Another direction is to consider a broader notion of information capacity which
incorporates update capabilities. For example, suppose that some update language UL
is fixed (e.g., one consisting of all compositions of the primitive operations of delete
one tuple, insert one tuple, and update one tuple). Define P_-< Q(UL) if (i) P-< Q(calc)
via calculus expressions s and to, and if (ii) whenever I s I(P) and/z is an update in
UL of I then there is an update tz’ in UL of :(I) such that/z’(:(I)) :(/x(I)). This
approach may give insight into the "view-update" problem.

A third general area is to consider the various complexity issues raised by this
investigation. For example, what is the complexity of deciding whether P-<_ Q(xxx)?
If it is known, say, that P-< Q(calc), then how hard is it to find a pair s, to of calculus
expressions such that P=< Q via (:, to)? Finally, it is also important to examine the
complexity of actually performing : and to on instances of P and Q, that is, to examine
the ease of translating between these two schemata.

A variety of other issues can be studied using the model of information capacity
presented here. For example, it would be interesting to examine relative information
capacity between schemata taken from database models besides the relational one;
and to examine relative information capacity between schemata P and Q, where P is
taken from one model and Q from another (similar to [27]). Within the relational
model, it would be useful to examine the impact of null values and new dependencies.

Finally, a number of specific open questions are raised in this report. Most
provocative, perhaps, is the question of whether the notions of calculous and generic
dominance are actually co-extensive in the context of relational schemata as defined
here, or at least in the context ofnonkeyed relational schemata. The analogous questions
for internal and absolute dominance are also of interest. Another question is whether
Theorem 4.6, which states that generic and internal dominance are equivalent to generic
and internal embedability (respectively), can be extended to include calculus domin-
ance. Also, can Theorem 6.2 be extended to include keyed specifiers? Finally, simple
characterizations of calculous, generic and internal dominance remain unknown. (A
notable exception here is that Theorem 4.6(a), together with results of [34], provides
a characterization of generic dominance in terms of group theoretic concepts.)

Appendix A. Conclusion of proof of Proposition 4.5. This appendix is devoted to
a proof of part of Proposition 4.5, specifically that:

PROPOSITION A.1. A: AA AA(gen).
The result is proved by contradiction, so let us begin by supposing that A" AA <=

AA(gen). By Theorem 4.6 this implies that A: AA is generically embedable in AA,
i.e., that there is some finite ZDom (A) and a 1-1 Z-generic transformation
tr" A" AA AA. The contradiction is obtained through a series of lemmas which focus
on a specific element of I(A:AA). In particular, we have the following.

Notation. Let a, b, c, d be four distinct elements of Dom (A)-Z. Also, let
I= {(a, b, d), (b, a, c), (c, d, b), (d, c, a)}.

As an intuitive aid, I may be thought of as a directed graph whose edges are
labelled by a "1" or "2", as shown in Fig. A1.

In the course of the proof, we shall demonstrate that tr(I) has certain properties,
and ultimately find an instance I’ I such that tr(I’)= tr(I). As such, the proof is

21 By t.J we mean coordinate-wise union. Speaking intuitively, we also view I U I’ as undefined if any
of the coordinates violate one of the key dependencies built into the corresponding specifier.

876 RICHARD HULL

2

b d

C
FIG. A1. Representation of I as a labelled graph.

reminiscent of, but more involved than, the proof that AB [AA]", BB]" (gen) presen-
ted in 4. The first step in that direction is to prove a general lemma which will be
used repeatedly to infer properties of or(I).

LEMMA A.2. Let I be a Z-permutation such that I(I)= L Then
(a) if (x, y) or(I) then I(x, y) (l(x), I.(Y)) I; and
(b) ifxSym (or(I)) then/x(x)e Sym (or(I)).
Proof. To see (a), suppose that (x, y) or(I). Then/x(x, y)/zocr(I) tr o/z(I)

tr(I) as desired. Part (b) is proved similarly.
Next we have the following lemma which follows directly from Lemma 3.3.
LEMMA A.3. Sym (or(I)) Z t3 { a, b, c, d}.
We next define three specific Z-permutations.
Notation. Let ct,/3, and y be the Z-permutations defined to be the identity on all

elements of Dom (A)-{a, b, c, d}, and to map {a, b, c, d} as shown in the following
tables:

el(e) el/3(e) el(e)

alb aid alc
bla blc bid
cld clb cla
dlc dla

Note that 3’ =/3 a a o/3. It is easily verified (proof omitted) that:
LEMMA A.4. t(I)= I, fl(I)= I, and 3,(1)- I.
Speaking intuitively, the next five lemmas demonstrate that tr(I) is very "uniform".

This follows from the various symmetries occurring in I, as formally expressed by
Lemma A.4 above.

LEMMA A.5. Let z Z.
(a) If any of (z, a), (z, b), (z, c), or (z, d) are in or(I), then they all are; and
(b) if any of (a, z), (b, z), (c, z), or (d, z) are in or(I), then they all are.
Proof. Suppose that (z, a) tr(I). Because (z, b)= or(z, a), Lemmas A.2 and A.4

imply that (z, b) tr(I). Similarly, (z, c)= 3,(z, a) or(I) and (z, d)= fl(z, a) tr(I).
Thus, each of (z, a), (z, b), (z, c), and (z, d) are in r(I). Similar arguments can be
used to obtain the same result if it is assumed initially that one of (z, b), (z, c), or
(z, d) is in tr(I). Finally, the proof of part (b) is analogous.]

The proof of the next lemma is similar to the one just presented, and is omitted.
LEMMA A.6. If one of (a, a), (b, b), (c, c), or (d, d) is in or(I), then they all are.
LEMMA A.7.
(a) If one of (a, b), (b, a), (c, d), or (d, c) is in or(I), then they all are;
(b) if one of (a, d), (d, a), (b, c), or (c, b) is in tr(I), then they all are; and
(c) if one of (a, c), (c, a), (b, d), or (d, b) is in tr(I), then they all are.

INFORMATION CAPACITY OF DATABASE SCHEMATA 877

Proof. Suppose that (a, b)cr(I). Then (b, a)=a(a, b)cr(I) by Lemmas A.2
and A.4. Similarly, (c, d)= y(a, b) and (d, c)= fl(a, b) are in or(I). The other parts of
case (a) are demonstrated analogously, as are cases (b) and (c).

We now categorize the possible distinguishing properties of or(I) as follows.
Notation. The following six conditions are specified:

(la) (a, b)6 tr(I); (lb) (a, b) tr(I);
(2a) (a, d) tr(I); (2b) (a, d) tr(I);
(3a) (a, c) tr(I); (3b) (a, c) tr(I);

We now have:
Conclusion ofproof of Proposition A.1. Note that for each k, 1 -_< k _-< 3, conditions

(ka) and (kb) are exhaustive and mutually exclusive. As a result, the three pairs of
conditions together partition the space of possibilities for tr(I) into 8 exhaustive and
mutually exclusive sets (namely (la) and (2a) and (3a), (la) and (2a) and (3b), etc.).
We now demonstrate that in each of these 8 cases, there is an instance I’ I such that
tr(I’)- tr(I). This will provide the desired contradiction. We consider the eight cases
in groups of two.

Case 1. ((la) and (2a) and (3a); or (lb) and (2b) and (3b)). Let 6 be a Z-
permutation defined so that 6(b)=d, 6(d)=b, and 6 is the identity on all other
elements of Dora (A). Letting I’= 6(I), it is clear that I’ I. On the other hand,
tr(I’) =tro 6(I) 6 tr(I). From Lemmas A.5, A.6 and A.7 it is easily seen that tr(I)
tr(I), the desired contradiction.

Case 2. ((la) and (2a) and (3b); or (lb) and (2b) and (3a)). In this case, the
Z-permutation 6 defined for Case 1 can again be used to derive the contradiction.

Case 3. ((la) and (2b) and (3a); or (lb) and (2a) and (3b)). In this case, define
6 so that 6(b)-c, 6(c)- b, and 6 is the identity on all other elements of Dom (A).
Letting I’-6(I), it is now easily verified that I’#/, but tr(I’)- tr(I), yielding the
desired contradiction.

Case 4. ((lb) and (2a) and (3a); or (la) and (2b) and (3b)). In this case, define
t so that (c)= d, 3(d)=c, and 6 is the identity on all other elements of Dom (A).

This completes the proof.

Appendix B. Proof of Theorem 4.6(1). The purpose of this appendix is to prove
part (b) of Theorem 4.6, which states that P-<_ Q(int) if[P is internally embeddable in
Q. The proof is nontrivial, and is of interest because it uses a very small number of
assumptions about our data model, and thus appears to extend to most database
models (see Remark B.6). To prove the result, it clearly suffices to prove that:

THEOREM B.1. Let P and Q be schemata, and suppose that tr’P-> Q is a 1-1,
Z-internal transformation for some finite Z

_
DOM. Then P-<_ Q(int).

We begin with some motivating remarks. Suppose that tr" P-> Q is 1-1 and Z-
internal (for some finite Z = DOM). A naive attempt at proving that P_<- Q(int) would
be to define z’Q->P to be tr- (and to map all elements of I(Q)-tr[I(P)] to).
Recall from the proof of Theorem 4.4 that if tr and tr

-1 are Z-internal and P_-< Q via
(tr, tr-), then triP(YZ, Y)]

Q(YZ, Y) for each finite Y DOM- Z. Since these

inclusions are not necessarily true for an arbitrary 1-1 Z-internal tr" P--> Q, this naive
attempt is not guaranteed to work. The underlying theme of the proof of Theorem B.1
presented here is to use tr to demonstrate for each finite YDOM-Z that22

IP(YZ, Y)l --< IQ(YZ, g)l, and then use Theorem 4.4 to conclude that P<-_ Q(int).

22 AS in the statement and proof of Theorem 4.4, for this Appendix if M and N are subsets of DOM
we use MN to denote MLI N, etc. Also, if beDOM we write Mb to denote MLJ{b}, etc.

878 RICHARD HULL

Before beginning the proofofTheorem B.1, we make a few observations concerning
sets of the form R(V, W), where R is an arbitrary schema and V, W are finite. First
(as noted before), R(V,)= Iv(R). Second, we have"

LEMMA B.2. Let R be a schema, and let V1, V2, WI, W2 be finite subsets of DOM.
Then R(V, W) f3R(V2, W2) =R(Vffl V2, WIU W2).

Proof. If ! R(V, W1) f3 R(V2, W2), then W = Sym (I) V for 1, 2; that is,
W1 U W2 Sym (I) V1 f3 V2. Thus, I R(V f’l V2, W (3 W2). The converse is equally
straightforward.

(As an aside, note in the above lemma that if W1U W2

_
V (3 V2, then R(V, W) f3

R(V, W) -R(V V, W W_).)
Our final observation about the sets R(V, W) is very general, and formally expresses

a central aspect of our model of relational instances. Speaking roughly, the result states
that the cardinality of a set of the form R(V, W) is essentially independent of the sets
V and W, and depends only on the numbers [Vfq Dom (B)[, Wfq Dom (B)[, and
]V Wf Dom (B)I for each Bsupp (R). The straightforward proof of the result is
omitted.

LEMMA B.3. Let R be a schema, let V, W=DOM be finite, and let r be a
J-permutation of DOM. Then

We now begin the formal proof of Theorem B.1 by establishing the following.
Notation. Let P and Q be fixed schemata; let Z DOM be finite; and let tr" P--> Q

be 1-1 and Z-internal.
As mentioned above, the proof of the result consists in showing, for all finite

Y DOM- Z, that IP(YZ, Y)l <= IQ(YZ, Y)I. By Lemma B.3, it suffices for each such
Y to find a set X with the same "shape" as Y (i.e., such that X f) Z and zr(X) Y
for some Z-permutation r) with the property that [P(XZ, X)[-<]Q(XZ, X)l. In fact,
an X will be exhibited such that tr[P(XZ, X)] __c Q(XZ, X); since tr is 1-1 this will
yield the desired inequality. This is accomplished by Lemma B.5 below. As a preliminary
step, Lemma B.4 essentially demonstrates this for sets Y satisfying Y____ Dom (B)-Z
for some basic type B.

The argument used for Lemma B.4 relies in part on "Ramsey’s Theorem" for
finite sets. We state here the relevant version of that theorem for the reader’s
convenience.

RAMSEY’S THEOREM [35], [18]. Let 0< n <- k, k2 be integers. Then there is a
number r(n, k, k2) with thefollowing property" For each set U such that U >-_ r(n, k, k2)
and each function23 f: U]]" --> { 1, 2}, there is some { 1, 2} and set V U with IV] ki
and f(V’) for each V’ V].

We also use:
Notation. For y=>0, let q(y) denote max {II (Q)IIIYI-<y}.
We now have"
LEMMA B.4. For each n >- 0 there is afunction A N -> N with thefollowingproperty:

If Y is such that
(i) YDOM-Z, and
(ii) Irl<-y,

and B supp (PQ) and X are such that
(iii) X Dom (B) YZ, and
(iv)

then there is some X = if: such that IXI n and tr[P(XYZ, X)] Q(XYZ, X).

For a set S and m>0, S] denotes the set {S’[S’ S and Is’l m}.

INFORMATION CAPACITY OF DATABASE SCHEMATA 879

Proof. (Before beginning, we briefly mention the special case where the basic type
B is in supp (Q)-supp (P). In this case, for each nonempty X c__ Dom (B) and each
Y____ DOM, P(XYZ, X) , and so o’[P(XYZ, X)] Q(XYZ, X) holds trivially.)

Now turning to the formal proof, we first note that A0 can be defined so that
Ao(y) 0 for each y. This choice satisfies the conditions of the lemma because tr is
Z-internal.

For the remaining cases, we perform an induction on n. To begin, define
A1 so that Al(y)=q(y+z)+l. We now argue that this choice of A1 satisfies the
statement of the lemma. Let y->0, and let Y, B and X satisfy conditions (i)
through (iv). Suppose that the conclusion of the lemma is not satisfied. Then for
each b X we have triP(YZb, b)

_
Q(YZb, b). Because tr[P(YZb, b) c= I YZb(Q)

Q(YZb, b) t.J Q(YZ,), this implies that tr[P(YZb, b)] f’) Q(YZ,) for each b X.
Also, for b b’ we have P(YZb, b) fq P(YZb’, b’) . For each b X, let Ib P(YZb, b)
be such that tr(Ib) Q(YZ,). Note that Ib Ib, and tr(Ib) tr(Ib,) for b b’. From
this we have q(y + z) + 1-12l I{I,lb Y:}l l{o-(,)lb 2}l <- lQ(rz, f)[<= q(y + z), a
contradiction. Therefore, there is some b X such that triP(YZb, b)] __c Q(YZb, b),
and so the case for n 1 is demonstrated. Note also that A(y)>= 1 for each y>-0.

Suppose now that the lemma is true for some n > 0 and that A,(y)>-n for each
y>-0. The definition of A,/(y) involves an induction of length q(n+y+z)+l.
Specifically, let I]q(n+y+z)+l n, and for each i, O<-i<-q(n+y+z), let

b, r(n, A,(y+ 1), ii+1)-- 1.

(Note that Oi->_n for each i, O<-_i<-_q(n+y+z)+ 1.) Finally, set A,+l(y) o. Clearly
A,+I(y) --> n + 1 for each y _-> 0.

To complete the proof, it must be shown that An+l has the property in the statement
of the lemma. To this end, let y_-> 0, and let Y and X satisfy conditions (i) through
(iv). In particular, then, I..1_-> An+(y)= bo. We now prove the following.

CLAIM. There are some b X and V c__ X -{b} such that
a. IV]= An(y+ 1), and
/3. tr[P(XYZb, b)

Q(XYZb, b) for each X V]]".

To prove the claim, suppose that it is false. A contradiction will be derived by
inductively constructing a sequence bl, bE," ", bq(n+y+z)+ of elements of X and a set
Wq(n+y+z)+ with certain properties.

To begin the induction, let bl .g be fixed, and define fl’-{b}]] {1,2} so
that for each X [[X-{b}]",

1 if o[P(XYZb, b)] ___c Q(XYZb, bl),
f(X)

2 if tr[P(XYZbl, b)]

_
Q(XYZb, b).

By assumption, there is no set Vc__ .g-{b1} such that Ivl= x (y/ 1) and f(X)= 1 for
each X V]] n. Since

g,o- 1 r(n, An(y+ 1), ffl),

Ramsey’s Theorem implies that there is a set W1 c__ . such that]Wl[-- i/1 and fl(X) 2
for each X W]n. In particular, then, tr[P(XYZbl, b)]f’IQ(XYZ,) for each
x wl".

Suppose inductively that for some i, 1 -< <= q(n + y + z), we have chosen b, , bi
and W,..., W such that

Ca) I+v,I
(b) WX;

880 RICHARD HULL

(c) bj X W for each j, 1 _-<j _-< i; and
(d) tr[P(XYZbj, bj)] f’l Q(XYZ, (g) # (g for each X [[W]]" and each j, 1 <_-j <_- i.

Let bi+l W be fixed, and define f+l’[W-{bi+l}]]"-{1,2} so that for each X
W {b,+,}]]",

1 if o-[P(XYZb,+, b,+)] c__ Q(XYZb+, bi+l)
f+(X)

2 if o-[P(XYZb+, b+l)] Q(XYZb,+, bi+).

By assumption, there is no set Vc___ J -{b/} such that [Vl h(y+ 1) and f+(X) 1
for each X e V]I . Ramsey’s Theorem implies that there is some W+ __c V such that
W+I] 0,+1 and f+(X)= 2 for each Xe W+]]. (Thus (a) and (b) hold for i+ 1.)
In particular, o’[P(XYZb+,b+)]f-IQ(XYZ,)# for each X eW+]]. Also,
because conditions (c) and (d) hold for and W+I

W, we have b e X-W+ and

o’[P(XYZb, b)] f3 Q(XYZ, ;g) for each X e W+]] and each j, 1 -<_j -<_ i. (Thus
(c) and (d) hold for i+ 1.) With this the induction has been extended.

Let q(n +y+ z)+ 1. By the above induction, there is a sequence b,..., b,
and a set W, such that

(b’) WX;
(c’) b X- W for each j, 1 <=j <_- t; and
(d’) tr[P(XYZbj, b)] Q(XYZ,) for each X W]]" and each j, 1 j t.

In particular, (a’) and (d’) imply that
(d") r[P(WYZb, bj) f3 Q(XYZ,) for each j, 1 j t.

Note that for j k, P(YZb, b)P(YZbk, bk)=. For each j, ljt, let
P(WYZb, b) be chosen so that () Q(WYZ,). Note that if j k then Ik;
and because is 1-1, () (Ik). Then

q(n+y+z)+l=t

w YZ,

<-q(n+y+z),

a contradiction. This demonstrates the claim.
To complete the proof of the lemma, recall that we have fixed y >_-0 and sets Y

and X which satisfy conditions (i) through (iv) of the statement of the lemma. By the
claim, there is some bJ and V c___-{b} such that Vl=A(y+l) and
r[P(XYZb, b) c__ Q(XYZb, b) for each X e VII".

Because VI A,(y+ 1) and IYbl y+ , the inductive assumption on n implies
that there is a set X c___ V such that IXI n and cr[P(XYZb, X)] __c Q(XYZb, X). For
this X, we also have tr[P(XYZb, b)]____ Q(XYZb, b). By Lemma B.2, P(XYZb, X)fl
P(XYZb, b) P(XYZb, Xb), and similarly for Q. Because
tr[P(XYZb, b tr[P(XYZb, Xb]. Therefore, tr[P(XYZb, Xb)

Q[XYZb, Xb], and

so the conclusion of the statement of the lemma is satisfied by using the set Xb. l-i

We can now prove the key lemma of the proof of Theorem B.1. For this result,
we use:

Notation. Let B, , Bs be an enumeration of the elements of supp (PQ). Also,
for each X Ul_<___<s Dom (B), the characteristic vector of X, denoted char (X), is the
vector (IX f-I Dom (B)I,..., IX f’l Dom (B,)I).

INFORMATION CAPACITY OF DATABASE SCHEMATA 881

Note that if X and Y are finite subsets of Ul__<i<__s Dom (Bi) then char(X)=
char (Y) iff Y 7r(X) for some -permutation r (or speaking intuitively, itt X and
Y have the same "shape").

We now have the following lemma.
LEMMA B.5. Let n (n, , ns) be a sequence ofnonnegative integers. Then there

is some X U __<i=<s Dom B) such that
(i) X U__<,__< Dom (B,)-Z;
(ii) char (X) n; and
(iii) tr[P(XZ, X)]

Q(XZ, X).

Proof. To demonstrate this result, Lemma B.4 will be used repeatedly, once for
each basic type in supp (PQ). We begin the argument by choosing a very large set Y,
and then iteratively select subsets W

_
Y f’l Dom (Bi) such that W/I hi; ultimately

the set X U -<_<_-s W will satisfy the conditions of the lemma.
To begin the proof we inductively define a sequence (tel,’", Ks). Let tcs

hns(El<=j<s nj). Given tq+ for some i, 1 <=i<s, let

<--j<i

Finally, let Y t.J=<__< Dom (B)-Z be chosen so that char (Y)= (rl,’’’,
For each i, 1 <- =< s, let Y denote U <j_< Y f’l Dom (B)). To choose the sets

W,. ., Ws we shall perform a moderately involved inductive construction. At the
ith step, we will choose the set W Yf’ldom (B) such that]WI= ni, and shall use
X to denote t_J W. At the conclusion of the ith step, we will have shown that
tr[P(XYZ, X)

_
Q(XiYZ, Xi). Note that the successful completion of this induction

will demonstrate the lemma, because Ys and char (Xs)= n.
To begin the induction, note that Yo Y, and let Xo . Then tr[P(Xo YoZ, Xo)]

triP(YZ,)] Q(YZ,) Q(Xo YoZ, Xo) because tr is Z-internal.
Suppose now for some i, 0i < s, that sets W1," ", W have been chosen such

that Wj Yf’)Dom (B) and w l= for 1-<_j=< i; and also such that, letting Xi=
U_<__<_ Wj, we have

(a) tr[P(XYZ, X)] Q(XYZ, X,).
Note that IXiY+ll lj<,+l n, +,+<<_ tq and that

j<i+ i+ <j=<

Therefore, by Lemma B.4, there is a set W+I Yf’l Dom (B,+) such that
and

(/3) cr[P(X,W+, Y+,Z, W+I)]__ Q(X,W+I Y+IZ, W+I).
Let Xi+, XW+, t_l,__<j__<+, Wj. By Lemma S.2, P(XiYZ, Xi) f-I

P(XiW/+I Y/+IZ, W/+l) P(XiW/+ Y/+,Z, Xi W/+I) P(Xi+ Y/+IZ, Xi+I) and the
analogous equalities hold for Q. Since r is 1-1, we also have r[P(XYZ, X)]f’l
o’[P(XiWi+IYi+IZ Wi+l)]--o’[P(Xi+lYi+lZ, Xi+l)]. Now (o) and (/3) imply that
cr[P(X+ Y+IZ, X+,)] Q(X+ Y+Z, X+), and the induction is extended.

As noted above, the set Xs obtained from the completed induction has properties
(i), (ii) and (iii) in the statement of the lemma, and so the proof is complete, rl

882 RICHARD HULL

We now have"
Conclusion ofproof of Theorem B.1. We have assumed that r" P-> Q is 1-1 and

Z-internal for some finite Z DOM. To show that P-<_ Q(int) we shall apply Theorem
4.4. To this end, let Y DOM-Z be finite. By Lemma B.5 there is some X = DOM-Z
such that char (X) char (Y) and r[P(XZ, X)] Q(XZ, X). Because tr is 1-1, this
implies that IP(XZ, X) -< IQ(XZ, X) I. By Lemma B.3, IP(YZ, g)l <- IQ(YZ, g)l.
Because Y was arbitrary, Theorem 4.4 now implies that P-< Q(int) as desired.

Remark B.6. The technique of the proof Theorem B.1 used here can also be
applied to other database models in which the families of instances associated with
schemata are defined using basic types in a manner analogous to the way they were
defined here. In particular, two specific characteristics of the definition of families of
instances used in the proof can be identified. Specifically, it was assumed throughout
that if Y is a finite subset ofDOM then for each schema P, Iy(P) is also finite. Second,
the result Lemma B.3 was essential to the proof. It is easily verified that these were
the only two characteristics of the definition of family of instances which were used
in proving Theorem B.1. Thus, the result extends immediately to the Format Model
of [20] and the IFO Model of la] (assuming that the definition of family of instances
used there is modified in analogy to the definition used here).

Appendix C. Proof of Theorem 4.7. This appendix is devoted to the proof of
Theorem 4.7, which states that (each type of) dominance is preserved by renaming of
the basic types, even if different basic types are identified by the renaming. The result
is restated here for the convenience of the reader.

THEOREM C.1. Let P and Q be schemata, and h a homomorphism on 3. If
P<-_ Q(xxx) then h(P) <_- h(Q)(xxx), where "xxx" ranges over "calc", "gen", "int", and
"abs".

Proof. Let B1,’’ ", Bn be an enumeration of the basic types of supp (PQ), and
let A1,. , Am be an enumeration of supp (h(PQ)).

Now, suppose that P_<-Q(abs). By Theorem 4.2 there is some t-> 0 such that for
each x with xj _-> t, 1 -<j _-< n, fl(X) --<fQ(x). Suppose now that h (Bj) Aij for 1 _-<j _-< n.
Then fh(.)(Xl,""", Xm) f,(X,, X,.) and fh(Q)(X, ", X,,,) fQ(xi,, ", X,.). The
result now follows for absolute dominance.

For the other types of dominance we define a family of mappings associated with
the homomorphism h. First, for each basic type B, define

/.a" Dom (B)-> Dom (h(B))

such that it is 1-1 and onto. Note that/. is invertible. (If h(B)= B we do not require
that/s is the identity.) (We use here the assumption that all domains are countably
infinite. If finite domains were permitted, then the definition of homomorphism would
have to be modified so that for each B , IDom (h(B))l =]Dora (B)I.) Also, define

/-DOM" DOM DOM

such that /./,I)OM U {lBIB e }. Note that [.I,DOM need not be 1-1 or onto.
If R B1," , Bk is a nonkeyed relational specifier then define24

In I(R)-> I(h(R))

24 For this discussion, we assume that if R is ordered B1,. ., B then h(R) is ordered h(Bl),. ., h(Bk)
etc.

INFORMATION CAPACITY OF DATABASE SCHEMATA 883

such that for each I I(R),

pea(I) {(s,(b,), , .(b))l(b.. . b)e I}.

If R S" T, then/ is defined analogously. It is easily verified that/ is 1-1 and onto
for each (keyed or nonkeyed) specifier R, and hence invertible.

If R R, , Rk is a schema, define

/R" I(R) - l(h(R))

so that for each I=(I,..., I) I(R),/R(I) (/Z(I),""", /(I)). Again,/XR is 1-1
and onto, and hence invertible.

Suppose now that P<-Q via (or,), where r’PQ and r" Q- P are arbitrary
-1 and r’transformations. Letting or’=/zootro/z l, =/Zl, z/zo1, it is easily verified that

h(P)-< h(Q) via (tr’, r’). To complete the proof, then, it suffices to show that if a
transformation tr" P--> Q is Z-internal (for some finite Z) then or’ pQO O" ,1 h(P)
h(Q) is Z’-internal (for some finite Z’); that if tr is Z-generic (for some finite Z) then
tr’ is Z’-generic (for some finite Z’); and that if tr is realized by a calculus expression
then so is or’. (By symmetry, if this is true for tr’ then it is also true for z’.)

Suppose now that tr’P- Q is Z-internal, and that tr’=/zootro/z{, 1. Letting Z’=
/Zio[Z], we now show that tr’ is Z’-internal. Let II(h(P)). Note that
/Zio[Sym (/x{,l(I))]

Sym (I). (For suppose that a /Zao[Sym (/x{,l(I))]. Then a

/Xio(b)=/xa(b) for some B and bDom(B), where bSym(/z{,l(I)). This
implies that b occurs in some B-column of/z,l(I). From the definition of/Zl, it follows
that a-/za(b) occurs in some h(B)-column of I. Thus a Sym (I) as desired.) We
now have"

Sym (tr’(I)) Sym (/zoo cro/zl(I))
=/ZDoM[Sym

_--__/.*loM[Sym (/x{,l(I)) [3 Z] (since cr is Z-internal)

=/xloM[Sym (/z{,l(I))] LJ Z’

Sym (I) t.J Z’.

Thus tr’ is Z’-internal as desired.
Suppose now that tr" P- Q is Z-generic, and again set Z’=/XIoM[Z]. Let a be

a Z’-permutation and I I(h(P)). It now suffices to show that aotr’(I)=tr’oa(I). To
this end, for each B , define

cn Dom (B)- Dom (B)

so that ca(b)=/zloao/zn(b). Note that ca is a 1-1, onto mapping. Also, note that if
bZ then tza(b)=tzDoM(b)tZDoM[Z]=Z’. Thus ta(b)=/zloa(/z(b))
/zl(/za(b)) b. This implies that cn is the identity on Z fqDom (B). Now define

CaOM" DOM-DOMso that CIOM t.J {tialB }. It follows that CIOM is a Z-permutation. Also, the map
CIOM can be applied to instances as well as domain elements.

We now argue for each schema R and each instance J I(R) that/zlo a o/ZR(J)
8OOM(J). TO see this, let R=R1," .,R and let J=(J,...,J)I(R). Then
ciOM(J) (crOM(J1), CaOM(J)). So it suffices to show that if R is a specifier
and JI(R) then 8iOM(J)=tzloaolz(J). Suppose that R=B,...,Bt (or

884 RICHARD HULL

B1," , Bk" Bk+l, Bt), let J E I(R), and let (b,. , bt) E J. Then
-1

/a,R C/J,R(bl, ", bt) (/z -1 -’ (bt))B, C#B,(bl)," ",PB,

(Saom(b,), ", 5.om(b,)) 5aom(b,, ", bt).

More generally we have oaoa(J)= 5om(J), and the argument is complete.
Recalling that I is an arbitrary element of I(h(P)), we are now prepared to show

that ’oa(I)= aoq’(I). Specifically,

’oa(I)=(gooo. oao(.o)(I)

o(o(,o. .))(,(i))

oo(q 5.ou)(g(I)) (sinceoao.= 5.om on I(P))

Oo(SaOUOq)(l(I)) (since 5.ou is a Z-permutation)

oo((1o a)oq)((I)) (sinceoa 5aom on I(Q))

(o5,)o. o(o ,)(i)

ao’(I).

With this we have shown that q’ is Z’-generic on I(h(P)) as desired.
Finally, suppose that " P Q is a calculus expression. Recall that in our formalism,

each variable occurring in is associated with some basic type B, and in paicular is
taken from a set V. of variables. For each basic type B , let V be the set of
variables occurring in associated with B. Also, let W. V(s) be chosen for each
B such that WsI=]V and such that Ws Wc= whenever B C (even if
h(B)= h(C)). Also, let V".V. W. be a 1-1 function such that
Ws for each B. Finally, let ’ be constructed from by replacing each constant
b Dom (B) occurring in by .(b), and replacing each variable v occurring in by
V(v). It is easily verified that ’ is a (safe) calculus expression mapping h(P) to h(Q).

We now argue that ’(I)=ooo(I) for each fixed II(P). Let Q=
R,..., R.. Then = (,..., .) where ’P R. Let ’= (i,’’’,). It sauces to
show for some fixed II(P) that (I)=oo1(I). Let Rj=BI’’’Bt (or
BI’’’ B" B+I"’" Bt), let . ={(Vl,..., vt)lO} and j ={(V(Vl),..., V(vt))]0’}. Sup-
pose that a is a variable assignment for s V (i.e., a’. V DOM such that
a(v) Dom (B) for each v VS V.). Using an induction on subformulas, it is easily
seen that

(a) is true of (I) iff 0’(.ouOaOV-) is true of L

Since the transformation a aom a V- maps the collection ofvariable assignments
of s V onto the collection of variable assignments of. Ws, we see that

,1(i) ((.(v,,..., v,)() is true of ’(I)))

((("(,),""", "(v,))l(") is true of 1(i)))

((.oO.(V,),..., .oO.(V,))(.) is true of ’(I)))
{.oaV-(V(Vl),""", V(vt))]O(a) is true of #(I)})

(.oO. n-’(V(l), , n(v,))[’(.oO, n-’) is true of

("’(n(v,),""", n(’.))10’("’) is true of I)

(I).
Thus, j(I)= oo1(I), and more generally, ’(I)= oo(I).

INFORMATION CAPACITY OF DATABASE SCHEMATA 885

Acknowledgments. The author expresses his gratitude to the participants of the
USC Seminar on the Theory of Databases, and to Serge Abiteboul, for discussions
which lead to several improvements of this paper. He also thanks two anonymous
referees for careful readings of the paper and numerous helpful suggestions.

REFERENCES

1] A. V. AHO AND J. D. ULLMAN, Universality of data retrieval languages, Symposium on Principles of
Programming Languages, 1979, pp. 110-120.

[la] S. ABITEBOUL AND R. HULL, IFO: A formal semantic database model, Technical Report TR-84-304,
Dept. Computer Science, Univ. Southern California, Los Angeles, April 1984. Preliminary version
appears in Proc. Third ACM SIGACToSIGMOD Symposium on Principles of Database Systems,
April 1984, pp. 119-132.

[2] P. ATZENI, G. AUSIELLO, C. BATINI AND M. MOSCARINI, Inclusion and equivalence between relational
database schemata, Theor. Comput. Sci., 19 (1982), pp. 267-285.

[3] G. AUSIELLO, C. BATINI AND M. MOSCARINI, On the equivalence among database schemata, Proc.
International Conference on Data Bases, Aberdeen, 1980.

[4] C. BEERI, P. A. BERNSTEIN AND N. GOODMAN, A sophisticate’s introduction to database normalization
theory, Proc. 4th International Conference on Very Large Data Bases, 1978, pp. 113-124.

[5] C. BEERI, A. O. MENDELZON, Y. SAGIV AND J. D. ULLMAN, Equivalence of relational database
schemes, this Journal, 10, (1981), pp. 352-370.

[6] P. A. BERNSTEIN, Synthesizing third normalform relations from functional dependencies, ACM Trans.
Database Systems, (1976), pp. 277-298.

[7] S. A. BORKIN, Data Models: A Semantic Approach for Database Systems, MIT Press, Cambridge, MA,
1980.

[8] R. BROWN AND D. S. PARKER, LAURA: A formal data model and her logical design methodology,
VLDB, 1983, pp. 206-218.

[9] M. A. CASANOVA AND V. M. P. VIDAL, Towards a sound view integration methodology, Proc. ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, 1983, pp. 36-47.

[10] D. D. CHAMBERLIN, J. N. GRAY AND I. L. TRAIGER, Views, authorization and locking in a relational
database system, Proc. AFIPS NCC 44, 1975, pp. 425-430.

11 P.P. CHEN, The entity-relationship modeltoward a unified view ofdata, ACM Trans. Database Systems,
1, (1976), pp. 9-36.

[12] W. CHU AND V. T. TO, A hierarchical conceptual data model for data translation in a heterogeneous
database system, in Entity-Relationship Approach to Systems Analysis and Design, P. P. Chen,
ed., North-Holland, Amsterdam, 1980.

[13] E. F. CODD, Further normalization of the data base relational model, in Data Base Systems, R. Rustin,
ed., Prentice-Hall, Englewood Cliffs, NJ, 1972, pp. 33-64.

14], Relational completeness ofdatabase sublanguages, Data Base Systems, R. Rustin, ed., Prentice-
Hall, Englewood Cliffs, NJ, 1972, pp. 65-98.

[15] T. CONNORS, Equivalence of projection-join views by query capacity, Ph.D. thesis, Computer Science
Dept., Univ. Southern California, Los Angeles, 1984; extended abstract appears in Proc. Fourth
ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, March 1985, pp. 143-148.

[16] R. FAGIN, A normal form for relational databases that is based on domains and keys, ACM Trans.
Database Systems, 6 (1981), pp. 387-415.

[17] M. HAMMER AND D. MCLEOD, Database description with SDM: A semantic database model, ACM
Trans. Database Systems, 6 (1981), pp. 351-386.

[18] M. A. HARRISON, Introduction to Formal Language Theory, Addison-Wesley, Reading, MA, 1978.
[19] D. M. HEIMBIGNER AND D. MCLEOD, A federated architecture for information management, ACM

Trans. on Office Information Systems, 3 (1985), pp. 253-278.
[20] R. HULL AND C. K. YAP, The format model: A theory of database organization, J. ACM, 31 (1984),

pp. 518-537.
[21] B. E. JACOBS, Applications ofdatabase logic to the view update problem, Univ. Maryland, College Park,

MD, 1980.
[22] .., On database logic, J. ACM, 29 (1982), pp. 310-332.
[23] L. KERSCHBERG AND J. E. S. PACHECO, Afunctional data base model, Pontificia Universidade Catolica

do Rio de Janeiro, Rio de Janeiro, Brazil, Feb., 1976.
[24] R. KING AND D. MCLEOD, A database design methodology and tool for information systems, ACM

Trans. on Office Information Systems, 3 (1985), pp. 2-21.

886 RICHARD HULL

[25] A. KLUG, Entity-relationship views over uninterpreted enterprise schemas, in Entity-Relationship
Approach to Systems Analysis and Design, P. P. Chen, ed., North-Holland, Amsterdam, 1980,
pp. 52-72.

[26] Y. E. LIEN, On the semantics of the entity-relationship data model, in Entity-Relationship Approach to
Systems Analysis and Design, P. P. Chen, ed., North-Holland, Amsterdam, 1980, pp. 131-146.

[27], On the equivalence of database models, J. ACM, 29 (1982), pp. 333-362.
[28] T.-W. LING, F. W. TOMPA AND T. KAMEDA, An improved third normalform for relational databases,

ACM Trans. Database Systems, 6 (1981), pp. 329-346.
[29] D. MAIER, The Theory of Relational Databases, Computer Science Press, Rockville, MD, 1983.
[30] O. MAIER, A. O. MENDELZON, F. SADRI AND J. O. ULLMAN, Adequacy ofdecompositions ofrelational

databases, J. Comput. Systems Sci., 21 (1980), pp. 368-379.
[31] A. MOTRO, Construction and interrogation of virtual databases, TR-83-211, Univ. Southern California,

Los Angeles, April, 1983.
[32] A. MOTRO AND P. BUNEMAN, Constructing superviews, Proc. ACM SIGMOD International Conference

on the Management of Data, 1981, pp. 56-64.
[33] J. MYLOPOULOS, P. A. BERNSTEIN AND H. K. T. WONG, A language facility for designing database-

intensive applications, ACM Trans. Database Systems, 5 (1980), pp. 185-207.
[34] C. (’DONLAING AND C. K. YAP, Generic transformation of data structures, Proc. 23rd Annual IEEE

Symposium on Foundations of Computer Science, 1982, pp. 186-195.
[35] F. P. RAMSEY, On a problem in formal logic, Proc. London Math. Soc. Ser 2, 30 (1930), pp. 264-286.
[36] R. REITER, Equality and domain closure in first-order databases, J. ACM, 27 (1980), pp. 235-249.
[37] On the integrity of typed first order databases, in Advances in Database Theory, H. Gallair, J.

Minker and J.-M. Nicolas, eds., Plenum Press, New York, 1981, pp. 137-157.
[38] D. SHIPMAN, The functional data model and the data language DAPLEX, ACM Trans. Database

Systems, 6 (1981), pp. 140-173.
[39] J. D. ULLMAN, Principles ofDatabase Systems, 2nd ed., Computer Science Press, Potomac, MD, 1982.

[40] S. B. YAO, V. WADDLE AND B. C. HOUSEL, View modeling and integration using the functional data
model, IEEE Trans. Soft. Engng, SE-8, 6 (1982), pp. 544-553.

[41] C. ZANIOLO, A new normalform for the design of relational database schemata, ACM Trans. Database
Systems, 7 (1982), pp. 489-499.

SIAM J. COMPUT.
Vol. 15, No. 3, August 1986

(C) 1986 Society for Industrial and Applied Mathematics
017

ANALYSIS OF HENRIKSEN’S ALGORITHM FOR THE
SIMULATION EVENT SET*

JEFFREY H. KINGSTON,"

Abstract. An algorithm for the scheduling of events in a discrete-event simulation system, due to J. O.
Henriksen, is presented. An O(n/2) upper bound on the average cost of an insertion during steady-state
operation is derived. Although asymptotically inferior to the logarithmic performance of heaps, the bound
is robust: it has a small constant of proportionality and is independent of the distribution of insertions.

Key words, analysis of algorithms, simulation, priority queues

AMS(MOS) subject classifications. 68C25, 68J05

1. Introduction. At the heart of a general-purpose simulation system (such as
SIMULA, SIMSCRIPT etc.) lies the event scheduler. Its task is to maintain a set of
event notices, each containing a key called the event time, and to implement two basic
operations:

(i) extract_min" the notice with the smallest key is removed; and
(ii) insert(p): event notice p is inserted into its place in the set.

Other operations (cancel, for example) are usually implemented as well.
Since these operations define a priority queue, many well-known data structures

may be used to hold the events. But most of them are rendered unsuitable by the
peculiar demands of the application, which requires fast operation over an enormous
range of operating conditions.

Vaucher and Duval 16] showed that the simple linked list in common use is often
very slow, and suggested two lines of research. The first, indexing, begins an insertion
by using the event time as an index into a table of pointers to sublists [16], [4], [6],
[15]. Although very fast under optimal settings, indexing is flawed by an excessive
sensitivity to its operating parameters [5]. Some recent papers 1], 14] reject indexing
as a general-purpose solution, for this reason.

The second approach consists of algorithms based entirely on comparisons. The
binary search tree [13] and its relative, the p-tree [10], are highly variable in perform-
ance, as shown empirically by Vaucher and Duval 16] and recently confirmed by the
author’s theoretical work [11]. Balanced tree schemes (AVL, 2-3 trees, etc. [13]) are
O(log (n)) but have excessive overhead [10]. The heap [7] is efficient, but may be
unsuitable in some applications (for example, applications requiring successors) 12].
There is also an algorithm by Wyman 18].

Henriksen’s "binary search indexed list" algorithm [8] is an improvement on
Wyman’s. It has been incorporated into the simulation languages GPSS/H and SLAM
[9]. In this paper we study its average-case performance, and derive a robust O(n 1/2)
upper bound.

2. The hold model. Before proceeding to Henriksen’s algorithm, we present the
theoretical model upon which its analysis is based.

Let the current notice be the event notice returned by the most recent extract_min

operation (the current notice is not a member of the event set). The current time is
the event time of the current notice, when first extracted. Simulated time always flows

* Received by the editors April 24, 1984, and in final revised form August 19, 1985.
f Department of Computer Science, University of Iowa, Iowa City, Iowa 52242.

887

888 JEFFREY H. KINGSTON

forwards, so the event time of every notice must equal or exceed the current time. As
the simulation proceeds, the event times increase without bound, but we discount this
by measuring all times relative to the current time.

In a real simulation, the event set is shaped by many repetitions of the operations
given above. No tractable model could encompass the range of possible simulations
that results. But there is a large subset that can be usefully modelled.

procedure hold(X real);
vat current: notice;
begin

current :: extract_rain;

currentl.evtime :--- currentT.evtime + X;
insert(current)

end;

FIG. 1. Pascal implementation of the operation hold (X).

Let the event set contain n notices, and consider the operation hold (X), which
extracts the minimum notice, adds X to its event time, and re-inserts it (Fig. 1). We
form a sequence of operations hold (X), hold (X2),"" by letting X1, X2,’" be
identically distributed random variables with probability density function f(x). This
is the hold model of a simulation. In this paper we require f(x) to be continuous; we
let the cumulative density function of the Xi be

F(x)- f(x) dx

and let

a- E(Xi)= xf(x) dx.

Vaucher [17] has shown using renewal theory [3], that under the hold model the
event set will approach a steady state, and that, immediately after the current notice
is extracted, the relative event time of each of the n- 1 remaining notices is a random
variable distributed as

1- F(x)
g(x) ,

independently of the other notices. Kingston 11] has shown that any simulation that
reaches a steady state in which extract_min operations are much more common than
deletions of other notices, behaves as if operating under the hold model for some
pdff(x). Therefore, the results developed here are applicable to this wide class of
simulations.

Five distributions f(x) will be used as examples (Table 1). They come mostly
from [16] and were chosen to test the algorithms studied there under a wide variety
of conditions.

3. Heariksea’s algorithm. Henriksen’s algorithm [8] is a clever combination of
binary search and list insertion (Fig. 2). The list of event notices is an ordered,
doubly-linked structure with a sentinel at each end. Above it lies a binary search vector.
Each vector entry consists of an event time and a pointer. If this event time is strictly

HENRIKSEN’S ALGORITHM FOR SIMULATION 889

TABLE
The example probability distributions (all have a 1).

Distribution f(x) g(x)

1. Exponential e-" x >- 0 e x >- 0

x
2. Uniform 0-2 0-<x-<2 1-- 0=<x=<2

2 2

0 x>2 0 x>2

3. Uniform 0.9-1.1 0 0=<x=<0.9 0=<x=<0.9

1.1 -x
0.9<x 1.1 0.9< x_- 1.1

0.2 0.2

0 x> 1.1 0 x> 1.1

0.9 0.9x
4. Bimodal, q 2/21 x- q x<= q

q q

0 q<x<=lOOq 0.1 q<x<=lOOq

0.1 0.1x
100q < x -< 101q 10.1 100q < x <- 101q

q q

0 x> 101q 0 x> 101q

8X 4X
5. Triangular x _<- 1.5 x _-< 1.5

9 9

0 x> 1.5 0 x> 1.5

greater than the current time, the pointer leads down to an event notice with that time.
Otherwise the pointer is undefined.

The minimum notice is found as zeroS, rlink, and may be extracted in constant
time without altering the search vector. An insertion at time is made by a binary
search of the vector to find the first entry with time strictly greater than t, then a linear
search to the left along the associated sublist.

0.0 3.2 3.8 4.5 5.1 5.7 6.3 6.9 --]8.38.9o1

(a) A typical configuration of the structure.

zero

(b) The structure of (a) after the operation hold (4.4). One pull operation occurred.

FIG. 2. Henriksen’s algorithm in operation. Here vecsize 4, m 2.

890 JEFFREY H. KINGSTON

If the structure is to be efficient, the sublists must be kept short. Henriksen’s
balancing scheme is a beautiful compromise between cost and effectiveness. As a sublist
is searched during an insertion, a count is kept of the number of notices scanned. If
this count reaches a certain fixed number m (usually four), one vector entry is altered
to point to the notice currently being scanned (Fig. 2b); Henriksen calls this a "pull
operation". The search is then resumed with the count reset to 0.

During an insertion, pull operations at the low end of the vector may cause it to
overflow. If this occurs, the vector size is doubled (for convenience this size is a power
oftwo). In Henriksen’s implementation this necessitates a re-initialization ofthe vector,
an expensive (though rare) operation. The author’s implementation (Fig. 3), by keeping
the vector at the top end of available storage, reduces the cost to the resetting of a
few vector indices.

Conversely, during an extract_rain operation it may be possible to halve the vector
size. This is probably good practice, but it is implemented here more for the theoretical
reasons given in the next section.

In Fig. 3, the arrays ptrvec and timevec hold the vector entries. Procedure
setvec (newsize) sets the vector size to newsize (unless newsize is too large, in which
case the run is aborted), and search (t) returns the index of the first vector entry with
time strictly greater than t. Also given are the two basic operations extract_rain and
insert (p). The structure may be initialised with a vector of length one, containing only
the sentinel.

4. An upper bound on vector scans. As described above, an insertion begins with
a binary search of the pointer vector. In this section we find an upper bound on the
expected number of scans made during this search.

Let c= search (current.evtime) be the vector index of the left-most defined
pointer, where current is defined in Fig. 1. In conformity with the relative origin used
by the hold model, let Ii be the half-open time interval

I timevec c + 1 current evtime, timevec c + i] current evtime).

Thus X I if and only if search (current. evtime + X) c + i; we will also refer to
pointer i, meaning ptrvec [c + i]. The leftmost interval, Io, is called the current interval
and contains 0. The rightmost interval we label I_, so that there are v intervals
altogether; it is of the form Ix,) for some x.

When p. evtime- current, evtime I we will say that event notice p lies in I.
Since the intervals I partition the positive real numbers, every notice lies in exactly
one of them. Let S be the number of notices in interval I, and define a Henriksen
structure to be the v-tuple (So,’", So-l). As the simulation proceeds, the S are
constantly changing; in the steady state, we may treat them as random variables and
define

Pk Prob (Si k).

It is immediate that S-< n- 1 for all i; there is also a useful lower bound:
LEMMA 1. S >- m for all > O.
Proofi By induction. We assume that this condition holds when the simulation

begins (for example, with an empty list, or when v 1). It remains to prove that it is
preserved by the basic operations.

First, deletion of the minimum notice cannot violate the condition, since it resides
in the current interval, Io, about which no statement is made.

Second, an insertion into interval I will either increase S by one (if there is no
pull operation) or reduce it to m (if a pull occurs); in either case S _-> m afterwards.

HENRIKSEN’S ALGORITHM FOR SIMULATION 891

const maxsize 1024; m 4;

type notice record evtime" real;
llink, rlink: notice;

end;

var ptrvec: array[O..maxsize-1] of notice; zero: notice;
timevec" array[O..maxsize-1] of real;
vecsize, leftlim, starti, startj: integer;

procedure setvec(newsize: integer); { set vecsize to newsize }
begin

if newsize > maxsize then abort;
vecsize := newsize; leftlim := maxsize- vecsize;
starti := maxsize vecsize / 2 1; startj vecsize/4;

end;

function search(t: real): integer;
var i, j" integer;
begin

starti; := startj;
while > 0 do begin

if timevec[i] <-- t then i+j else :-- i-j;
:-- j/2

end;
if timevec[i] <-- t then search :--- i+1 else search :=

end;

function extract_rain: notice;
begin

if (timevec[starti] <-- zero.rlink.evtime) and (vecsize > 2)
then setvec(vecsize / 2);

extract_rain :-- zero.rlink;
zero.rlink :--- zero.rlink.rlink; zero.rlink.llink :--- zero

end;

procedure insert(p: notice);
vat i, count: integer; q: notice;
begin

i:--- search(p.evtime); q :-- ptrvec[i].llink; count : O;
while p.evtime < q.evtime do begin

count :-- count+l;
if count m then begin { pull operation }

if -- leftlim then setvec(vecsize * 2);
:-- i-1; count :-- O;

ptrvec[i] :- q; timevec[i] : q.evtime;
end;
q :--- q.llink

end;
p.llink :-- q; p.rlink :--q.rlink;
p.rlink.llink :--- p; q.rlink :- p;

end;

FIG. 3. Pascal implementation ofHenriksen’s algorithm.

892 JEFFREY H. KINGSTON

If there is a pull, Si-1 will be affected, either increasing by Si-m + 1 or (in the case
of a second pull) reducing to m. Hence S-1->-m afterwards, and so on through any
other affected intervals, thus completing the proof.

Let CI(X) be the number of scans made by procedure search during the operation
hold (X). A simple induction shows that

C1(X) log2 (vecsize) for all X.

We know that vecsize >-v, and that vecsize is a power of 2. But the implementation
described in this paper, by halving vecsize whenever possible during an extract_rnin

operation, also guarantees that v > vecsize/2, so we must have

(1) E[CI(X)] log_ (vecsize) [log2 v].

Now by Lemma 1, at least m notices lie in each of 11, , Io-1, making at least m(v- 1)
notices altogether; since there are n 1 notices in the list, we must have m(v 1) _<- n 1,
and

n-1
v =<+1,

m
so by (1),

(2)

and this is the required bound on vector scans.
Informally, when insertions are spread evenly through the list, there is little

opportunity for large numbers of notices to accumulate in any interval, since insertions
there will cause pull operations which redistribute the notices. In such cases, there are
many intervals and the bound is often achieved (see Fig. 4).

10

50 100 200 500 1000

FIG. 4. The bound on E[C(X)] given by (2), as a function of n, with observations ofE[Ci(X)] for the
five example distributions. The observations are averages over 1,000,000 hold operations; m 4.

On the other hand, when insertions are absent from a significant portion of the
list, large numbers of notices may gather in one interval, thereby reducing the total
number of intervals. For example, with distribution 3, about 90% of the notices lie in

HENRIKSEN’S ALGORITHM FOR SIMULATION 893

Io (which contains [0, 0.9]), because, in the total absence of insertions into this range,
there are no pull operations to break up this accumulation. We could ignore these
notices and replace (n-1) by (n-1)/10 in (2) in this case.

5. An upper bound on sublist scans. The analysis of sublist scans is considerably
more complex than that of the vector scans presented in the previous section. Here,
we must look in detail at the way notices are distributed among the intervals, and at
the way insertions are performed.

In doing so, we will make the following reasonable assumptions. It is clear that
an insertion at time X (relative to the current time) has a purely local effect on the
structure, confined to an unknown (but generally small) number of intervals near X,
in which pull operations occur. Thus, over this neighbourhood of X affected by the
insertion, we may assume that, for sufficiently large n,

(i) y(x) and g(x) are constant; and
(ii) the random variables Si are identically distributed.

The first is by the continuity of f(x) (and hence g(x)); the second is by symmetry:
there is nothing to distinguish neighbouring intervals Ii from each other.

Let C2(X) be the expected number of scans performed by the operation hold (X)
during this second, or sublist phase of the insertion. Since X is distributed as f(x),
the expected number of sublist scans under the hold model is

(3) E[C2(X)]= C2(x)f(x) dx.

Our aim is to find an upper bound to C2(X), which by substitution in (3) will bound
E[C2(X)]. We begin by relating C2(X) to the Si.

LEMMA 2. Let X lie in the neighbourhood of Ih. Then

E[SEh]/ E[Sh] + 1
(4) C2(X)

2

Proof. Suppose there are K intervals in the neighbourhood of Ih. By assumption
(ii), there are about KE[Sh] notices altogether in this neighbourhood, and hence
KE[Sh] "slots" available for X to lie in. Since Kpj intervals contain exactly j notices,
there are jKpj notices (and hence slots) lying in intervals Ik such that Sk =j; so,
assuming the slots are of equal width,

Prob (X I s.t. Sk j)=
KE[Sh] E[Sh]"

An insertion into an interval Ik that contains j notices, will be made with equal
probability into any one of the j available slots; on average, (j + 1)/2 scans will be
required. Summing over j,

C2(X) Z j + 1

=,. 2
Prob (X 6 Ik s.t. Sk =j)

E j+ 1 jp E[S2n]/E[Sn]+ 1

j=m 2 E[Sh] 2

thus completing the proof.

5.1. The main theorem. We now proceed to the main theorem, in which we seek
to combine an algebraic description of the way hold (X) operations are made, with
our knowledge that, over time, these operations act to maintain the steady state.

894 JEFFREY H. KINGSTON

Let S (So,’", So-l) be a Henriksen structure, and let X be a random variable
with pdf f(x), representing a hold (X) operation. The pair (S, X) is our model of a
random hold (X) operation into a Henriksen structure.

When this operation (S, X) occurs, some vector pointers near the insertion point
may be moved back through the list by pull operations. We are interested in the effect
of the insertion at X upon a typical pointer, say pointer h. Let Nh (S, X) be the number
of notices that pointer h is moved across (if any) during an insertion at time X
(see Fig. 5).

0 2 4 5 63
X

FIG. 5. Example of Li, R and Nh(S, X). This structure is from Fig. 2a after the operation extract_rain,
so the current time is 3.2. As before, vecsize =4, m 2; also v 3, S (0, 3, 5). The graph is Nh(S, X) for
h O. It indicates that an insertion in the absolute range 5.7 <-_ X < 6.3 will cause pointer O, now pointing to
the notice with time 3.8, to be movedfour notices to the right; while an insertion in the absolute range 3.8 <- X < 4.5
will cause pointer 0 to move one notice to the right. All other insertions leave pointer 0 unaffected.

LEMMA 3. Let Xh lie in the neighbourhood of Ih. Then

(5) E[Nh(S, X)] ag(xh).

Proof. As simulated time advances, the endpoints of Ih gradually decrease (recall
that all times are measured relative to the current time). This effect is offset by occasional
pull operations on pointers h and h- 1, which cause the endpoints of Ih to increase
suddenly. The existence of a steady state implies that this fluctuation of Ih will be
about some steady-state value. We have assumed that g(x) is constant over this range
of fluctuation, say with value g(Xh).

The probability of an insertion occurring to the right of Ih is therefore 1- F(Xh)
ag(xh). If a large number, say K, of hold (X) operations are performed, about Kag (Xh)
notices will be inserted to the right of Ih. At the same time, pointer h will be moved
to the right across KE[Nh(S, X)] notices, where E denotes expectation over S and
X. But in order to maintain the steady state, these must be equal, thus proving (5).

This lemma expresses our knowledge of the structure being in a steady state. We
now make a detailed study of the insertion process, in order to determine E[Nh(S, X)]
in another way.

First, we construct a pdf for (S, X). S and X are independent, but in order to
make the analysis tractable we assume in addition that the Si are mutually independent

HENRIKSEN’S ALGORITHM FOR SIMULATION 895

also. This leads immediately to the joint, mixed pdf

Prob ((S, X) ((ko, ", ko-,), x)) Pko’’" pko_,f(x) dx

and thus

(6) E[Nh(S, X)] E Nh((ko, k,_,), x)f(x) dx. Pko Pk.,_,.
ko=l ko-=l =0

Next we investigate Nh((ko,’", ko_),x). Suppose x/ for some i. If i<=h,
pointer h is unaffected by an insertion at x, so Nh((ko," ", ko-1), x) =0. For i> h the
case is more complicated. I can be divided into two subintervals L and R, defined
as follows" R, the right-hand part of the interval/, contains those insertion points x
where an insertion will cause less than i- h pull operations, therefore leaving pointer
h unaffected; hence Nh((ko,’", k_), x) =0 for x R. In L, the remainder of the
interval, insertions are sufficiently expensive to cause at least i- h pull operations (see
Fig. 5). For all x L, an insertion at x will cause pointer h to be moved across

Nh((ko, ko-), x)= E (k- m) notices (x L,).
j=h/l

This is true because pointer h moves across exactly those notices expelled from
Ih/l, ", Ii, and there are kh/ +" + ki notices in these intervals before the insertion,
but only m+...+m afterwards. Now summing over the regions Li (where
Nh((ko, ", ko-), x) is nonzero),

Nh((ko, k,_,), x)f(x) dx
=0

f Nh((ko,’",ko-,l,x)f(x) dx
i=h+l L

(7) Nh((ko," ", k,_), x,) [f(x) dx for any x, L,
i=h+l JL

i=h+l
Nh((ko, ko-,), x,)lL, if(x,)

(k-m)lL,lf(x,)
i=h/l j=h/l

where Iz, is the length of the time interval L,; this approximation is valid since Iz,
is small enough to allow us to assume that f(x) is constant over L.

Now L contains all those points x I where an insertion causes at least i-h
pull operations, i.e. those points to the left of the rightmost (i-h)m notices of Ii.
There must, therefore, be max (k- (i-h)m, 0) notices in L, and since the density of
notices near x is (n-1)g(x) notices per time unit, the length of L is approximately

It, =max (ki-(i- h)m, O)
(n- 1)g(x,)

Substituting this into (7) gives

max(k,-(i-h)m,O)
Nh((ko, go_,), x)f(x) dx _, (k- m) f(x,),

=0 i=h+l j=h+l (n 1)g(xi)

896 JEFFREY H. KINGSTON

and now by (6)

E[Nh(S,X)]= E
ko=l kv_=l i=h+l j=h+l

max (k,-(i- h)m, O).f(x,)Po
(n-I)g(x,)

f(xh) E E (ks- m) max (k,- (i- h)m, O)p Pko_,,(n 1)g(xh) i=h+ j=h+l ko=l kv_l--1

interchanging the order of summation and noting that Xh is in the neighbourhood of
xi. By Appendix 1, this simplifies to

f(Xh)
E[Nh(S, X)] >-

6m_(n_ 1)g(Xh)[E[Sh + 2m]E[(Sh m)3]

+ 3m2E[(Sh m)2] m2E[Sh]E[Sh m]]

and by (5) we have proven
THEOREM 1. Let X lie in the neighbourhood of Ih. Then

E[Sh + 2m]E[(Sh m)3]+ 3m2E[(Sh m)U] m2E[Sh]E[Sh m]

6m2(n 1)ag2(X)
f(x)

This theorem is our main result, representing our knowledge of the inner workings
of Henriksen’s algorithm. The two low-order terms on the left-hand side could be
omitted, except that there is no absolute guarantee that their sum will be positive.
Also, by Appendix 1, the theorem could be expressed as an approximate equality;
however, this is not necessary for our purposes.

5.2. Application of Theorem I to sublist scans. In order to use Theorem 1, we must
relate the cube of Sh appearing there to the square appearing in (4).

LEMM 4.

E[(Sh- m)3]> [E[(Sh- m)2]] 2 E[(Sh- m)2]
E[Sh m] E[Sh m]

and
E[Sh- m]

>= E[Sh m].

Proof. These inequalities are consequences of the Cauchy-Schwarz inequality [2],
which states that, for any two sequences (u) and (v) of positive numbers,

u,v <-- E u E v

The first inequality is immediate from the substitution

[:i(m)3pi]1/2 [(!=_m2p_i 31/2.u, -i- m)p, v,= E(i-m)piJ
and the second from

u,=[(i-m)2p,] 1/2, v,=p/2.
We are now able to bound C(X). Dividing Theorem 1 by E[Sh + 2m]E[Sh m],

E[(Sh m) 3m E[(Sh m)2] m2E[Sh]
E[Sh m] E[Sh + 2m] E[Sh m] E[Sh + 2m]

6m2a(n-1)g2(X)
E[Sh m]E[Sh + 2m]f(X)’

HENRIKSEN’S ALGORITHM FOR SIMULATION 897

[E_.[(_@h Z)2]12 3m2

+ [E[Sh-m]]-
E[Sn m] J E[Sa + 2m]

6m2a(n-1)g-(X)
E[Sn m]E[Sh + 2m]f(X)

m2E[Sn]
E[Sn + 2m]

by Lemma 4. Now letting s E[Sh] and rearranging,

E[(Sn m)2]
_< r 6m2a(n- 1)g2(X)

s- m L(s- m)(s + 2m)f(X)
m2s
s+2m

E[S2h 2mSh + m-]
< r6m2(s m a(n-1)g2(X)

f(X)
m2(s-m)2

+
s(s+2m)

3m2(s-m)31/2

E[SEh]
2m+

m2 [6mZ(s-m) a(n-1)g2(X)] 1/2

s s2(s+2m) f(X)

[(m2(s-m)2 3m2(s_.zm)3] ’/2

+ max 0, s(s+2m)- s2(s+2m)]

using the inequalities (a+b)l/2<-a/2+b 1/2 if a, b>_-0; and (a+b)I/2<-a /9- if a_->0

and b < 0. Now s _-> m by Lemma 1, and given this condition we can show by elementary
calculus that, for all s,

-<0.6267 and max 0,
s(s+2m) +s2(s+2m) s2(s 2m s

Therefore

E[S2h] <_O.6267[a(n-1)g2(X)] 1/2

E[Sn] f(X)
+ 2m,

and so by Lemma 2 we have established
THEOREM 2. The expected number of sublist scans, C2(X), occurring during the

operation hold (X) is bounded by

C2(X) <-O.3134[a(n-1)g2(X)] 1/2

1/2.
f(X)

+m+

Figure 6 shows some typical observations of C2(X) along with the corresponding
bounds. It seems Theorem 2 is often quite close, although the inequalities used to
prove Lemma 4 give no assurance that this will always be the case.

We have at once that the expected number of sublist scans is

E[C2(X)] C2(x)f(x) dx

(8)
--0.3134[a(n -1)]1/2 g(x)f(x) ’/2 dx + m +1/2.

This inequality is ofinterest in its own right, and is tabulated for the various distributions
in Table 2; but even more remarkable is the following distribution-independent bound.

THEOREM 3. For any continuous pdf f(x),

E[C2(X)] <- 0.2216(n 1)1/2 _[_ m +1/2.

898 JEFFREY H. KINGSTON

30

20

0 tl "’2 ’3
X

(a) Exponential distribution

3o

20

1o /+4"1"//4//++///+++/4///4.1.+4

(b) Uniform 0-2 distribution

50

40

30

0

0
0 0.5 1.5

X

(C) Triangular distribution

FIG. 6. The bound on C2(X) given by Theorem 2, with observations ofC2(X),for the case n 500, m =4.
Each data point is the average over 1,000,000 hold operations. Distributions 3 and 4 provide only a tiny range

of useful data and have been omitted.

HENRIKSEN’S ALGORITHM FOR SIMULATION 899

TABLE 2
Upper bounds given by (8).

Distribution Bound on E[C2(X)] given by (8)

1. Exponential

2. Uniform 0-2

3. Uniform 0.9-1.1

4. Bimodal

5. Triangular

0.2089(n 1)1/2+ m+ 1/2
0.2216(n- 1)1/2+ m + 1/2
0.0701(n- 1)1/2+ m + 1/2
0.0520(n 1)1/2+ m+ 1/2
0.2068(n- 1)1/2+ m + 1/2

Proof. By the Cauchy-Schwarz inequality for integrals,

g(x)f(x) 1/2 dx= g(x)l/2[g(x)f(x)]l/2 dx

<-[f? g(x) dx]UE[f? g(x)f(x) dx] 1/2

[_ag2(x) 00] ,/2

2 o

=(2a)-u2.
Substitution into (8) immediately yields the theorem.

This bound on the integral is achieved by distribution 2, and hence Theorem 3 is
the strongest distribution-independent statement obtainable from Theorem 2.

6. Conclusion. Although the relative cost of a vector and sublist scan is
implementation-dependent, it seems worthwhile to add (2) to Theorem 2 to obtain a
bound on the expected cost of the operation hold (X)"

c(x)=c,(x)+c(x)

< I-log2 (n- 1)-log2 (m11+0.3134[a(n- llg2(X)] u2
J +m+1/2;

and thus

E[C(X)] <- [log2 (n- 1)-log2 (m)l+O.3134[a(n- 1)] 1/2 g(x)f(x) 1/2 dx+ m+1/2;

and finally, from (2) and Theorem 3 the distribution-independent bound

(9) E[C(X)] <- [log2 (n- 1)-log2 (m)] +0.2216(n- 1)1/2+ m+1/2.
We have not mentioned the cost of pull operations, but they are not expensive,

and, if m -_> 4, will happen infrequently by comparison with sublist scans (the expected
number of pull operations occurring during the operation hold (X) is less than
C2(X)/m).

The bound given by (9) is plotted in Fig. 7 as a function of n, together with
observations of E[C(X)] for the example distributions. Distributions 1, 2 and 5 come
closest to the bound, which in these cases is quite good.

The methods of this paper have not proven applicable to the development of
lower bounds, principally because Lemma 4 has no converse. However, the standard

900 JEFFREY H. KINGSTON

argument involving entropy 13] can be adapted to produce a distribution-dependent,
O(log (n)) lower bound on E[C(X)] [12].

Although the possibility of Henriksen’s algorithm being O(log (n)) remains open,
the author conjectures that it is not. The low proportionality constants account
sufficiently for the logarithmic appearance of test runs, and individual O(n 1/2)
sequences of hold operations are not difficult to discover.

To conclude, we point to several advantages that Henriksen’s algorithm has over
other event list algorithms.

First, it is simple, not just because of its modest code length, but because there
are no difficult dynamic adjustments to be made (as in the Indexed List algorithm
16]), and because the notice ordering is made explicit by the basic linked list underlying

the structure.
Second, according to McCormack and Sargent’s empirical study [14], Henriksen’s

algorithm is fast, even for large n, and by (9) this is true for a wide range of simulations.
In addition, the algorithm will run very fast on some distributions (Fig. 7).

20

10

0
50 100 200 500 1000

FIG. 7. The distribution-independent bound on E[C(X)] given by (9) as afunction ofn, with observations

of E[C(X)] for the five example distributions, m =4.

Appendix 1. We complete the proof of Theorem 1. Let

z= (kj-m)max(k,-(i-h)m,O)Pko’..pk_,.
i=h+l j=h+l ko=l kv_l=l

We are to prove

1
2 >---[E[Sh -I- 2m]E[(Sh m)3]+ 3m2E[(Sh m)2] m2E[Sh]E[Sh m]].

6m2

Divide the sum z into two parts zl (for the case j i) and z2 (for j i):

zl= 2 (k, m) max (k, (i h)m, 0)pko...pk_,
i=h+l ko=l kv_l

i Y (k,- m) max (k-(i- h)m, O)pk,,
i=h+l ki=l

HENRIKSEN’S ALGORITHM FOR SIMULATION 901

X X’" X
i=h+l j=h+l ko=l kv_l=l

(k-m) max (ki-(i-h)m, O)Pko Pkv_l

(kj- m) max (k,-(i- h)m, O)pk,pkj
i=h+l j=h+l ki=l kj--1

X X E[Sj-m]max(k,-(i-h)m,O)pk,
i=h+l j=h+l ki=l, (i-h-1)E[Sh-m]max(k,-(i-h)m,O)pk,
i=h+l ki=l

since E[S m E[Sh m (/ is in the neighbourhood of Ih). Now

Z=Zl+Z2 ., [k,-m+(i-h-1)E[Sh-m]]max(k,-(i-h)m,O)pk,
i=h+l ki=l

v-h

E E [j-m+(i-1)E[Sh-m]]max(j-im, O)p
i=1 j=l

since max (k- (i- h)m, O) is nonzero only near Ih, and the Si are identically distributed
in this neighbourhood;

v-h

E E [J-m+(i-1)E[Sh-m]](j-im)pi
i=1 j=im+l

v--h

E E [j+im-m+(i-1)E[Sh-m]]jpj+im
=1 j=l

E E [j2+j(i-1)E[Sh]]P+,;
i=lj=l

now using the axis transformation (i,j)(u, v, w), where i= w, j= m(u-w)+v,

2 2 2 [[m(u-w)+v]+[m(u-w)+v][w-1][Sh]]P+

With some effort we can show, letting a mu + v, that

[m(u-w)+vl2>-6-E2m(a-m)3+3m2(a-m)2],
W-----1

and

[m(u-w)+v](w-1)E[Sh] >-
w-’l

E[Sh])3 mE(a6m: [(a-m -m)]

(these inequalities are also approximate equalities). Therefore

z >---m E o [2m(oz m)3 + 3m:(oz m)2 + E[Sh][(oz m)3- mE(a m)]]P,,,,+,
u=l =1

6m: oz=m+l
[E[Sh + 2m](ct m) + 3m2(a m)2- m2E[Sh](a m)]p,

1

6m2 [E[Sh + 2mJE[(Sh- m)3]+ 3m2E[(Sh- m)2] m:E[ShJE[Sh mJ].

902 JEFFREY H. KINGSTON

Acknowledgments. Thanks go to Drs. Allan G. Bromley and Norman Y. Foo for
many valuable discussions, and to the anonymous referee for many improvements in
presentation.

REFERENCES

[1] JOHN H. BLACKSTONE, GARY L. HOGG AND DON T. PHILLIPS, A two-list synchronizaton procedure
for discrete event simulation, Comm. ACM, 24 (1981), pp. 825-829.

[2] R. COURANT AND F. JOHN, Introduction toCalculus and Analysis, Vol. 2, John Wiley, New York, 1974.
[3] D. R. Cox, Renewal Theory, Methuen, 1962.
[4] D. DAVEY AND J. G. VAUCHER, Self-optimizing partitioned sequencing setsfor discrete event simulation,

INFOR, 18 (1980), pp. 41-61.
[5] R. ENGELBRECHT-WIGGANS AND W. L. MAXWELL, Analysis of the time indexed list procedure for

synchronization of discrete event simulations, Management Sci., 24 (1978), pp. 1417-1427.
[6] W. R. FRANTA AND K. MALY, An ecient data structure for the simulation event set, Comm. ACM,

20 (1977), pp. 596-602.
[7] G. H. GONNET, Heaps applied to event driven mechanisms, Comm. ACM, 19 (1976), pp. 417-418.
[8] J. O. HENRIKSEN, An improved events list algorithm, Proc. Winter Simulation Conference, December

1977, pp. 547-557.
[9], Event list managementma tutorial, Proc. Winter Simulation Conference, 1983, pp. 543-551.
10] ARNE JONASSEN AND OLE-JOHAN DAHL, Analysis of an algorithm for priority queue administration,

BIT, 15 (1975), pp. 409-422.
11] J. H. KINGSTON, Analysis of tree algorithms for the simulation event list, Acta Informatica, 22 (1985),

pp. 15-33.
[12], Analysis of algorithms for the simulation event list, Ph.D. thesis, Basser Dept. of Computer

Science, University of Sydney, July 1984.
[13] D. E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
14] W. M. MCCORMACK AND R. G. SARGENT, Analysis offuture event set algorithms for discrete event

simulation, Comm. ACM, 24 (1981), pp. 801-812.
[15] E. D. ULRICH, Event manipulation for discrete simulations requiring large numbers of events, Comm.

ACM, 21 (1978), pp. 777-785.
[16] J. G. VAUCHER AND P. DUVAL, A comparison of simulation event list algorithms, Comm. ACM, 18

(1975), pp. 223-230.
17] J. G. VAUCHER, On the distribution of event times for the notices in a simulation event list, INFOR, 15

(1977), pp. 171-182.
[18] F. P. WYMAN, Improved event-scanning mechanisms for discrete event simulation, Comm. ACM, 18

(1975), pp. 350-353.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
001

THE RISCH DIFFERENTIAL EQUATION PROBLEM*

J. H. DAVENPORTt

Abstract. We propose a new algorithm, similar to Hermite’s method for the integration of rational
functions, for the resolution of Risch differential equations in closed form, or proving that they have no

resolution. By requiring more of the presentation of our differential fields (in particular that the exponentials
be weakly normalised), we can avoid the introduction of arbitrary constants which have to be solved for later.

We also define a class of fields known as exponentially reduced, and show that solutions of Risch
differential equations which arise from integrating in these fields satisfy the "natural" degree, constraints in
their main variables, and we-conjecture (after Risch and Norman) that this is true in all variables.

Key words, symbolic integration, structure theorems, differential algebra

AMS(MOS) subject classifications. Primary 68C20; secondary 12H20

1. Introduction. In his major paper on the integration of functions in closed form,
Risch [1969] showed that the integration of functions involving exponentials was
intimately linked with the resolution of ordinary differential equations of the following
type:

(1) y’+fy=g,

(henceforth called "Risch differential equations"), where f and g are known and lie
in a given differential field F, and the problem is to determine y in that differential
field satisfying the equation. For example, the well-known unintegrability of e-x2 is
equivalent to the insolubility of y’-2xy 1 for rational functions y, and the fact that
2x e-x: e is equivalent to the fact that 1 is a solution to y’ 2xy 2x. We note

that, if exp (-f) does not belong to F, there can be at most one solution to this
equation. This condition is satisfied for the equations that arise from the integration
of g exp (f), and one of our concerns will be to ensure that it remains true throughout
the proof. Our proof, like Risch’s [1969], will proceed by induction on the structure
of F, which we allow to be a transcendental extension of the rational functions by a
series of logarithms and exponentials. We note that the question of algebraic functions
is treated, by a slight generalisation of Risch’s argument, in Davenport [1984].

In order for the induction argument in Risch 1969] to work, Risch had to consider
a more general form, viz.

(2) y’ +fy ’, c,g,,
i=1

where the gi are members of F and the ci are unknown constants. We do not need
this complication for our recursion, and so we will restrict ourselves to equations of
the form (1). Should it be necessary to consider equations of the form (2) (as in Cherry
[1983]), the mechanisms developed here can be generalised readily to such equations.

Our approach is similar to Risch’s [1969], inasmuch as it is recursive in the
structure of the differential field, regarding y as a rational function in its principal

* Received by the editors September 1, 1983, and in revised form June 12, 1985.

" School of Mathematics, University of Bath, Bath BA2 7AY, England.

903

904 J.H. DAVENPORT

indeterminate O, whose coefficients are determined by recursion. The simplest way of
expressing the difference between his methods and ours is to look at the various
canonical representations for rational functions, where for definiteness we consider a
rational function f(x) F(x), the field of rational functions of x with coefficients in
F. Risch [1969] chooses essentially the simplest

where f, and fa are relatively prime members of F[x], the ring of polynomials with
coefficients in F. If one can determine Yd, then (1) is reduced to a purely polynomial
problem, and f, can be determined.

We choose one of the following two representations (3) and (4) (depending on
the differential nature of x). The first representation is

(3)
(x)

f(x) =fo+fp+(x) +T (x),ja

where fo, (known as the "x-free’’1 part off) belongs to F,

L+(x) 2 f,x
i=1

is the "polynomial part" off, and fn and fd are relatively prime elements of F[x] with
the additional constraint that degree (f,) < degree (fd). f,,/fd is then a proper fraction,
known as the "fractional part" off, and sometimes written fy. The second representation
is similar, being

(4) f(x) =fo +fp_(x) +f+(x) +f. (x)
f(x)’

where in addition to the definitions above, we have that

-1

L-(x)= 2 f,x’

is the "negative polynomial part" of f, and that x does not divide fd. We will refer to
n as the degree of fp_. f,,/fd is still a proper fraction, known as the "fractional part"
of f, and again may written fy. We note that decompositions of type (3) add, in the
sense that, if a b + c, then af by + cy etc., and the same is true for decompositions
of type (4). It does not make sense to mix the two types.

Our overall strategy will be to express each of f, g and y in (1) in representation
(3) (or representation (4) if x is an exponential), and then to determine:

a) the partial fraction decomposition of Ys by considering the partial fraction
decompositions ofJ and gy;

b) yp/ by considering fp+ and gp/;
c) (if x is exponential) yp_ by considering fp_ and gp_;
d) (if necessary) Yo by recursion on fo and go.

The word "constant" has a different meaning in differential algebra, and hence we use this, somewhat
clumsy, locution.

RISCH DIFFERENTIAL EQUATION PROBLEM 905

Another way of looking at the difference between our method and Risch’s is to
observe that, if f= 0, (1) reduces to the problem y g. In the special case that F is
just a field of rational functions, Risch’s method reduces to solving a set of linear
equations for the numerator of g, while ours reduces to Hermite’s [1872] method of
integration via partial fractions.

2. Degree bounds. One of the major problems of Risch differential equations is
that of bounding the size of the solution. To see that this is nontrivial, consider the
equation

The solution to this equation is

X 5X4 - 20X -60x2 + 120x 120

X

However, this equation is not a particularly useful one to solve, since it arises from
the integration problem ex/5gx, which might be more clearly expressed as xSex.
Not only is the solution to (5) much larger than we would expect, it has a denominator
even though the right-hand side of (5) does not.

In order to obviate these problems, we shall only consider a subset of the Risch
differential equations--those in which f is weakly normalised. An element f of a

differential field D(q) is said to be weakly normalised with respect to q if:
a) it has an integral which is elementary over D();
b) no logarithm whose argument depends on occurs linearly in it with a positive

integer coefficient, where the integral is written so that the argument of any logarithm
not in D() is a square-free polynomial (with respect to , and with coefficients
belonging to D);

c) the sum of the coefficients of the logarithms occurring linearly in the integral,
weighted by the degrees in of their arguments, is not a negative integer.

Part (b) is weaker than Cherry’s [1983] definition of normalised, which also rules
out fractional coefficients greater than 1. Even our definition is in fact slightly stronger
than we really need, but the precise condition is fairly messy to formulate. Part (c) is
somewhat bizarre, but is equivalent to saying that, if the integral is written in terms
of 3 1 /, then log q3 does not occur with a positive integer coefficient. This substitution
is used in Davenport [1984] to give an algorithm for Risch differential equations in
algebraic extensions of K[z].

The implications of condition (c) are somewhat complex. Suppose that is a
primitive over D, i.e. that ’ D. Given an element f of D(), j is a proper fraction:

f p/q D(), where p j--o Pj and q --0 q. We write f for P/1-1/q/1, noting
that this is zero if m < n-1. We observe that this too is additive: (f+ g)=f+ goo.
Furthermore, if f is a proper fraction, (f’) (fo)’.

LEMMA 2.1. Iff is weakly normalised with respect to a primitive , then fo can
not be written in the form g + No, where g D and N is a negative integer.

Proof. By Liouville’s theorem (Risch [1969]), we can write

ci log Pi(P + , ci log Pi,f= hp+ -b hod-ha i=k+l

906 J.H. DAVENPORT

where the C are constants, the pi(o)(1 <- <- k) are monic polynomials of degree ni in
DIgs], and the pi(k< i<= l) are elements of D. Differentiating, and decomposing
according to (3),

J]=(hf)’+ cip.
i= Pi

Now, since Pi is a monic polynomial in o of degree Hi, (pl/p)oo= nio’+p.,,_l, where
p q", + .i"’__q pi.jqJ. Therefore

i.e.

f h)’+ cn, q’ + c,p,,n,-1
i=1 i=1

;f=c+h+,=l ciPi,,,i_l+(i= cini)p,
where c is a constant of integration, h and p,,,_ D, and condition (c) says that the
term in parentheses is not a negative integer.

From the point of view of integrating in terms of elementary functions, there is
no real problem with the restriction to weakly normalisedfi A Risch differential equation
(1) arises from the integration problem gO", where 0 e h, and n is an integer (which
may be negative). This implies that f= nh’, thus automatically satisfying part (a) of
the definition of weakly normalised. If part (b) is not satisfied, so that nh contains a
summand of the form k log r/, then we rewrite the original integration problem as

k nh k log r/gr/ O, where t e If part (c) is not satisfied, life is not quite so simple, as
we see from the example of exp (-1/2 log (x2+ 1)+ I/x), where bringing the -1/2 log (x-+
1) out of the exponential means that the integrand is no longer expressed in a purely
transcendental fashion, since we have generated a ,/x-+ 1. However, we can transform
the exponential into

exp (1/2 log (x2 + 1 + 1 / x)
X2"[1

which is weakly normalised and expressed purely in terms of transcendental functions.

3. Statement of results. This paper will prove results equivalent to part (b) of the
Main Theorem of Risch [1969].

MAIN THEOREM. Let F K (z, 01,’’’, 0,,), where K is a field of constants which
is finitely generated2 over Q, z is transcendental over K and a solution of z’= 1, each O
a monomial over K(z, 01,"’, Oi-1).

(a) Let f F. Then one can determine in a finite number of steps whether there are

Vo F, v KF, i= 1,. ., m and c, ., cm in K such that

f= Vo+ ci log vi
i=1

If they do exist we can find them.
(b) Let f, gi i= 1,..., m be elements ofF. Then one can find, in a finite number of

steps, hl,..., hr in F and a simultaneous set S of linear algebraic equations in m + r

This is Risch’s original wording. In fact one needs the stipulation "explicitly finitely generated" for
the theorem to be true (Davenport and Trager [1981]).

RISCH DIFFERENTIAL EQUATION PROBLEM 907

variables, with coefficients in K, such that (2) holds for y F and ci elements of K iff
y-

__
yh where y are elements ofK and c, ., c,, y, ., yr satisfy S.

We refer to (a) as being able to solve the integration problem for F, and to the
variant of (b) which results from using (1) instead of (2), viz. being able to determine
if there is a y such that y’+fy-g, as being able to solve the Risch o.d.e, problem
for F.

We shall prove the following three theorems, which correspond to the base case
part (b) of the induction in the Main Theorem, and to the cases On logarithmic and
On exponential in the inductive part (b) argument. First, however, we need some
notation and conventions. Throughout this paper we assume that D is a differential
field of characteristic 0, explicitly finitely generated over Q. This implies that all the
usual polynomial and rational function operations, including the taking of greatest
common divisors, can be performed over finite extensions of D. Since D is explicitly
finitely generated, factoring of polynomials can also be performed (Davenport and
Trager [1981]). We always use for the differentiation operator of D. We assume that
K is the field of constants of D, that is the set of elements k such that k’= 0. The
elements of K are called constants. We say that O is a monomial over D if O is
transcendental over D, D(O) and D have the same field of constants, and either:

a) there is a nonzero f in D such that O’=f’/f (informally, O log f, but this
notation can lead to problems of choice of constant of integration etc.--see the
discussion in Risch [1969]);

b) there is an f in D such that O’=f’O (informally, O- exp f, but this notation
can equally lead to problems).

We shall often ask questions of the form "Is exp h a member of D?" or "What
is the representation of h as a member of D(O)?". Such questions can be answered,
if D is a field of elementary functions with K as its field of constants, as a consequence
of the Structure Theorems (Rosenlicht [1976], Caviness [1977]).

THEOREM 1. Let z be transcendental over K and a solution to z’-1, f a weakly
normalised nonzero element ofK (z), and g an element ofK (z). Then there is an algorithm
to determine if there is a y in K z) such that y’ /fy-- g. If such a y exists, the algorithm
finds it.

This theorem says that we can solve the Risch o.d.e, problem for K(z).
THEOREM 2. LetD be a differentialfield such that there are algorithmsfor integration

and the solution of Risch differential equations over D, 0 a logarithmic monomial over
D, f a weakly normalised nonzero element of D(O), and g an element of D(O). Then
there is an algorithm to determine if there exists a y in D(O such that y’ +fy g. Ifsuch
a y exists, the algorithm finds it.

THEOREM 3. Let D be a differentialfield such that there are algorithmsfor integration
and the solution of Risch differential equations over D, 0 an exponential monomial over
D, f a weakly normalised nonzero element of D(O), and g an element of D(O). Then
there is an algorithm to determine if there exists a y in D(O such that y’ +fy g. Ifsuch
a y exists, the algorithm finds it.

4. Proof of Theorem 1. Throughout this section, f, y and g are assumed to be
decomposed according to (3). The proof proceeds via a series of reductions until we
end up with an equation of the form (1) where we know that y has to be a constant.
If fig is not a constant, we can then deduce that the Risch differential equation was
not soluble. Such an example occurs in e which gives us the Risch equation
y’/ 2xy 1, to be solved for y K (x). We may also remark that taking traces shows
that there is no advantage in working with an algebraic extension of K.

908 J.H. DAVENPORT

LEMMA 4.1. Let p be an irreducible polynomial of K[z]. Ifp divides neither fd nor
gd, then p does not divide Yd.

Proof. Suppose pnl[yd. It then follows that pn+ divides the denominator of y’,
while at most p" divides the denominator of fy. Hence p+l divides the denominator
of y’ /fy, contradicting the fact that p does not divide gd.

The next result lets us deal with the "easy" part of gd, that part which does not
have a factor in common with fd.

LEMMA 4.2. For a Risch differential equation (1) over K(z), either there is a
substitution y fi + Y which reduces it to fi’ +ffi- g", where ,d contains no irreducible
factor that does not divide fd, or the equation is insoluble. Furthermore, given fand g, we
can determine which and calculate Y if it exists.

Proof. Write gd Pq, where p is the product of all the irreducible factors of gd

that divide fd, and q is the product of all the irreducible factors of gd that do not. We
can then perform a partial fraction decomposition, writing

gn a b

gd P q

We proceed much as in Hermite integration of rational functions, performing a
square-free decomposition of q,

q= qi
i=1

where the qi are square-free and relatively prime, and a partial fraction decomposition"

where deg bi,j) < deg (q).
We can now reduce the problem to one with a smaller value of n (if n > 1). The

equation Rqn + Sq’ b, is uniquely soluble for R, S K[z] with deg (S) < deg (q).
If we write Y=-S/(n-1)q-1, we note that one of the terms from Y’ cancels the
b,.,/q’ term. in g, that the rest of the terms from Y’ have a denominator of q-l, and
that the partial fraction decomposition of fY contains only the denominators fd and
qn-ln Hence the g term in the equation resulting from the substitution y =)3+ Y has
at most q- in the denominator.

A sequence of such substitutions (which can be merged into one substitution)
reduces the equation to one in which the irreducible factors of gd which do not divide
fd occur only linearly in gd. We now assert that, if any such factors are left, the equation
is insoluble. But this is evident, since if Yd does not contain a factor of p (being an
irreducible factor of gd not dividing fd), the denominator of y’ /fy does not contain
such a factor, while if P’IlYd then the denominator of y’/fy has a factor of pn+l. In
neither case can a factor of multiplicity one occur.

LEMMA 4.3. For a Risch differential equation (1) over K (z) such that f is weakly
normalised and every irreducible factor of gd divides fd, there is a substitution y fi + Y
which reduces it to ’ +ffi g", where every irreducible factor of gd Occurs no more often
in gd than it does in fd. Furthermore, given f and g, we can calculate Y.

This notation means that pn divides Yd, but that pn+l does not.

RISCH DIFFERENTIAL EQUATION PROBLEM 909

Proof. Let p be a square-free element of K[z] such that Pllfa, Pvllga and such
that fd/pt and gd/p are relatively prime to p. From the hypotheses of the lemma, we
know that/3 0 implies 3’ 0, and Lemma 4.1 then implies that p does not divide Yd.
Suppose, therefore, that/3 > 0. If y-</3, then the irreducible factors of p already occur
no more often in gd than they do in fd, and no reduction is necessary as far as they
are concerned. Hence we are faced with the problem of reducing the multiplicity y of
p in gd until y =</3. We will write a for the multiplicity of p in Yd.

CASE 1. fl > 1. Construct partial fraction decompositions of j, g and yj such
that the most negative terms with respect to p are fo/pO, g,/pV and y,/p’, where fo,
gr and y, are elements of K[z] of degree less than that of p. Furthermore, fo is coprime
to p by the choice of p. The partial fraction decomposition of y’ +fy contains many
terms, but the ones with the greatest multiplicity of p in the denominator are
--ay,p’/p’+1 and fty,/p+t. Since/3 > 1, the latter term dominates, and must be equal
to the term with the greatest multiplicity of p in the denominator on the right-hand
side of (1), viz. g,/p’.

Hence a +/3 =y and fy gv (modulo p). This equation can be solved for y,
and then the substitution y =)3+y/p decreases the multiplicity of p in gd.

CASE 2. /3 1. We perform the same partial fraction decompositions as in Case
1, but this time the principal terms arising from y’ and fy have the same multiplicity,
so that the principal term on the left-hand side of (1) appears to be y(-ap’ +fl)/p’/1.
This will actually be the principal term, unless cancellation occurs. But cancellation
can only occur if there is a common factor q between p and -ap’+fl.

Suppose, if possible, that this occurs, and write p qr (q and r are relatively
prime since p is square-free, and can be assumed monic) and fl aq + br (for minimal
a and b). We thus have rl-a(qr’+rq’)+aq+br, which implies that rlq(-ar’+a).
Hence rl-ar’+ a, and the only polynomial of degree less than that of r divisible by r
is zero. But the partial fraction decomposition off includes the term f/p a/r+ b/q,
so that f includes the term a/r= ar’/r= a log r. a has to be a positive integer,
and this contradicts the assumption that f was weakly normalised, and hence cancella-
tion cannot occur.

We can thus equate the principal terms on the two sides of (1) and deduce that
a y-1 and that gv-= (-ap’+fl)y (modulo p). This equation can be solved for y,
and, as in Case 1, we can reduce y.

LEMMA 4.4. If a Risch differential equation satisfying the conclusion ofLemma 4.3
has a solution, then that solution is a polynomial in K[z], i.e. yf O.

Proof Suppose yy O. We know from Lemma 4.1 that the only factors of Yd are
factors offal. If p is an irreducible polynomial such that p IlYd, P Ilfd, then the argument
of Lemma 4.3 shows that pa+Ollgd, which does not satisfy the conclusion of Lemma 4.3.

We note that equation (5), which satisfies all the conclusions of Lemma 4.3 except
for f being weakly normalised, but whose solution is not a polynomial, shows that
this last condition is necessary.

LEMMA 4.5. Iffp+ d-fo is nonzero, then there is an algorithm for determining if any
Risch differential equation over K(z) satisfying the conclusions of Lemma 4.3 has a
solution, and finding the solution, if any.

Proof Lemma 4.4 implies that the solution must be a polynomial. Clearly y- 0
if, and only if, g- 0, so we may suppose that both y and g are nonzero. Write a for
the degree of y, if it exists,/3 for the degree offp+ /fo and 3’ for the degree of gp+ / go
(-1 for the degree of 0). Write y, fe and gv for the leading coefficients of these
quantities. Then the leading term of y’ is ayz-, that of the polynomial part of fy is
fy,z+ and the leading term of g,+ is gvz. If y </3 then there is no solution, otherwise

910 J.H. DAVENPORT

the substitution y 33 + (gvlfo)zv- reduces the degree of gp+ + go. The conclusions of
Lemma 4.3 are still satisfied, so we continue this reduction until either g 0, when we
have a solution, or 3’ </3, when we have a proof of unsatisfiability.

LEMMA 4.6. If fp+ +fo=0 and degree (fn)< degree (fd)--1, then there is an
algorithm for determining if any Risch differential equation over K(z) satisfying the
conclusions of Lemma 4.3 has a solution, and finding the solution, if any.

Proof. Lemma 4.4 implies that the solution must be a polynomial. Suppose that
yp+ O, and let its most significant term have degree a. Then the most significant term
of (y’)p+ has degree a- 1, and the most significant term of (fy)p+ has degree at most
a- 2, by the degree condition in the hypothesis. If the degree of gp+ is y, this tells us
that a y + 1, and that ay gv, where y and gv are the leading coefficients of y and
gp+. Repating this process allows us to find the whole of yp+.

Having found yp+, all that is possible is that y should be a constant, Yo. If g/f is
a constant, this is then Yo, otherwise we deduce that the equation is insoluble.

LEMMA 4.7. If fp+ +fo 0 and degree (fn) degree (fd) 1, then there is an
algorithm for determining if any Risch differential equation satisfying the conclusions of
Lemma 4.3 has a solution, and finding the solution, if any.

Proof. The reasoning is similar to that of Lemma 4.6, except that now the most
significant terms of (y’)p+ and (fy)p+ both have degree a- 1, and hence there is a
possibility of cancellation between them. If the leading coefficient of yp+ is y, then
cancellation means that ay +fooy =0, i.e. that foo =-a. By Lemma 2.1, though, f
cannot be a negative integer, and hence cancellation cannot occur. Hence a y-1
and (a +foo)y gv. As above, we thus find the whole of yp, and then Yo g/f, provided
that is a constant.

The proof of Theorem 1 is then completed by observing that Lemmas 4.2 and 4.3
give the fractional part of y (or prove that the equation is insoluble), and then the
appropriate one of Lemmas 4.5, 4.6, 4.7 gives yp/ + Yo (or proves that the equation is
insoluble).

5. Proof of Theorem 2. In this section, we shall in fact prove a more general
theorem, where we assume that is a primitive monomial over D, i.e. that is
transcendental over D, that D() and D have the same field of constants, and that
t’ D. This certainly includes logarithmic monomials as a special case, but we have
to appeal to a more general Structure Theorem (Rothstein and Caviness [1979]) in
order to answer questions about the representation of elements of D(), for which
we will need to insist that D(0) be log-explicit (see Rothstein and Caviness 1979] for
details).

THEOREM 2’. Let D be a differentialfield such that there are algorithmsfor integration
and the solution of Risch differential equations over D, a primitive monomial over D,
f a weakly normalised nonzero element of D(O), and g an element of D(O). Then there
is an algorithm to determine if there exists a y in D(O) such that y’ +fy g. If such a y
exists, the algorithm finds it.

Throughout this section, f, g and y, all of which are elements of D(O), are assumed
to be decomposed with respect to according to (3). The proof proceeds in a very
similar manner to that of Theorem 1, aided by the following proposition.

PROPOSITION 1. Ifp is a square-free polynomial in D[], then p and p’ are relatively
prime.

A proof of this proposition can be found, for example, in Davenport [1983a,
Proposition 2, p. 91] (the result is only stated for logarithmic monomials, but the

RISCH DIFFERENTIAL EQUATION PROBLEM 911

generalisation is immediate). We note, though, that this result is not the well-known
characteristic of square-free polynomials, which says that p and Op/O0 are relatively
prime.

The proofs of the following four lemmas are identical to the corresponding proofs
in the previous section.

LEMMA 5.1. Let p be an irreducible polynomial ofD[0]. Ifp divides neither fd nor

gd, then p does not divide Yd.
LEMMA 5.2. For a Risch differential equation (1) over D(O), either there is a

substitution y + Y which reduces it to ’+ffi g", where gd contains no irreducible
factor that does not divide fd, or the equation is insoluble. Furthermore, given fand g, we
can determine which and calculate Y if it exists.

LEMMA 5.3. For a Risch differential equation (1) over D(O) such that f is weakly
normalised with respect to 0 and every irreducible factor of ga divides fd, there is a
substitution y + Y which reduces it to ’ +f g", where every irreducible factor of
d occurs no more often in ff, d than it does in fd. Furthermore, given f and g, we can
calculate Y.

LEMMA 5.4. Ifa Risch differential equation satisfying the conclusions ofLemma 5.3
has a solution, then that solution is a polynomial in D[0], i.e. yf O.

LE.MMA 5.5. Iffp+ is nonzero, then there is an algorithm for determining if any
Risch differential equation over D(O) satisfying the conclusions of Lemma 5.3 has a
solution, and finding the solution, if any.

Proof. Lemma 5.4 implies that the solution must be a polynomial. Clearly y 0
if, and only if, g 0, so we may suppose that both y and g are nonzero. Write a for
the degree of y, if it exists, /3 for the degree of fp/ and y for the degree of gp/ + go
(-1 for the degree of 0). Write y, f and gy for the leading coefficients of these
quantities. Then the leading term of y’ is either y’O or ayO’O-1 (depending on
whether or not y is a constant), that of the polynomial part offy is fyO/ and the
leading term of gp/ is gvOT. If y </3 then there is no solution, otherwise the substitution
y +(g/f)O- reduces the degree of gp/ + go. The conclusions of Lemma 5.3 are
still satisfied, so we continue this reduction until either g 0, when we have a solution,
or y </3, when we have a proof of unsatisfiability.

LEMMA 5.6. If fp+ +f0=0, there is an algorithm for determining if any Risch

differential equation satisfying the conclusions ofLemma 5.3 has a solution, and finding
the solution, if any.

Proof. Lemma 5.4 implies that the solution must be a polynomial, which we shall
write as ",i=o yiOi. We shall write y for the degree of gp+ at- go, and gp+-1-go i=o gOi.
The degree of y’ is either a or a- 1 (depending on whether or not y is a constant),
while the degree of (fy)p+ is at most a- 1. We must first demonstrate that cancellation
does not occur between these two terms.

Suppose, therefore, that cancellation does occur, viz. that a- 1 > T. This implies
that y,, is a constant, f is, by hypothesis, a proper fraction, which means that Of can
be written as f+ PQ, wheref D and PQ is a proper fraction in D(O). Then the
coefficient of O-1 in y’+fy is ay,O’+ y’_ +fy. If this is to vanish, we must have
Y,-I c-y (aO’+fo), where c is a constant of integration. Lemma 2.1 implies
that fo cannot annihilate the aO’ term, and this contradicts the requirement that
y_l D.

Hence a =3’ or a /+ 1. Comparing coefficients of O leads to the equation
y’ g. We assumed that an integration algorithm was available in D, so y is
determined up to a constant of integration, say z,. Comparing coefficients of O_, we

912 J.H. DAVENPORT

see that

Hence

where h is known. By Lemma 2.1, the second integral is possible, and contains O with
a nonzero coefficient. Since O does not occur in Y-I, this requirement determines
We note that, if the first integral is not possible, or generates new logarithms other
than O, then the Risch differential equation has no solution. We have now determined
y completely, and y_l up to a constant of integration. Proceeding similarly, we
determine the whole of y up to a constant of integration, so that y Yknown+ Z. Z is
determined by the requirement that (y’ +fy)y =gy. Of course, if this does not yield a
constant, then the equation is insoluble.

LEMMA 5.7. Iffp+ O, but fo O, then there is an algorithm for determining if any
Risch differential equation satisfying the conclusions of Lemma 5.3 has a solution, and
finding the solution, if any.

Proof. Lemma 5.4 implies that the solution has to be a polynomial. Since f has
an elementary integral, the analysis of Risch [1969, p. 182] shows that fo has an
elementary integral, say h. The situation now depends on whether or not exp (h) D.

CASE 1. exp (h) D. Suppose y=i=oy,O and gp+-k-go-- ’i=o Y0. The leading
term of the polynomial part of y’+fy is (assuming no cancellation occurs),
(y’+foy)O. Cancellation implies that y =exp (-fo), which is impossible since
y, D. Hence we do have the leading term, and so a =3’ and

Y’ +foY, g.

This is a Risch differential equation in D, and by hypothesis there is an algorithm for
solving it (or proving it insoluble). Furthermore, that solution is unique. Having
determined y, we can substitute y)3 +yO, and obtain an equation with the same
f where the degree of gp/ + go is smaller, and gy still satisfies the conclusions of
Lemma 5.3.

CASE 2. exp (h) D. The analysis of the previous case no longer applies, not only
because cancellation may occur, but also because the solutions to the Risch differential
equations in D are no longer unique, and thus we have an undetermined multiple of
exp (-h) in y, which we can only determine from the later equations. Fortunately,
there is a trick that will get us out of this problem. Suppose that y is a solution to
y’ +fy g. Substituting y 33 exp (-h) into this equation gives

fi’ e-h h’ e-h + (fo +ff). e-h g.

But h’=fo, so this simplifies to 33’+j)3= g exp (h). Conversely, any solution to this
equation gives a solution to the original equation. Hence we make this transformation,
apply Lemmas 5.1 to 5.3 and 5.6 to this equation to find a solution or prove that it
does not have one, and then transform the solution back.

That these complications can arise is seen in the following example, where the
Risch differential equation to be solved is

dy
t_ (1 1) e-1/’(21og x -1) + log x_t_ x__f_

X- X log2 x :2 Y x(2 log2 X 2) log2 x +
2x log x"

RISCH DIFFERENTIAL EQUATION PROBLEM 913

Writing log x, this becomes

dx x 1):2 Y= x(2q:’2-2)-2+ e-/x(2-l)
2x

x

This equation arises from attempting to integrate

1/x’2-
t- o +x(2o2- 2) q2 +

2x

The equation already satisfies the conclusions of Lemma 5.3, and fp/ 0, while fo
-1Ix2. D is the field Q(x, el/X), and, ignoring the fact that elYo D, we reduce our
problem to the following"

dy2 Y2
dx x2 2x-1.

The solution to this is

Y2 C e-1/x "Jr" X2
where c is a constant to be determined. The equation for Yl enables us to determine
that c 1/2, and the final solution is

(e-1/x)Y= 2
+ x2 logx-x2log(x)

Having proved these lemmas, we completed the proof of Theorem 2 by observing
that Lemmas 5.2 and 5.3 give the fractional part of y (or prove that the equation is
insoluble), and then the appropriate one of Lemmas 5.5, 5.6, 5.7 gives Yp/+Yo (or
proves that the equation is insoluble).

6. Proof of Theorem 3. Throughout this section, f, g and y, all of which are
elements of D(O), are assumed to be decomposed with respect to O according to (4).
We will find it useful to have a collective term for yp/ + Yo+ Yp-, and we will refer to
this as a generalised polynomial. We shall write exp r/, where r/e D. The proof
proceeds in a very similar manner to that of Theorem 2 except that the necessity of
using decomposition (4) will force some additional complications, and again we are
aided by the following proposition.

PROPOSITION 2. Ifp is a square-free polynomial in D[O] which is not divisible by, then p and p’ are relatively prime.
A proof of this proposition can be found, for example, in Davenport [1983a,

Proposition 3, p. 96].
The proofs of the following four lemmas are similar to the corresponding proofs

in the previous sections.
LEMMA 6.1. Let p be an irreducible polynomial of D[], not divisible by . If p

divides neither fa nor ga, then p does not divide Yd.
LEMMA 6.2. For a Risch differential equation (1) over D(O), either there is a

substitution y fi+ Y which reduces it to ’ +f g", where gd contains no irreducible
factor that does not divide fd, or the equation is insoluble. Furthermore, given fand g, we
can determine which and calculate Y if it exists.

LEMMA 6.3. For a Risch differential equation (1) over D(O) such that f is weakly
normalised with respect to 0 and every irreducible factor of gd divides fd, there is a

914 j.H. DAVENPORT

substitution y + Y which reduces it to ’ +f g, where every irreducible factor of gd
occurs no more often in ,d than it does in fd. Furthermore, given f and g, we can
calculate Y.

Proof. Almost identical to Lemma 4.3. The difference is in Case 2, where we
argued from rl-ar’+ a that, as r’ and a were of lower degree than r, then a-at’.
That argument no longer holds, since r’ is of the same degree as r, say n. Since the
leading term of r is On, and that of-ar’+a is -ncrq’O, we deduce that -naq’r=
-at’+ a. As in Lemma 4.3, f includes the term

a I ar’-ntq’r
a log r- naq.

r r

This contradicts the assumption that f was weakly normalised, and the rest of the
proof proceeds identically.

LEMMA 6.4. Ifa Risch differential equation satisfying the conclusions ofLemma 6.3
has a solution, then that solution is a generalised polynomial in D[0, O-1], i.e. yf O.

LEMMA 6.5. For a Risch differential equation satisfying the conclusions of Lemma
6.3, such that eitherfo- 0 orfo has an elementary integral and there is no integer N such
that exp (fo-Nq) D, there is an algorithm for determining whether or not there is a
solution, and finding it.

fliProof Write yp ’i=-,1 yiO ,fp fiO and gp=-t, i:-v, giO where the upper
limits on the summations are all nonnegative integers, and the lower limits are all
nonpositive integers, and the notation is chosen such that y 0, unless possibly a2 0
etc. The terms of most positive degree in O in y’/fy are yO, t2y and

Hence, if/32 0, the leading term of y’ +fy is y,ftO+t2, and C2 /2--2, with
Y,= g,/ft. Hence the substitution y f+y,O’ reduces this equation to a similar
one with smaller /2, and repeating this process finds the whole of yp+ + yo.

If [2 0, there is cancellation if, and only if, y’+ (a2rt’ +fo)y 0. The conditions
on fo imply that this is impossible for y e D if a2 0. Hence ff2 Y2, and y(a2 > 0)
is the unique solution to

(6) y’+ (an’+fo)y g,,
which is a Risch differential equation in D, and therefore soluble by hypothesis. Hence
the substitution y)3 + y20 reduces this equation to a similar one with smaller)’2,

and repeating this process finds the whole of
Identical methods enable us to find y_, and so we are left with the problem of

finding Yo (in the case/3 =/32 0). Yo satisfies y+foYo go. Iffo 0, then this equation
has at most one solution, by the hypothesis on fo with N 0, which we can determine
by solving this Risch differential equation in D. We then check that g is correctly
determined, and we have a solution to the whole problem. If fo=0, then
Yo c + I go, where c is a constant of integration, which we determine from the condition

In this lemma, we have shown that a2 y2-/32. This degree condition is not true
without the hypothesis that exp (Ifo-Nrt) D, as the example of

f (lexp-101) 2’581’284’541e’+ 1’757’211’400
e + 1 39,916,800e3’ + 119,750,400e:z’ + 119,750,400e + 39,916,800

4I am grateful to Prof. Rothstein for pointing out the construction of this example to me.

RISCH DIFFERENTIAL EQUATION PROBLEM 915

shows The integral is, in fact,

1
exp

e + l lOx) 39’916’800ellX + 19’958’400e9’- 26,611,200e8x + 175,721,140
39,916,800e + 39,916,800

This implies that the, admittedly somewhat obscure, condition on fo is necessary.
Another example of this problem can be found in the following generalisation of an
example of Davenport [1983b]:

(x" n) exp xe1/x + dx (- 1)"n
X i=0

(-x) exp xel/Xn+

Proof of Theorem 3. After applying the reductions of Lemmas 6.2 and 6.3, we
know by Lemma 6.4 that y has to be a generalised polynomial. The only problem is
to ensure that Lemma 6.5 is applicable. We know that f is integrable, and we can
decompose its integral, say h, into a sum of logarithms and a decomposition according
to (4):

(7) f hp+ + ho + hp_ + hy + 2 ci log p,(O) + 2 c, logp,,
i=1 i=k+l

where the p(O)(1-< i-<_ k) are monic polynomials of degree ni in D[O] and the
Pi(k < =< l) belong to D. Differentiating and equating parts of decomposition (4) is a

little tricky, since (log p(O))’ is not a proper rational function, but nr/’ plus a proper
fraction. Applying this to the derivative of (7) shows that

fo=h+ cini + 2 ,rl
cip

i=l i=k+l Pi

and the right-hand side of this clearly has an elementary integral.
Since O=expr/, the assertion that exp(fo-Nrl)D is equivalent to

o- exp (fo) o.
CASE 1. exp fo D(O). We can apply Lemma 6.5 directly.
CASE 2. exp fo D(O). Similarly, unless the expression for exp fo as a member

of D(O) is of the form O-N with D and N an integer, Lemma 6.5 is applicable.
CASE 3. exp fo qO-N. Then fo -Nr/’+ ’/, thus the equation to solve has

the form

(8) y’ + (fy- Nrl’+-)y g.

If we make the substitution y oN/% this becomes

which can be rewritten as

’+) gp9-v

Lemma 6.5 can be applied to this equation, and, if it has a solution, the substitution
reversed to yield a solution to (8).

7. Exponentially reduced fields. The algorithms defined in the previous sections
have occasionally performed substitutions in order to carry out their tasks. Since such
substitutions complicate the programming and cause the integrals to appear to have

916 J.H. DAVENPORT

very different degrees than the integrands would lead one to suspect, we present here
a definition of a class of fields in which such substitutions are unnecessary.

An element / of a field K(z, "01," ", "on) is said to be exponentially reduced if
the appropriate one of the next two conditions is satisfied and /o is exponentially
reduced as a member of K(z, 11, ln_l).

i) "on is logarithmic. If 7 is decomposed according to (3) with respect to "0, and

7o # 0, then exp (7o) K(z, "01, , "0,_1) (equivalently, 7o is not a linear combination,
with rational coefficients, of the logarithms and arguments of exponentials in
’0"1,""" ln_l).

ii) ,0 is exponential. If 7 is decomposed according to (4) with respect to ,0 and
T/o# 0, then exp (7o) K(z, "01,’", ,0) (equivalently, T/o is not a linear combination,
with rational coefficients, of the logarithms and arguments of exponentials in
"01,

We notice that a rational multiple of an exponentially reduced element is exponen-
tially reduced (which would not be true if we only tested membership in
K (z, 01," , ,0,), rather than in K (z, "01," , "on)).

A field K(z, "01,’’’, "0,) is said to be an exponentially reduced field if z is
transcendental over K with z’- 1, K is the field of constants of K (z, "01," , "on), and
each O is transcendental over K(z, 01," ", 0_1) such that either:

a) there is a nonzero in K(z, 01," ", 0-1) such that
b) there is an in K(z, 01," , 0_) such that O ’0, such that no logarithm

occurs linearly in with a rational coefficient and such that is exponentially reduced
as a member of K (z, "01, , "0_1).

We should note that not all fields generated over K(z) by monomials can be
expressed in an exponentially reduced way. In fact, there are four possibilities.

i) The presentation of such a field may be exponentially reduced. An example of
this is K(z, "01, "02) where ,0= "01 (’01 exp (x)) and "0_-" 2"0’02 (’0z exp (exp(2x))).

ii) The presentation given may not be exponentially reduced, but there may be
another presentation of the field which is. An example of this is K (z, ql, _) where
q 0 ql exp (x)) and q, 1 + 2o12) q2 q2 exp (x + exp (2x))). This corresponds
to the same field as the previous example, with "01 ql and "02 0/ql.

iii) The field may not have an exponentially reduced presentation, but it ma5
be a subfield of a field with an exponentially reduced presentation. An example
of this is K(z,ol,u) where q=21 (ql=exp(2x)) and q=(l+2ql)q2 (q2
exp (x+exp (2x))). This field does not have an exponentially reduced presentation,
but it is a subfield of the field of the first example, with q ,01 and (02 ’01"02. The
inclusion is strict, since "01 is in the larger field, but not the smaller.

iv) There may be no exponentially reduced field containing the given field, as in
K(z, q,, q2) where q=4x3/(x4+ l) (q=log(x4+l)) and q’z=(l +2x3/(x4+ l))
(q2 exp (x + 1/2 log (x4 + 1))). In order to ensure that the argument to the exponentials
contains no logarithms with rational coefficients, we have to introduce x/x4+ 1, and,
as is well known, this cannot be rationalised.

We now claim that the process of applying the Risch integration algorithm (part
(a)) and the algorithm proposed in 4-6 ofthis paper to an element ofan exponentially
reduced field does not require any substitutions. The Risch part (a) process does not,
and the process of 4-6 requires substitutions if the equation is not weakly normalised,
or in Case 2 of Lemma 5.7 and Case 3 of Theorem 3. In each Risch differential equation
that part (a) requires us to solve, f is of the form Nr/’, where N is an integer and
the argument of one of the exponential ,0, since it comes from the integration of g,0
Since no logarithm occurs linearly in r/ with a rational coefficient, Nrt’ is weakly

RISCH DIFFERENTIAL EQUATION PROBLEM 917

normalised with respect to all the variables occurring in it. Similarly, the requirement
that r/be exponentially reduced means that Case 2 of Lemma 5.7 does not happen,
nor Case 3 of Theorem 3.

We still need to verify that the equations generated recursively satisfy these
constraints. Recursion occurs in Case 1 of Lemma 5.7 and in the last paragraph of the
proof of Lemma 6.5. In both cases, the equations generated are of the form y’ +foY g.
We have already seen that fo is always integrable in these cases, and the condition that
r/contains no logarithms with rational coefficients implies that fo is weakly normalised
with respect to its main variable. Since the definition of "exponentially reduced"
contains a recursive clause, fo is also exponentially reduced. The only other instance
of recursion is in (6). Here the new equation contains nr/’ +fo for some integer n, where
r/is the argument of an exponential O,. This is certainly still weakly normalised, but,
in general, the sum oftwo exponentially reduced elements is not exponentially reduced.
If (n’o’+fo) is not exponentially reduced, we can write

(nr/’ +fo) E ciq,,

where the ci are rational numbers and the oi are the logarithmic O and the arguments
of the exponential Oi. But 7 is a summand on the right, so we can write Jfo as such
a linear combination, so that fo, and hence f, are not exponentially reduced. Thus this
recursion does not introduce any problems.

Another way of expressing the claim we have made is the following result.
THEOREM 4. IfK (z, 11, 1.) is an exponentially reducedfield, then the solutions

of each Risch differential equation encountered during this integration process satisfy the
"natural" degree bounds:

a) YdlgCd(g’d, gd);
b) degree (yp+)<-_ degree (gp+)+ 1 (if the main variable is z or logarithmic);
c) degree (yp+) <-_ degree (gp+) and degree (yp_) <- degree (gp_) (ifthe main variable

is exponential).
This result is far from being a complete degree bound on integrands, but it does

indicate that a class of anomalies cannot take place in exponentially reduced fields.

8. Conclusions. We have seen that it is possible to solve a Risch differential
equation problem in a manner similar to Hermite’s method for integrating rational
functions, and that this method gives one more information about the subproblems
arising than does the method of solution proposed by Risch. If the field in which the
original integrand that gave rise to the Risch differential equation problem lies was
exponentially reduced, then this solution can be found without any changes of variable
and without the introduction of any arbitrary constants which have to be solved for
later, except for the constant of integration introduced in Lemma 5.6. This is very
similar to the treatment in part (a) of the Main Theorem (Risch [1969]), where a
constant of integration appears in the integration of polynomials in a logarithmic main
variable.

Our method of solution is somewhat different from that of Rothstein 1976], who
proceeds by clearing denominators and reducing the equation to a purely polynomial
one. It is unclear which algorithm will prove most efficient in practice.

We have also arrived at the characterisation of "exponentially reduced" fields,
which would seem to be important from the point of view of Risch differential equation
problems, especially in view of Theorem 4. We generalise Theorem 4 into the following

CONJECTURE (after Risch and Norman, see Davenport [1982]). Let D=
K(z, 9,. , ag,) be an exponentially reduced field, and f an element of D with an

918 . H. DAVENPORT

integral that is elementary over D, so that

f k

f=P+ Z cilogpi,
q i=1

where p, q, Pi K[z, O1, On] and ci K. Then"
a) Each p, is a factor of the denominator of f, or a factor of the arguments of the

existing logarithms among the Oi;
b) Each irreducible factor of q which is not an exponential monomial occurs at

most n- 1 times in q, where n is its multiplicity in the denominator of f;
c) Each irreducible factor of q which is an exponential monomial occurs at most

n times in q, where n is its multiplicity in the denominator of f;
d) The degree of each of z, O1, , On in p/q is at most one more than its degree

in f, where the degree of O in a rational function is defined as the difference of its
degree in the numerator and denominator (but never negative).

Acknowledgments. This research was largely performed at the Computer and
Information Sciences Department of the University of Delaware, and the author is
grateful to the System Development Foundation for its support under grant 301, and
to the University for its hospitality. At that time the author was a Research Fellow of
Emmanuel College Cambridge, and he is grateful to the College for its support. Dr.
B. M. Trager posed the original question, and Prof. B. F. Caviness and Dr. G. W.
Cherry have read many drafts of this paper. Mr. J. A. Abbott, Prof. M. Rothstein,
Prof. M. F. Singer and Dr. Trager also made many useful comments.

REFERENCES

B. F. CAVINESS, Methods for symbolic computation with transcendental functions, Proc. 4th International
Colloquium on Advanced Computing Methods on Theoretical Physics, A. Visconti, ed., Marseilles,
1977, pp. 16-43.

G. W. CHERRY, Algorithms for integrating elementary functions in terms of logarithmic integrals and error

functions, Ph.D. thesis, Univ. Delaware, Newark, DE, August 1983.
J. H. DAVENPORT, On the parallel Risch algorithm (I), Proc. EUROCAM ’82, J. Calmet, ed., Lecture Notes

in Computer Science 144, Springer, Berlin, 1982, pp. 144-157.
Intdgration formelle, Rapport de Recherche 375, IMAG, Grenoble, May 1983a.
Integrationmwhat do we wantfrom the theory?, Proc. EUROCAL ’83, J. A. van Hulzen, ed., Lecture
Notes in Computer Science 162, Springer, Berlin, 1983b, pp. 2-11 (also Appendix 3 of Davenport
[1983a]).

Intdgration algorithmique des fonctions dlmentairement transcendantes sur une courbe algbrique,
Annales de l’Institut Fourier, 34 (1984), pp. 271-276.

J. H. DAVENPORT AND B. M. TRAGER, Factorization over finitely generated fields, Proc. SYMSAC 81, P.
S. Wang, ed., ACM, New York, 1981, pp. 200-205.

C. HERMITE, Sur l’int.gration des fractions rationnelles, Nouvelles Annales de Math6matiques, 2 S6r. 11
(1872), pp. 145-148.

R. H. RISCH, The problem of integration in finite terms, Trans. Amer. Math. Soc., 139 (1969), pp. 167-189.
M. ROSENLICHT, On Liouville’s theory of elementary functions, Pacific J. Math., 65 (1976), pp. 485-492.
M. ROTHSTEIN, Aspects ofsymbolic integration and simplification ofexponential andprimitivefunctions, Ph.D.

thesis, Univ. Wisconsin, Madison, WI, 1976.
M. ROTHSTEIN AND B. F. CAVINESS, A structure theoremfor exponential andprimitivefunctions, this Journal,

8 (1979), pp. 357-367.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
002

DATA STRUCTURES FOR RETRIEVAL ON SQUARE GRIDS*

MARTIN DAVID KATZ" AND DENNIS J. VOLPER"

Abstract. Families of data structures are presented for retrieval of the sum of values of points within
a half-plane or polygon, given that the points are at integral coordinates (N x N) in the plane. Fredman
has shown that the problem has a lower bound of f(N2/3) for intermixed updates and retrievals. When the
points are not restricted to integral coordinates, Edelsbrunner and Welzl have shown a retrieval time of
O(N-1’39) (update time= O(N210g N)). One of the data structures presented here permits intermixed
updates and retrievals in O(N2/3 log N).

We store multiple, rotated data structures to match against the query. Rotation appears to be an effective
method for trading-off update time against retrieval time for geometric problems. We also present construc-
tions for efficient retrieval of triangles and polygons. For our data structures, the expected complexity when
the points are uniformly distributed is less than the worst case complexity when the points are at integral
coordinates.

Key words, data structures, polygonal retrieval, range query

CR category. 5.25 computational complexity

AMS(MOS) subject classifications. 68P05, 68Q25, 68P20

1. Introduction. Suppose there are values at various points in a plane and one
needs to determine the total of the values within a region of the plane. For example,
one might need to determine the distribution of people within a region for traffic
planning, population growth studies, or electoral redistricting.

We develop families of data structures which support updating of the values and
retrieval of the sum of the values associated with points within such regions. Within
each family, update time can be traded off against retrieval time. Initially, we assume
that the points are fixed in an N x N grid. Associated with each point is a value which
is a member of a commutative semi-group. The work reported here is based on [Katz
85].

1.1. Background. The simplest form of geometric retrieval is orthogonal range
query ([Lueker 78], [Willard 78], [Burkhard, Fredman and Kleitman 81], [Fredman
82], [Lueker and Willard 82], and [Willard 85]). The regions retrieved by orthogonal
range queries are rectangles with sides parallel to the axes. Structures exist iri which
update and retrieval times are both O(log na) for a d-dimensional range query on n
points. The one-dimensional range query structure is generally a full binary tree, in
which the data points are at the leaves and each internal node contains the sum of the
values of its two children.

Fredman [Fredman 80] gives a method for deriving lower bounds for the com-
plexity of intermixed update and retrieval operations. This paper and those cited below
discuss retrieval of regions which are more general than rectangles. In fact, the examples
in the paper include half-plane and polygon retrievals. Fredman gives a lower bound
complexity of p + f(N2/3) for intermixed updates and retrievals on the N x N grid.

For problems containing n points, Willard [Willard 82] presents a data structure
for performing half-plane and polygon retrieval of points in the plane with no restriction

* Received by the editors August 21, 1984, and in revised form June 3, 1985.

" Department of Information and Computer Science, University of California, lrvine, California 92717.

919

920 MARTIN DAVID KATZ AND DENNIS J. VOLPER

on their position. Willard’s structure has retrieval time O(/1lg6 4) and preprocessing
time O(?12). Edelsbrunner and Welzl [Edelsbrunner and Welzl 83] improved the
retrieval time bound to O(/1-’695), while Megiddo [Megiddo 84] improved the pre-
processing time to O(n log n).

Yao [Yao 83] extends the structure to 3 dimensions. Yao’s structure has retrieval
time O(n -’98) and preprocessing time O(n4). Cole [Cole 85] extends the result to 4
dimensions, while Avis [Avis 84] shows that the approach cannot be extended to 5 or
more dimensions.

Cole and Yap [Cole and Yap 83] present static data structures for half-plane,
triangle, disk, half-space, etc. retrieval, where the points are not restricted to a grid.
Their half-plane structure has retrieval time O(log n), space O(n2), and preprocessing
time O(n3).

One of the half-plane data structures presented in this paper permits intermixed
half-plane updates and retrievals on the N x N grid with complexity O(N2/3 log N)
(i.e., O(r/1/3 log n)). In our data structure, unlike the previous structures, parameter
selection permits trade-of[of update time against retrieval time. Although the data
structures presented here have significantly lower worst case complexity, the worst
case analysis only applies when the points are arranged in a grid; previous data
structures did not restrict the location of points in the plane.

1.2. General approach. Many data structures (e.g., range query) have an orienta-
tion. Our approach is to build many ofthese structures, each with a different orientation,
covering the same data. We call each of these oriented structures a rotation. Each
rotation contains a substructure which solves a query with a given orientation, and
substructures to solve other closely related queries.

1.3. Computational model. Following [Fredman 80], we formally define a
geometric retrieval problem as a pair (9’’, F), where ,r is a set referred to as the key
space, and F is a collection of subsets of ’ which covers ’ (F is the set of regions).
The objective is to define a data structure representing a set - of records, where each
record " has a uniquely identifying key in ’" (denoted key (-)), and an associated
value (denoted value (-)), which is an element of a commutative semi-group S (with
operator,). Since we do not use any properties which are specific to a particular
semi-group, one may think of the semi-group as the addition operator over the
nonnegative integers. Other examples of commutative semi-group operators are
maximum and set union.

The data structure must support the following:
Retrieve(R): Compute the sum (using 0)) of the values associated with all points

in whose keys lie in the region R (R F)
Insert(k, x): Add a record " such that key (-) k and value (-) x.
Delete(k): Remove a record r from - where key (r)= k.
Update(k, x): Change a record re ff such that key (r)= k and new-value (r)=

odd-value (r) 03 x. (k 9’g’, and x S)
The data structure is an ordered collection of variables. Each variable’s value

field holds a value in S, and each variable’s key field holds a representation of the set
of keys which are covered by this variable (for all of our data structures, this key field
can be represented in O(log N) bits).

Retrieval time is defined as the number of operations on values in S which are
necessary to perform a retrieval using . Storage redundancy p is defined as the
maximum number of variables in whose value depends on any single record in -.
For our data structures, update time is proportional to storage redundancy. The

DATA STRUCTURES FOR RETRIEVAL ON SQUARE GRIDS 921

complexities in this paper are measured in semi-group operations, because the time
to perform semi-group operations dominates the time to traverse the data structures.

When the points are at integral coordinates, the records in 3- correspond to the
points in a planar grid. The set of keys Y={(i,j)[(i,j)({1,..., N}, {1,..., N})}.
That is, the key of a record is the coordinates of the point. If a record z 3- has not
been assigned a value, value (z) 0, where 0 is the identity value for the semi-group $.

2. The half-plane prollem. In the half-plane problem, we define I’hp=
{{(i,j)[ai+ bj > 1} for (i,j)6 ({1,..., N}, {1,..., N}) and (a, b) (0, 0) and a,
That is, each region to be retrieved g I’hp is a collection of points in the intersection
of a half-plane and the grid.

2.1. The half-plane data structure. The half-plane data structure consists of a
collection of rotations. Each is used to retrieve a range of angles. Each half-plane
structure is divided into slices and each slice is divided into rectangles. The size and
shape of each rectangle is calculated to limit the cost of retrieving the rectangles which
overlap the half-plane boundary.

More specifically, the half-plane data structure is a collection of 2N rotations
equally spaced over one half circle. Each rotation is covered by 2N disjoint slices.

Each slice is covered by 2N8 disjoint rectangles (Fig. 1 shows the rectangles for
one slice). Each rectangle is up to (1/x/)N1- wide and up to (1/x/)N1-8 long. Each
rectangle in a rotation is identically shaped, with its long side parallel to the orientation
of the rotation. The rectangles in a slice are stored in a range query structure. Likewise,
the points within each rectangle are stored in a range query structure.

In the analysis below, we develop a description of the legal values for a, fl, and. As we shall see, these restrictions limit the area of each rectangle to less than 1,
while limiting the number of rectangles crossed by the half-plane edge to a constant.

2.2. Performing a half-plane retrieval. To perform a retrieval, select the rotation
closest to the orientation of the half-plane edge. Each slice in this rotation is retrieved
in two oarts: the interior of the slice and the frontier of the slice.

FIG.1. One rotation in the half-plane data structure. For clarity, rectangles are shown for only one slice.
The line extending across the structure is a sample half-plane edge whose orientation is covered by the rotation.

922 MARTIN DAVID KATZ AND DENNIS J. VOLPER

The interior of the slice is the collection of rectangles in the slice which are entirely
within the half-plane. The interior is retrieved as a range query. The frontier of the
slice is the collection of rectangles in the slice which are crossed by the half-plane
edge. As points in a rectangle are collinear (see Lemma 2.2), a range query is used to
retrieve the points in each frontier rectangle.

2.3. Analysis of storage redundancy.
THEOREM 2.1. The storage redundancy of the half-plane data structure is

O(N log S).
Proof. In each rotation, each point is in a single rectangle and slice. The range

query structures in the rectangle and slice both have a storage redundancy of O(log N).
Thus, the storage redundancy is O(log N) times the number of rotations (2N).

2.4. Analysis of retrieval time.
LEMMA 2.2. If the area ofa rectangle is less than 1, then all points in the intersection

of the integer grid and the rectangle must be collinear.

Proof By contradiction: Suppose that there are three noncollinear points in the
rectangle. Three noncollinear points define a triangle. By the dot product rule, the area
of the smallest triangle whose vertices are all integers is 1/2. The area of the largest
triangle which can be inscribed in a rectangle is half the area of the rectangle. This
constitutes a contradiction since it was given that the area of the rectangle is less
than 1. [3

COROLLARY 2.2.1. Iffl / >-- 2, where fl and are as described in the data structure
given above, then all points on an integer grid within a rectangle are collinear.

LEMMA 2.3. Given a half-plane and the most closely aligned rotation of the data
structure, the maximum number of rectangles crossed by the half-plane edge within any
slice of that rotation is limited to 1 +[N--t].

Proof. The slope of the half-plane edge relative to the slices is no more than N
from perpendicular and the maximum width of the slice is (1/x/)N1-’. The section
of the half-plane edge which intersects the slice can be contained in a rectangle
extending (1/x/)N1-/t along the slice. The maximum width of each rectangle is
(1/x/)N1-. The maximum number of rectangles which can be overlapped by is
obtained by dividing. [3

THEOREM 2.4. Given 2- fl <- <- a + fl, the worst case time to perform a half-plane
retrieval using the data structure described above is O(Nt3 log N).

Proof. Each retrieval requires at most 2N’ slice retrievals. Each slice retrieval
requires a range query on the rectangles in the interior of the slice, and a range query
on the points in each frontier rectangle. Lemma 2.3 shows that, for 15 <- a +/3, only two
rectangle retrievals are required per slice. Thus, O(Nt) range queries must be per-
formed, yielding a retrieval time of O(N log N). [3

For 8 a //3, we can adjust/3 to trade-off storage redundancy and retrieval time.
We obtain the following corollaries:

COROLLARY 2.4.1. If t 2- 2fl, 0 <= fl <- 1, then [p, t] [O(N2-2/3 log N),
O(N’ log N)].

If then [p, t] O(N2/3 log N), O(N2/3 log N)].
COROLLARY 2.4.2. If /3=0, a=2, then [p, t]-[O(N21og N), O(log N)] and

space O(N4) for N2 points.
This retrieval time and space is of the same order of magnitude as in [Cole and

Yap 83], but with less preprocessing.
COROLLARY 2.4.3. If /3 1, a 0, then [p, t] O(log N), O(N log N)] and

space O(N2) for N2 points.

DATA STRUCTURES FOR RETRIEVAL ON SQUARE GRIDS 923

The data structure presented in [Edelsbrunner and Welzel 83] also requires linear
space, but has retrieval time of O(N1"39) (the storage redundancies are within a
constant). Note that unlike previous work, we restrict points to a grid.

3. Retrieval of triangular regions. The region to be retrieved consists of the points
within a triangle superimposed on the grid. The asymptotic complexity bounds presen-
ted in previous work for triangle retrieval are the same as for half-plane retrieval.

3.1. The triangle data structure. We divide the grid and triangle with squares to
convert the retrieval into simpler regions, such as half-planes (see Fig. 2). The squares
form Nx rows of Nx squares each (0 <- A =< 1).

FIG. 2. A sample triangle and the corresponding classified squares.

A range query structure is associated with each row of squares to permit the
retrieval of a contiguous subset of squares in the row. This structure is used to retrieve
those squares which are completely contained in the triangle. Each square contains a
half-plane retrieval structure which is used when one or more edges cross the square.

3.2. Performing a triangle retrieval. We superimpose the triangle on the lattice of
squares, and classify each square according to its relationship to the edges of the
triangle. The following cases are possible"

1. The square is entirely inside the triangle.
2. The square is crossed by one edge of the triangle.
3. The square is crossed by two or three edges of the triangle.
The squares which are entirely contained within the triangle (case 1) are retrieved

by a range query on the rows of squares. Each square which has only one edge passing
through it (case 2) is retrieved by half-plane retrieval.

When multiple edges cross the square (case 3), we retrieve in three steps. The first
step is to select the rotation closest to one of the edges (called the alignment edge)
and retrieve all rectangles crossing that edge. Next, the rectangles in the interior of
each slice (not crossing an edge) are retrieved. Third, the rectangles which overlap the
other edges are retrieved.

3.3. Analysis of storage redundancy.
THEOREM 3.1. The storage redundancy p of the triangle data structure is p

O(N 1--A)(2-2/3) log N).

924 MARTIN DAVID KATZ AND DENNIS J. VOLPER

Proof. The storage redundance due to the range query structure on the rows of
squares is p O(log Na). Each square contains a half-plane structure of size N1-.
For this structure, p O(N(1-)(2-2) log N) (Corollary 2.4.1). The second term domi-
nates.

3.4. Analysis of retrieval time.
THEOREM 3.2. The retrieval time of the triangle data structure is the maximum of

O(N(1-x)(2- log N) and O(N(1-x)+x log N).

Proof. We examine each case defined in 3.2 individually"
1. The number of rows of squares entirely inside the triangle is at most Nx and

each row requires O(log N). The retrieval time for all squares in case 1 is
O(N log N).

2. The square is crossed by one edge of the triangle. The retrieval time for the
half-plane structure in each square is O(N1- log N) by Corollary 2.4.1. Only
O(N) squares can be crossed by triangle edges, yielding a total retrieval time of

O(N(1-)+ log N).
3. As in case 2, retrieving the frontier along the alignment edge and interior

rectangles requires a total time of O(N(1-x)/3+x log N).
Because the other edges are in the same square as the alignment edge, they are

no more than D=x/N-x away. The number of rectangles which can cross each
other’s edge is limited to the number of slices, plus D divided by the width of a rectangle.

This is O(N(-a/x)+ O(N(-x). Since 8 2-/3, the total retrieval time for case
3 is O(N(-x)(2-/3) log N)+ O(N(1-x)/3+x log N).

COROLLARY 3.2.1. For A and/3 0,

[p, t]=EO(N2/3 log N), O(N2/3 log N)].

COROLLARY 3.2.2. For 0 <- A <--, the retrieval time is minimal if (1- A)(2-/3)=
(1-A)fl + A. If we set (2-3A)/(2-2A), a family of data structures which trades-off
storage redundancy in the range [log N. N2/3 log N] and retrieval time in the range
IN2/3 10g N" N 10g N] can be constructed.

COROLLARY 3.2.3. On the square grid, the triangle data structure can be used to
retrieve convex polygons (with v vertices) with complexity

[p, t]=[O(N1--3) log N), O(v max (N<l-x)<2-’) log N, N(1-x)+a log N))].

Proof Any convex polygon with v vertices can be expressed (in linear time) as
the disjoint union of O(v) triangles.

4. Retrieval of circular disks. We retrieve the sum of the values associated with
those grid points which fall with a circle. We define 1-’circle
{{(i,j)[(i-a)+(j-b)2<=r2} for (i,j)({1,..., N}, {1,..., N})and a, b, r9]}. We
observe that this is the same as the set of points which fall within the convex hull of
the points within the circle. We refer to the convex hull as c. c is a convex polygon
with its vertices at integral coordinates. From Appendix A we know that has O(N/3)
edges.

Since we are only considering semi-group operations, our analysis ignores the
time required to find the convex hull. General algorithms for obtaining the convex
hull of a collection of n points require O(n log n) arithmetic operations in the worst
case (the expected number of arithmetic operations is O(n)) [Shamos 78].

4.1. The circle data structure. The data structure is similar to that for triangle
retrieval. For the circle data structure, we divide the grid into squares whose sides are

DATA STRUCTURES FOR RETRIEVAL ON SQUARE GRIDS 925

parallel to the grid axis. The squares form Nx rows of Na squares (0<_-h <= 1). There
is a range query structure associated with each row of squares permitting the retrieval
of a contiguous subset of squares in the row. The data structure in each square is a
modified half-plane retrieval data structure. Thus, it is a collection of 2N
rotations, each containing 2N(1-a) slices.

In the standard half-plane data structure (see 2), each node in the range query
structure for the slice has a variable associated with it containing the sum of the values
covered by the node. In the half-plane data structure modified for circle retrievals, we
replace the variable within each node with a two-dimensional orthogonal range query
structure (see Fig. 3).

L

FIG. 3. Retrieval of an orthogonal triangle. Left figure: Overlap of rectangle and triangle to be retrieved.
Right figure: Rectangle and orthogonal range query. Retrieval yields intersection of rectangles.

The two-dimensional orthogonal range query structure is oriented parallel to the
grid axis and has storage redundancy and retrieval time equal to O(log2 N). This
structure permits retrieval of rectangles and right triangles aligned with the grid axes.
A geometric construction converts the regions formed by obtuse angles into these two
types of regions.

4.2. Performing a circle retrieval. For each square we have the following cases:
1. The diameter of c is less than 4N1-a.
2. The square is entirely inside
3. The square is crossed by exactly one edge of
4. The square is crossed by two or more edges of c which are at an obtuse angle.
If c is very small (case 1), then we retrieve all of the rectangles in the square

which overlap an edge and all of the rectangles in the interior of a slice.
The squares which are entirely contained within the region (case 2) are retrieved

by range query on the rows of squares. The squares which have only one edge passing
through them (case 3) are retrieved by half-plane retrieval.

If there is more than one edge in the square (case 4), we divide the region into
subregions which have at most one edge which is not parallel to the grid axes. The
number of subregions is no more than twice the number of edges of c passing through
the square. Each subregion can be retrieved using the modified half-plane structure.

The subregions are formed by drawing a horizontal line from each vertex of
and from each point at which an edge passes through the side of the square until they
meet a side of the square or an edge of c. Then, a vertical line is drawn from each
vertex of c and from each point at which an edge of q passes through the side of the

926 MARTIN DAVID KATZ AND DENNIS J. VOLPER

4/ 3 2 2 2 ’I\4

32223

FIG. 4. A sample circle and the corresponding classified squares.

square until they meet a side of the square, an edge of , or one of the horizontal
lines. This results in O(N2/3) right triangular and rectangular regions (see Fig. 5).
Each of these are retrieved using the modified half-plane structure.

4.3. Analysis of storage redundancy.
THEOREM 4.1. The storage redundancy of this data structure is p=

O(N<l-x)<E-Et) log N).
Proof. Each point is covered by the data structure for rows of squares and the

data structures within the squares.
The component of the storage redundancy due to the range query structure on

the rows of squares is p O(log N).
The component of the storage redundancy per square due to the modified half-

plane structure is the number of rotations (O(N(1-x)(2-2)) times the redundancy per
rotation. The redundancy per rotation is the redundancy of the two-dimensional
orthogonal range query structure within each range query tree node (O(log2 N)) times
the O(log N) height of the tree in the range query structure in each slice. Thus, the
storage redundancy of the modified half-plane structure is p O(N(1-’x)(2-2/3) log N).

The complexity is dominated by the second term.

FIG. 5. A square from the circle problem, showing the rectangles and triangles which form its subregions.

DATA STRUCTURES FOR RETRIEVAL ON SQUARE GRIDS 927

4.4. Analysis of retrieval time.
THEOREM 4.2. The retrieval time for the data structure is

O(max (N1-)+2/3 log N, N<1-)+ log N, N<-)<2-) log N)).

Proof. Each square falls into one of the cases below:
1. c is small enough so that only a constant number of squares are involved. The

square is retrieved by retrieving each rectangle crossed by an edge and the interior of
each slice in the square. The analysis resembles that for the triangle problem. Retrieval
time for this case is O(N(1-;)(2-/) log N+ N(1-;)/ log N).

2. For squares completely within c, retrieve each row of squares by range query.
There are at most Na rows, each taking O(log N) time. Retrieval time for this case
is O(N log N).

3. If exactly one edge crosses the square, then the square is retrieved by half-plane
retrieval. Each square is O(N-) on a side; therefore, each square has a retrieval
time of O(N(1-) log N). There are at most O(N) such squares. For this case, the
total retrieval time is t- O(N(1-x)/3+’x log N).

4. The number of vertices in the convex hull of the points within a circle of radius
R, whose vertices are at integral coordinates, is O(R2/3) (see Appendix A). Further,
for R > N, the number of convex hull vertices within a square N on a side is O(N2/3).
Therefore, the number of occurrences of this case is O(N2/3).

Each of the subregions (the constructed triangles and rectangles) can be retrieved
by modified half-plane retrieval in t= O(N-;’)3 log N). There are no more than
O(N2/3) subregions per circle. Therefore, the total retrieval time for this case is

O(N(1-x)fl+2/3 log3 N).
The theorem is obtained by adding the complexities of the cases.
COROLLARY 4.2.1. Let fl O, and h =. The complexity of the circle retrieval data

structure is [p, t] O(N2/3 log N), O(N/3 log N)].

5. General polygon retrieval. Given the N x N grid defined above, we retrieve the
sum of the values attached to the points which fall within a region defined by a polygon. is composed of one or more closed, piecewise-linear boundaries. We are told in
advance which regions bounded by are inside the region to retrieve and which are
outside.

We define as a polygon’s concavity factor (a measure of the complexity of the
polygon). For a polygon , p() is the sum of

the number of times the boundaries cross,
the number of boundaries,
1/2r times the sum of the turning angles of the concave vertices (rounded up).

Each acute angle causes a turning angle (absolute value of the external angle
minus zr) of at least r/2. The total turning angle for a simple (connected) polygonal
boundary is 2r plus the sum of the turning angles of the concave vertices. Dividing
the total turning angle by the minimum turning angle of an acute vertex implies that
the total number of acute angles in can be no more than 4.

A boundary with length cN within the N x N boundaries of the square grid must
have a turning angle of at least cr/2. If is not a simple polygon (i.e., it is composed
of several boundaries) the length of the perimeter is the sum of the lengths of the
boundaries. Therefore, the perimeter of the portion of within the square grid has a
length of at most 4Np.

By drawing appropriate construction lines, each boundary of can be divided
into convex polygons. If such a convex polygon has more than O(P2/3) vertices (P is
the length of the perimeter of the convex polygon), then a convex hull for the points

928 MARTIN DAVID KATZ AND DENNIS J. VOLPER

within the convex polygon can be substituted for the convex polygon (see Appendix
A). A piecewise convex hull can be constructed for any polygon such that the number
of vertices within the square grid is O(qgN2/3). We may therefore assume, without loss
of generality, that the polygon has O(N2/3) vertices.

THEOREM 5.1. We can retrieve the sum of the values associated with the grid points
within any polygon with complexity

[p, t]=[O(Nl-X2-2tlog3 N), O(q max (Nl-xt+x log N),

N(1-x)t3+:z/3 log N, N(-x>(2-> log N)].

If=O and A =, then [p, t]=[O(N2/31og N), O(qN2/31og N)].
Proof. We use the circle data structure. Connect all boundaries into a single

concave polygon without increasing the concavity factor as follows:
1. If an edge separates two regions which are both inside (or outside) the region

to retrieve, the edge is removed.
2. Given two boundaries, connect one vertex of the first boundary to a vertex on

the other boundary (producing a zero area tunnel containing no points).
3. If the polygonal boundary crosses itself, the polygon is cut at the crossing and

reattached such that the crossing is removed (possibly adding a vertex). This produces
a zero area tunnel containing no points.

Superimpose the polygon on a square lattice as in the circle problem. If there are
multiple portions of the region overlapping a square, retrieve each portion separately.
Retrieve the regions as in the circle problem.

Since the time to retrieve vertices (t O(oN(1-x)13+2/3 log N/
qgNl-a)2-)log3 N)), edges (t=O(qN1-)+; log3 N)), and contiguous rows of
squares entirely within the region (t= O(N log N)) are all limited by a value
proportional to the concavity factor, the retrieval can be performed in the stated
time. [3

6. Uniformly distributed points. In discussing retrievals in previous sections, we
required that the points be located at integral coordinates. Many applications do not
meet this constraint. Here, we analyze the complexity of the data structures when the
position of each point is randomly selected.

Analysis of the data structures on the integer grid yielded a worst case complexity.
Analysis of these same data structures, on a square region of the plane in which points
are uniformly distributed, yields the same storage redundancy as when the points are
in a grid. However, the retrieval time analysis yields the expected value, not worst case.

Given Np points uniformly and independently distributed over an N x N region,
where the position of each point is randomly selected from a uniform distribution, we
determine the expected retrieval time of the half-plane structure.

Lemma 2.2 assumes that the points are on an integer grid, so it no longer applies.
The analysis of the time to retrieve the interior of each slice does not assume that the
points are on integral coordinates; it remains valid. We analyze the expected time to
retrieve the frontier of each slice.

Assume that the points in the frontier rectangles are individually retrieved. The
expected time to retrieve a rectangle is proportional to the average number of points
in the rectangle, which is 1/2Np-(a+213).

This modifies the complexity given in Theorems 2.1 and 2.4 to yield an expected
complexity of

[p, E(t)] O(N log N’+t), O(Nt log N’+t) + O(NP-(+t))].

DATA STRUCTURES FOR RETRIEVAL ON SQUARE GRIDS 929

If we let a =/3 (p-a-/3) this yields

[p, E(t)] O(Np/3 log S), O(Np/3 log S)].
Note that the complexity is dependent on the number of points, not N.

When a fl and p 2, then as expected

[p, E(t)] O(N2/3 log N), O(N2/3 log N)].

The other data structures presented above are analyzed in a similar manner [Katz
85]. In each case, the storage redundancy is unchanged from that of the grid problem,
and the expected retrieval time is less than the worst case retrieval time derived for
the grid problem. For instance, the expected retrieval time for a triangle is

O(N(1-x)(2-/3)) + O(N(1-x)/3+x log N)+ O(NP-X+fl-(1-x)(a+2fl)).
With appropriate values for the parameters, this yields

[p, E(t)] O(Np/3 log N), O(Np/3 log N)].
7. The dynamic data structures. Thus far, we have only discussed update and

retrieve operations. Further, we have assumed that all points are present or initialized
to 0. This is the simplest case of a dynamic data structure, since the values being
retrieved can change, but the structure in which they reside can not. In this chapter,
we will examine two other ways in which a data structure can be said to be dynamic:

1. Allow the insertion and deletion of points whose keys are in a grid of known
size.

2. Allow the insertion and deletion of points with arbitrary (integral) keys.
In both of these versions, we start with an empty grid and enter poi.nts by inserts.

We may also delete a point or we may update the value attached to a point. We define
modifications to the half-plane data structure which permit the data structure to
represent these dynamic structures.

7.1. Keys in a grid of known size. We approach the first form of the problem by
abstractly generating a version of the data structure in which all values are initially 0.
Portions of the data structure are actually generated only as needed by operations.

The first insertion generates all of the rotations, but only those parts of each
rotation necessary to represent the first point (i.e., only one slice and only one rectangle)
are filled in. Subsequent insertions extend the data structure within each rotation to
support the new point. Retrievals are as in the static structure.

Each deletion removes a single point from the data structure. Following Fredman,
we assume that semi-group variables can only have values assigned once. When deleting
a point, all O(log N) variables, in the retrieval structure from the point to the root of
the data structure in each rotation must be replaced. Updates may be performed as a
deletion followed by an insertion. This form of dynamic structure costs no more per
operation than the static structure.

7.2. Arbitrary integral keys. In the second form of dynamic data structure, we are
trying to solve the same problem; but we do not know how large the space is which
contains the points. We guess N, the size of the grid and build the data structure. The
initial guess for N is small and the data structure is adjusted as updates are made.

We can convert this problem into a decomposable problem by noting that we can
assume N to be a power of 2 with only a constant factor increase in complexity. We
can then use any of the methods described in [Bentley 79], [Bentley and Saxe 80], or
[Overmars and van Leeuwen 81] to convert the static data structure into the dynamic
one.

930 MARTIN DAVID KATZ AND DENNIS J. VOLPER

Since the size of the half-space data structure is at least doubled each time and
the final structure is no more than twice the optimal size, the maximum number of
times that a new structure must be built is O(log N). The worst case complexity of
the data structure is [p, t] [O(N2-2/3 log2 N), O(N3 log2 N)] per operation. Because
the increase in size is exponential, the amortized complexity of the dynamic structure
is no worse than four times the amortized complexity of the static structure.

7.3. Other data structures. Similar modifications can be applied to form dynamic
versions of the other data structures discussed in this paper. The complexities resulting
from the dynamic data structures are at most O(log N) worse than the complexities
of the static case, even if N and p (in the nongrid problems) are not known in advance.

8. Summary. We have presented families of data structures which permit efficient
geometric retrieval. The structures permit retrieval of the sum of the values associated
with points in a half-plane or polygon. The points may be at integral coordinates or
randomly distributed. We have also described the behavior of the data structures when
used dynamically. The families of data structures permit storage redundancy (update
time) to be traded off against retrieval time.

Appendix A. Bound on vertices in a convex polygon. In order to achieve a worst
case bound on the retrieval time for a circle on the square grid (see 4), we must have
an upper bound on the number of vertices. L. L. Larmore [Larmore 84] provided a
sketch of the proof presented below:

THEOREM A.1. The number of vertices in a convex polygon whose vertices are at

integral coordinates is O(R2/3) where R is one half of the maximum distance between
two vertices.

Proof. Since the polygon is convex, each of its edges (taken in the clockwise
orientation) has a different slope. If each of the edges is treated as a vector and
translated to a common origin, each vector must terminate at a different integral
position. The sum of the lengths of the translated vectors is between 4R and 27rR. The
smallest average length of the translated vectors occurs if they are packed into a circle
with the smallest possible radius. In order to have a sufficiently large sum of lengths,
such a circle must have a radius of (R1/3). The average length of the vectors packed
into a circle of this radius is ’(R1/3). The number of vertices is the perimeter of the
polygon divided by the average length of the vectors. Therefore, the number of vertices
is limited to 0(R2/3). [-]

Acknowledgment. We wish to thank the referees for their extremely helpful sugges-
tions for improving this paper.

REFERENCES

[Avis 84] D. Avis, Non-partitionable point sets, Inform. Proc. Lett., 19 (1984), pp. 125-129.
[Bentley 79] JON LouIs BENTLEY, Decomposable searching problems, Inform. Proc. Lett., 8 (1979), pp.

244-251.
[Bentley and Saxe 80] JON LouIs BENTLEY AND JAMES B. SAXE, Decomposable searching problems # 1:

Static to dynamic transformations, J. Algorithms, (1980), pp. 302-358.
[Burkhard, Fredman and Kleitman 81] WALTER A. BURKHARD, MICHAEL L. FREDMAN AND DANIEL

J. KLEITMAN, Inherent complexity trade-offsfor range queryproblems, Theoretical Computer Science,
16 (1981), pp. 279-290. North-Holland, Amsterdam.

[Cole and Yap 83] RICHARD COLE AND CHEEK. YAP, Geometric retrieval problems, Proc. of the 1983
IEEE Symposium on Foundations of Computer Science, pp. 112-121.

[Cole 85] RICHARD COLE, Partitioning points in 4-space, Proc. ICALP, to appear.
[Edelsbrunner and Welzl 83] H. EDELSBRUNNER AND E. WELZL, Half-planar range space in linear space

and O(N"695) time, Univ. Graz, Technical Report Flll, 1983.

DATA STRUCTURES FOR RETRIEVAL ON SQUARE GRIDS 931

[Fredman 80] MICHAEL L. FREDMAN, The inherent complexity ofdynanic data structures which accommodate
range queries; Proc. ofthe 1980 IEEE Symposium on Foundations ofComputer Science, pp. 191-199.

[Fredman 82] MICHAEL L. FREDMAN, The complexity of maintaining an array and computing its partial
sums, J. Assoc. Comput. Mach., 29 (1982), pp. 250-260.

[Katz 85] MARTIN DAVID KATZ, Geometric retrievals: data structures and computational complexity, Ph.D.
dissertation, Information and Computer Science, University of California, Irvine, CA, April 1985.

[Larmore 84] LAURENCE L. LARMORE, Personal communication, 1984.
[Lueker 78] GEORGE S. LUEKER, A data structure for orthogonal range queries, Proc. of the 1978 IEEE

Symposium on Foundations of Computer Science.
[Lueker and Willard 82] GEORGE S. LUEKER AND DAN E. WILLARD, A data structure for dynamic range

queries, Inform. Proc. Lett., 15 (1982), pp. 209-213.
[Megiddo 84] N. MEGIDDO, Partitioning points with 2 lines in the planes, this Journal, to appear.
[Overmars and van Leeuwen 81] M. H. OVERMARS AND J. VAN LEEUWEN, Two general methods for

dynamizing decomposable searching problems, Computing, 26 (1981), pp. 155-166.
[Shamos 78] MICHAEL IAN SHAMOS, Computational geometry, Ph.D. dissertation, Yale Univ., New Haven,

CT, 1978.
[Willard 78] DAN E. WILLARD, New data structures for orthogonal queries, Technical Report TR-20-78,

Center for Research in Computing Technology, Harvard Univ., Cambridge, MA, 1978.
[Willard 82] Polygon retrieval, this Journal, 11 (1982), pp. 149-165.
[Willard 85] New data structures for orthogonal range queries, this Journal, 11 (1982), pp. 232-253.
[Yao 83] F. FRANCES, YAO, A 3-space partition and its applications, Proc. of the 15th ACM Symposium on

Theory of Computing, 1983, pp. 258-263.

SIAM Jo COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
OO3

COMMUNICATION COMPLEXITY OF COMPUTING THE
HAMMING DISTANCE*

KING F. PANGS" AND ABBAS EL GAMAL

Abstract. Let x, y {0, 1} n. Persons A and B are given x and y respectively. They communicate in order
that both find the Hamming Distance d(x,y). Three communication models, viz, deterministic, e-error
and e-randomized, are considered. Let C(d 7-/), Ce (d) and De(d) be the respective minimum number
of bits that must be communicated under the three models. It is shown that

n+log (n+ 1-v)<_-C(dI) <- n+ [log (n+ 1)].
It is also shown that both Ce (dt) and De(d) are lower bounded by (n), thus solving an open problem
posed by Yao.

Key words, communication complexity, randomized protocol, Hamming distance, combinatorial
extremal problem

AMS(MOS) subject classifications. 05, 68

1. Introduction. Let , 0 and be three finite sets and f" x -> . Person A
is given x and person B is given y . They communicate according to an
agreed-upon protocol, with the objective of computing f(x, y). We consider three
communication models which differ in the types of protocols employed and the level
of correctness of the computation.

(i) Deterministic model" When A (or B) transmits, his message is a function of
x (or y) and all the previous messages. When the communication terminates, both A
and B are required to know the correct value of f(x, y), for all (x, y) e x . C(f) is
the minimum (over all deterministic protocols that satisfy the error-free requirement)
number of bits communicated under the worst case input.

(ii) e-error model" The e-error model is deterministic in the sense of (i). However,
when it terminates, both A and B are allowed to arrive at an incorrect value off(x, y),
for as many as e. IIll ll (arbitrary) pairs (x, y) x . The e-error communication
complexity of f, C(f), is then similarly defined as C(f), where the minimization is
over all deterministic protocols satisfying the e-error requirement. With a uniform
density on x , the average case e-error complexity C(f) can also be defined.

(iii) e-randomized model: When A (or B) transmits, he chooses randomly from
a set of messages. The messages in this set and the probability density on it are specified
by x (or y) and the messages already transmitted. The error requirement is the following:
averaged over all the possible sequences of messages sent during the communication,
for all inputs (x, y) x , the probability that the end result is different from f(x, y)
is no more than a constant 0-< e <_-1. With a uniform density on x , let Dp(f) be
the average (over all random outcomes) number of bits communicated in protocol P
averaged over all inputs. The e-randomized communication complexity of f, DE(f),
is then defined as the minimum of Op(f), over all protocols that satisfy the e-error
condition.

* Received by the editors May 29, 1984, and in revised form July 2, 1985.
Information Systems Laboratory, Electrical Engineering Department, Stanford University, Stanford,

California 94305. The work of this author was partially supported by the National Science Foundation
under contract 80-26102.

Information Systems Laboratory, Electrical Engineering Department, Stanford University, Stanford,
California 94305. The work of this author was partially supported by the Defense Advanced Research
Projects Agency under contract MDA-0680 and by the U.S. Air Force under contract F49620-79C-0058.

932

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 933

In this paper, we examine the communication complexity ofthe Hamming distance
function according to the three models. The Hamming distance between x, y {0, 1}
is defined as

d(x, y) l(x, y,),
i-----1

where 1(.) is the indicator function. When the lengths of x and y are not explicitly
specified, the notation d,(x, y) is used for their Hamming distance. In 2, we consider
the deterministic model. Section 2.1 contains the formal definition of a deterministic
protocol and upper and lower bounds to C(f) for an arbitrary function f are shown
in 2.2 (Theorems 2.1 and 2.2). In 2.3, we prove a lower bound on C(d) that is
at most one bit less than the upper bound (Theorem 2.3). As a by-product of this
result, we solve an independently interesting two-family extremal combinatorial prob-
lem (Theorem 2.4 and Corollary 2.3). Section 3 is concerned with the e-error model.
We first formally define an e-error protocol. The communication complexity (under
all three models) of the Hamming distance function is then related to those of the
inner product function and the parity of the inner product function (Lemma 3.2). By
proving a lower bound on the e-error communication complexity of the latter (Lemma
3.3), we prove an l(n) lower bound for C(d) (Theorem 3.1) and C(dH) (Theorem
3.2). In 4, we combine the result of 3 and a Theorem of Yao [Yaol] to show that
D(dH) l)(n) (Theorem 4.1), thus solving one of the open problems posed in [Yao3].

2. Deterministic model.
2.1. Formal definition. To formally define a deterministic protocol for f, we need

the following definitions"
DEFINIrION 2.1 [Yao2]. A monochromatic rectangle (m-rect) is a product set 0-//x 7/"

where , F___ such that f(a, b) is constant for all u q/ and v . An m(f)-
partition is a partition of x into m-rect’s and k(f) is defined as the minimum
number of m-rect’s over all m(f)-partitions of x .

DEFINITION 2.2. Denote and the row-projection and column-projection of the
product set x . The pair of product sets (’ ’, "x ") is called a row-partition
of x if ’ "= and ’, " partition . A Column-partition is defined similarly.
A decomposition tree (d-tree) for x is a binary tree whose nodes are product
sets x od. Each internal node is the disjoint union of its children. The root of the
tree is x and the leaves-are m-rect’s of f. It is clear that since the tree is binary
each node is either row- or column-partitioned by its children.

Given a d-tree for f, we label the children of each node "0" and "1" and associate
with it a protocol P as follows" At each step of the communication A and B consider
one node in the tree (the first node being the root). If the node is column-partitioned
by its children, A transmits the label of the child whose row-projection contains x. If
the node is row-partitioned, B transmits the label of the node whose column-projection
contains y. Next, A and B move to the node whose label was transmitted and repeat
the process. The communication terminates when they arrive at a leaf and obtain the
value of f(x, y).

An easy induction (on the number of bits communicated) shows that at each step:
(i) A and B consider the same node of the tree.
(ii) This node contains (x, y).
(iii) If the node is internal then exactly one of its children contains (x, y).
An example of a d-tree for a function is shown in Fig. 2.1. Suppose in the d-tree

for protocol P, the length of the (unique) path joining the root and the leaf containing

934 KING F. PANG AND ABBAS EL GAMAL

0
0 0
0 0

.0 0

0 0 0 0
0 0 0 0
0 0
0 0

0 0 0

t Cp 2 bits for this protocol.

FIG. 2.1. An example of a protocol.

(x, y) is Cp(x, y). The complexity of the communication protocol P is defined as

Cp(f) a__ max Cp(x, y),
(x,y)xD

and the communication complexity of f is defined as

C(f) a__ min Cp (f).
P

Remark. In our model, the transfer of information occurs in both directions, but
not simultaneously. Since we are only concerned with the number of bits exchanged,
it is straightforward to show that the lower bounds proved in this paper are not affected
by this restriction.

2.2. General bounds for C(f). A simple upper bound for C(f) can be achieved
by the following algorithm: Using [log II llq bits, A communicates x to B, who
computes f(x, y). Another [log II llq bits are then sufficient for B to inform A of the
result. We therefore have the following theorems.

THEOREM 2.1. C(f)<- [log I1 11] / Flog
There are two general techniques for proving lower bounds for C(f) for an

arbitrary function f. The first one [Yao2] is based on m(f)-partitions of x . The
other lower bound [MS] is obtained from the rank of the function table of f, which
is being considered as an I111 IJll matrix. A statement of the first lower bound,
according to our model, is the following:

THEOREM 2.2. C(f) _-> [log (k(f))].
Proof. The theorem follows from two properties of the d-tree corresponding to

the protocol P:
(i) All the leaves ofthe d-tree are m-rect’s (otherwise the result ofthe communica-

tion is not always correct).
(ii) The product set corresponding to the node of the d-tree is either row- or

column-partitioned at each step of the protocol.

All logarithms in this paper, unless otherwise specified, are of base 2.

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 935

By the definition of k(f), every d-tree off must have at least k(f) leaves. Hence,
the height of a d-tree is at least [log (k(f))] and the theorem is proved. I-]

2.3. Upper and lower bounds for C(d). In this section, we derive bounds for
C(dH). The upper bound follows immediately as a corollary to Theorem 2.1"

C(d)<-n+ [log (n + 1)].

We next give a lower bound for C(dT-/), matching the upper bound up to smaller
order terms, by a simple argument.

LEMMA 2.1. C(dH) >-_ n + 1.

Proof For any x {0, 1} n, d 7_/(x, x) 0 and d(x,) n, where is the complement
of x. Hence there are exactly 2 m-rect’s of Hamming Distance 0 and n respectively
in any m(d)-decomposition of {0, 1}n x{0, 1} ". Subsequently, k(d)->2"+1 and by
Theorem 2.2, C2(d) -> n + 1.]

This lower bound differs from the upper bound by [log (n + 1)]- 1 bits. A better
lower bound, differing from the upper bound by no more than 1 bit, is stated in the
following theorem.

THEOREM 2.3. C2(d /) >_- n + [log n + 1 /-)].
Proof. We lower bound k(d) by upper bounding the sizes of all the m-rect’s in

the function table. For 0-<_ _-< n, define

S--a {7/x 7/’_ {0, 1}" x {0, 1} "" d(u, v) <3 for all u //and v //’},

M(n, a)Amax{llUll I1 11" x S:}.

In Lemma 2.2, we establish the fact M(n, <3)= M(n, n- <3) by showing that for
every m-rect S:, there exists an m-rect E S_ with equal size. This reduces the task
of upper bounding M(n, <3) to the range 0=< <3 =< [n/2J. We then prove in Theorem 2.4
the crucial result that for n =2, 3, 4...; <3 =0, 1,..., [n/2J,

M(n, <3) <- max 4,
M n 2, <3 -1) <3(n-<3

As corollaries to Theorem 2.4, we show that

(2.1) M(n, <3) <-

Now denote

i (r/--2j)2

j=o (<3 --j)(n <3 --j)

It is clear that

for all n and <3 < n/2-x/-/4,

for n >_-4 and tn/2-x/-] <= 6 <- [n/2J.

N(n, 6)-//{(x, y) {0, 1}" x {0, 1}"" dt(x, y) <3}1]

4 N(n, <3)
k(d"n) >

=o M(n, <3)
,,/2-,/--1 N(n, <3)

=2. +
=o M(n, 6)

S+$2

for 0_< <3-< n

r,,/-+e-l N(n, <3)

= r,,/2-,/-7 M n, <3)

936 KING F. PANG AND ABBAS EL GAMAL

where $1 and $2 are respectively the values of the first and second summations. From
the first inequality of (2.1)

S, => 2. 2n. In

On the other hand, as we show in Appendix 1,

$2_>-2" for n =>4,

therefore k(d)>-2"[n+l-v/-ff] for n>-4. For l<_-n<_-3, k(d"H) can be verified from
the Hamming Distance Function tables to be 4, 10 and 32 respectively, which still
satisfy the lower bound above. Since C2(d) => [log (k(d 7-/))], we obtain

C2(d) -> n + [log n + 1 x/if) 1.
We are ready to state and prove Lemma 2.2 and Theorem 2.4.
LEMMA 2.2. M(n, 6) M(n, n 6) for 6 O, 1,. ., n.

Proof Since for any x and y {0, 1}",

I i" (’) ’H

d(x, y) 8:=> 7-/(i, y) n

,(x,) n

the following are equivalent:
1) a//x U S"
2) //x T’ S,
3)
4) o//x T" S_.

Since 0u 0 and 11 11, the lemma is proved.
This lemma shows that the analysis of M(n, 8) can be reduced to the range

0-<8 <- [n/2J. The basis for upper bounding M(n, 8) for 8= 1,2,..., [n/2J is pro-
vided by the following theorem.

THEOREM 2.4. For n =3, 4..., 6 1, 2,..., [n/2J,

n(n- 1))M(n, 8) <-max 4,
M(n-2,6-a)- 6(n-6)

Proof We first introduce some notation: For a set C {0, 1}" and e {0, 1},
i) The ith bit of c C is denoted by
ii) C’-a {(cl,"" c.) C" c,= e}c_{0, 1}".
iii) C*t a={(cl c,_, ct+, c,)" (c, c,_ e, c,+, c,,) C}c

{0,
iv) Analogously, for two components s, we define C c_ {0, 1}" and C*S’c,

{0, 1}"-2.
v) For a {0, 1} and be {0, 1}j, aS {0, 1}+j represents the concatenation of a

and h.
Consider A x B S. Construct a//_ {0, 1}""-1)/2 from A by the following pro-

cedure"
i) Let F _a___ {(i,j). 1, 2,. , n 1; j + 1, , n}, i.e. the set of pairs of distinct

indices between 1 and n. Clearly u a___ IIFI n(n 1)/2. Order the pairs lexicographically
and denote the kth pair as (ki, k).

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 937

ii) Map every aA to a u such that for k= 1,..., v,

Uk=l if(ak,,akj)=(0,1)or(1,0),
0 otherwise.

Similarly, 7/’ {0, 1}n(n-1)/2 is constructed from B.
FACT 1. ’U -// and v : d(u,v) 6(n-6).
Proof (of Fact 1). There is a one-to-one correspondence between each pair

(u, v) x and (a, b) A x B. u and v differ in a certain bit position iff there is
exactly one component different in the corresponding pairs of bits from a and b. The
number of such pairs is 6 (n 6).

FACT 2. Let

::!1 <= k<-_ n(n- 1)/2 such that either:

(2.2) Ak" /zk ---->
(n-)
n(n-1)’

or

(2.3) Ak /zk=>
(n-)
n(n-1)"

Proof (of Fact 2). Define rk
__a I1((,*) X : U V}II. Clearly, Crk= I111

I111"(/)" On the other hand,
n(n--1)/2

u0// v//"

u vY

I111" I111" (n-),
By the pigeon hole principle, there must exist an index k such that

26(n-6)-> IIUll" I111n(n-1)

and one of the two terms making up trk must be no less than half of this value, l-I

Without loss of generality, assume (2.2) is satisfied by the specific value of k and
that ki 1 and kj 2. To construct an m-rect S-, we consider the following cases.

Case 1. AUA=A and BU B1211 B" If W GAo*12 (resp. Bo*o12), then either
w,o (resp. B1"12), or 10w (resp. l lw) can be appended to A (resp. B), and this
only increases IIAII’ IIBll. we can therefore assume 31"o12= Ao*l1- and Bo*o12= BI*2. Define

A:12 and D a__ u,12 n--2C a Ao,l12 or ,1o ,-,oo or BI*I12. Clearly, C x D S_ and we have shown that

IIAII" B 4. C I1" DII

(n(n-1))-<_max 4,6(n_ "M(n-2’6-1)"

Case 2a. Ao2 UA2 A and BUBc B" If w Bo*o12, then either w B*:2, or 11w
can be appended to B which only increases IIAII" IIBII. We can therefore assume that
Bo*o2 B*2. On the other hand, if z Ao*2 then z A*o2, i.e. Ao*l2 f) Al*o2 . Consider
the following two cases"

938 KING F. PANG AND ABBAS EL GAMAL

a) B(n- 3)/n(n- 1)->4" Recall from the proof of Fact 2 that we have Akfk
klk>2(n--)/n(n-l)- Al-A-Alo implies that Ak 1 and therefore *,1o

oo II(n-)/n(n-1)"]]AI[. [[B]]. Define C A2UA and DBd
Clearly, C x D SZ and we have shown that

n(n-1)
A[. B

(n 6)" c I1 IID

M(n-2, 6-1).
1)

Nmax 4,(n_
b) (n)/n(n 1) < 4" We can construct an m-rect P x Q e S from A x B such

that P x Q > A x B II. Specifically,

*’: ({(1 0)} xA:)PA({(O, 1)}Xo

Q B BI,.
Note that

26(n-)
n(n-1)

Next, define C p2 or Pd2 and D& Qd2 or Q2. Clearly, C x D S_ and that

M(n-2, 6- 1).
n(1)

A I1" e I1" 4. C I1" D max 4,
(n

Case 2b. AInU Ac A a BgU B= B" The argument used in Case 2a is
symmetric between A and B. Therefore we obtain the same upper bound on IA.

Case 3 *AOl U Alo A B U B c B: We observe that A]o = and00 11

B,12 B2 Consider the following two cases.
a) 6(n 6)/n(n 1) 4: Define C &A2 Ad2 and D & Bff2 U B2. It is clear

that C x D S"-2
_

and

(n(n-1))max 4, 3(n_. M(n-2’ 6-1)"

b) 6(n 6)/n(n 1) < 4: Define

P AaU al U ({(0, 1)} a) ({(1, 0)} a)),

Q =s s’,, ({(o, o)} x B)) ({(,1)} x S).

Now P[[.]]Q[[4"]]A[[.][B]]. (n-)/n(n-1)>ilall" 11. Oenne CP or
,2

o Qoo or Q) Clearly, C x D S_

[[a. B[[P.Q]

4. c. DI

M(n -2, 1).
1)

Nmax 4,(n_

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 939

Hence in all the four cases, we have succeeded in proving that

where

M(n, 6) <-max 4,
M(n-2, 8-1)- 8(n-

The proofs of the following three corollaries are given in Appendix 2.
COROLLARY 2.1. For 8< [n/2-Vn/4] and 8> [n/2+v/n/4J, M(n, 8) ().
COROLLARY 2.2. For n/2-/n/4 <- 8 <= n/2+ n,J/4,

’-’ (n --2j)2

M(n, 8) <= 1-I
j=o 8’-j)(n 8’-j)

8 for 8 <= [n/2J,
8’=

[n/2J 8 otherwise.

COROLLARY 2.3. For n 1, 2, , maxo_____<, M(n, 8) 2" and the maximum is
achieved by n2J and n2].

The last corollary, being a special case of Theorem 2.4, was previously derived
using a less general argument and reported in [AEP].

3. The e-error model.
3.1. Definitions and general lower bound. In the e-error model, there is still a

one-to-one correspondence between a protocol and a binary tree, which we call an
e-tree. An e-tree is nearly identical to a d-tree defined in 2.1, except that since errors
are allowed by an e-error protocol, the leaves of an e-tree are no longer necessarily
m-rect’s. Each leaf is now a product set A B c__ Y such that most of its elements
yield the same function value. The following definitions parallel those in 2.1.

DEFINITION 3.1. Given a function f:xf, a q-monochromatic rectangle
(abbreviated as q-rect) with error e is a pair (07/x 7/’, z), where o//. x and
z , such that f(u, v) z for at least (1 e). I1" 11 pairs (u, v) x . We denote
the size of the largest q-rect with error e by M(f). An m(f) -partition is a partition
of f into q-rect’s S with error ei, where i= 1,. ., m(f), such that

me(f)

i=1

We define k(f) as the minimum of me(f) over all m (f) -partitions of x .
With these definitions, it is straightforward to pinpoint the differences between a

d-tree and an e-tree. In contrast to a d-tree which has m-rect’s as its leaves, the leaves
of an e-tree are q-rect’s. In addition, suppose there are k leaves in the tree, where the
jth leaf has weight (i.e. the number of elements in it) % and has error % then the
following condition (which we shall refer to as the "e-error requirement") must be
satisfied:

k

i=1

Let P be a protocol satisfying the e-error requirement and Ce(x, y) be the depth
of the leaf in the e-tree representation of P to which (x,y) belongs. The e-error
communication complexity of f is defined as

C(f) a= min max Ce(x, y).
P (x,y) ,f’x

940 KING F. PANG AND ABBAS EL GAMAL

With a uniform density on x , the average case e-error communication complexity
of f can also be defined:

1(f) a__ nn E Ce(x, y).
I111" I111

The following lemma provides a lower bound for C(f) in terms of M(f).
La 3.1. Cf ->_ og 11 + og logf 1.

Proof The proof of the first inequality is similar to that of Lemma 2.1. To prove
the second inequality, consider the m(f)-partition which achieves m(f) k (f). For
convenience in notation, we shall abbreviate k(f) by k. Let Si, i= 1,..., k be the
q-rect’s constructed. The e-error requirement stipulates that

which can be written as

Clearly,

E ei Si 11 11,
i=1

E , s, + E , s, 11 11.
i: ei <_2e i: ei> 2e

Z IIsille(llll,

Suppose the number of q-rect’s involved in the above sum is k’; we have

1

k--7 E [[s, ll(llll" llll)/(2k’).
i" ei<=2e

The left-hand side of the above equation is the average size of k’ q-rect’s. There must
exist one q-rect Si whose size is at least as large as the average, i.e.

IIs, II->-(llll. [[)/(2k’)
Since s, II--< M2(T) and k’=< k, we have

M2(f) --> (1111. ll)/(2k),
which gives the second inequality.

There is a similar result for the average case complexity.
LEMMA 3.2. C(f)=> (log IIll /log IIll-log M2(f)-1)/2.
Proof. Let P be the protocol achieving C(f). Consider the e-tree representation

of P. As there is no ambiguity, we also call this e-tree P. Consider those leaves of this
tree with no more than 2e error. Without loss of generality, let them be the first m
leaves of the tree and denote their weights by ws, 1 _-<j-< m. We must have

w Z w, (1111" 11)/2,
i=1

for if otherwise, the remaining leaves already violates the e-error requirement. Clearly

E_C(f) Cp >-
11 I1

By the entropy bound for the external path length of a binary tree,

2 Isws >= ws" log
j=l j=l

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 941

Since wj -<_ M2(f) for all j, the left-hand side of the above inequality is at least

Subsequently

j=l

C (f) =>
 11" 11" log

>= (log IIll +log IIll-log M2(f)- 1)/2. I-i

3.2. Lower Iounds for C(d) and C(dn). Letting x, y {0, 1} their inner product
is defined as

fT(x, y) & xy
i=1

and the parity of fT(x,y) is denoted by fTp(x,y). We first relate C(d), C(f’;) and
c(fT,,).

LEMMA 3.3. Given 0 -< s < 1, C(d) + 2 [log (n + 1) >= C(f’) >= C (f’e).
Proof. The second inequality is easily proved by noting that knowing the inner

product, the parity of the inner product can always be computed. However when an
erroneous value offT(x, y) is used to compute fip(X, y), the latter is not necessarily in
error. Hence in order to compute fip(X, y), with error no more than s, one can always
first compute fT(x, y) with the same designated error. To prove the first inequality,
consider the different values that the pair (xi, yi) can take. Let

tl, 1 (xi 1, Yi 1).
i=1

Similarly, tl,o, to,1 and to,o are defined. We have the following relations:
(i) d(x, y)= to,, + t,,o.
(ii) wt (x) t1,1 + tl,o, where wt (x) is the number of ones in x.
(iii) wt (y)= t1,1 + to,1.
(iv) fT(x, y)= t,l.

It is easy to see that

(wt (x) + wt (y) d 7-/(x, y)) 2fT(x, y).

Hence knowing the weights of both x and y, there is a one-to-one correspondence
between the Hamming distance and the inner product. Since the weight of one sequence
can be communicated to the other person in [log (n+ 1)] bits, we have the first
inequality.

Clearly, the argument also holds for the average case complexities. Thus
COROLLARY 3.1. C(d"u)+2[log (n+ 1)]_-> C(fT) >- C(fTp).
Finally, restricting Lemma 3.3 to the case e 0, we have the following relationship

among the deterministic communication complexities of the three functions.
COROLLARY 3.2. C(d"l-l)+2[log(n+ 1)]=> C(f’])>= C(f’]p).
We next prove an upper bound for M(f’]p).
LEMMA 3.4. For 0 <-- e <--_ , Me (flp) <- (1 + ce) 2 where c is a constant dependent

ol’lly ol .
Proof Define A(n), the function table for fi"P as a 2"2" matrix, whose (i,j)th

component is f’]p(b(i), I(j)) (where b(k) is the binary representation of 0 -< k-<2"- 1).
Consider {r, 1, , 2"}, the rows of A(n) as a set of binary 2" sequences. We have
the following:

942 KING F. PANG AND ABBAS EL GAMAL

FAC’rS" (1) wt (rl) =0 and wt (ri)=2n-1 for 1 <i=<2n. (2) dH(ri, rj)=2-1 for all
i#j.

We prove the facts by induction. The case n I is easily settled by inspection.
Suppose that the claim is true for n, using A(n + I) (Fig. 3.1), we shall show that it
also holds for n + I.

A(n)

A(n)

A(n)

A(n)

A

A
L

FIG. 3.1. Inner product function table for sequence length n + 1.

To prove Fact 1, note that each row in A(n+l) is a concatenation of two
2"-sequences, each having weight 2"-1. To prove Fact 2, we denote by Av and AL the
upper and lower halves of A(n+ 1) respectively, as shown in Fig. 3.lb. Consider any
two sequences rl and r2 in A(n + 1). If both of them are in Av or AL, then the Hamming
distance between each half sequence is 2"-1. If one of them is in Av and the other in
A, then there are two cases.

(i) r; aa, i.e. the concatenation of two copies of a, which is a row in A(n); and
rj =a" The Hamming distance between the first half sequences is dH(a, a)=0 and
that of the second half is dn(a,)= 2".

(ii) ri =aa, and rj =bb, where a and b are rows in A(n): The Hamming distance
between the first half sequences is dH(a, b)--2"-1 and that of the second half is
all(a,) 2"-1

In either case, the total Hamming distance is 2". l
For convenience of notation, denote 2" by N. We are ready to prove that M(f’p) <=

(1 + ce) N for 0-< e -<--. First consider q-rect’s giving function value 0. Suppose there
exists such a q-rect P A x B of size (L+ 1)x M, such that (L+ 1)M > (1 + ce). N.
Construct the product set Q A’x B, of size L x M from P by the following procedure"
If there is a row of all zeros in P, remove it, otherwise remove an arbitrary row.
Consider R A’x {0, 1}" (i.e. the rows of the function table of which Q is a part). We
define ai, 1,. ., N as the proportion of ones in the ith column of R. From Fact 1,

N

(3.1) L. Y a, LN/2.
i=1

From the restriction on the amount of impurities in Q (which is the first M columns
of R),

M

(3.2) 0-< L. a, -<_ eML.
i=1

Combining with (3.1),

N

(3.3) N/2 >- Y ai >= N/2- eM.
i=M+I

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 943

Next, we compute the Hamming distance of all combinations of two rows of R, first
counting vertically and then horizontally. From Fact 2,

N L(L-1) N
whereL2. Oii

i=l 2 2

Separating the sum into two parts,

MN L(L- 1) N
L2 aiiL2. olii

iM+l 2 2 i=1

Substituting the right-hand inequality of (3.2) and dividing both sides by N-M,
N 1 (L-l) N1 , Olil > eM(3.4)

N-M i---M+ N-M 2L 2

Substituting the left-hand inequality of (3.3),
N (L+I) [4eLM]1 y c<(3.5)

N-M i=M/I ’=4L(N M) N+---i 3"

It is easy to see that

N-M i---M+I N-M i=M+i

Applying this to the left-hand inequality of (3.3),

1 N
2(3.6)

N-M i=M+ 4(N- M)2 1

Combining (3.5) and (3.6), we have

[4(L-1)eM]"1+
(L+ 1)N J

The assertion we have made is that (L+ 1)M> (1 +ce)N. Substituting this into (3.7)
and invoking the fact that e <= , we show in Appendix 3 that there exists a constant
c= c(e) such that (3.7) is a contradiction. Hence (L+ 1)=<(1 +ce)N as claimed.

To prove that the size of the largest q-rect for function value also satisfies the
same upper bound, note that Facts 1 and 2 still hold if we replace them by the
corresponding statement after taking componentwise complements. This completes the
proof of the lemma, fq

Applying Lemmas 3.1 and 3.3 to this result, the main theorem follows readily.
THEOREM 3.1. For 0 < e <-,

C(dn) + 2[log (n + 1)] >_- C(f’])>- C(f’]p)>- n -log (1 + ce)- 1,

where c is a constant dependent only on e.

944 KING F. PANG AND ABBAS EL GAMAL

Similarly, for the average case complexity
THEOREM 3.2. For 0 < e <-- ,

C(d,)+ 2[log (n + 1)] -> C(f,) > C(f’]p) > (n -log (1 + ce)- 1)/2,

where c is a constant dependent only on e.

4. The e-randomized model. The e-randomized protocol was introduced by Yao
and a definition can be found in [Yao2]. The e-randomized communication complexity
of computing the Hamming distance, D(d), was investigated in [Yao3], where it
was proved that D(dn) grows faster than (log n). In the following Theorem, we
use the results derived in 3 to show that D(dH)= f(n), thus resolving an open
problem posed by Yao in [Yao3]. The proof uses the following.

LEMMA 4.1 [Yaol]. For anyfunction f and 0 <- e <1/2,
D(f)>-(C(f))/2.

THEOREM 4.1. For 0 <-- e < 1/2,

D(d"u)=a(n).

Proof For 0_-< e <, the theorem follows readily from Theorem 3.1 and Lemma
4.1. For _-< e <1/2, given a randomized protocol with complexity D(f) and error
probability e 1/2- 6, we can construct one with error probability less than 4 as follows"
Given the pair ofvalues (x, y), repeat the protocol 2m 1 times, such that m(1-462) <
4, and take the majority of the outcome as f(x, y). It is easy to show that the resulting
error probability is no more than

2
2 1 (l_e)2m_l_k<___

k<_m 64"

Clearly, m is a function of e only. Hence, there exists a constant c c(e) such that

c. D(d) > D1/64(d H

and the theorem follows from the lower bound on the left-hand expression.

5. Concluding comments. The upper and lower bounds for C(d) can be com-
pared by examining [log (n + 1-x/if) and [log (n + 1)]. One finds that for all n, the
two terms never differ by more than 1. (Actually, except for those n which satisfy
n+ 1 > 2" and n+ 1-x/-ff-<2 for some integer m, they are identical.) Hence, our
bounds are tight to within one bit. This difference is probably due to a combination
of the facts that we are only considering m-rect’s of maximal size for each 8, and that
the optimal m (f) -partition is simply not achievable. It does not seem likely that there
exists an algorithm whose complexity is lower than the obvious upper bound.

In Corollary 2.1, we showed that M(n, 6)=() for 8< In/2- nv/-/4] and 8>
In/2+ nx/-n-/4]. We also showed in Corollary 2.3 that M(n, In/2]) M(n, In/2]) =2".
However, it is not known whether the M(n, 8) upper bounds for n/2-x/-/4<= 8<-_

n2 + x/-h--/4 are achievable. We believe that they are not. The interesting question then
is whether one can prove tighter upper bounds for them.

Appendix 1. We prove in this Appendix the lower bound on

[n/2+x//4] N(n, 6)
S= E= r,/z-./-,- M n, 8)

defined in the proof of Theorem 2.3. There are two cases.

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 945

Case 1. n 2m for some m" By Corollary 3, for each 6 in the range of $2,

N(2m, 6)
> r7 2m- 2i- 1
11M(2m, 8)- i=o 2m-2i

For 6 m, we have

N(2rn, m)>_{2m>
m(2m, m)- \ m]

22m

For any values of 6 in the range, we have

N(2m, 6) 22’ "- 2i

M(Zm, 6)- i= 2i-1

Note that each of these terms _-->2(2m/) and there are [x/m of them. Hence

22m
&>_-(. rm]+)’m

Case 2. n 2m- 1 for some m" There are two middle terms.

N(2m-l,m)
M(2m-l,m)

and for any value of 6 in the range, we have

N(2m-1 6) 22"-1 "-2i+1

M(2m-l, 6)- i=1 2i

Note that each of these terms is -<. 2"-1//-4m and there are [/2m- 1]-2 of them.
Therefore

() 22m-l>22m-1$2=> ([/2m- 1]-2)+2 =
Hence in both cases, the assertion $2 >--2 is true.

Appendix 2. In this Appendix, we give the proofs for Corollaries 2.1, 2.2 and 2.3.
COROLLARY 2.1. For 6< [n/2-x/n/4] or 6> [n/2+x/n/4J, M(n, 6) ().
Proof By Lemma 2.2 and the fact that ()= (n_"), we only have to consider the

range 6 < [n/2-/n/4]. For any 6, define A a___ {0} and B & {x: d(x, 0)= 6}. It is clear
that A B S and that IIAx nil- (g). Therefore one side of the equality is proved.
To prove the other side, just note that the equation

n(n-1)
x(n-x)

has positive root x= n/2-x/-/4. Hence, for 6 < [n/2-x/-n-],

max (4, a(n-

946 KING F. PANG AND ABBAS EL GAMAL

Moreover, this still holds if we replace n by n-2j and 8 by 8-j, for all j<8.
Subsequently, by Lemma 2.2,

M(n, 8)_-< 0
j=o(8-j)((n-2j)-(8-j))

M((n-28),0)=

COROLLARY 2.2. For n/2-v/-/4<= 8 <-- n/2+x/n/4,
8,-, (n -2j):

M(n, 8) <=
=o 8’-j)(n 8’-j)’

where

8’=
8 for 8 <= [n/2J,
[n/2J 8 otherwise.

Proof First note that for n->_4, the following holds for all 0-<_8-< In/2]"
n2

_> (n(n- 1)
max 4,

(n-)- o)/(n-

and the relation is definitely true for the range of 8 in this corollary. Hence
M(n, 8)/M(n- 2, 8-1)-> n2/8(n- 8) and it is clear that this still holds true when we
replace n by n-2j and 8 by 8-j, for j =< 8. Apply Theorem 2.4 recursively 8 times
and since M(n-28, O)= 1

8--1 (n_2j)2 8-, (n_2j)2
M(n, 8)<= H H

j= (8-j)((n-2j)-(8-j)) = (8-j)(n-8-j)’

which completes the proof of the corollary. I-]

COROLLARY 2.3. For n 1, 2, , maxo__<__<, M(n, 8) 2" and the maximum is
achieved by 8 n/2J and In].

Proof We first show that M(n, [n/2J) =2". By Lemma 2.2, this also establishes
M(n, In/2])= 2". The crucial observation is that for 8= [n/2J, n(n-1)/8(n-8)<=4.
Hence M(n, [n/2J)/M(n-2, [n/2J -1)_-<4. Moreover, this relation is still true if we
replace n by n-2j and 8 by 8-j, for j <_-8. For even n, apply Theorem 2.4 recursively
n/2-1 times and since M(2,1)=2, we obtain M(n,n/2)<=2". For odd n, apply
Theorem 2.4 recursively (n + 1)/2 times and since M(1, 0) 1, we obtain M(n, [n/2J) _-<

2". On the other hand, for even n, define A& {01, 10}n/2 and B-a--{00, 11} n/2. Clearly
A x B S/2 and Ila BII 2". For odd n, define C =a a x {0} and C & B x {0} and
C x De S,/j. Therefore M(n, [n/2J)->2".

Now, suppose there exist A x B S such that [IA x BII > 2". Consider the following
two cases:

a) n=2m for some m. By Lemma 2.2, fi.xBS",_. Define Ca---Ax and
D & B x B. Clearly, C x D S’ and c x DII > 24m which is a contradiction to Corol-
lary 2.3.

4mb) n 2m + 1 for some m. Again C x D
and B CI/ (cf. Lemma 2.2). Hence C

4,,+2 and liP x QII > 24m+2 which is a contradictionand Q a D U/. Therefore P x Q e 028

to Corollary 2.3.

Appendix 3. We prove in this Appendix that

(A3.1) 1+ 1- =I+4(L-1)eM/((L+I)M)
is a contradiction if (L + 1)M A > (1 + ce)N for a constant c c(e) and e > . The

COMMUNICATION COMPLEXITY OF HAMMING DISTANCE 947

left-hand side of (A3.1) is

1 A A
=14----

L N(L+I) NL(L+I)"

The right-hand side of (A3.1) is larger than

_->1- I+L+ 1(L+I)N

For (A3.1) to be a contradiction, we want

8eM 1
-> I+--
N L

A A
N(L+ I) NL(L+ I)’

which simplifies to

(A3.2)
L+I

1 L-8e
Since

L(1)1-8e< 1+ -8e
L+I

(A3.2) is true if

_->1
8eM

A(1-8e) > N

which is equivalent to A > (1 + ce)N for a constant c- c(e). Note that the condition
e < is certainly required for the above to hold. V1

Acknowledgment. We are grateful to Alon Orlitsky for his contribution in the
formalization of deterministic protocols.

[AEP]

[MS]

[Yaol]

[Yao2]

[Yao3]

REFERENCES

R. AHLSWEDE, A. EL GAMAL AND K. F. PANG, A two family extremal problem in Hamming
space, Discrete Math., 49 (1984), pp. 1-5.
K. MEHLHORN AND E. M. SCHMIDT, Las Vegas is better then determinism in VLSI and
distributed computing, Proc. 14th Annual ACM Symposium on Theory of Computing, April
1982, pp. 330-337.
A. C. YAO, Probabilistic computations: towards a unified measures of complexity, Proc. 18th
Symposium on Foundations of Computer Science, Oct. 1977, pp. 222-227.
, Some complexity questions related to distributive computing, Proc. lth Annual ACM
Symposium on Theory of Computing, May 1979, pp. 209-213.
, Lower bounds by probabilistic arguments, Proc. 25th Symposium on Foundations of
Computer Science, November 1983, pp. 420-428.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics

004

IMPROVED BOUNDS FOR MATROID PARTITION AND
INTERSECTION ALGORITHMS*

WILLIAM H. CUNNINGHAMt

Abstract. We give bounds on total lengths of augmenting paths in standard implementations of the
matroid partition and intersection algorithms, and indicate how these observations can be used to improve
the running times in certain applications. For example, for the matroid intersection algorithm on two r by
n matrices the running time is shown to be O(nr log r). We also give improved versions ofthe two algorithms,
when running times are measured in terms of calls to an independence oracle. For example, there is a
matroid partition algorithm on O(n) n-element matroids using O(n5) independence tests.

Key words, matroid partition, matroid intersection, shortest augmenting path, layered network

AMS(MOS) subject classifications. 68C25, 05B35

1. Introduction. Let E be a finite set and let M (E, 5) be a matroid on E. Here
5 denotes the family of subsets of E which are independent in M. We assume familiarity
with a few basics of matroid theory; see Welsh [17] for a reference. However, this
paper can be read profitably by keeping in mind the class of matroids called linear:
E indexes the columns of a matrix over some field, and independence means linear
independence of columns. Another standard class consists of the graphic matroids: E
is the edge-set of an undirected graph and independent means forest-forming.

The matroid partition problem is: Given matroids Mi =(E, i), 1 =< i=< k, find a
maximum cardinality set J E such that J U Ji where Ji i, 1 <= <- k. Clearly, the
Ji can be required to be disjoint; we call such a set J partitionable.

The matroid intersection problem is: Given matroids Mi (E, 5i), 1 and 2, find
a maximum cardinality set J 51 f)_. Both of these problems can be solved by
polynomial-time algorithms, assuming the existence of similar algorithms for (say)
recognizing independent sets in the relevant matroids [3], [6], [5], [11]. The two
problems are also polynomially transformable to each other [4], and we shall make
use of the resulting correspondence.

These algorithms are augmenting-path methods which generalize the classical
bipartite matching algorithm. Like all such methods, they can be described in terms
of successively finding source-sink directed paths in appropriately-defined auxiliary
digraphs. A natural way to find such paths is via breadth-first search, so that the
resulting paths will be as short as possible. For bipartite matching Hopcroft and Karp
[10] devised an improved algorithm, using the fact that there exist extremely short
augmenting paths. We establish similar results for matroid partition and intersection,
and use them in two ways.

First, we point out that, for the important class of linear matroids, the running
time depends directly on the total length of augmenting paths used, so that usual
versions of these algorithms actually have better running times than previously realized.
For matroid intersection on two r by n matrices, we obtain a running time of
O(nr2 log r). For matroid partition on O(n) matrices, each having n columns and at
most n rows, we obtain a running time of O(n log n).

* Received by the editors September 25, 1984, and in revised form August 6, 1985. This research was
supported in part by a grant from the Natural Sciences and Engineering Research Council of Canada.

t Department of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada, K1S 5B6.

948

BOUNDS FOR MATROID PARTITION AND INTERSECTION 949

Second, we improve both algorithms relative to the abstract complexity measure
of the total number of tests of independence required. This improvement is based on
the Dinic-Hopcroft-Karp "layered network" approach, showing that there are rela-
tively few ditterent lengths of shortest augmenting paths, and that all the augmentations
of a fixed length can be found and performed quickly. The number of independence
tests for the matroid intersection problem on two n-element matroids having maximum
rank r is improved from O(r2n) to O(rlSn). The number of such tests for the matroid
partition problem for O(n) n-element matroids is improved from O(rl3) to O(rt25).

2. Matroid intersection. The matroid intersection algorithm can be initialized with
J . At a general step of the algorithm we define an auxiliary digraph G relative to
J as follows. The vertex-set of G is E t.J {r, s}, where r, s E. There is an edge (r, e)
for every e E\J for which J+ e 5. There is an edge (f, e) for every f J, e E\J,
such that J + e 5 and J + e-f. (In this paper, we use J + e, J + e -fto abbreviate
the more cumbersome expressions JU{e}, (Jt_J{e})\{f}.) There is an edge (e, s) for
every e E\J such that J+e2. There is an edge (e,f) for every e E\J,fJ such
that J + e 52 and J + e -f 52.

If there is no directed path from r to s in G, then J is a maximum cardinality
common independent set, and the algorithm terminates. If there is such a path, we
choose a shortest one, having vertex-sequence r, al, b,. am-l, bm-1, am, $. Notice
that each aj E\J and each bj J. We update J by deleting bl,..., bm-1 from J and
adding al,’" ", a,, to J. The validity of the algorithm is not difficult to establish; see
[12], [14], for example. The paths need not, in fact, be shortest. It is enough that they
be chordless, that is, no proper subsequence yields an (r, s)-dipath. However, that they
be shortest is crucial in the improvements we shall make.

Consider the implementation of the algorithm. Let r denote the maximum size of
an independent set of M or M, and let n IEI. To construct the auxiliary digraph
relative to J o1 f’) 5z will involve determining, for 1 and 2, for each e E\J, whether
J + e 6 5i and, if not, for eachf J whether J + e-f 5i. Thus it requires O(rn) tests
of independence in each ofM and M2. (Finding an (r, s)-dipath can be done in O(rn)
time, so this work is dominated by the effort of building G.) At most r augmentations
will be performed, so the total effort is O(rnQ), where Q is the maximum running
time of the independence-testing routines in M and M2. We have just completed the
usual textbook analysis ofthe matroid intersection algorithm; see for example 12], 14].

When we apply this result to the concrete special case in which M1 and M2 are
linear, we see that the introduction of Q was a mistake. In that case we may assume
that each of M, M2 is given by a matrix having n columns and at most r rows. Then
Q is O(r3), by some form of Gaussian elimination, assuming that arithmetic operations
in the relevant field are treated as single steps. (The reader is no doubt aware that
O(r3) could be replaced by O(/’2"496), or some such expression, due to sophisticated
matrix multiplication methods. Making this replacement would improve some of the
bounds in the next paragraphs. However, no algorithm using these methods seems to
be competitive, even in theory, with the one we shall ultimately derive, so we shall
ignore them.) The resulting estimate, O(rSn), grossly exceeds that for a sensible
implementation. The reason, simply, is that the tests of independence required in the
algorithm are closely related to each other. The tests of independence required to
construct G can all be done in time O(r2n), rather than O(r4n), as follows. Once the
columns of the matrix for Mi corresponding to J are transformed to elementary vectors
by Gauss-Jordan elimination, all of the required information is at hand. Namely, for
e J, J + e 5i if and only if column e has a nonzero in a row in which all columns

950 WILLIAM H. CUNNINGHAM

from J are zero, and if J + e i, then J+ e-f if and only if column e has a
nonzero in the row in whichf does. This observation reduces the time bound to O(r n).

The analysis can be carried further. Given the matrices for M1 and M2 in the
above "J-reduced form", how much work is required to update the matrices after an
augmentation? Let us assume that the path which determines the augmentation has
vertex-sequence r, al, , b,_, a,,, s. Then for each j, 2 -<_j _-< m, we must pivot in the
matrix for M on the entry in column aj and in the row which has a one in column
bj_. In addition we must pivot on the entry in column a and a row in which no
column of J has a nonzero. (A "pivot" is the usual collection of column-clearing row
operations.) Similarly, we must perform rn pivots in the matrix for M2. The amount
of work in a pivot operation is O(rn). Thus the time bound for constructing the new
auxiliary digraph is O(rnm). The only apparent bound for m is r, which leads to the
same overall bound for the algorithm as before, O(r3n). However, since at each step
we find a shortest augmenting path, this analysis suggests improving the overall bound
by finding better upper bounds on the lengths of augmenting paths.

A set of directed (r, s)-dipaths is vertex-disjoint if their vertex-sets are pairwise
disjoint, except for r and s. The next two results generalize similar ones of Hopcroft
and Karp [10]. They have been discovered independently by Gabow and Stallman [9].

THEOREM 2.1. Let J be a common independent set ofM, M2 and let J’ be a larger
one. The auxiliary digraph relative to J contains]J’[-]JI vertex-disjoint (r, s)-dipaths, all
of whose internal vertices are contained in J’iO J.

Proof The maximum number of such paths, bythe well-known theorem of Menger,
is the minimum cardinality of a set T_ J U J’ such that every such path contains at
least one vertex from T. Choose such a set T. Then there is a partition {R, T, S} of
J U J’ such that no edge of G goes from R + r to S + s. Since there is no edge (r, e)
for e R\J, therefore J-k- e for all e R\J. Since there is no edge (f, e) forf S 0 J
and e R\J, therefore for every e R\J, {f J" J + e-f1} R U T. It follows that
J (3 (R T) is a maximal Ml-independent subset of R
(SiA T) is a maximal Mz-independent subset of S t_J (J f3 T). Therefore,

IJl+lJ TI>-[J’(RU(J(T))I+IJ’(Skg(J T))I.

It follows that I11 +ITI >--I1’1, as required.
COROLLARY 2.2. Let p be the maximum size of a common independent set and let

J be a common independent set which is not maximum. Then there exists in the auxiliary
digraph for J an augmenting path having length at most 21JI/(P- IJI) + 2.

.Proof. There exist p- IJI vertex-disjoint augmenting paths, so there is one having
at most [Jl/(p-IJI) vertices from J. Its length will be at most 2[J[/(p- [J[)+ 2.

The next result, in the special case of bipartite matching, is due to Even and
Tarjan [7], Who also extended it to some other special network flow problems.

THEOREM 2.3. The sums of lengths of the augmenting paths used in the matroid
intersection algorithm is O(p log p), wherep is the maximum size ofa common independent
set.

Proof After j augmentations, there exists a path of length at most 2j/(p-j)+2,
by (2.2). Therefore, the total length of all augmenting paths is at most 2 Y (j/(p -j)" 0 <=
j<=p-1)+2p. But

(j/(p-j)’O<--j<=p-1)=E ((p-j)/j" l<=j<=p)

<-pY.(1/j" l<=j<=p)=O(plogp),
as required.

BOUNDS FOR MATROID PARTITION AND INTERSECTION 951

Let us apply the above result to the matrix case. For simplicity we use the inequality
p =< r. The total number of pivots required over the whole application of the algorithm
is O(r log r), and so the total contribution of pivoting to running time is O(nr- log r).
Since this work dominates all other work (in particular, the total work in finding
augmentations is O(r2n)), the overall running time is O(nr log r).

We were able to use Theorem 2.3 to improve the time bound in the linear case
because constructing the auxiliary digraphs is relatively expensive compared to finding
augmentations. It is interesting to consider the implementation of the matroid intersec-
tion algorithm for two graphic matroids, where this is not the case. We may assume
that M, M are given by graphs G=(V, E) and G=(V., E). Here VI, IV21 are
O(r). There are standard techniques for maintaining a forest J of a graph so that for
each e J one can determine in O(r) time whether J + e is a forest, and, if not, compute
the set {f J: J+ e-f is a forest}. Moreover, the representation can be updated in
O(r) time when J is replaced by either J+ e or J + e-f Hence the total amount of
time required to find augmentations in an application of the matroid intersection
algorithm is O(r2n). The total amount of time required to update the representation,
without appealing to Theorem 2.3, is O(r3). Using that result lowers this bound to
O(r log r), but clearly that does not improve the order of the overall bound, which
remains O(r-n). (We remark that there exist more sophisticated implementations
of the intersection algorithm for graphic matroids, which do yield better bounds;
see [9].)

3. Matroid partition. The matroid partition algorithm can be initialized with
J Ji , 1 =< =< k. At a general step of the algorithm, we define an auxiliary digraph
G relative to the Ji as follows. The vertex-set of G is E U {r, s}, where r, s E. There
is an edge (r, e) for every e E such that e J U Ji. There is an edge (e, s) for every
e E for which there exists i, 1 <_- <_- k, with e Ji and Ji + e i. There is an edge (e, f)
for every pair of elements e, f e E such that there exists i, =< =< k, with J + e N and
Ji+e-f#i

If there is no directed path from r to s in G, then J is a maximum cardinality
partitionable set, and the algorithm terminates. If there is such a path, we choose a
shortest one, having vertex-sequence r eo, el, e2, , era, em+ s. For 1 =<j--<_ m, let
i(j), <= i(j) < k, be an index giving rise to the edge (e, e+l) of G. For each i, we
update Ji by adding ea and deleting e+ for every j such that i= i(j). (]JI will increase
by one since, for some i, e= will be added to J, with no corresponding deletion. Notice
that elements are not deleted from J; they are only moved among the J.) The validity
of the algorithm is not difficult to establish directly; see [17] for example. It also
follows from the validity of the intersection algorithm, as we shall see.

Consider the implementation of the algorithm. Let r be the maximum size of an
independent set in any of the M, let n IEI, and let us make the simplifying assumption
that k _-< n. Constructing the auxiliary digraph relative to J U J will require determin-
ing, for 1 _-< <= k, for each e E\Ji, whether Ji + e 3i and, if not, whether J + e -f 3
for each feJi. Since IJI-<_ n, this requires O(n2) tests of independence. (Finding an
augmenting path requires O(n2) time.) Hence we obtain an overall time bound of
O(/,/3Q), where Q is the maximum running time of the independence-testing routines
for the M.

If each of the Mg arises from a matrix having n columns and at most r rows, then
Q is O(r3) and we get a running time of O(r3//3). However, this is easily improved.
When the matrix for M is J-reduced, the auxiliary digraph is easily constructed. Since
Y IJil <=//, we need at most n pivots, each requiring O(rn) time, so each main step can

952 WILLIAM H. CUNNINGHAM

be done in time O(rn2), giving an overall bound of O(rn3) for the algorithm. Again,
pivoting is the bottleneck in this bound--the total time required to find augmentations
is O(n3). The number of pivots needed to update the Ji-reduced matrices after an
augmentation is related to the length of the path in G which determines the augmenta-
tion. If the path has vertex-sequence r= eo, el,’", e,,, em+ s, then for each j,
1 _-<j < m, we must pivot, in the matrix for Mi(j, on the entry in column ej and the
row which has a one in column ej/. We also must pivot in the matrix for Mi(, on
the entry in column e,,, and a row which has only zeros in the columns indexed by
Ji(,,. So the total number of pivots in the whole algorithm is bounded by the sum of
the lengths of all augmenting paths that are used. Therefore we want to find a better
bound for this quantity.

It is possible to obtain our results on matroid partition by methods similar to
those used for matroid intersection in 2 and 4. In fact, an earlier version of this
paper proceeded in just this way. However, as was pointed out by a referee, the
well-known equivalence of the two problems can be exploited to obtain the desired
results. Recall how the matroid partition problem can be solved by application of the
matroid intersection algorithm. (In fact, as was proved in [4], each problem is reducible
to the other.) We make k disjoint copies El, E2, , Ek of E, and imagine M, 1 _<- _-< k,
as being defined on E rather than E. Then the direct sum [17] of the M is a matroid
N2 on (_J E. A set is independent in N2 if and only if its intersection with E is
independent in M, 1 _-< _-< k. We define another matroid N on C E a set is independeqt
in N1 if and only if it contains at most one copy of e for each e E. It is easy to see
that common independent sets of N1, N correspond to partitionable subsets of E,
with respect to M1, , Mk, and this correspondence preserves cardinality. In general,
applying results on the running time of the matroid intersection algorithm to N1 and
N2 will yield bounds which depend too heavily on k, although these tend to be
satisfactory for k fixed. However, there is a direct correspondence between paths
in the auxiliary digraph for the partition algorithm applied to M1,’’" Mk and
those in the auxiliary digraph for the intersection algorithm for N and N. A di-
path r, e, e2,..., e,, s in the former corresponds to a dipath r, el, e,..., e,,

’iscopyiof and is copyiof wheree,,, s in the latter; here, for 2 <j < m, e e ej._ e_,
ejJ. Thus the following result is an immediate consequence of Theorem
2.3.

TI-IZORM 3.1. The sum ofthe lengths ofpaths on which augmentations areperformed
in the matroid partition algorithm is O(p log p), where p is the maximum cardinality of
a partitionable set.

Applying Theorem 3.1 to the linear case, we have that the total time required for
pivoting is O(rnp log p). The time required to find an augmentation would seem to be
O(krn). (We make no special assumptions about sparsity of the matrices or about
their storage.) However, identifying edges of the auxiliary digraph of the forms (r, e)
and (e, f) requires only O(pn) time per augmentation; it is edges of the form (e, s)
which may require O(rkn). Suppose that we remember, for each and each e Ji,
whether Ji + e 5. Then the amount of work required to find an augmentation becomes
O(pn + kn). This information can be constructed initially in time O(krn). After an
augmentation, notice that the status of pairs (e, i) can change for only one value of
/--the one for which IJ[increases. So the work required to update the extra information
is O(rn) per augmentation. Thus the overall time-bound is O(p2n+pkn+ rkn+
rnp log p). For example, if k is constant, then p O(r), so the time is O(rZn log r). If
k O(n), then since p <- n, the time is O(n + rn log n).

BOUNDS FOR MATROID PARTITION AND INTERSECTION 953

4. Matroid intersection. In this section and the next we adopt the point of view,
measuring the complexity ofmatroid algorithms in terms ofthe number ofindependence
tests, which we criticized in the previous sections. In Theorem 4.1 we lower the previous
best bound on the number of such tests for the matroid intersection algorithm by a
factor of x/. In contrast to the result of 2, there seems to be no concrete instance of
matroid intersection for which the resulting time bound improves, or even equals, the
previous best running time. Nevertheless, both the result and the techniques are
interesting.

THEOREM 4.1. There is a matroid intersection algorithm which, for two matroids on
an n-element set having maximum independent set size r and maximum independence-
testing complexity Q, has a running time of O(r15 nQ).

The algorithm extends several of the ideas behind the Hopcroft-Karp O(x/ IEI)
bipartite matching algorithm. Some interesting difficulties are encountered, but they
are not too different from the problems overcome in extending the Dinic-Edmonds-
Karp maximum flow results to submodular network flows [15], [13], [8], [16]. (Knowl-
edge of those papers is not necessary to read this one.)

The bipartite matching result is based on the following facts:
(I) The length of shortest augmenting paths never decreases as the matching

size increases.
(II) The number of different lengths of shortest augmenting paths which will

occur during execution of the algorithm is O(x/]).
(III) It is possible to find and perform all the augmentations on paths of a single

length in O(IEI) time.
We shall establish analogues of these results for matroid intersection (and, in the

next section, for matroid partition). We actually need a stronger form of (I), a result
reminiscent of maximum flow theory. Given a digraph G and vertices e, f, d(e,f)
denote the length of a shortest dipath in G from e to f. (If none exists, d(e,f)= .)
For a digraph G’, we replace d by d’.

THEOREM 4.2. Let G be the auxiliary digraph for common independent set J in the
matroid intersection algorithm, and let G’ be the new auxiliary digraph after augmentation
on a shortest augmentingpath Pin G. Then for allf E, d’(r,f) > d(r,f) and d’(f, s)>=
d(f, s).

The difference between Theorem 4.2 and its analogue in the network flow and
bipartite matching contexts is the way in which edges can appear in G’ (after not being
present in G). In the network flow case, an edge (e,f) can appear in G’ only if (f, e)
was an edge of the path on which the previous augmentation was performed. In the
current more general context, there are other ways in which (e,f) can appear; they
are essentially described in Theorem 4.3. This result is not new. It is essentially Lemma
3.2 of [1], and is implicit in [8], [13], [15].

THEOREM 4.3. Let G, G’ be digraphs, both having vertex-set E U {r, s}, and let P
be a shortest (r, s)-dipath in G. Suppose that:
(.) If e, f) is an edge of G’ but not of G, then e, f E, and there exist vertices a,

b of P with a preceding b on P such that
a =f or (a, f) is an edge of G, and
b e or (e, b) is an edge of G.

Then for every f E, d’(r,f) >- cl(r,f) and d’(f, s) >- d(f, s).
Proof. Let us suppose that there exists some fEt_J{r, s} such that d’(r,f)<

d(r,f), and choose f so that d’(r,f) is as small as possible. Clearly, d’(r,f)>= 1, so we
can choose the second-last vertex e of a dipath in G’ of length d’(r,f). By the choice

954 WILLIAM H. CUNNINGHAM

of.f, d’(r, e) >- d(r, e). Since d’(r, e)= d’(r,f)-1, it must be that (e,f) is not an edge
of G. Therefore, we may choose vertices a, b of P as in (,). Of course, d (r, a) < d (r, b).
But

d(r,a)>=d(r,f)-I

>=d’(r,f)

=d’(r,e)+l

>=d(r,e)+l

>=d(r,b),

a contradiction. This proves that d’(r,f) >- d(r,f). The proof that d’(f, s) >- d(f, s) is
similar.

To prove Theorem 4.2 from Theorem 4.3 we need only check that (.) is always
satisfied in the matroid intersection algorithm. This can be done with the help of the
following technical lemma (Lemma 4.4 from [1]), whose proof we omit. We remark
that the proof is a reasonably straightforward induction. We also point out that (i) is
the essential result for validating the intersection algorithm, and hence is well known.
Moreover, (ii) is an immediate consequence of the fact that sets of the form
(Jt_J{al,’", ai})\{bl, , bi} have the same span as J, which is also well known. So
the only (relatively) new part is (iii).

LEMMA 4.4. Let M E, .9) be a matroid, let J .9, let e, f be distinct elements of
E, and let al, bl, a,_, b,_, a, be a sequence of distinct elements ofE satisfying:

(a) ajJ, bj6J, l<-j<m, and amJ;
(b) J+a#_#, J+aj-b6#, l_-<j<m;
(c) J+a-b,#_#, O<=i<j<m;
(d) J+am#.
Then:
(i) J’=(Jt.J{a,, am})\{b,, bm_,},;
(ii) If e C_ J’ and J’ + e #, then e C: J and J+ e #
(iii) IfJ’ + e : #, J’ + e f , and J + e f: , then there exist k, q, 1 <- k <- q < m,

such that

J + ak #, J + ak -f # and

(bq e or (J + e

_
and J+ e bq #) or (e : J and J + e #)).

Proof of Theorem 4.2. First, we consider edges (e, f) of G’ determined by M2, so
we take M M2 in Lemma 4.4. Then (ii) tells us that f# s. So suppose e, f E. Then
we can use (iii) to obtain ak, bq. Put a ak; put b s if e J and J+ e

_
and

otherwise put b bq. Then a precedes b on P. Moreover, a =f or (a,f) is an edge of
G. Also b e or (e, b) is an edge of G. So (,) is satisfied. By symmetry, the same
argument can be applied to edges determined by M, so the result follows from Theorem
4.3. I3

It follows from Theorem 4.2 that the matroid intersection calculation can be
divided into stages, during each of which the length of augmenting paths remains the
same. We remark that the proof in 10] of this result for bipartite matching is different,
and more elegant. Moreover, that proof can be generalized to the present context. The
problem is that we need the stronger result Theorem 4.2 (that is, d’(r, s)>= d(r, s) is
not enough), which does not seem to be obtainable by the same technique.

BOUNDS FOR MATROID PARTITION AND INTERSECTION 955

The next result is the analogue of (II) for matroid intersection, and is proved by
a similar method.

THEOREM 4.5. Let p be the maximum size of a common independent set. Then the
matroid intersection algorithm has O(x/-) stages.

Proof. We use Corollary 2.2, as in the proof of Theorem 2.3. Let J be the first
common independent set for which there is no augmenting path of length <-2 [x/],
and let J[=j. Then

2 r,g- + 2 <_ 2jl (p -j) + 2

SO

J>--prll(rl+ 1) p-x/-fi.

The number of stages until we reach J is at most [v/-], and the number of stages
thereafter is at most the number of augmentations thereafter, which is at most p -j _-< x/-.
The total number of stages is at most [x/- + [x/-J O(x/). [3

In order to find and perform efficiently all augmentations of a single stage, we
consider, as in Dinic’s maximum flow algorithm [2], a "layered network". (We remark
that the ideas needed to extend Dinic’s layered network method to submodular flows,
which we use here, were introduced by Tardos, Tovey and Trick [16].) Given J e 51 f’l oq

2

with associated auxiliary digraph G, let d(r,s)=2m. Let Li denote {eeEU
{r,s}: d(r, e)=i, d(e,s)=2m-i}, O<-i<-2m. Of course, the elements of the Li are
precisely the vertices of shortest augmenting paths. At the beginning of a stage, we
can compute the L (and m) by a standard technique. In the "forward phase" we use
breadth-first search to find L= {e E U{r, s}: d(r, e)= i}, 0 <- i<-_2m, and to compute
m. This requires O(rnQ) time, since the number of possible edges in G is at most
2[Jl(n-lJ[)<-2rn. In the "reverse phase" we put L2,, {s} and successively obtain Li
from L, 2m 1, 2m 2, , 1 by deleting from LI those elements e for which there
is no f Li/l such that (e, f) is an edge. This procedure requires O(rn) time, and no
tests of independence, if we have remembered the edges from L to L+ discovered
in the forward phase.

Now we are ready to explain how to find augmentations. Unlike [10] we do not
attempt to update the L after an augmentation. This would be too time-consuming,
due to the somewhat strange way in which edges can enter and leave G. Hence, L
denotes the same set throughout the stage. We do use the fact that by Theorem 4.2
every augmenting path during the stage has vertex-sequence r, e,. ., e2m_l, s where
e L for all i. We occasionally mark an element e E useless, when we recognize that
it can no longer be a vertex of any augmenting path of length 2m, using one of the
following two conditions"

(1) e Li and there is no edge of G from e to any nonuseless element of L/.
(2) e is an internal vertex ofthe path on which we just performed an augmentation.
These two conditions must be justified. The first one is easy: obviously in this

case, d(e, s)> 2m- i. The second is only a little harder. Obviously d(r, e) is even if
and only if e J. After an augmentation on path P, every internal vertex of P is either
deleted from or added to J. So for every such element e, d(r, e) changes. Since it
cannot decrease, it must increase.

The method of finding augmentations is an ordinary depth-first search, and is
similar to Dinic’s method [2], for network flows. From e Li we search for f L+I
such that (e,f) is an edge of G, and f is not marked useless. For this we must do an
independence test, because G may have been changed by augmentations. If such f is

956 WILLIAM H. CUNNINGHAM

found, we advance to it and make e its predecessor. If no such f is found, we mark
e useless and retreat to its predecessor. (Of course, if e r, then the stage is finished.)
If we reach s, we have an augmenting path. We perform the augmentation, and mark
all internal vertices of the path useless.

The estimate of running time is based on the following simple observation. After
the Li are constructed, the algorithm tests at most once whether (e,f) is an edge of
G, where e Li, f L/I. (This, in spite of the fact that (e,f) may enter and leave G
many times during the stage!) The reason is that, once (e, f) is checked, either: (1)
the next augmentation is through e; or (2) we retreat from e before the next augmenta-
tion is found. In either case, e is marked useless, and will never be visited again. Since
there are O(rn) such pairs (e,f), the running time per stage is O(rnQ). Since p=< r
and there are O(v/) stages, the running time is O(rLSnQ), completing the proof of
Theorem 4.1.

5. Matroid partition. This section is parallel to the last one. The main result
answers a question of Welsh [17], who asked whether O(n3+ n2k) independence tests
are optimal for the matroid partition problem.

THEOREM 5.1. There is a matroid partition algorithm which, for k matroids on an
n-element set having maximum independence-testing complexity Q and maximum par-
titionable-set size p, has a running time of O((pl5+ k)nQ+x/ kn).

Hence the number of independence tests required is O(n2"5), if k O(n), since
p =< n. If k is fixed, then p O(r), where r is the maximum rank of the M, so the
number of independence tests is O(rSn).

Using the correspondence between paths in the matroid partition auxiliary digraph
and paths in the auxiliary digraph of the associated intersection problem, we obtain
directly from Theorem 4.2 a similar result for the distance function D. In addition, it
is a consequence of Theorem 4.5 that the number of different values of D(r, s) is
O(x/-). Thus we can apply the layered network approach to the partition algorithm.

In counting independence tests, we handle separately those of the form J + e ,
in order to reduce the effect of k on the bound. As in 3, we remember for each and
e J, whether Ji / e #. Initially this requires kn independence tests. After an aug-
mentation it can be updated with O(n) independence tests, using the fact that, if
[J[[IJ, and e Ji [-J J[, then J’ + e # if and only Ji + e o,i (That is, successive Ji of
the same cardinality have the same M-span; as was mentioned in 4, this is well
known.) So the total number of independence tests of the form Ji + e o,i is O(kn +pn).

We can construct the layered digraph at the beginning of a stage in time O(pnQ +
kn), since there are <-pn pairs e, f E which could be edges of the digraph, and finding
the edges of the form (e, s) can be done in O(kn) time. We shall show that only O(pn)
independence tests of the form J + e-f # are required to complete the stage, because
at most one such test is required for each (e, f) with e 6 L, f6 L+, 1 _-<i< m. The
algorithm is the same depth-first search, with the same rules for marking a vertex
useless, which must be justified. Of course, by the analogue of Theorem 4.2, we can
mark a vertex useless when the search retreats from it. We also need to show that
D(r, e) increases for each internal vertex e of a path on which an augmentation is
performed, since these vertices are also marked useless. This is obvious, if D(r, e)= 1,
since e enters J after the augmentation. Otherwise, using the correspondence between
the partition algorithm and the intersection algorithm, we have that D(r, e)=
1/2(1 + d(r, e)), where eJi and e is copy of e. After the augmentation, suppose that
e6J. Then D’(r, e)=1/2(l+d’(r, eJ)). We know that d’(r, eJ)> d(r, e)=d(r, ei)+l,
so D’(r, e)> D(r, e), as required.

BOUNDS FOR MATROID PARTITION AND INTERSECTION 957

We conclude that the algorithm requires O(pLSn + kn) independence tests in all.
There is also O(v/- kn) additional work required for finding edges of the form (e, s).
Hence we obtain the bound of Theorem 5.1.

REFERENCES

W. H. CUNNINGHAM, Testing membership in matroid polyhedra, J. Combin. Theory, B, 36 (1984), pp.
161-188.

[2] E. DINIC, Algorithm for solution of a problem of maximum flow in a network with power estimation,
Soviet Math. Dokl., 11 (1970), pp. 1277-1280.

[3] J. EDMONDS, Minimum partition ofa matroid into independent sets, J. Res. Nat. Bur. Stand., 69B (1965),
pp. 67-72.

[4], Submodular functions, matroids, and certain polyhedra, in Combinatorial Structures and Their
Applications, R. K. Guy et al. eds., Gordon and Breach, New York, 1970, pp. 69-87.

[5], Matroid intersection, Ann. Discr. Math., 4 (1979), pp. 39-49.
[6] J. EDMONDS AND D. R. FULKERSON, Transversals and matroid partition, J. Res. Nat. Bur. Stand.,

69B (1965), pp. 147-153.
[7] S. EVEN AND R. E. TARJAN, Network flow and testing graph connectivity, this Journal, 4 (1975), pp.

507-518.
[8] A. FRANK, Finding feasible vectors of Edmonds-Giles polyhedra, J. Combin. Theory, B, 36 (1984), pp.

221-239.
[9] H. N. GABOW AND M. STALLMAN, Efficient algorithms for graphic matroid intersection and parity,

extended abstract, in Automata, Languages and Programming, Lecture Notes in Computer Science,
Springer, Berlin, 1985.

[10] J. E. HOPCROFT AND R. M. KARP, A n5/2 algorithm for maximum matching in bipartite graphs, this
Journal, 2 (1973), pp. 225-231.

[11] E. L. LAWLER, Matroid intersection algorithms, Math. Programming, 9 (1975), pp., 31-56.
12], Combinatorial Optimization: Networks and Matroids, Holt-Rinehart-Winston, New York, 1976.

[13] E. L. LAWLER AND C. MARTEL, Finding maximal polymatroidal network flows, Math. Oper. Res., 7
(1982), pp. 334-347.

14] C. H. PAPADIMITRIOU AND K. STEIGLITZ, Combinatorial Optimization: Algorithms and Complexity,
Prentice-Hall, Englewood Cliffs, NJ, 1982.

15] P. SCHtNSLEBEN, Ganzzahlige Polymatroid-Intersektions-Algorithmen, Ph.D. thesis, ETH Ziirich, 1980.
16] l. TARDOS, C. A. TOVEY AND M. A. TRICK, Layered augmenting path algorithms, Math. Oper. Res.,

to appear.
[17] D. J. A. WELSH, Matroid Theory, Academic Press, New York, 1976.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

() 1986 Society for Industrial and Applied Mathematics
005

AN INHOMOGENEITY IN THE STRUCTURE OF KARP DEGREES*

KLAUS AMBOS-SPIESf

Abstract. We show that there is a recursive nonzero Karp (polynomial time many-one) degree which
is not supremum of a minimal pair, i.e. of an incomparable pair of degrees with infimum 0, the degree of
polynomial time computable sets. By existence of minimal pairs, this implies that there are nonisomorphic
initial segments of Karp degrees.

Key words, polynomial degrees, polynomial time reducibilities, relative complexity, NP-sets

AMS(MOS) subject classifications. 68C25, 03D15, 03D30

Introduction: Cook [4] and Karp [6] introduced polynomial time bounded
counterparts of the recursive Turing and many-one reducibilities, respectively. These
reducibility notions serve for a classification of the solvable but intractable problems
according to their relative complexity. While Cook’s reducibility notion is the more
adequate formalization of the underlying intuitive notion of feasibly computable
reducibility, it turned out that the more restrictive but conceptually simpler Karp
reducibility suffices for most practical purposes. So it has been shown that all problems
which are known to be NP-complete in the sense of Cook also constitute a single Karp
degree, whence for the study of problems in NP Karp’s reducibility notion is usually
preferred (see e.g. Garey and Johnson 1-5]). Moreover, membership in NP is downward
inherited by Karp reducibility but not by Cook reducibility under the reasonable
hypothesis that NP # co-NP.

The study of the structure of the polynomial degrees induced by these reducibility
notions on the recursive sets began with Ladner [7]. He showed, for Cook and Karp
reducibility, that the degrees form a dense upper semi-lattice with least element 0, the
degree of polynomial time computable sets, but do not form a lattice. Moreover, any
degree >0 splits, i.e. is the supremum of two lesser ones, and there are minimal pairs,
i.e. incomparable degrees with infimum 0. By refining Ladner’s technique, Landweber
et al. [8] and Chew and Machtey [3] extended some of his results. Recently we unified
and extended the cited results on polynomial degrees by showing that any countable
distributive lattice can be embedded in any interval of degrees by maps which preserve
the greatest or least element, respectively [1], [2]. In [1] we also give a first example
of an algebraic property which distinguishes the Karp degrees from the Cook degrees"
The Karp but not the Cook degrees form a distributive upper semi-lattice. This result
indicates that the structure of Karp degrees is more well behaved than that of Cook
degrees.

The above results show that if P NP then not all problems in NP-P are
NP-complete but quite on the contrary the structure of the degrees of NP-sets will be
extremely rich, e.g. allowing any countable distributive lattice--and thus any countable
partial ordering--to be embedded into it.

If we analyze the results obtained so far on the polynomial degrees, then we
observe that they hint at homogeneity of the structure of these degrees. For most of
the phenomena, like sublattices or suborderings, which have been studied for the
polynomial degrees, once one had established that they occur somewhere in the

* Received by the editors April 3, 1984, and in revised form August 15, 1985.
t Lehrstuhl fiir Informatik II, Universitt Dortmund, D-4600 Dortmund 50, West Germany.

958

AN INHOMOGENEITY IN THE STRUCTURE OF KARP DEGREES 959

structure of degrees one could also show that they in fact occur in any interval, and
for many algebraic properties, like being supremum or infimum of an incomparable
pair of degrees, one could not only show that they hold for some degees but also that
they are shared by all nonzero degrees. For instance, all known facts about the structure
of the Karp degrees of NP-sets (assuming P# NP) have been obtained by proving
them for all nontrivial initial segments of the partial ordering of the Karp degrees of
recursive sets and then using the observation that the degrees of NP-sets coincide with
the initial segment [0, 0’], where 0’ is the degree of the NP-complete problems. So it
is natural to ask whether any two nontrivial initial segments (or in fact any two proper
intervals) of polynomial degrees are isomorphic, and whether all nonzero degrees share
the same elementary algebraic properties.

For Karp degrees, we here give a negative answer to these questions. We show
that there is a nonzero Karp degree a which is not supremum of any minimal pair, i.e.

(*) Vb<a Vc<a (blc & 0 bf"l c==:>a > bl,.J c).

So if, by Ladner’s minimal pair theorem, we let b be any Karp degree which is supremum
of a minimal pair, then the intervals [0, a] and [0, b] are not isomorphic and the degrees
a and b can be distinguished by the elementary algebraic property (.).

1. Preliminaries. Let E be a finite alphabet which contains the letters 0 and 1,
and let E* be the set of (finite) strings over E. We will denote elements of E* by lower
case letters from the end of the alphabet, while capital letters will denote recursive
subsets of E*. Ixl is the length of x and IAI is the cardinality of A. In our notation we
do not distinguish between a set and its characteristic function. So x A itt A(x)= 1
and x A iff A(x) 0. N is the set of natural numbers; k, m, n, p denote elements of N.

P (NP) is the class of subsets of E* which can be (non)deterministically computed
in polynomial time. We let {Pn: n N} be a recursive enumeration of P, and let

" N N N be a bijection which is computable and invertible in polynomial time.
A set A is Karp (or polynomial time many-one) reducible to a set B, A =<P,, B for

short, if there is a polynomial time computable functionf: E* E* such that Vx(A(x)
B(f(x))) (in this case we say A <= B viaf). Sets A and B are Karp equivalent, A = B,
if A <= B and B =< P,P, A. The Karp degree of A, denoted by degA, is the class of all
sets which are Karp equivalent to A. Bold face lower case letters denote Karp degrees
of recursive sets. The partial ordering on the Karp degrees induced by -< is denoted
by =<. As usual we write a < b if a <= b and a b. Two degrees a and b are incomparable,
alb, if a ; b and b a. The supremum of two degrees a and b is denoted by a U b, the
infimum (if it exists) by af’) b. Note that, forAB {0x: x A} U {ly: y B}, degA
B =deg A [_J deg B. Also note thatignoring the empty set and the set 5* which
both constitute their own degreesthere is a least Karp degree, denoted by 0, which
contains just the elements of P.

Finally recall that a recursive function f: N-> is polynomially honest if there is
a polynomial p such that f(n) can be computed in p(f(n)) steps. Note that the step
counting functions of Turing machines are polynomially honest. So any recursive
function is dominated by a strictly increasing polynomially honest function.

2. The theorem. Recall that two polynomial degrees a and b form a minimal pair
if a and b are incomparable and a fq b 0.

THEOREM 1. There is a recursive Karp degree a > 0 which is not a supremum ofany
minimal pair of Karp degrees.

To prove the theorem, we first reduce it to a simpler theorem.

960 KLAUS AMBOS-SPIES

DEFNITION. Let A be a recursive set. A p-splitting of A is a pair of sets Ao and
A1 such that Ao- A fq B and A1 A fq B for some polynomial time computable set B.
A p-splitting Ao, A1 of A is strict if deg Ao and deg A1 form a minimal pair.

Note that for a p-splitting Ao, A1 of A, A Pm Ao0) A1, i.e. deg A deg Ao (-J deg A1.
LEMMA 1. Let A be a recursive set. Then A has a strict p-splitting iff deg A is a

supremum of a minimal pair.
Proof. If Ao, A1 is a strict p-splitting of A, then deg AoLJdeg A1 =deg A and

deg Ao and deg A1 form a minimal pair. For a proof of the other direction let I, c be
a minimal pair such that I (_J c deg A and fix sets B I and C c. Then A Pm B9 C
and thus there is a polynomial time computable function f such that A _-< P B 0) C via
f. Now the set D {x: f(x) Oy, y E*} is in P, whence Ao A f3 D and A1 A f’) D
is a p-splitting of A. Furthermore, Ao --< PB via f and A1 --< 0) C via f whence
degAo_-<l and degA_-<c. So, by If)c=0, degAoCIdegAl=0 too. Moreover, by
incomparability ofI and c and by deg A deg Ao t3 deg A1 b (_J c, it follows that deg Ao
and deg A are incomparable, whence Ao, A is a strict p-splitting of A.

Now, by Lemma 1, Theorem 1 is an immediate consequence of the following
theorem.

THEOREM 2. There is a recursive but not polynomial time computable set which has
no strict p-splitting.

The proof of Theorem 2 requires the following technical lemma.
LEMMA 2. There is a recursive function f:N (iN xtN) U {]’} such that
(i) f(0)]’,
(ii) iff(m) tN x then f(m + 1)
(iii) iff(m) (n, k) then 0" P, and 0"+1

_
P,, and

(iv) if P, f’l{O}* and P, f’){0}* are infinite then Vk :lm(f(m)=(n,k)).
Intuitively, the functionf selects infinitely many mutually disjoint pairs of consecu-

tive members of {0}* such that, for any polynomial time computable set B which splits
{0}* into two infinite parts, there are infinitely many such pairs corresponding to B,
each having the property that the first but not the second element of the pair belongs
to B.

For the proof of Lemma 2 we require the following notation.. Given numbers n
and rn such that n-< m, we say m is n-positive if 0m P. and 0"+ P. and rn is
n-negative if 0"+1 P, and 0"+2 P,. Note that a number cannot be both n-positive
and n-negative and that rn is n-negative ill m + 1 is n-positive.

Proof of Lemma 2. The function f is inductively defined by

(n, k) if rn > 0, f(rn 1)]’, rn is n-positive, and

f(rn) -(n, k) is minimal such that m is n-positive or
n-negative and Ip < m (f(p) (n, k)),

]’ otherwise.

Obviously f is recursive and satisfies (i). Furthermore, by a straightforward
induction on m, (ii) and (iii) are satisfied and

(1) /m, n, k (f(m)=(n,k)/p<m(f(p)(n,k))),

whence for each (n, k) there is at most one m with f(m)= (n, k). To verify property
(iv) we first prove the following claim.

Claim. If k, m, n are numbers such that n <-m, f(m- 1)=]’, rn is n-positive or
n-negative, and Vp<m (f(p)(n,k)), then there is m’>=m such that -of(m’)<-_
r(n, k).

AN INHOMOGENEITY IN THE STRUCTURE OF KARP DEGREES 961

Proof. The proof of the claim is by induction on z(n, k). Fix numbers k, m, n
satisfying the premise of the claim. W.l.o.g. z(n, k) is minimal such that, for some
m’>-_m,f(rn’-l)=[, rn’ is n-positive or n-negative and Vp<m’ (f(p)(n, k)), since
otherwise the claim follows by inductive hypothesis. So if m is n-positive, then
f(m)=(n, k) while if m is n-negative thenf(m) ’, m+ 1 is n-positive andf(m + 1)=
(n, k), proving the claim.

Now, for a proof of (iv), fix n and for a contradiction assume that

(2) [(0}* fq P,,[I(0}* /5,{
but ::lk Vm (f(m) (n, k)), say ko is such a k. Note that, by (2),

(0p Pn and 0p+ ; P,,),

i.e. there are infinitely many n-positive numbers. So, since f is 1-1 on its domain
(following (1)), we may choose m-> n such that

(3) m> max {m’: -of(m’)<_ -(n, ko)}+ 1

and rn is n-positive. By the latter, m-1 is n-negative. Moreover, by (ii), either
f(m-2)--’ or f(m-1)= ’. So, by choice of ko and by the claim above, there is
m’ ->_ rn 1 such that " f(m’) <_- ’(n, ko) contrary to (3). [

Proof of Theorem 2. We will define a recursive set A P which has no strict
p-splitting. For this sake let f be a function as in Lemma 2 and let g "N- N be a
polynomially honest and strictly increasing function such that f(n) can be computed
in less than g(n) steps. Note that, by honesty of g, there is a polynomial pg such that
for given n we can tell in pg(n) steps whether n g(m) for some rn and if so for
which one.

Now A
_

{0}* is defined by

A(O) =0
and

A(Om) iff(m+ 1)=,A(O"+’)=
1--Pk(Og(m+l)) iff(m+ 1)=(n, k).

Obviously A is recursive. Moreover, by property (ii) of f,

(4) f(rn)xN := A(0")=A(0"+I).
Now, for a proof that A has no strict p-splitting, let any B P be given. If A B

or A B is finite then the p-splitting of A by B is not strict. So w.l.o.g, we may assume
that A B and A/ are infinite. Since A

_
{0}* this implies [{0}* B[]{0}* V/[o.

So it suffices to prove the following claim.
Claim. If I{0}* (l P,I-[{0}* CI P,[=c then there is a recursive set B, such that

B <--Pro A Pn, Bn _-<P At P and Bn P.
Proof. Fix n such that the premise of the claim holds. The set B is defined by

(5) Vx(x e B,, ::lm,k(x=Og(m &f(m)= (n, k) & 0" e A)).

Note that, by (4),

xB. :> ::lm, k (x=Og(’) &f(m)= (n, k) & 0"+ 6 A).

Moreover, by property (iii) of f,

Vm(::lk(f(m) (n, k)) ==>0" P,, & 0"+1: P,,).

962 KLAUS AMBOS-SPIES

So, for functions h i., i= O, 1, defined by

h’.(x)
0

if there are no numbers m and k such that x 0g(m) and
f(m)=(n,k),
otherwise, where x 0g(m),

we have

(6) Vx (x B,: h(x) A (q P, e h ln(x) A if’n).

Note that the function h in can be computed in polynomial time. Namely, for given x,
first use p (Ixl) steps to search for an rn such that x 0g(m). If such an rn exists, in Ixl
steps compute f(m). Now iff(m)=(n, k) for some k, then hin(x)= 0m+i. If any of the
above conditions fail, set hin(x)= 1. It follows, by (6), that Bn -< A f) Pn via h and
Bn -< Pm A f’) fin via h. It remains to show that Bn P, i.e. Bn Pk for each k. So fix k.
Note that, by property (iv) of f, /k ::lm (f(m)=(n, k)), whence we may choose rn
such that f(m)=(n,k). Then A(Om)=l--Pk(Og(m)), whence by (5), Bn(og(m))
Pg(og(m)).

This completes the proof of the claim.
It remains to show that A P. Consider the set E {02n" n }. Obviously E P,

say E Pn. Then [{0}* f’) Phi [{0}* fq fin[oo, whence by the claim above there is some
set Bn such that Bn P and Bn <= P A f) E. Since A f) E =< A this implies A P. [3

COROLLARY. There are Karp degrees a, I > 0 such that the partial orderings ofKarp
degrees below a and b, respectively, are not isomorphic.

Proof Choose a as in Theorem 1 and,by Ladner [7], let I be the supremum of
some minimal pair, say c, d. Then [0, a] and [0, I] are not isomorphic, since any
isomorphism from [0, b] to [0, a] would map the degrees c and d to a minimal pair
with supremum a, which is impossible. [3

Since the property of being supremum of some minimal pair can be expressed by
some first order formula in the language of partial orderings, the partial orderings of
[0, a] and [0, b] are not even elementarily equivalent.

3. Concluding remarks. By refining our proofs for Theorem 2 and Lemma 2, we
can obtain a set A computable in exponential but not polynomial time without strict
p-splittings. Also note that Theorem 2 a fortiori holds for Cook reducibility in place
of Karp reducibility. Still we do not obtain a proof of Theorem 1 for Cook degrees.
The reason is that in the reduction of Theorem 1 to Theorem 2 the proof of Lemma
1 implicitly exploits distributivity of the Karp degrees whence it does not translate to
the nondistributive (see [1]) structure of Cook degrees.

REFERENCES

K. AMBOS-SPIES, O/1 the structure ofpolynomial time degrees, in STACS 84, Symposium on Theoretical
Aspects of Computer Science, M. Fontet and K. Mehlhorn, eds., Lecture Notes in Computer
Science 166, Springer Verlag, Berlin, 1984, pp. 198-208.

[2] , Sublattices of the polynomial time degrees, Inform. Control, 65 (1985), pp. 63-84.
[3] P. CHEW AND M. MACHTEY, A note on structure and looking back applied to the relative complexity of

computable functions, J. Comput. System Sci., 22 (1981), pp. 53-59.
[4] S. A. COOK, The complexity of theorem-proving procedures, in Proc. 3rd Annual ACM Symposium on

the Theory of Computing, ACM, New York, 1971, pp. 151-158.
[5] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-

Completeness, Freeman, San Francisco, 1979.

AN INHOMOGENEITY IN THE STRUCTURE OF KARP DEGREES 963

[6] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer Computations,
R. E. Miller and J. W. Thatcher, eds., Plenum Press, New York, 1972, pp. 85-103.

[7] R. E. LADNER, On the structure of polynomial time reducibility, J. Assoc. Comput. Mach., 22 (1975),
pp. 155-171.

[8] L. H. LANDWEBER, R. J. LIPTON AND E. L. ROBERTSON, On the structure of sets in NP and other
complexity classes, Theor. Comput. Sci., 15 (1981), pp. 181-200.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
OO6

HEAPS ON HEAPS*

GASTON H. GONNET" AND J. IAN MUNRO,"

Abstract. As part of a study of the general issue of complexity of comparison based problems, as well
as interest in the specific problem, we consider the task of performing the basic priority queue operations
on a heap. We show that in the worst case:

lg lg n + O(1) comparisons are necessary and sufficient to insert an element into a heap. (This improves
the previous upper and lower bounds of lg n and O(1).)

lg n + log* n + O(1) comparisons are necessary and sufficient to replace the maximum in a heap. (This
improves the previous upper and lower bounds of 2 lg n and lg n.)

1.625n + O(lg n log* n) comparisons are sufficient to create a heap. 1.37... n comparisons are necessary
not only in the worst case but also on the average.

Here lg indicates the logarithm base 2 and log* denotes the iterated logarithm or number of times the
logarithm base 2 may be taken before the quantity is at most 0.

Key words, heap, comparisons, lower bound

1. Introduction. One of the most elegant of storage structures is the representation
of a priority queue as a heap. A heap [8], [1], [4], [2] is defined as a structure on
locations 1 through n of an array with the property that the element in location is
smaller than that in location [i/2J, thus inducing a complete binary tree with the
property that the value of the parent is greater than that of the child. Such a pointer
free representation has been called an implicit data structure [5]. It is well known that
a heap enables us to perform the basic priority queue operations, insert an element
and rebalance after extracting the maximum in O(lg n) basic operations. Furthermore,
a heap can be created in about 2n comparisons 1], [4]. These results are very old by
the standards of our field, dating back to the decade before the last. Our aim, in this
paper, is to re-examine the algorithms for performing these basic operations on a heap.
We are able to establish new upper and lower bounds on the number of comparisons
necessary in the worst case to perform these tasks. While our algorithms may be of
some interest in implementing heaps, we are using this structure primarily as a paradigm
for the study of computation complexity of comparison based problems.

2. Insertion and promotion. Observe that the elements on the path from any node
to the root must be in sorted order. Our idea is simply to insert the new element by
performing a binary search on the path from location n + 1 to 1. As, for n-> 2, this
path contains [lg (n + 1) old elements, the algorithm will require [lg(1 + lg (n + 1)
comparisons in the worst case. This expression may be rewritten as [lg lg (n + 2) which
also indicates the number of comparisons required when n 0 or 1. We note that the
number of moves will be the same as those required in a carefully coded standard
algorithm. It was this simple observation, also used in [3] and [6] for priority queues
on a bounded domain, that sparked our interest in heap manipulation algorithms.
Indeed, it is very useful as a basis for the extraction algorithm presented in the next
section. However, the reader may find the fact that this bound is tight more interesting.

* Received by the editors August 7, 1984, and in revised form August 23, 1985. A preliminary report
on some of the results in this paper appeared in ICALP 1982. This research has been supported by the
Natural Sciences and Engineering Research Council of Canada under grants A8237 and A3353.

f Data Structuring Group, Department of Computer Science, University of Waterloo, Waterloo, Ontario
N2L 3G1, Canada.

964

HEAPS ON HEAPS 965

THEOREM 1. lg lg (n / 2) comparisons are sufficient and [lg lg (n / 2) 2 are
necessary in the worst case to insert an element into a heap of size n.

Proof. The upper bound has been given. The lower bound comes from considering
a path in the updated heap from the root through the new element and on to a leaf.
Such a path is of length either Jig(n+2)] or lg(n/2)J and so contains at least
lg (n/2)J -1 values from the old heap.

We develop an adversary strategy as follows. The adversary answers queries in a
manner consistent with the elements in positions 2 through 2i+1-1 of the old heap
being ofranks 2 through 2/1 1 in the structure, although not necessarily in consecutive
order among themselves. We refer to such elements, which were the same distance
from the root in the old heap, as being of the same level. The adversary answers queries
involving the new element in a manner consistent with it falling in one of the (lg (n /
1)] / 1 interlevel gaps. Indeed it will answer any comparison so as to maximize the
number of gaps into which the new element could fall.

On the other hand, observe that if k elements from any level of the old heap occur
on such a path, then at least k-1 comparisons between elements of that level must
have been performed. Hence the algorithm outlined above appears to be optimal. We
must, however, take into account that every such path could be of length Llg (n / 1)J
rather than [lg (n / 1)] as in our algorithm, and that it may contain an element from
the bottom (incomplete) level of the old heap. Taking these into account we can make
the more modest claim that [lg lg (n + 2)]- 2 comparisons are necessary in the worst
case. D

We emphasize that the above bound is on the number of comparisons required
to perform on insertion. The number of data items that are moved is also an interesting
metric. Our method and the standard one use exactly the same number of moves. If
the new element is larger than any currently in the structure this number is 1/

lg (n / 1)J. Under such circumstances, and if the old heap is arranged in the manner
suggested in the proof, it follows immediately that this number of elements must be
moved to perform an insertion.

3. Extractioa anti tlemotioa. Based on the insertion algorithm of the previous
section, we can easily extract the maximum and reorder the heap in lg n/lg lg n
comparisons. Simply let the "empty location" filter down to the bottom level (lg (n /
1) 1 comparisons) and then perform an insertion ofthe element previously in location
n (or a new element if one is to be added) along the path from the empty spot to the
root. This bound can, however, be improved as follows. For simplicity assume we are
removing the maximum and simultaneously inserting a new element.

begin
Remove the maximum, creating a "hole" at the top of the heap;
Find the path of maximum children down r levels to A(i);
if New element A(i)
then Perform a binary search with new element along path of length r
else Promote each element on the path to the location of its parent and

recursively apply the method starting at location A(i)
end

The number of comparisons required is, then,

C(n)- r/ 1 /max (lg (r/ 1)], C(n/2r])).
Choosing r [lg n- lg lg n], we see that C(n) can be reduced to [lg n + log* n

where log* (x) 0 for x 1 and log* n log* ([lg n]) / 1. Indeed the optimal choice

966 GASTON H. GONNET AND J. IAN MUNRO

of r may differ by 1 from the bound suggested and the bound on C(n) may also be
reduced by 1 for certain values of n. However, we omit these awkward details.

As it happens, this algorithm, with judicious choice of r, essentially minimizes the
number of comparisons necessary to perform the update. The key idea of our proof
is, very informally, to give outcomes to comparisons in a manner consistent with the
worst case of the algorithm outlined and to provide extra information so that any
algorithm "might as well" have followed the given technique. The lower bound then
follows from the optimal choice of r in the method presented. More formally:

THEOREM 2. lg n + log* n + O(1) comparisons are necessary and sufficient to perform
the operation replace maximum on a heap.

Proof. Suppose that the heap upon which the extraction is to be performed is of
the form indicated in Fig. 1.

(i) The largest j (j unknown but =<lg n) elements are arranged along a path
from the root. Call this path of elements j the shaft.

(ii) The smallest elements in the structure are the (n/2 or so) descendants of
the bottom element of the shaft.

(iii) The other elements lie between these, satisfying the heap property, and
furthermore, tend to be arranged so that the higher their closest shaft ancestor is
located, the larger the element.

(iv) The new element is smaller than all shaft elements but larger than all others.
The crucial property is that the last element of the shaft must be determined in

order to perform the update. This follows since on removal of the maximum, the shaft
element of level is the (i-1)st largest element in the heap and so must be moved to
a higher level. On the other hand, the largest of the small elements has the property
that it cannot be raised to a higher level as there are not enough smaller elements to
support it.

/ shaft of large
nts

others \ __smallest
elements

FIG. 1. A hard case for heap update "the way it is".

The adversary strategy is based on viewing the information which has been gathered
as finding the path of maximum children to some level (see Fig. 2). Call this path the
chain. The chain partitions the remaining elements into those which are descendants
of the last chain element (the inside) and those which are not (the outside). Notice
that the chain (what we have learned) and the shaft (what we are to discover) coincide
for the length of the shorter. The general approach of the adversary is to respond to

HEAPS ON HEAPS 967

outside inside

FIG. 2. Information yielded by the adversary "what we know".

queries so that the algorithm learns (almost) nothing about the relation of the inside
elements to any but their ancestors. Furthermore, note that anything learned about the
outside alone is of no help in determining the end of the shaft. The chain is, of course,
permitted to be extended one level per comparison, and the algorithm can always
check to see whether the shaft is shorter than the chain.

The outcome of comparisons is given below:

Chain element--New element
--Answer according to the worst case as implied by the algorithm
Chain element--Outside element
--Answer as Chain element--New element.
Inside--Outside
--Outside element is larger, supply the additional information that the chain is extended
by the one element which is not an ancestor of the (hitherto) inside element
considered.

Inside--New
--As inside-outside. The new element is declared to be smaller and the additional

information is given that the chain can be extended by an element avoiding the path
to the hitherto inside element

Outside--New
--The new element is smaller. No other information need be given.
Outside--Outside
--Answer arbitrarily but consistently.
Insidemlnside (this may be a compound step)
--If both elements are descendants of the same child of the last chain element, give

an arbitrary outcome and extend the chain 1 step to avoid both.
--If both are children of the last chain member, extend the chain arbitrarily.
--If one is a child of the last chain member and the other is not, extend the chain to

include the former.
--Otherwise we cannot avoid giving up some information about inside elements and

so delay advancing the chain as sketched below.

If the next comparison does not involve an inside element it is answered as
indicated above. If it does involve at least 1 inside element but is not of this (awkward)

968 GASTON H. GONNET AND J. IAN MUNRO

subtype, then the outcome is as indicated above and the chain is extended 2 steps
avoiding all hitherto inside elements that were involved in comparisons. We must be
careful of a minor lacuna that this strategy may prohibit an element on the chain from
being the end of the shaft. It will, however, not prevent 2 elements in a row from being
the end. Hence the lower bound is weakened by at most one comparison over all.

This leaves the case in which the next comparison involves a pair of inside elements
which are proper descendants of different children of the chain end. If one is a

grandchild of the chain end, it wins the comparison and the chain is extended two
positions as indicated above. Otherwise, we declare the higher element to be larger
and defer chain extension for the last time. On the next query involving an inside
element we follow the basic approach by the previous query, except that the chain
may be extended 3 steps. This follows since at most 6 elements on the inside have
been involved in comparisons and there are 8 subtrees three steps from the chain end,
and so an "open" node may be found to which the chain may be extended. Again
some chain elements may be precluded from being the chain end, but no more than
3 in a row. Hence we see the algorithm presented is within one comparison of
optimal.

A bound on performing a simple extraction follows easily.
COROILAR 3. lg n+log* n+ O(1) comparisons are necessary and sufficient to

remove the maximum element from a heap and reconstitute the heap structure.

4. Creating a heap. The usual algorithm for creating a heap [1] requires 2n-
O(lg n) comparisons. It is most easily described by a call to Create (A, 1, n) which
creates a heap in place on elements in locations 1 to n of the array A.

Create (A, i, n)
Do case 2. i’n

=if A(i)<A(n) then Swap (A(i),A(n))
> do nothing
< Begin

Create (A, 2 i, n)
Create (A, 2 + 1, n);
Perform replace maximum operation as if a large element in
A(i) has been replaced by the actual value of A(i)

end

Using the "standard" replace maximum technique this leads to the recurrence

T(n)=2T(n/2)+21gn, T(2’- 1) 2(2’- k- 1)

and hence the stated bound on the number of element to element comparisons. Clearly
the method of the previous sections can be employed to reduce this bound. This is an
improvement, but disappointing, as about 1.77... n comparisons are required. By way
of contrast the following lower bound is easily derived.

THEOREM 4. 1.3644... n + O(lg n) comparisons are necessary, not only in the worst

case, but also on the average to create a heap on n elements.
Proof A reasonably straightforward enumeration shows that there are H(n)=-

n !/Ilti valid heaps on a set on n numbers where ti is the size of the heap rooted at
node i. A lower bound on the average number of comparisons required to permit one
of n! possible input sequences to one of these orders is

lg(n!/H(n))=lg t.

HEAPS ON HEAPS 969

We are unable to give an algorithm which achieves this bound. Indeed we
conjecture that it is not achievable and that the algorithm below minimizes the number
of comparisons to create a heap on n elements in the worst case.

THEOREM 5. !n d-O(log* n lg n) comparisons are sufficient to construct a heap on
n elements.

Proof. We will outline a method of constructing a heap on 2k elements using
2k- k-2 comparisons (k_-> 3). A heap on n nodes can be viewed as a maximum
element, a heap on 2k 1 elements (k -[lg (n 1) 1 or lg (n 1) 1J and a heap
on the remaining nodes. Using the technique below to form structures of size 2k- 1
for appropriate values of k < lg n, a set of at most lg n such heaps are grafted in about
(lg n)(lg n / log* n)/2 comparisons using the technique of the preceding section. The
(lg n)2/2 term in this expression balances the "-k" term in the following construction
for n 2k, leaving the bound claimed.

As seen in the discussion above, what we require is a method of constructing a
heap of size 2k- 1. We find it easier to express our method for size 2. Since these
structures are created and used serially, the task is easily completed by "throwing
away" the single element on the "bottom level". The basis of the method is the
formation of binomial trees of size 2 (see [7]). As illustrated in Fig. 3, this is simply
a tree structure on 2 elements such that

(i) a single element is a binomial tree of order 2;
(ii) a binomial tree of order 2 is constructed from two of order 2-1 by making

the smaller of the maximum values in these trees a child of the larger.

84

50 6 14 32

2 10 8 21 9 28

5 4 7 24

14

FIG. 3. A binomial tree of order 16.

Our method proceeds as follows; the procedure Convert (see also Fig. 4) converts
a binomial tree to a heap.

Procedure Convert T, 2 r)
Begin

Convert (subtree of root of order 2r-l, 2r-1);
This leaves an "extra element" on the bottom level
of this heap, make it a child of the root of T;
We now have 1 binomial tree of order 2

(i 1, , r- 2) and 2 singleton nodes
all hanging from the root;

Construct a binomial tree, S, of order 2r-1 from these;
Convert (S, 2r-)

end

The number of comparisons required by this method, including binomial tree creation,

970 GASTON H. GONNET AND J. IAN MUNRO

Procedure Convert (T, 2r)
begin
Convert (subtree of root of order 2r-l, 2r-l);
This leaves "extra element" the bottom level
of this heap, make it child of the root of T;

84

We have binomial tree of order 2 (i 1,...,r--2) and 2
singleton nodes all hanging from the root;
Construct binomial tree, S, of order 2r-I from these;

84

21 28

Convert(S, 2r-l)

84

ff 32

14 14 2 28

/,4

14

end.

FIG. 4. Illustration of heap the construction algorithm with the approach construct a binomial tree of 2
nodes and convert it to a heap.

can be shown to be

T(2k)=2T(2k-1)+k.
A binomial tree of order 2 or 4 is a heap; hence the recursive call on these small
binomial trees can be omitted. A more important observation is that a binomial tree
on 8 nodes can be converted to a heap in 1 comparison (rather than 2). Jumping out
of the recursion in the above algorithm on trees of size 8 and using T(8)= 8 as a basis
yields the solution.

T(2)=l, T(4)=3 and

T(2k) 2 k 2 (for k _-> 3).

We are inclined to believe our technique is optimal in the worst case when n is
of the form 2k or 2k- 1 and within a lower order term otherwise. By a careful

HEAPS ON HEAPS 971

examination of structures on 3 and 4 elements we can show that the method is optimal
for 7-heaps.

THEOREM 6. 8 comparisons are necessary and sufficient, in the worst case, to form
a 7-heap.

However, a 7-heap can be constructed using 7 comparisons on the average based
on the binomial tree "building blocks". This yields an improvement in the average
behavior of our algorithm"

THEOREM 7 15ln 1.5357... n comparisons are sufficient, on the average, to construct
a heap on n nodes.

REFERENCES

[1] R. W. FLOYD, Algorithm 245, Treesort 3, Comm. ACM, 7 (1964), p. 701.
[2] G. H. GONNET, A Handbook ofAlgorithms and Data Structures, Addison-Wesley, Reading, MA, 1984.
[3] D. B. JOHNSON, A priority queue in which initialization and queue operations take O(log log D) Time,

Math. Systems Theory, 15 (1982), pp. 295-309.
[4] D. E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[5] J. I. MUNRO AND H. SUWANDA, Implicit data structures forfast search and update, J. Comput. System

Sci., 21 (1980), pp. 236-250.
[6] P. VAN EMDE BOAS, R. KAAS AND E. ZILJLSTRA, Design and implementation of an efficient priority

queue, Math. Systems Theory, 10 (1977), pp. 99-127.
[7] J. VUILLEMIN, A data structurefor manipulating priority queues, Comm. ACM, 21, 4 (1978), pp. 309-314.
[8] J. W. J. WILLIAMS, Algorithm 232, Heapsort, Comm. ACM, 7 (1964), pp. 347-348.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics

007

ON APPROXIMATIONS AND INCIDENCE IN
CYLINDRICAL ALGEBRAIC DECOMPOSITIONS*

DAVID PRILL

Abstract. Let pc Z[x,..., Xr] be a finite set. This paper describes and analyzes a variant of the
algorithm of Collins and others for decomposing R into semi-algebraic cells so that the value of eachf P
has constant sign (positive, negative, or zero) on the points of each cell. The version here has several
advantages:

1. The boundary of each cell is a disjoint union of lower-dimensional cells. For each bounded cell a

the pair (5, a) is homeomorphic to a closed ball and its interior.
2. An algorithm is presented which for fixed computes incidence of cells in polynomial time.
3. A priori estimates of the accuracy of approximations of roots of polynomials required in order to

determine the combinatorial structure of the cell complex are given. This avoids computation in algebraic
number fields.

Key words, cylindrical algebraic decomposition, Tarski decision procedure, semi-algebraic set, cell
incidence, polynomial time, regular cell complex

AMS(MOS) subject classification. 52

1. Introduction. The results of this paper were obtained independent of the work
of Schwartz and Sharir [18] in an attempt to apply the cell decomposition of Collins
[6] to the "piano movers" problem. The relation of the cell decomposition to that
problem is explained well in [18]. We shall concentrate on the cell decomposition. Its
effective use for computation of topological invariants entails knowing cell incidences.
We show that cell incidences can be computed in polynomial time provided that the
number of variables is fixed. The desirability of such a result is mentioned by Schwartz
and Sharir [18]. It implies that the homology groups of an algebraic variety or closed
semi-algebraic set defined over the integers can be obtained in time polynomial in the
number of defining polynomials, their degrees, and the maximum binary length of
coefficients. Our time estimates are in the spirit of those of Collins [6]. We posit that
two d digit integers can be added in time d and multiplied or divided with remainder
in time d2. Like Collins, we must keep track of growth of coefficients and degrees of
polynomials and other parameters during the iterative processes. To compute cell
incidence we do not use fractional power series like Schwartz and Sharir. Instead we
find roots of certain polynomials. Several steps are left in a crude form to simplify the
exposition. Routine improvements in certain estimates would yield a more efficient
algorithm of the same type. Whether it could be fast enough for many practical uses
remains to be seen.

2. Summary of the algorithm. This section outlines the construction of the cell
decomposition. It describes the properties of closures of cells and how incidence of
cells will be computed. It defines some of the quantities used in analysis of the method.
More details appear in later sections.

In this paper we shall produce an abstract complex, called a set of approximate
sample points, which is isomorphic to Collins’ cell decomposition. This is described
briefly later in this section. We shall show how to compute this complex by a sequence

* Received by the editors January 7, 1985, and in revised form August 15, 1985.

" Mathematics Department, University of Rochester, Rochester, New York 14627.
The author thanks J. H. B. Kemperman for acquainting him with that problem. He thanks C. Silva

for drawing Collins’ work [6] to his attention.

972

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 973

of rational approximations to roots of polynomials. Unlike other approaches, no
computations in algebraic number fields are needed.

The geometry of the cell decomposition is substantially that of Koopman and
Brown [14]. They even call the process algorithmic. Nevertheless, the algorithmic
aspects were first studied by Collins [6].

Let P {fl," ,fs} be a nonempty finite subset of the set 7/[xl, , xr] of poly-
nomials with integer coefficients in r variables. Suppose each member of P has total
degree at most n and coefficients the sum of whose magnitudes has binary length at
most L. We refer to (r, s, n, L) as the parameters of P. Call a cell decomposition of R
appropriate to P if each f P has constant sign (positive, negative, or zero) on each
cell. Collins constructs such a cell decomposition by induction on r. To P he associates
a finite set p’c 7/[x, , x_] and a finite cell decomposition K’ appropriate to it in
such a way that cells of a decomposition K appropriate to P stack up over each cell
of K’ like layers of a cake. Let (r-l,s’, n’,L’) be the parameters for P’. Then
(s’ + n’ + L’) is bounded by (s + n + L)3. Assume by induction that a cell decomposition
of R- appropriate to P’ can be constructed within time polynomial in (s’+ n’+ L’)
with exponents exponential in (r-1). Then one has the same type of bound in the
parameters for P. This remains true when the additional steps needed for computing
incidence are adjoined. One main result of this paper is a method for computing
incidence in polynomial time. The construction of K from K’ and determination of
incidence of cells of K proceeds in polynomial time. The construction when r 1
resembles the inductive step. The construction for r 0 is immediate.

Before using Collins’ algorithm, we make a linear change of coordinates so that
for eachf P the total degree of f equals the degree off as a polynomial in x. This
idea presumably could be traced back to Weierstrass (cf. Koopman and Brown, 14]).
As we shall see, it guarantees that the bounded cells form a regular cell complex and
that the boundary of any cell is a finite union of lower-dimensional cells. (By a k-cell,
we mean a set homeomorphic to an open ball in k. A 0-cell is a point.) This is not
always true without such a coordinate change. In [3] no such coordinate change is
made. Instead of incidence the authors study adjacency, i.e., when the union of two
cells is connected.

Let/3 be a cell in the cell decomposition K’ of r--1 appropriate to P’. It has the
following property (Collins [6, pp. 139-141]): For each f P and x/3, the number
of distinct complex roots of g(z) =f(x, z) and their multiplicities are constants depend-
ing on f and/3 but not on x. It follows that all real roots at x of g are values at x of
continuous real root functions, i.e. functions @:/3- such that the multiplicity of
@(x) as a root of g is independent of x. Moreover, the construction is such that
whenever s and are such real root functions for not necessarily distinct elements of
P, then either s or s(x) t(x) for all x in/3.

Recall the construction of cells over/3. There are two types of cells over/3. Let
r,..., rk be the real root functions of/3, arranged so that r < r2 <’’’ rk at each
point of/3. The horizontal cell/-/(fl) is the graph of r,j 1,..., k. The vertical cell
V(fl) is defined by

V(fl) {(x, y) e/3 x R] r(x) < y < j+l(X)},

We define Vo(/3) and Vk(/3) as above by setting ro=-OO; rk+l=+oo. (In [8]
horizontal and vertical cells are called Zellen erster bzw. zweiter Art. In [3] and the
paper preceding it they are called sections and sectors.)

By induction, we may suppose that in fewer than r variables all the root functions
which are similarly defined extend continuously to the closure of the cell. It follows

974 DAVID FRILL

by induction that for each point z /3 there exists a basis of neighborhoods N in /3
such that N f)/3 is connected and open in/3. A classical argument (cf. Giesecke [8, p.
184]) then shows each root function extends to a continuous function on/3. This idea
occurs also in Koopman and Brown [14], Hironaka [12], Schwartz and Sharir [18].

The set of cells of K is the union of the sets of horizontal and vertical cells over
the various cells of K’.

Let a be a cell of K’ contained in/3-/3. By induction on dimension,/3-/3 is the
union of such cells. Let Pl,’", Pq be the (real) root functions for a arranged in
increasing order. Each root functions r for/3 extends to /3. Then r[a pi for some

i(j) depending on j. Then as a runs through the cells of/3-/3, Hi(j)(a) runs through
the cells of/-/(/3)-/-/(/3). For vertical cells we have that V(/3)- V(/3) is the union
of/-/ (/3),/-/+ (/3) and certain cells over the cells a of/3 -/3. The portion of V(/3) V(/3)
over a consists of the horizontal cells Hi(a) for which i(j) <= <= i(j + 1) and the vertical
cells V(a) for which i(j) <- < i(j + 1).

We now describe how incidence will be computed. Let a and/3 K’ be as in the
previous paragraph. Let a a be the point which Collins calls the sample point. Then
(a, pi(a)) is the sample point of Hi(a) for 1_-< i<-k. The sample point of V(a) is
(a, 1/2(pi(a)+pi+(a))), 0< i<k. The sample point of Vo(a) is (a,p(a)-l). For Vk(Og
the sample point is (a, pk(a)+ 1). Let e > 0 be such that 16c is less than the minimum
distance between sample points of distinct cells over a. Let b* /3 be very near a. For
each j

while for v i(j)

I(b*)-p,o)(a) < c;

Ir(b*)-p(a)l>15c.

In the next section we shall determine how small b*-a need be, construct such
a b*, and approximate rj(b*) and p(a) within c for all v andj. Call the approximations
and tS. Then I tSl < 3c if v i(j) and I tSl > 13c otherwise. Thus, i(j) may be

computed for each j and this determines incidence of cells.
Maintain the notation above. A number c is obtained by techniques of number

theory that use bounds for the degrees and coefficients of the polynomials in P. The
value at a of each root function is a root of a polynomial, say f(a, z). We can replace
a by an approximation without much change in its roots. To do so we use a quantitative
form of the continuity of the roots of a polynomial as "functions" of its coefficients.
As b* approaches a, several root functions may approach the same limit. Thus, if b*
were extremely near a then the separation of the numbers r(b*) for various j might
be very small. If so, it would be difficult to compute the numbers . sufficiently well
to use them as substitutes for the numbers r(b*). We choose b* with some care to
avoid this. We call b* an incidence point.

All steps must be submitted to the iterative process associated to repeated projec-
tion to a Euclidean space of one less dimension. This leads to tolerance limits for the
approximations of each of the components of a sample point. Tolerance limits for
earlier components are much more severe. Tolerance limits are also imposed on
incidence points. (They are more severe than for sample points.)

Finally, we are able to describe what is for us the basic object to compute. We
call it a set of approximate sample points. (The complete definition appears in 3.6.)
It consists of an approximation to each sample point and considerable additional
structure. There are incidence relations which correspond to those in the Collins

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 975

decomposition. There is an approximation to each incidence point. These approxima-
tions are specified so that we can work upward by dimension through the projections
to lower dimensional Euclidean spaces. The data on hand at each stage suffice to
compute incidence and other data in one or more dimension. No direct reference to
the Collins decomposition is necessary.

To conclude this brief sketch, let us discuss the topology ofbounded cells. Suppose
/3 K’ is bounded. By induction on dimension the pair (/3,/3) is homeomorphic to a
closed ball of some Euclidean space and its interior. For each horizontal cell Hi(/3)
over fl,(Hi(fl),H()) is homeomorphic to (/3,/3). For 0<j<k(/3) the pair
(V(/3), V(/3)) is homeomorphic to (B, B), where B is a closed ball of dimension one
more than the dimension of/3. This is proved by Giesecke [8, p. 179], as a lemma,
and Koopman and Brown [14, p. 235].

3. The cell decompositions. This section studies the growth of the set of parameters
associated to a finite set of polynomials under the iterative process in Collins’ cell
decomposition. This will be needed to know how accurately certain computations used
in finding incidences must be carried out. It will also be used in bounding the time
the algorithm takes. The time bounds obtained will depend more on the growth of the
parameters than on the efficiency of subroutines. This differs from the approach of
Schwartz and Sharir which mainly counts the number of operations.

3.1. The defining equations. We now describe the finite sets of polynomials with
which one must deal during the iterative process. Such sets are used by Collins [6],
Arnon [2], and Schwartz and Sharir [18]. Let Pc7/[Xl,...,Xr] be a finite set of s
polynomials each of degree at most n. Collins uses certain polynomials called principal
subresultants which are determinants of minors of the Sylvester matrix, the usual matrix
whose determinant is the resultant of two polynomials. Let pSCk (f, g) denote the kth
principal subresultant off, g Z[X1, Xr] regarded as polynomials in x. (See [6].)
For f7/[Xl,..., Xr] define f’=of/OXr. Define

A {pSCk (f, g)lf, g P; 0=< k < min (degf, deg g)),

B {pSCk (f, f’)lf P; O=< k < deg (f’)},

P’=AB.

Define P(J inductively by p(O= p and P(J (p(j-l),.
Let f P. For each fixed point x’ in Rr-1 regard f as a polynomial in x The degree

of this polynomial is a function of x’. In [6] additional polynomials are included in
P’ in order to assure that such degree functions are constant on each cell of the
decomposition of Rr-1 and that the subresultants are computed for each fixed x’ using
polynomials of the correct degrees in xr. We shall first choose good coordinates so
that the leading coefficients ofmembers of P, as polynomials in Xr, are nonzero constants.
Hence we do not need to make P’ as large as in [6].

We now discuss the construction ofgood coordinates. Let P c Z[xl, , Xr] consist
of polynomials of degree at most n. Suppose P contains at most s polynomials different
from zero. If ns > 1, then there exists v 7/r with v 0 and each component bounded
by ns-1 such that for all f P the degree of f equals the degree of f(XrV). Let
(Xl, , x) (Xl, , X-l, 0)+ xv. The sum ofthe absolute values ofthe coefficients
of Xl, , xr in each component of is, of course, bounded by ns and for eachf P
the polynomials (fo)(0,..., 0, Xr) and fo have equal degrees. If ns- 1, then a
linear map :Er_r with the property of the last sentence can also be obtained by
(perhaps) permuting two coordinates. We call a map with this property a regularizing

976 DAVID PRILL

coordinate change. For any linear map o" R" Rr which has an integer matrix we define

p tp {fo p If P}-

Define Q(j) Z[Xl, ", x,_] inductively

Q(O) P,

Q(j+I)=(Q(j)o@)’ for O_<-j< r- I,

where j is a regularizing coordinate change for Q(j). Regard Q(j) as a subset of
Z[xl, ", x,]. Define

qj X ", Xr (I/j(Xl,. ", Xr-j Xr-j+ ", Xr

p(j) Q(j)o pj (r-2.

Note

Then

P(0) P tpoO p_2

P(j)=(P(O))() for 0-<j < r,

because q, , (Dr_2 do not change the lastj coordinates and the subresultants involved
depend upon the coefficients of polynomials as functions of the last j variables. Then
qo q-2 (or its inverse, depending on one’s point-of-view) is a change to a good
coordinate system. Henceforth, a Collins decomposition will mean a change to a good
coordinate system and application of the process of Collins [6] in that coordinate
system.

We now investigate the parameters of the sets P(j) and Q(j).
Let n be a bound for the degrees of the polynomials in P(j) or Q(j). Then

2 Thus, < n (2j)n+l--< n. nj For convenience we take n n (2j).
Let s be a bound for the number of nonzero polynomials in P(j) or Q(j). Then

sj+ <- (s.,l nj + s(n-1) -< ns..
Thus,

Sj nJ’2J-ts2.
For convenience we define s so that equality holds.

Let f be a polynomial in r variables of degree at most n and with coefficients
bounded by M. Iff c,x is the representation off as a sum of monomials in the
r coordinates, then define Ilfll- Y. Icl. Then

Ilfll ZIc.l<M(n+r)r
-_< M(n + 1).

Henceforth, we shall denote log2 by log.
Let Lj be a bound for {log llflllfQ(j);fo}. We may take Lo so 1-<_Lo -<

r log (n + 1) + log M. For f Q(j),

Let r-j.

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 977

The nonzero entries of each row of the Sylvester matrix of two polynomials are the
coefficients of one of the polynomials. It follows that for f, g Q(j) by Hadamard’s
inequality

[Ipsc (f Oj, g Oj)l[< (llf O ll][g O ll)" < ---$j Jnj J, .
The same bound holds for [[pSCk (f O,(O/Xt)(f))[[. Thus, in order that L+, be a
bound of the required type it suffices that

L:i+ >- 2Lsns + 2nS+l(lOg ss + log nj).

Let A 2-gLI ng. It suffices that

Let

Aj+ -> A; + (j + 1) log n + log s.

Aj Ao + (j2 + 3j) log n +j log s,

Ao Lo,

L 2nAj for each j.

For fP(j), and O<=j<=r-2, f=go$o...oSr_2 for some g Q(j). Then [Ifll_-<
(xn)’... (s,.-.nr-2)"llg]]. Let M be a bound for {log Ilfl] If# 0,f P(j)}. Then

M -< 2n log (Sr_2nr_2) + L <-- L. + L,.-1 2n,._2L,._2 <-- L,._ 1.

Also, P(r 1) Q(r 1) so we may take M_ L_. We have for 0 -<j -<_ r 1:

1 + M -<_ L, where L Lr_ + 1.

3.2. Bounds for roots.
LEMMA. Letfbe a polynomial in one variable. Suppose the coefficient of the highest

degree term off is a nonzero integer. Then each root off is bounded by the maximum of
1 and Ilfll- 1.

Proof. Easy.
We shall determine incidence of the cells in a decomposition from considerations

involving distance between points in certain sets S(j, P, k). We now define these sets
and establish some of their properties.

Let k- (ko, , kr_x) be a vector of nonnegative integers. Define S(j P, k) induc-
tively as j decreases from r-1 to 0 by

S(r 1, P, k) {a Cla 0 or :tf, g p(r 1) with roots al and a2 and
a -1/2(a + a2) has value 0, :t: 1, or +2-k’-’}.

S(j, P, k)= {(b, a) S(j+ 1, P, k) xC[a 0 or :If, g
P(j) such that f(b, x) and g(b, x) have roots al and a2

and a -1/2(al + a2) has value 0, + 1, or +2-kj}.

In the above definitions, the numbers a and a2 need not be distinct. When k and
P are fixed, we shall denote $(j, P, k) by $(j). Later we shall determine incidence of
the cells in a decomposition from considerations involving distance between points in
S(j, P, k) for an appropriate k. We now establish some basic properties of these sets.

978 DAVID PRILL

Let Rj be the maximum modulus of components of points in S(j). We shall bound

R.
First note that by the lemma

1 +log (Rr_a) <= L.

Forj < r- 1, let a S(j+ 1) and suppose each component of a is bounded by Rj+a,f
P(j) and z is a root off Supposef has degree r andf= Y cx’. Let g(t) cbR+l?,
where b=(a/Rj+a, t). Then z/Rj+l is a root of g and Ilgll-<_ Ilfll, provided Rj+I>= 1.
By the lemma,

z[<= Rj+a max (1, g 1).

Then Iz[+ 1 <= Rj+a2 so

For 0 <=j <- r- 1 we have

log R >_-log Rj+, + M.

1 + log R <_- (r -j) L.

3.3. Separation of roots. Let k be the maximum of the components of k. We want
an integer 6j(P, k) so that for each a S(a(, P, k) there exists a positive integer with
log t_-< 6 such that each component of 2kta is an algebraic integer. Such integers 6j
will be constructed inductively as j decreases from (r-1) to 0.

To find 6r-a, let f P(r- 1);

f=_, cx
=0

where the coefficients are integers and c # 0. If z is a root off then cz is easily seen
to be an algebraic integer. Then we take

6r-a =2L.

Suppose b S(j + 1), f P(j) and f(b, z) 0. Then

f(b, z)= . c,(b)z ,
where each c. is a polynomial in b with integer coefficients and c is a nonzero rational
integer. Pick with log < tj+l so that with q 2t each component of qb is an algebraic
integer. Then w qcz is an algebraic integer, because

Z q-c(b) (-a-)(w) =0.

For two roots of f(b, x) and g(b, x), where f g P(j) we may use the same factor q,
but may have different leading coefficients. It suffices then that

or that

Take

6j >- 2M + l + 6+

_-> 2L+ 6j+a.

6j 2(r -j) L.

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 979

We need a bound N for the degree over the rationals of the field extension
obtained by adjoining the components of a vector in S(j). Clearly

Therefore

2N+, forj + 1 < r.Nj nj

2 2 2 /,/2N<-njnj+l...nr_l-- =nr+l forj<_-r-1.

We need a lower bound for Ix-y[when x y and for some b the points (b, x)
and (b, y)_ belong to S(j, P, k). There exists a positive integer with log t<=2j for

4 < Itswhich t2k(x--y) is an algebraic integer of degree is bounded by N/lnj =n/l.

conjugates are bounded by 2t2R. Its norm is the product of its conjugates and is a
rational integer. Therefore,

Then

2tl(x- y)l(2t2R) "r+,-’ >- 1.

log Ix yl >- nr+l 1 + k + log R + 26)

>=-n,+(k+SrL)

=>-C+6,

where C n+l(k+5rL)+6.

3.4. Continuity of roots.
LEMMA 3.4.1. Let r > 1. Let C be as above. Let Ixo > C be an integer. Then one can

compute a vector tx (ixo, ", Ix-l) of integers with Ixo< Ixl < < Ix-i such that for
all j with 1 <=j <- r- 1 the following holds:

Let b S(j, P, k) c C r-j and a C-. Suppose that log la,- b,I -< --ixr--i for 0 < <-

r-j. Let E {z ClOg P(j- 1) and g(b, z) =0}. Then for every f P(j- 1) and each
root w off(a, z) there is exactly one z in E for which log Iz- w < -1 Ix-l. This point
is a root off(b,z). For all otherpE, log Ip-wl> 5-C.

Proof. We shall use Rouch6’s theorem. (We just need a special case, viz: Let g
and h be analytic in a disc D and [h- gl < Igl at all points of the boundary of D. Then
h and g have the same number of zeros in D, counting multiplicities.) Let f have
degree o-_-< n-l. Write f as a sum of monomials

f(a, z) c.ta zt3

where the sum of the weights of a and/3 is at most r. For each a

r-1

la-bl<= 2-"k(Ro + 1)11"11<=2.2-’,(Ro + 1)1111.
k=j

Then for Iz <= R_:

If(a, z)-f(b, z)] =< 2-,2 2-"(Ro+ 1)

SO

log If(a, z)-f(b, z)l <= L+ 1 m + n+,(rL+ 1)

< -nj_,- 2- (m/2).

980 DAVID PRILL

Let f(b, sr) O; &-I ->- C. Since the roots off(b, z) are separated by at least 2-C+6 and
f(b, z) has leading coefficient an integer, when -log [z-

log If(b, z)>--n_,(1 + &_,).
By Rouch6’s theorem &_l will have the desired property if

<- i.e., > 2n_-1. nj- txj-1, Pq txj-

For j > 0 take

& 2%go.

Then/x) 2n)_/x)_l for j > 0. If ’, p e and p # " then for every z with [z r _<- 2-"-,-

[p- zl e Ip- ffl-[ff- zl e 26-C 2-’-l-’ 2s-C

DEFINITION 3.4.2. Let k=2nA for ONjNr-1, where A> n+(5rL)+6 is an
integer.

Remark 3.4.3. We shall later approximate ceain real points of S(j, P, k). This
will be iterated for decreasing values of j. When a approximates a point b e R-; of
S(j, P, k) as in Lemma 3.4.1 and fe P(j-1) the real roots of f(b, z) may not be
approximated by real roots of f(a, z). We can, neveheless, approximate real roots
of f(b, z) by finding real roots of polynomials related to f(a, z). For the duration of
this remark, let v n_; m 1 + -1.

Suppose that in the lemma z and are real, f(b,) 0, and z 2-=. We shall
use implicitly the estimates in the proof of the lemma. Then [f(a, z)[>3-.==a and
If(a,) <’-a It follows that one or both of the equations

f(a,x)=2-=-’

has a real root within 2 of . On the other hand, every real solution y of such an
equation lies within 2 of some root of f(a, h). Then y lies within 2-= of a root of
f(b, a) so [y[R_. Then [f(b, y)[2 so y is at distance less than 2 from a root
off(b, a). Since all nonreal roots off(b, h have their imaginary pas bounded away
from zero by 2-c+s y lies within 2 of some real root of f(b, A)

Let ={zeCIWeP(j-1) with f(b,z)=O} and T={ye[3feP(j-1) with
f(a,y)=2-=}. Each element of T is within 2-- of some element of.
Elements of have distance at least 2-c+6 apa. Introduce an equivalence on T by
calling points of T equivalent if they are within 2-c of each other. There is a one-to-one
and order-preseing correspondence between elements of and equivalence
classes on Each element of T is within 2 of the corresponding element of
Inequivalent elements of T have distance at least 2s-c apa.

3.4.4. Summary. Here is a summary of the notation and estimates that we shall
need in later sections. Parameters with the subscript j are for j r-1 usually related
to projection onto -).

r dimension of Euclidean space.

P is a finite subset of g[x,..., x].

P(j) is a finite subset of[x, ., x_)], also regarded as a subset ofg[x, , x],
constructed from P.

n is a bound for the total degree of each member of P.

s is a bound for the cardinality of P.

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 981

2 2n n Sj nJ’2J-ls
For each j < r the quantity n is a bound for the total degree of members of P(j)
and st is a bound for the cardinality of P(j).

P(j) is constructed from a set Q(j) by a coordinate change.

Lo is a bound for {log IlflllfP;fo}. (f M is a bound for the coefficients of
each f P we choose Lo so 1 <_- Lo _-< r log (n+ 1)+log M.)

Lj is a bound for {log [[flllf Q(j)}; L=2n(Lo+(j+3j)log n+jlogs); L=
1

Mo is a bound for {log Ilflllfo,f P(0)}.
Define A, C, k,/z as below:

A 5 rLnr+ -" 7,
kj 2nA,
k=kr_l,

C + 1 A + knr+l,

/o= C+I,

2no,
k-- (o, r-1), (-o, , Jtr-1)"
$(, P, k) is a finite subset of- which contains points called sample points in

[6] and another set of points called incidence points which we shall define in 3.5. It
also contains points whose components are algebraic conjugates over to the com-
ponents of such points. The quantities 2-b relate to continuity considerations for roots
of members of P(j) evaluated at points of S(j + 1, P, (0,. ., 0)). Ro is a bound for
the components of members of S(0, P, k), 1 + log Ro <- rL.

3.5. Sample points and incidence. A cell decomposition of is associated to
P(r-1) by taking all real zeros of members of P(r-1) as 0-cells and the intervals
into, which they divide the line as 1-cells. This cell decomposition has the virtue that
each member of P(r-1) has constant sign (positive, negative, or zero) on each cell.
Collins constructs by induction on j a cell decomposition of such that every element
of P(r-j) has constant sign on each cell. Having obtained such a cell decomposition
of -1, the cell decomposition of is obtained by using the root functions of P(r-j)
over each cell A to construct horizontal and vertical cells. If rl <. < rt, where =/(A)
depends on A, are the root functions, the horizontal cell/-/(A) is defined by

H(A) {(x, y) e A x R[y r(x)}; 1 --<_j <=/(A).
The vertical cell V(A) is defined by

V(A)={(x,y)zAxlr(x)<y<r+(x)}, 0<=j <_--/(A).

Here ro -o; rl+ =- +o.
For each cell Collins defines a sample point in the cell. If c is the sample point

of A, then (c, r(c)) is the sample point of/-/(A). For 1 -<j-</(A)- 1, the sample point
of V(A) is (c, (rj(c)+ r+(c))/2). The sample point of Vo(A) is (c,-1 +r(c)). The
sample point of V/(A) is (c, 1 + rl(c)). The sample points in the cell decomposition of
Rr- belong to S(.h P(0,..’, 0)) for each j.

We shall determine incidences in the cell decomposition ofr-J forj 0, , r- 1.
That is, we will find the pairs of cells a,/3 such that a c/3 and dim/3 1 + dim a. This

982 DAVID PRILL

will use the results on the continuity and separation of roots from 3.3 and 3.4. Now
let k be as in Definition 3.4.2. Let a and /3 be incident cells in R r-j. Let a be the
sample point of a. We shall construct a point b b(a) in/3 such that be S(j, P, k)
and log la,- b,I <- -k_, for i= 1,. ., (r-j).

It is easy to determine incidence and define such points in the cell decomposition
of R1. (Proceed as in Case 1, below.) Suppose it has been accomplished in r-J for
some fixed j. We show how to get such points and determine incidence of cells in
-J+. Let a,/3 be cells in [[r-j+l such that a c/ and dim/3 1 +dim a. There are
three cases to consider.

Case 1. The cell a is horizontal and /3 is a vertical cell. This occurs precisely
when there is a cell A in the decomposition of- and an integer such that a H(A)
and/3 is V(A) or V+I(A). Let (c, e) be the sample point of a. Then there is an interval
I of length 25-ko with e as an end point such that except for the point (c, e) the set
{c} x I is contained in/3. Choose b(a) (c, d) where d a + 2-, and the sign is chosen
so b(a) .

Case 2. Both a and/3 are horizontal cells. Let

a {(x, y) a’ [IY r(x)} and

/3 {(x, y)e/3’ xly p(x)};

a’ and fl’ are cells in the decomposition of R- and r and p are root functions. The
condition a c/3 is equivalent to the conditions"

2. The extension of p to/3’ equals r on a’.
By induction we know whether a’/3’. Suppose that a’/3’ and dim/3’=

1 + dim a’. Let a’ a’ be the sample point and let b’= b’(a’) be the point associated
to the incidence of a’ and/’.

Order the horizontal cells over/3’ in accord with the order at each point of values
of the defining root functions. Let N be the set of values at b’ of real root functions.
Then c N if and only if (b’, c) is a point of a horizontal cell over/3’. In this case
(b’, c) S(j-1, P, k). There is an order-preserving bijection from N to the set of
horizontal cells over/3’ so p(b’) determines/3.

Similarly, let A be the set of values at a’ of real root functions. Then there is an
order-preserving bijection of A with the set of horizontal cells over a’ so r(a’) and a’
determine a. Since A {cRl::lg P(j-1) with g(a’, c)=0} it may be determined by
finding roots of polynomials. Likewise for N. Suppose a is specified by giving a’ and
the place of a in the ordering of horizontal cells over a’. Then r(a’) is known.
Conversely, when A and r(a’) are known then the place of a is known. Similar remarks
hold for/3.

By induction there is a path , [0, 1] --> E- with 7(0) a’, 7(1) =/’ and for
0< t<_-l, 3’(t) is in fl’ and in {xlr-J[log [x-a[<-_-kr_i for i= 1,.,., r-j}. Let
f P(j- 1) be such that f(x, p(x)) =0 for all x /3’. For each the distance from each
root of f(3,(t), z) to the nearest root of f(a’, z) is less than one-sixteenth the distance
between distinct elements of A. This follows from Definition 3.4.2 by substituting into
Lemma 3.4.1 k for/z, (0,..., 0) for k, a’ for b, and y(t) for a.

If condition 2 holds then [p(b’)-r(a’)[<-2--,. If not, then [p(b’)-r(a’)[>-_
26-C- 2-k- --> 25-. This determines whether a and/3 are incident. If they are, define
b(a)=(b’,p(b’)).

Case 3. The cells a and/3 are vertical cells over cells a’ and/3’ with dim/3’=
1 + dim a’ and a’/3’. In Case 2 we saw how for each root function pj over/3’ we can
determine an integer i(j) such that the restriction to a’ of the extension to/3’ of p)

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 983

equals the ith root function over a’. We have seen in 2 how this allows us to determine
whether a c/3.

Let (a’, c) be the sample point of a. Let b’= b’(a’) be the point of/3’ determined
inductively since a’ and/3’ are incident, i.e., as above. Then b= b(a)= (b’, c) is the
desired sample point of/3. We must show b /3. Suppose the description of/3 as a
vertical cell is

/3 {(x, y) /3’x [Rip(x < y < t3(x)}.

For covenience assume p(x) and (x) are finite. We must show p(b’)< c < fi(b’). We
show ((b’)-c) and (c-p(b’)) are _->25-.

Let r and be the unique root functions on a’ such that

Ip(b’) r(a’)[<= 2--, and]3(b’) (a’)[=< 2--,.

Note that r and ? may not be consecutive root functions, but r < ?. Since (a’, c) a

and a c/3, there is an integer and root functions ri and ri/l such that

r<=r,<ri+l<=? and c=(r,(a’)+r,+(a’))/2.

Then

13(b’) c => ?(a’) c -ItS(b’) ?(a’)l--> 26-k 2-k ->- 25-.

Similarly, c-p(b’)>= 25-o. If p or t3 is infinite, the argument is similar.
Schwartz and Sharir determine incidence by a fractional power series method.

They show it determines incidence of r and (r-1)-cells in polynomial time. A paper
by Arnon, Collins and McCallum [3] gives algorithms for incidence when r= 2.

3.6. Approximate computations. Let k, C,/z, etc. be chosen as in 3.4.4. In 3.5
we constructed a sample point in each cell. Further, for each pair of cells a,/3 Er-
such that a /3 and dim/3 1 + dim a we constructed a point b b(c) /3 in S(j, P, k)
such that the point b and the sample point a a are close in the sense that 2-,Ibi ail <: 1
for i= 1,..., (r-j). Here we replace computation of such points by a process which
approximates them. We show how the cells and their incidences may be recovered
from just these approximations. Roughly speaking we will make "/x-close" approxima-
tions to all points, i.e. approximate the (r-i)th coordinate within 2-", for each i.

We shall construct an abstract cell complex isomorphic to Collins’ decomposition
of E- for j r, , 0. This will be done by induction for decreasing values of j. For
fixed j we will construct a finite set E’ in E-. The points of E’ will be in one-to-one
correspondence with the cells of the Collins decomposition of E- constructed above
so we will refer to the points E’ as cells. We shall define the notions of incidence and
dimension of cells of E’ and show they agree with these notions for the Collins
decomposition. We now define a contraption which is such an abstract complex with
such additional properties as are needed to carry out its construction by induction.

DEFINITION. Let 0 =<j--< r. A set of approximate sample points in - is a finite
set E’ E- with the following properties"

1. To each a E’ is associated a nonnegative integer called its dimension. Each
point of E’ will be called a cell.

2. Each cell has dimension at most (r-j). For each fixed integer with 1 =< =<
(r-j) there is given an abstract relation called incidence between the set of/-cells and
the set of (1-1)-cells.

3. If a, b E’ and b has dimension one more than a and b are incident, then a
point b(a) - is defined.

984 DAVID PRILL

4. For each c (cl, , Cr--j) in E’ or of the form b(a) as in 3 the number 4ci2"r-,
is an integer for i= 1,..., r-j.

5. Let E be the set of sample points of cells in the Collins decomposition of
Give each point of E the dimension of the cell in which it lies. There exists a bijection
-,v_,- E’ with multitudinous properties as follows:

A. preserves dimensions.
B. For c E, the ith components of (c) and c differ by at most ()2-"r-, for

i-1,...,r-j.
C. preserves incidences. More precisely, let a and /3 be cells in the Collins

decomposition having consecutive dimensions with sample points a and b. Then
and/3 are incident, i.e. a c/3, if and only if (a) and (b) are incident.

D. Let a and/3 be as in C. Suppose a and/3 are incident. Denote by b(a) the
"incidence point" constructed in 3.5. Let a’ (a); b’ (b). Let b’(a’) be the point
associated to the incidence of a’ and b’ according to 3. Then the ith components of
b’(a’) and the b(a) differ by at most 2-"r-, for i= 1,..., r-j.

THEOREM. Let O<--_j <--_ r. Then a set of approximate sample points in r-J exists.

Proof The origin in o is a set of approximate sample points there. Let 0 <j _-< r.
Let E’ = -J be a set of approximate sample points in R-. We shall use E’ to construct
a set T’= -+1 of approximate sample points in -J+l. The projection of T’ into
r- given by neglecting the last coordinate will have image E’. This will prove the
theorem by induction.

We first construct a set of approximate sample points in 1. The method is
in essence the inductive step for the general case. Let b=P(r-1), k=kr_,
/.t =/x_.

Let Z be the union of the real zeros of nonzero members of b. Then Z is a finite
set. The points of Z are the 0-cells of the Collins decomposition of. The 1-cells are
the open intervals into which Z divides 1. If a, b e Z and (a, b) is such a one-cell
then 1/2(a + b) is the sample point of the one-cell. Distinct points of Z are separated by
at least 2-C/6. For each real root of each nonzero member of 6e find an approximation
within 2-"-2 by a rational number w such that 2+2W is an integer. Let W be the set
of numbers obtained. If Wl, WE approximate the same element of Z then Wl w21--< 2-".
Otherwise, W1- W21 26-C- 2-"-1->_ 25-c. Introduce an equivalence relation on W by
calling w, w2 W equivalent when IWl-W21<=2-C. This is an equivalence relation
because members of W are equivalent if and only if they approximate the same element
of Z within 2-"--. Let Z’ consist of one representative of each equivalence class in
W. Define E" Z- Z’ by I,(z) w if and only if Iw zl -< 2-’-2. Then @ preserves order
in the real numbers. Extend to the set of sample points of one-cells so that if (a, b)
is a one-cell of the Collins decomposition then (1/2(a + b)) 1/2((a + (b)). If Z
the rightmost one-cell has sample point a + 1 for some a e Z. Define (a + 1) (a) + 1.
Do similarly for the leftmost one-cell. The extension of to all sample points is
order-preserving and has image T’, a set of approximate sample points. Let (a, b) be
a one-cell in the Collins decomposition. Then a + 2-k is an incidence point for the
incidence of a on (a, b). The points I,(a) and (b) are consecutive points of Z’.
Define the incidence point of the "one-cell" 1/2((a) + (b)) and the "0-cell" (a) of
T’ to be @(a)+ 2-k. The points of Z’ are the "0-cells" of T’. The remaining points are
the one-cells. They may be constructed from Z’ by use of the order in the real numbers
of points of Z’ and do not require a knowledge of Z or of . All the properties of a
set of approximate sample points in 1 are easily checked. For the special case where
no nonzero member of 5 has real zeros, i.e. Z Z we take 0 as a sample point for
the one-cell and set (0)= 0.

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 985

Let 0 <j =< r. We shall now modify the above procedure to construct a set T’ of
approximate sample points in Rr-j+ from a set E’ of approximate sample points in
Rr-J. Suppose that " E E’ is a bijection from the set of sample points in the Collins
cell decomposition of r-j to E’ such as is required to exist in the definition of a set
of approximate sample points.

Let sE be fixed. Let 9= {f(s, x)lf P(j-1)}, a finite set of real polynomials of
one variable. Let Z be the union of the real zeros of nonzero members of 5. Then
{(s, z)lz Z} is the set of sample points of the horizontal cells of the Collins decomposi-
tion over the cell A that contains s. If Z , then (s, 0) is the sample point of the
vertical cell over A. If Z , then the sample points of the vertical cells over A are
obtained in the usual way. That is, they are the points (s, w) where w is the average
of successive members of Z or 1 +/z or -1 + u, where /z and u are the largest and
smallest members of Z. This shows that the sample points over s can be computed by
finding 5 and Z.

Let (s) o-. Let 9’= {f(tr, x)lf P(j- 1)}. We cannot approximate Z by using
the union of the real zeros of nonzero members of 5’. The discussion of Remark 3.4.3
provides a means of using 5’ to get an approximation to Z.

For this paragraph only, let N=n_ and m=-(l+_l). Let Z’=
{x [::lf6 p(j- 1) for which f(o-, x) +1/2. (2v’)}. By Remark 3.4.3, each element of
Z’ is within 2 of some element of Z and each element of Z is within 2" of some
element of Z’. The distance between distinct elements ofZ is at least 26-C and/x_l >- C.
For each f P(j-1) and each real root of f(o-, x)+/-1/22v" choose a number w which
approximates the root within 2"-1 such that w22+’J is an integer. Let Z" be the set
of numbers w obtained as f varies through P(j-1) and all real roots off(o-, x)+/-1/22N"
are taken. Each element of Z" is within 3(2"-1) of an element of Z and conversely.
Introduce an equivalence relation on Z" by calling any w, w2Z" equivalent if
[wl-w21 =<2"+2. Again, elements wl, w26 Z" are equivalent precisely when they lie
within 3(2"-1) of the same element of Z. Let Z’" consist of one element from each
equivalence class in Z".

Define q" Z Z’" by q(z) w if and only if w Z’" and [w- z =< 2-’J-1. (If u Z’"
and q(z) u, then [u-z[-> 25-c.) Call {(tr, w)lw Z’"} the set of horizontal cells over
tr. The vertical cells over tr are the points of {tr} x constructed from Z’" exactly as
the set of sample points of vertical cells over s was constructed from Z. Define the
dimension of cells over tr in the obvious way. Let T’ be the set of cells over tr. Let T
be the set of sample points in the Collins decomposition of-j+. Let 7r. r-+ -be projection on the first (r-j)-coordinates. Let Ts={t Tlrr(t)=s}. Recall that
(s)=tr. Then q induces an order-preserving isomorphism s’T- T’. Let T’=
Ur.,T’. Define ’T T’ by 1T for each s E. Then is a bijection. For
fixed s E, the incidence of vertical and horizontal cells over the cell containing s is
determined from the order of these cells. This order is the same as the order on the
set T of sample points of such cells induced by the order in the real numbers of their
last components. Define incidences among cells in T’ by the use of the order of last
components of points in T. Then ’Ts T’ gives an isomorphism of incidence
relations, because it preserves order.

We shall show how to define and compute incidences in T’ so that gives
isomorphisms of incidence relations. We have already seen how to define incidences
in T for fixed cr E’ so that when (s)= cr then [T induces an isomorphism
of incidence relations. This corresponds to Case 1 in 3.5.

Let c, d E be sample points of incident cells y, 8 with dim 8 1 +dim 3’. Let
(c) c’, (d)= d’. Let b r- be the incidence point associated to the incidence of

986 DAVID PRILL

y and 6 and let b’ be the incidence point associated to the incidence of c’ and d’ in
accordance with the definition of a set of approximate sample points. Then the ith
components of b and b’ differ by at most 2-’r-, for i-1,..., (r-j). Moreover,
b S(j, P, k). For each f P(j 1), choose an approximation to within 2-2-’J to each
real solution off(b’, y) -i-1/22-n-(l+j-) by a number z such that 22+’-z is an integer.
Let W be the set of numbers z obtained as f varies through P(j-1) and all real
solutions are taken. Introduce an equivalence relation on W by calling points of W
equivalent if they are within 2-c of one another. Elements of W are equivalent if they
are within 2-’ of the same element of V= {ylzlf p(j-1) with f(b, y)=0}.
Inequivalent elements of W are at distance at least 24-C apart. These statements follow
from the discussion of Remark 3.4.3. Let W’ consist of one element from each
equivalence class from W. Distinct elements of V are at least 26-C apart. An order-
preserving bijection A" V- W’ is defined by h(v)= w if and only if w W’ and
Iw-vl_-<2 (See Remark 3.4.3 for details.) If h(v)= w then Iw-

Let U={zl]fP(j-1) withf(c,z)=O}. Let u U, v V. Then u is the value
at c of a root function r defined on y and v is the value at b of a root function defined
on & In 3.5 we showed that the horizontal cell over y defined by r is contained in
the closure of the horizontal cell over 6 defined by p when]u- v[-< 2--’. Otherwise,
[u v[=> 25-. We have constructed an order-preserving bijection A" V W’. In defining

we constructed an order-preserving bijection q’U U’, where U’ is the set of
horizontal cells over c’, and q moves each point at most 2-’ The map h also moves
each point at most this much. If [u v[<- 2-- then [(u) h (v)l =< 2--+2- =<
3.2--. Otherwise, Iq(u)--A(v)l>=25-k--2-’J->=30 2--. To specify horizontal
cells over y and 6 it suffices to specify where they appear in the ordering of such cells.
These cells are in order-preserving bijection with the sets U and V. We may instead
use U’ and W’. They are also in order-preserving isomorphism with the horizontal
cells over y, resp. 6, and for each u’ U’, v’ W’ the horizontal cell corresponding to
v’ contains the cell corresponding to u’ in its closure if lu’-v’l-<3.2-k-. Otherwise,
lu’-v’l -> 30.2-k-’. We have seen in 3.5 how to use the relation between U and V
defined by {(u, V)IlU--VI<--2-k-} to determine incidence relations of cells over 3’ with
cells over 6. The relations defined between U’ and W’ by {(u’, v’)llu’-v’l<-3 2-k-’}
is equivalent via d/ and A with this relation. Let " T- T’ be defined as earlier. We
now define incidences between cells of T’, and T, as follows" The set of H, of
horizontal cells in T, is bijective in an order-preserving way with W’, V, and with the
set of horizontal cells in Td. The set H, of horizontal cells in T’ is bijective in an
order-preserving way with U’. By use ofthe order-preserving bijections we get a relation
between H, and H’,. We define this to be the incidence relation of horizontal cells
over d’ and c’. By use of the sandwiching of vertical cells between horizontal ones,
the order of cells over d’ and c’ can be used as in 2 to define incidence of vertical
cells over d’ and c’. With this definition, is an incidence-isomorphism. The definition
just depends on inequalities involving elements of U’ and W’ and the order of certain
numbers in the reals. It can be computed without knowing U and V.

It remains to show how to define incidence points for T’. Let tr ’. If a < b and
(or, a) and (r, b) are consecutive horizontal cells of T’ then we define an incidence
point for the incidence of (or, a) with the vertical cell (or, 1/2(a + b)) to be (r, a + 2--,).
All incidence points for incidences of two different cells over r are defined similarly.
As above in the definition of incidences in T’, let c, d be sample points of incident
cells y, 6, etc.

Suppose the ith element of the ordered set H’, is incident on the jth element of
H,. Let w’ be the jth element of the ordered set W’. Use (b’, w’) as the incidence

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 987

point in the definition of a set of approximate sample points. Suppose that (c’, x’) and
(d’, y’) are incident vertical cells. As an incidence point, we take (b’, x’).

The elements of T’ which correspond to bounded cells in the Collins decomposition
are those elements (tr, c)E’ xR such that tr corresponds to a bounded cell and (tr, c)
is not the first or last vertical cell over r. This enables one to determine immediately
by iteration which cells correspond to bounded cells.

4. Computation time. In this section we show the computation time for the
algorithm of 3.6 is polynomial. This extends the work of Collins [6] in that we also
compute incidences. Many techniques are the same as he used.

4.1. Regularizing coordinates and subresultants.
LEMMA 1. Let g 7[Xl,. ", Xr] have degree<- n and log [[gl[<- M. Suppose

al, ", arare integers, c >-_ O, and log [ai[--< cfor all i. Then g(al, ", ar) can be computed
in time bounded by

(c+ 1)(r+ 1)(M+ rc)n .
Proof. We use induction on r. Let A be the maximum time needed to compute

g(al,"" ", a) for any such g. Let B be the maximum time needed to compute any
polynomial h of (r-1) variables with degree (h)<_-n and log [[hl[_-< M. By Horner’s
rule [13] for polynomials of one variable

u . ujx
j is computed by u (. (u,x + u,_l)x +" ")x + Uo.

j=0

We regard g as a polynomial in x. All coefficients can be evaluated at (al,’’ ", a_l)
in total time at most nB. Once this is done, g(al," ", a) can be computed by Horner’s
rule. Each intermediate stage has log bounded by (M+ rc). We must perform (at most)
n additions of numbers satisfying this bound and multiply by ar at most n times. Then

A <- nB+ n(M+ rc)+ n(M+ rc)c= n((M+ rc)(c+ 1)+ B).

The result follows by induction on r.
LEMMA 2. Let c Z[xl,. ., x] be a set of at most s nonzero polynomials such

that each g has degree at most n and satisfies log [[g[I <-- M. Then a regularizing
coordinate change tp may be found in time at most

(M + r)(1 + ns)2+3.

Proof. Let ns > 1. We may suppose r_-> 2. We seek a vector v 7/ with v 0 and
each component bounded by ns-1 such that for each g 5 the degree of g is the
same as that of g(xrv). Such vectors exist. We may find one by evaluating the top
degree homogeneous parts of the elements of 5 for at most (ns + 1) such vectors. The
time is bounded by Lemma 1.

Remark. A modular algorithm for finding a regularizing coordinate change is
probably faster, but not needed for present purposes.

Let q:R- R be a coordinate change with integral matrix which is a regularizing
coordinate change of the type considered previously, i.e., @(Xl,’",x)=
((Xl,’’ ", Xk), Xk+I.’’’, Xr), where either permutes variables or is of the form
q(Xl, , Xk) (Xl, , Xk-1, O) + XkV and v 7/k has components bounded by d 1.

LEMMA 3. Let d/ be as above. Let g Z[Xl,’’ ’, x] have degree at most n and
satisfy log Ilgll <- M. Then go d/ can be computed in time bounded by

r(n+l)(M+ n log d)(l+ log d).

988 DAVID PRILL

Proof. If permutes coordinates, we shall neglect the time needed to compute
g . Consider the second case. The polynomial g can be developed as a polynomial
in the last (r-k) variables. As such, it is a sum of at most (n + 1)r-k monomials and
each coefficient is a polynomial h in Xl," , Xk of degree at most n with log h -<- M.
The polynomial h o can be computed by repeated use of Horner’s rule. Intermediate
results have logs bounded by M 4- n log d. By induction we get

B<-_ k(n+ 1)k(M+ n log d)(l+log d).

The result follows.
The author thanks S. Gonek for a helpful conversation about the next lemma.
LEMMA 4. For x >- 212, let P Hp--x P, the product running through the primes. Then

log2 P -> 10 + 1/2x.
Proof. By refinements of material in Hardy and Wright [10] or otherwise the

standard number-theoretical functions

O(x)=ln(P),

[lg x] lnp,,(x) p--<,,E I_log p

satisfy

0 <- O(X) O(X) (X1/2 In x for x ->_ 28,

0(x)_-> -1 ln252_->-6 forx->10.

Then O(x) > x/2-6- x/7 for x _-> 212. Then O(x) > (1/2 In 2)x + 10 for x >- 212.
We obtain immediately:
LEMMA 5. Let M >-211. Let II be the set ofprimes p for which p < 6M. Then the

product of the primes in II exceeds 2 M+10.
[.,EMMA 6. The time to find all primes in the set II ofLemma 5 and to compute the

arithmetic of 7//(p) for all such primes p is dominated by

M3(log M)2.

Proof. By [9] we may find the elements of II in time dominated by M(log M)2.
For each prime p we may work out arithmetic modulo p in time dominated by p(log p).
The number of primes in II is dominated by M. The result follows.

LEMMA 7. Let M >= 2. Let c 7/[Xl, , xr] be a set ofat most s polynomials each
of degree at most n and suppose log Ilgll--< Mror every g (.J f’. Suppose H is a set of
primes p > n2 such that the product of the primes in H exceeds 23M+l and the arithmetic
modulo each prime of H is known. Then ,’ can be computed in time not exceeding

KrMa(n2+ 1)rns2, where K is independent of r.

Proof. This follows mutatis mutandis from the proof of Collins’ modular algorithm
for computing subresultants [7] and the fact that ’ has at most ns2 elements.

Remark. Several authors have improved algorithms which compute subresultants.
See [18].

PROPOSITION 1. Let r>--_2. Let Pc 7/[Xl,’’’, Xr] be a finite set of s polynomials
each of degree at most n. Suppose M >- 2 and log g <- Mfor each g P. Then one can

find regularizing coordinate changes d/o,’", d/_2 and compute P(O),..., P(r-1) as
described in 3.1 in time bounded by

Kr L4(1 + uo’)2r+3,

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 989

where K is a constant independent of all variables. (The quantities L, 12, r are defined in
the proof They are dominated by polynomials in M, n, s of degree at most a constant
times r22 r. The coefficients ofthesepolynomials depend on r with similargrowth constraints.)

Proof The computation requires several types of steps.
1. Finding an adequate set of primes for the following computations.
2. Finding a regularizing coordinate change.
3. Computing {g Olg m 5e} where O is a finite set of polynomials and q is a

regularizing coordinate change.
4. Computing ow’ for a finite set be of polynomials.
Each step is applied to a (different) finite set of polynomials in at most r variables

consisting of at most o-= Sr-2 polynomials of degrees at most 12 nr-2. For each such
finite set - of polynomials L= Lr-1 is a bound for log Ilgll for each g -t_J -’.

Find a set of primes whose product exceeds 23t’+l+u2. Discard those less than
122. Find the arithmetic modulo each remaining prime. Since 0(122)<2122 In (2), the
product of these primes exceeds 23L+l. According to Lemmata 4-6, all this can be
done in time bounded by a constant times L4.

By Lemma 2, all regularizing coordinate changes can be found in time dominated
by r(L+ r)(1 + 12cr)2r+3.

By Lemma 3, each instance of Step 3 takes time dominated by

crevr(v+ 1)r(L+ 12 log (rv))(1 +log (rv)).

There are at most r- such steps.
By Lefnma 7, each occasion of a step of the fourth type takes time dominated by

rL3 122 + 1)r120"2.
There are at most r such steps. Thus the total time is dominated with constant
independent of r by

r3L4(1 + 12o’) 2r+3.

An estimate of this type in the absence of coordinate changes and finding primes
is given by Collins in [6].

4.2. Approximate sample points. Let us now examine the time needed for the
computations in the construction of 3.6. We retain the notation of that section. The
set-up is the following.

Basic procedure. Let 0<j=< r. Let b’R-j approximate an element b of Rr-j
/z /xS(j, P, k) so that [bi- bil-<_z2- and 4b2 is an integer for i= 1,. , r-j. (Delete

this condition when j= r.) Let b= {f(b’, x)lf P(j- 1)}. We must perform several
steps:

1. Compute an element g of be.
2. If g is not constant, approximate each real root of g or of g+1/22-"-l+’J-within 2-j--2 by a number z for which 2’-,+2z is an integer.
3. Let Z be the set of numbers obtained by 2 for varying g. Order the elements

of Z
4. Call zl, z2 equivalent if Iz-z21<-_22--,. If zl and z2 are inequivalent then

IZl-z21->24-c. Form an ordered set Z’ from Z by selecting one element from each
equivalence class.

As for Step 1, let f P(j-1) with b’ as above. Let 12 n_. Let (y, x)-
and expand f(y, zx)= Z<__f(y)x in powers of x. We shall compute 22+’-,)f(b ’, x)
instead of g as it has integer coefficients.

990 DAVID PRILL

Let q 22+"j-’. Let f(y) Y. ctyt3.
,,-It3lzt3"q f(y, x) g (qy)x where g (z) cq

We can compute g for all a in time bounded by (+ 1)+ log Ilfll. Moreover,
E IIgll qllfll. By Lemma 1 of this section we may compute g(qb’) for each a in
time bounded by

r(1 + c)((2 + _,)+ log Ilfll + (r- 1)(1 +c))-’,
where c (2+j_l)+log (Ro+ 1). Thus, we compute qf(b’,x) in time which is poly-
nomial in the basic parameters. Also,

[[q"f(b’, x)li q(Ro+

so that log Ilq"f(b ’, x)ll is bounded by an easily computed polynomial 6 in the basic
parameters.

We are concerned in Step 2 with approximating real roots of qf(b’,x)= G(x)
or of G(x) 1 within 2---3. We apply the following

THEOREM (Heindel [11, Cor. 7.1]). If G is a polynomial with integer coefficients
of degree at most 1, 6 log I111 0, 1, then the real zeros of G can be founa
within accuracy 2- in time dominated by

p13(+)3.
Application to our situation gives a polynomial time bound for Step 2 of the basic

procedure. Recall the inequalities of 3.4.4. Three additional inequalities will apply
in the applications of Heindel’s theorem.

g 3 + -1,
P r--l

6 (+ rL) + L.

For fixed b’ we must compute roots of at most 3s_ polynomials.
The time for Steps 3 and 4 is comparatively small.
We see that the estimates obtained for performing 1, 2, 3, 4 for all elements of

are dominated by an expression such as

s(g)()’+ s()-’r(g),

where the quantities and 6 are defined by making the last three inequalities into
equations.

LEMMA 8. e number of cells in the Collins decomposition of- associated to P
is bounded by 3ns. e number of cells having dimension one less than a fixed cell and
contained in its closure is bounded by 4n_lS_.

Proof Induction.
COROLLARY. e basic procedure must be done at most (12)+lrs+l times.

Proof We must do the basic procedure once for each cell and once for each pair
of incident cells of consecutive dimension. This holds for j 1,..., r Combine the
lemma with the formula for s+.

For each incidence point we must compare the numbers of two lists obtained by
the basic procedure. For a fixed pair of lists this takes time dominated by (n_s_)2(6 +
)2, which is less than the bound before Lemma 8. The remaining work in going from
a set of approximate sample points in -J to a set of approximate sample points in

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 991

Rr-j+1 is minor bookkeeping. Naturally we want to identify the members of the set of
approximate points in Rr that correspond to cells in the Collins decomposition which
satisfy the given system of d inequalities in members of P. We use the following lemma.

LEMMA 9. Let f P(O). Let a* be an approximate sample point which corresponds
to the cell A of the Collins decomposition of r. If

-log [f(a*)l -> (3rn + 1)Lnr+l

then f is zero on all of A. Otherwise, f is positive or negative on A according as f(a*) is
positive or negative.

Proof. Let a $(0, P, (0,. , 0)) be the sample point of A. By construction, f is
positive, zero, or negative on A according as f(a) is.

All conjugates of a =f(a) are bounded by 24oR. There is a positive integer "
with log -<= 6o= 6o(P, (0,..., 0)) such that ’na is an algebraic integer. The degree
over the rationals of a is bounded by n+l. If a is not zero, then the norm of ’na is
a nonzero rational integer. Then

Thus,

-log Ic[_--< 3rLnnr+l -F (L- 1)n+l,

If(a*)-f(a)[=< 2’o(2Ro)"-’2 2-u’.

Thus, if

/Zo_-> (3n + 1)(n+l + 1)rL,

then If(a*)-f(a)l -11, Then f(a) and f(a*) have the same sign if they are nonzero
and f(a)= 0 if and only if-log[f(a*)l>=(3n+ 1)rLnr+l. In Definition 3.4.2, we chose
A > nr+l(5 rL)+ 6 and defined the kj accordingly. Then C as defined at the end of 3.3
is sufficiently so large that/Zo as in Lemma 3.4.1 satisfies the inequality above. For f
and a* in the above lemma, we may (by Lemma 1 of this section), compute f(a*) in
time bounded by

5(3+ r_l)(r-F 1)(n + 1) r+l.

We must do this for all f P(0). The time to do so for all approximate sample
points is bounded above by the expression before Lemma 8. We must find signs for
each approximate sample point. Doing so takes less time than carrying out the Basic
Process for all approximate sample points. If a semi-algebraic set is given by a Boolean
formula of length a in atoms of the form {xlf(x) > 0}, {xlf(x) 0}, {x[f(x) < 0} where
in each case f P, then after we know "signs" of the members of P at approximate
sample points, it takes time at most 3rnsa to find which approximate sample points
correspond to cells of the semi-algebraic set.

By collecting earlier results and manipulating them we have:
THEOREM. Let X be a semi-algebraic set defined by a formula a-atoms long in

members ofa set P as throughout this paper. By a coordinate change, it is possible to find
a Collins decomposition of for P such that the boundary ofeach cell is a union oflower
dimensional cells and X is a union of some of these cells. It is possible to construct an
"isomorphic abstract cell complex" with the same incidences as the Collins decomposition.
This complex, its bounded cells, incidences of its cells, and the cells which correspond

992 DAVID PRILL

under the isomorphism to the cells of X can be computed in polynomial time. More
explicitly, the time is dominated (for example) by

2"arbs n aLe
where

a 32r+ 14, d r22r+7,
b =40, e= 13.

c r2r+2+ 13,

5. Comments and speculations. We wish to emphasize that the algorithm of 3.6
and its time analysis are in a crude form, not intended for practical use. The general
implications of the time estimates are more important than the particular results. Many
improvements of the cylindrical algebraic decomposition of Collins are given in [6],
[2], [18] and elsewhere. We felt that to incorporate them would obscure the idea of

3.6. We could determine locally the accuracy needed for approximate sample points
and incidence points. Most points do not interact. We could replace Lemma 3.4.1 by
estimates that take the multiplicity at each point into account. Most of the estimates
could be sharpened with little effort and these improvements could be incorporated
into the tolerance limits of the algorithm. It seems clear that the algorithm described
in 3.5 would also run in polynomial time. The techniques needed for manipulating
real algebraic numbers to show this are reviewed in [6] and [18].

The main reason for the time analysis was to get a hold on the exponents and
coefficients in the polynomial bound. They are dishearteningly large, as for Collins’
original algorithm. This is mainly an artifact of the growth as j increases in the size
of the parameters associated to the sets P(j).

To use the cell decomposition to compute homology one should orient the cells.
This is discussed by Schwartz and Sharir. The idea is to use induction. If c is an
oriented cell in the Collins decomposition of r-j, then c is oriented by using the
usual orientation on R. The vertical cells of c are oriented so that inclusion is
orientation-preserving. The signs in formula for the boundary of a cell depend on the
order of cells over c and the signs in boundary formulae in lower dimensions so they
are computable in the context of approximate sample points.

Under certain circumstances a closed semi-algebraic set has the same homotopy
type as the union of its bounded cells. This union is a regular cell complex whose
homology we can compute. In fact, suppose that each cylinder in the decomposition
of r-j contains a horizontal cell for j 0, , r- 1. (A horizontal cell in is a point.)
If necessary, we can arrange this by modifying the definition of Q(j) in 2 so that
Q(O) P (_J {Xr} and

Q(j + 1 Q(j) d/j)’ l..J {xr--l}.
It can then be shown by induction on r that for each unbounded cell A of the Collins
decomposition there exists a deformation retraction of A to (A-A). The assertion at
the start of this paragraph follows.

Known bounds for Betti numbers of algebraic sets have exponents which are
polynomial in the number of dimensions also. They come from cell decompositions
obtained by Morse theory. Possibly such methods could be adapted to algorithmic
purposes.

Note. At the SIAM Conference on Geometric Modeling and Robotics, July, 1985,
C.-K. Yap announced that he and Kozen had obtained a result on computation of
incidences in polynomial time. They and this author have worked independently.

CYLINDRICAL ALGEBRAIC DECOMPOSITIONS 993

REFERENCES

A. G. AKRITAS, The fastest exact algorithm for the isolation of the real roots of a polynomial equation,
Computing, 24 (1980), pp. 299-313.

[2] D. S. ARNON, Algorithms for the geometry ofsemi-algebraic sets, Tech. Report 436, Computer Science
Dept., Univ. Wisconsin, Madison, WI, 1981.

[3 D.S. ARNON, G. E. COLLINS AND S. MCCALLUM, Cylindrical algebraic decomposition II: An Adjacency
algorithm for the plane, Tech. Report CSDTR-428 Computer Science Department, Purdue U., West
Lafayette, IN, December 1982, this Journal, 13 (1984), pp. 878-889.

[4] W. S. BROWN, On Euclid’s algorithm and the computation of polynomial greatest common divisors,
J. Assoc. Comput. Mach., 18 (1971), pp. 478-504.

[5] W. S. BROWN AND J. F. TRAUB, On Euclid’s algorithm and the theory of subresultants, J. Assoc.
Comput. Mach., 18, pp. 505-514.

[6] G. E. COLLINS, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, in
Second G.I. Conference on Automata Theory and Formal Languages, Lecture Notes in Computer
Science 33, Springer-Verlag, Berlin, pp. 134-183.

[7] ., The calculation of multivariate polynomial resultants, J. Assoc. Comput. Mach., 18 (1967), pp.
128-142.

[8] B. GIESECKE, Simpliziale Zerlegung abziihlbarer analytischer Riiume, Math. Z., 83 (1964), pp. 177-213.
[9] D. GRIES AND J. MISRA, A linear sieve algorithm forfinding prime numbers, Comm. ACM, 21 (1978),

pp. 999-1003.
10] G. A. HARDY AND E. M. WRIGHT, An Introduction to the Theory ofNumbers, Fourth Edition, Oxford

Univ. Press, Oxford, 1960.
11 L. E. HEINDEL, Integer arithmetic algorithms for polynomial real zero determination, J. Assoc. Comput.

Mach., 22 (1971), pp. 533-549.
[12] H. HIRONAKA, Triangulations of algebraic sets, in Proc. Symposia in Pure Math., 29, American

Mathematical Society, Providence, RI, pp. 165-185.
13] D. E. KNUTH, The Art of Computer Programming, vol. II, Seminumerical Algorithms, Addison-Wesley,

Reading, MA, 1969.
14] B. O. KOOPMAN AND A. B. BROWN, On the covering ofanalytic loci by complexes, Trans. Amer. Math.

Soc., 34, pp. 231-251.
,15] J. MILNOR On the Betti numbers of real varieties, Proc. Amer. Math. Soc., 15 (1964), pp. 275-280.
[16] O. A. OLEiNIK, Estimates of the Betti numbers of real algrebraic hypersurfaces, Mat. Sb. (N.S.), 28

(1951), pp. 635-640.
[17] J. R. PINKERT, Algebraic algorithms for computing the complex zeros of Gaussian polynomials, Ph.D.

thesis, Computer Sciences Dept., Univ. Wisconsin, Madison, WI, 1973.
18] J.T. SCHWARTZ AND M. SHARIR, On the "Piano Movers Problem" II. General techniquesfor computing

topological properties of real algebraic manifolds, Tech. Report 41, Computer Science Department,
New York University, New York, 1982. (Appeared in Adv. Appl. Math. 12 (1983), pp. 298-351.)

[19] R. THOM, Sur l’homologie des varidt.s algdbriques rdelles, Differential and Combinatorial Topology: A
Symposium in Honor of Marston Morse, Princeton Univ. Press, Princeton, NJ, 1965, pp. 255-265.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
008

LOG DEPTH CIRCUITS FOR DIVISION AND RELATED PROBLEMS*

PAUL W. BEAMEd, STEPHEN A. COOK" AND H. JAMES HOOVERf

Abstract. We present optimal depth Boolean circuits (depth O(log n)) for integer division, powering,
and multiple products. We also show that these three problems are of equivalent uniform depth and space
complexity. In addition, we describe an algorithm for testing divisibility that is optimal for both depth and
space.

Key words, integer division, circuit depth, circuit complexity, depth complexity, space complexity

AMS(MOS) subject classification. 68Q

1. Introduction. It is a well-known fact that addition, subtraction and multiplica-
tion on modern computers are significantly faster operations than division. Circuit
designers have been unable to match the efficiency of the circuits for addition and
multiplication in division circuits. Until recently there seemed to be some theoretical
justification for this inability since the best known circuits for the first three problems
have O(log n) depth but division appeared to have only O((log n)2) depth circuits.

Reif [8] reduced the division depth to O(log n(loglog n)2) using a circuit for
computing the product of n o(1) n-bit integers mod 2 + 1, based on Fourier interpolation
and evaluation. This circuit had slightly more than polynomial size, but a revised
version of the result [9] yields polynomial size and O(log n log log n) depth circuits
for the same problem.

We present simple circuits of depth O(log n) and polynomial size, using Chinese
remaindering, for the division of two n-bit integers and for the product of n n-bit
integers. Since the circuits we consider allow gates with fan-in at most two, our division
and iterated product circuits are optimal in depth up to a constant factor.

Besides circuit depth complexity we are also interested in the deterministic space
complexity of division. Borodin [3] showed that if for all n a problem can be solved
for n input bits by a circuit of depth O(D(n)) then it can be solved in Turing machine
space O(D(n)), provided the circuits are "log-space uniform" (i.e. some Turing
machine, given any n on its input tape, can generate a description of the circuit for n
inputs in log n space). Since Reif’s circuits mentioned above are log-space uniform,
it follows that integer division has space complexity O(log n log log n). Unfortunately
our circuits for division may not quite be log-space uniform, and it remains an open
question whether division has space complexity log n.

Motivated by this question, we prove a number of results. First we show that the
three problems division, powering, and iterated product are each strongly reducible
to either of the others. Thus all three have the same uniform depth complexity and
the same space complexity. Next we give a simple sufficient condition (that some
"good modulus sequence" (Mn} be log-space generable) for the three problems to
have space complexity log n. Finally we show that the problem of testing whether an

* Received by the editors September 12, 1984, and in revised form July 3, 1985. A preliminary version
of this paper appeared in the Proceedings of the 25th EEE Symposium on the Foundations of Computer
Science, 1984.

" Department of Computer Science, University of Toronto, Toronto, Canada M5S 1A4.

994

LOG DEPTH CIRCUITS FOR DIVISION 995

n-bit integer is divisible by another does indeed have uniform depth complexity
O(log n) and hence space complexity O(log n).

2. Circuits and uniformity. We adopt the usual definition of fan-in two Boolean
circuit families in which the nth circuit has g(n) inputs and h(n) outputs where g and
h are nondecreasing polynomially bounded functions. With this definition depth
O(log n) implies polynomial size. Using the notion of uniformity (see the Introduction)
we can define a basic complexity class"

DEFINITION [10]. The class NC consists of all functions f computable by a
log-space uniform circuit family of depth O(log n).

Thus every function in NC has deterministic space complexity O(log n) [3].
Using standard methods [11] it is easy to see that multiplication of two n-bit integers
and addition of n n-bit integers are each in NC 1. It remains an open question whether
division of two n-bit integers is in NC.

Although log-space uniformity is desirable for theoretical reasons, there is a weaker
kind of uniformity which provides a natural condition on circuit families. The builder
of computer hardware may simply want to have fast circuits which are easy to construct.
Once a circuit has been constructed, it will be used over and over again. We thus
propose the following definition:

DEFINITION. A family (a,) of circuits is P-uniform provided some deterministic
Turing machine can compute the transformation 1" 6n in time n(> where c, is the
standard encoding [10] of an.

Some of our circuits require internal constants which are polynomial-time compu-
table but do not appear to be log-space computable, and thus are only P-uniform.
However, even though they may not be log-space uniform they almost are, in that the
only parts of the circuits which are not log-space constructible may be generated in
O(log n log log n) space using Reif’s powering algorithm [9].

A useful notion of reducibility for circuits is the following definition [4].
DEFINITION. f is NC reducible to g if and only if there exists a log-space uniform

circuit family (a,) which computes f with depth (a,) O(log n) where, in addition to
the usual nodes, oracle nodes for g are allowed. An oracle node is a node which has
some sequence y, , yr of input edges and z, , zs of output edges with associated
function (z,..., zs)- g(Yl,"" ", Yr). For the purpose of defining depth, the oracle
node counts as depth [log (r+ s)].

An important consequence of this definition is that iff is NC reducible to g and
g is computable by depth O(logk n) uniform circuits then f is also computable by
depth O(logk n) uniform circuits. This applies whether "uniform" means "log-space
uniform" or "P-uniform".

3. Powering and division are equivalent. Let x, y be n-bit positive integers. The
DIVISION problem is to compute the n-bit representation of [x/yJ. The POWERING
problem is to compute the n--bit representation of x for i-0,. ., n. The following
result is adapted from [5].

THEOREM 3.1. DIVISION is NC reducible to POWERING.
Proofi For integers x, y where 0 < x < 2", 2 <_- y < 2" we wish to compute [x/yJ.

We first compute an under-approximation 37- of y-1 with error <2-". Then we compute
x)7- which approximates x/y with error <1, and determine which one of [tJ or

[tJ 4-1 is [x/yJ.
Let u- 1-y2- where j->_2 is an integer such that 2-_-<y<2. Thus lu[-<_1/2.

Consider the series y-l=2-(1-u)-l=2-(l+u+u+...). Set 3-1=2-(1+u+.
2-i 2+ u"-l). Then y- -)7-1 _<- 2-j Yi>_-,

996 P. W. BEAME, S. A. COOK AND H. J. HOOVER

The circuit computes [x/yJ using scaled arithmetic of n2 bits of precision as
follows:

(1) Determine j _-> 2 such that 2j-1 =< y < 2 and compute u 1 y2-.
(2) Evaluate u i, 0, n 1 using the n-bit powering circuit.
(3) Compute 37-1=2-(1+u+ "-{-un-1).
(4) Compute t=x- and truncate to obtain It]. Note that xy->=x-l>=

xy- _2-nx.

(5) Compute r=x-y[tJ and determine whether [x/yJ is [tJ or [tJ +1.

All of these steps have depth O(log n) except possibly the powering in step (2).
TI4EOREM 3.2. POWERING is NC reducible to DIVISION.
Proof Let x be an n-bit integer. We want to compute x, , xn. We use a similar

identity to the one in the previous reduction but in reverse, choosing a scaling factor
so that none of the powers of x overlaps in the resulting binary representation.

22n3+2nz 122n y 22""-)x
22- X 1 2-2"X i->_o

Note that i>. 22n2("-ixi 2-2"2x"+1 j=>o (x2-2") which is << 1/2 j->o_ (2-n) < 1.
The circuit for computing x, x" will implement the following procedure:

(1) Set u 22n3+2n/ and compute v 22n2 X.

(2) Evaluate y [u/v] using the 2n3+2n2- bit division circuit. From the above
identity it follows that y Yo=_-<, 22nZ(n-i)Xi"

(3) Read off x"-i as the bits in positions 2n2i to 2n2(i+ 1)-1 from the right in
y (position 0 contains the low order bit).

All of these steps have depth O(log n) except possibly the division in step (2).

4. Arithmetic operations modulo small integers. The results of this section are due
to McKenzie and Cook [7].

For x and rn integers we write x mod rn for the unique integer y such that
y=- x mod m and O<- y < rn.

LEMMA 4.1. For inputs x of n bits and m <= n the problems of computing x mod m,
Ix or x-1 mod rn (if an inverse exists) are all in NC.

Proof Consider the mod computation first. In space O(log n) for each rn _-< n we
may compute a,, 2 mod rn for i= 0,.--, n- 1 and hardwire them into the circuit.

"-1x2 Then x modrn=i"=- xa,,modrn. The circuit computes y=Let x Y=o
n--1=o xa,, and reduces the result mod rn by subtracting off in parallel the multiples of

rn0, m, , (n 1) rnand choosing the appropriate difference. Since y has O(log n)
bits the circuit has O(log n) depth. In order to compute z= Ix use the above
circuit and apply an NC reduction from division to mod computation given by Alt
and Blum [2]. Namely, for =0,. , n bit z is 1 if and only if 2(x,. xi+ mod rn)+
x >- rn. To compute x- mod rn, first compute y x mod rn and then in parallel multiply
y by each residue z modulo rn and find the z for which the result is =-1 mod m.

THEOREM 4.2. Given integers Xl, x and p<= n a prime power where 0 <-

Xl Xn pl the product 1-I= x mod pl can be computed in NC
Proof It is a known fact of number theory (e.g. [6]) that Zp*, is cyclic except when

p 2 and l> 2, in which case Zp*, is generated by 5 and 2I- 1. The basic idea of the
algorithm is to hardwire in a table of discrete logarithms for each prime power <n
and then reduce the problem to one of computing iterated addition. In O(log n) space
it is possible to factor any number _-<n and so determine whether it is a prime power.

LOG DEPTH CIRCUITS FOR DIVISION 997

For each p<=n (p2 or 1-<2) in O(log n) space one can find a generator g for Zp*,
by brute force and then compute all powers of g up to pl_p-l, the order of Zp*,, and
hardwire them into the circuit. For each 4 < 21 -< n in O(log n) space one can compute
(-1)a5 b mod2 for a=0, 1 and 0=<b<21-9- and hardwire them into the circuit. These
tables may be used in either direction as tables of powers or of discrete logarithms.

The algorithm then proceeds as follows:

(1) Compute the largest power, ji, ofp which divides xi for 1, , n in parallel.
(2) Compute y =x/p, for i= 1,..., n.
(3) Compute J==lJi. Note that the yi are now in Zp*, and I-I__lX

pJ I-Ii=l yi mod pl
(4) Test if p 2 or pl= 2, 4. If either condition holds, perform A else perform B.
Part A

(5) Find each y in the table for pl and read off its discrete logarithm, ai.
(6) Compute a i= ai.
(7) Compute ti a mod (pl_pl-1).
(8) Read off I-[= Y ga mod p from the table.

Part B
(5) Find each y in the table for 21 and read off its representation as powers

of 2I-1 and 5, a and bi.
(6) Compute a =1 a and b i=1 b.
(7) Compute ti a mod 2 and/ b mod 2-2.
(8) Read off I-I=l y (-1)a5mod 2 from the table.

(9) Compute I-I= x pJ I-Ii=l Yi mod p
The table look-ups can be computed in O(log n) depth using selector trees, the modulo
operations are computed as in Lemma 4.1, and the other steps can be computed using
fast iterated addition circuits [11] in O(log n) depth. [3

McKenzie and Cook also show how the above circuits may be used to compute
iterated products for any small modulus by Chinese remaindering. It is interesting to
note the following"

THEOREM 4.3. For n-bit integers a and b, computing a b mod m where rn <-n is in
NC

Proofsketch. By Chinese remaindering the problem can be reduced to computing
a b modp, for each prime power factor p dividing m. This is solved by the same
technique as above, taking discrete logarithms, multiplying by b, and then exponentiat-
ing mod pt. l-]

5. Log depth circuits for division and iterated product. Let xl,’’’, x, be n bit
positive integers. The ITERATED PRODUCT problem is to compute 1-I= x. It is
clear that POWERING is reducible to ITERATED PRODUCT (it is little more than
a special case) and so POWERING and DIVISION will be computable in small depth
if we can find small depth circuits for ITERATED PRODUCT. In order to solve this
problem we will make use of Chinese remaindering and the circuits for arithmetic
operations modulo small integers.

The Chinese remainder theorem yields a process for determining, given the values
of an integer modulo a sequence of relatively prime numbers, the result of taking that
integer modulo their product. More formally the CHINESE REMAINDERING prob-
lem for pairwise relatively prime integers Cl," ", c, is" given inputs Cl," ", c,, and
x mod Cl," X mod c,, compute x mod l-I"= c.

LEMMA 5.1. CHINESE REMAINDERINGforpairwise relativelyprime Cl, , c,
where 1 < Cl <" < c, <- n is NC reducible to the problem of computing c I-I = c.

998 P.W. BEAME, S. A. COOK AND H. J. HOOVER

Proof. The circuit performs:

(1) Call the oracle to obtain c I-I i=1 ci.
(2) Compute vi I-Ij#i 9 by dividing c by c (by Lemma 4.1) for i= 1,..., n in

parallel.
(3) Solve viwi -= 1 (mod c) for Wl," ", wn in parallel.
(4) Compute the interpolation constants, ui viw for i= 1,..., n. Note that

ui 1 mod ci and u 0 mod cj for j i.
(5) Compute y Yi=l (x mod ci)ui by multiplying in parallel and then computing

a series sum. It is necessary to reduce y modulo c to obtain the desired
result. The largest multiple of c which is less than y can be estimated since

Ci)Wi
y: (xmod ci)’iwi: Y

i=1 i=l Ci

(6) Compute ri m(x mod Ci) W for 1, , n where m 2 [lg2]. Thus y

Ei:I (ri/mci)c.
(7) Compute s= [ri/ci] for i= 1,..., n.
(8) Compute s Y, __ si.
(9) Compute t= [s/m], i.e. truncate the right [log2 n] bits of s. Note that

O<- y-(s/ m)c E,: ((ri/ mc,)-(1/ m) [ri/c,J)c < ,i: (1/ m)c <-_ c. Thus 0 -<

y-tc<2c.
(10) Set xmod c to y-tc if O<=y-tc<c; otherwise set it to y-(t+l)c.

Since each ci is small, representable in O(log n) bits, step (2) may be computed in
depth O(log n); similarly step (3) can be computed by brute force. Steps (4), (5), (6),
and (8) can be computed by multiplying in parallel and then using multiple addition.
Step (7) involves divisions of O(log n)-bit integers by O(log n)-bit integers and can
be done using any reasonable division circuit (even linear depth would not hurt here).
Step (10) requires simple multiplication, comparison and subtraction in parallel. Each
of these steps is of depth O(log n). 71

If we can compute [I i= Xi mod c for a set of relatively prime c, , cs such that
I-[= c > I-I= x, then the result of the interpolation process of Chinese remaindering
will give the value of I]i=l xi exactly. This fact and the above lemma motivate the
following definition.

DEFINrrION. A sequence M, M2," is a good modulus sequence if and only if
there are polynomials q(n) and r(n) such that for all n:

(i) 2" _-< M -<_ 2qn).
(ii) For any prime p, pllMn implies that pl<= r(n).
THEOREM 5.2. ITERATED PRODUCT is NC reducible to the problem ofcomput-

ing any good modulus sequence {M, }.
Proof. From the definition of good modulus sequence it is clear that M,2 => 2"2>

i=1 Xn"
We obtain the following algorithm"

(1) Call the good modulus sequence oracle to obtain M,.
(2) Factor Mn to obtain prime power factors c pl., for i= 1, s.
(3) Compute in parallel bi xi mod cj for 1,. ., n and j 1,. ., s.
(4) Compute b H: bi mod c for j 1,. ., s. Note that b ni=l xi mod cj.
(5) Compute I-[i:ximodM,, using the Chinese remaindering circuit for

c,. ., c to obtain the iterated product exactly.

LOG DEPTH CIRCUITS FOR DIVISION 999

Step (2) is brute force because the prime power factors are small and step (3) follows
from Lemma 4.1. Using Theorem 4.2 for step (4) the entire circuit has depth
O(log n).

The computational problem is now reduced to finding a good modulus sequence
efficiently. The next theorem shows how this can be done.

THEOREM 5.3. ITERATED PRODUCT is computable by P-uniform Boolean circuits

of depth O(log n).
Proof. In polynomial time we can find the first n primes, Pl," ",P, and compute

their product. By the prime number theorem, p, O(n log n), so I-Ii=l pi 2("lg")
Also trivially 2" <- I-[i=1Pi. Thus I-I=l p for n 1, 2, forms a good modulus sequence.
We can compute this good modulus sequence in polynomial time, hardwire the values
into the circuit and then apply Theorem 5.2 to get the desired result.

Using the previous reductions, we have"
COROLLARY 5.4. DIVISION and POWERING are computable by P-uniform

Boolean circuits of depth O(log n).

6. Iterated product and powering are equivalent. As was previously stated POWER-
ING is easily NC reducible to ITERATED PRODUCT but the reducibility in reverse
is far from obvious.

TI-IEOREM 6.1. ITERATED PRODUCT is NC reducible to POWERING.
Proof. We use the reduction of ITERATED PRODUCT to computing a good

modulus sequence.
The algorithm proceeds as follows:

(1) Setx=22"+1.
2n 22ni.(2) Use the powering circuit to compute y x2". Note that y Y--o (")

(3) Read off (2,,) as bits in positions 2n2 to 2n2 + 2n 1 from the right in y (position
0 contains the low order bit). Note that 2-"> (2,,)=> 2".

By elementary arithmetic (e.g. [6]) the exponent ofthe largest power ofprime p dividing
n! is >o [n/pJ Thus the largest power dividing (2..) is

i>o

-2
n

Now each of these terms is <_-1 and the terms vanish when p> 2n so that the largest
power p dividing (") satisfies p < 2n. From this we see that (") for n 1, 2, forms
a good modulus sequence and so the reduction is correct.

COROaR, 6.2. DIVISION, POWERING, and ITERATED PRODUCT are all
NC equivalent.

7. Dbdsblty. Although the DIVISION problem has P-uniform O(log n) depth
circuits, it is still unclear whether or not it has log-space uniform O(log n) depth
circuits. Despite the fact that we are unable to answer this question it is possible to
find such circuits for a closely related problem, DIVISIBILITY.

Let x, y be n-bit integers. The output of the DIVISIBILITY problem is 1 if
0 otherwise.

THEOREM 7.1. DIVISIBILITY is in NC, and hence has deterministic space com-
plexity O(log n).

Proof. For each of n primes p <. < p, not dividing 3’ we can solve yz -= x mod
to obtain z. If we could compute M 1-I= Pi then, as in Lemma 5.1, we could find
the unique z such that 0-<_ x < M and z-= z mod pi for each i. Such a z would be the

1000 P.W. BEAME, S. A. COOK AND H. J. HOOVER

only possible candidate for a solution to yz x. If

1 mod Pi,
j i,ui 0 mod pj,

then z i= uizi mod M. If, in addition, 0 =< ui < M then z z ‘ for some t, 0 =< < npn
where z(’) =Y.i--1 uiz-tM. It follows that y[x if and only if ::It, 0=< < np, such that
yz(’= x. It is not necessary, however, to compute z’ explicitly. We merely need to
test the condition modulo sufficiently many primes. Since for any t,]yz(’-xl <
npn2"+M, it suffices for the product of these primes to exceed npn2n+lM. Note that
the equation always holds modulo each of the primes p, , p,, so that it suffices to
choose additional primes whose product exceeds npn2"+1.

The resulting algorithm is:

(1) Find the first 3 n primes.
(2) Compute Yi =Y mod Pi for each of these primes.
(3) Select the first n primes from those found in (1) such that Yi 0. Note that

since y<-2" it cannot have more than n different prime factors. In the
remainder of the algorithm we designate these primes as pl,. , p, and the
remaining primes among the first 3n as q,. ., q2n.

(4) Compute zi xy7, mod Pi for each 1,. , n.
(5) Compute Mk=I-Ii=pimOdqk for each k=l,...,2n. Note that Mk=
M mod qk.

(6) Compute 1)ik --flj#i Pj mod qk (= Mkp mod qk) for each i= 1,..., n and
k=l,...,2n.

(7) Compute wi lqj#i P-I mod Pi for each 1,. , n.
(8) Compute Wig wi mod qk for each i= 1,..., n and k 1,..., 2n.
(9) Compute Uik 1]ikWik mod qk for each i= 1,..., n and k 1,. ., 2n. Note

that uik ui mod qk.

(10) Compute Zig Z mod qk for each i= 1,. ., n and k 1,. ., 2n.
(11) Compute Z(kt)=i=aUikZik--tMkmOdqk for each k=l,...,2n and t-

1,..., np,.
(12) Check if there exists a such that for all k, ykzt= x mod q. If such a

exists output 1 else output 0.

All the operations are computed modulo small primes in O(log n) depth and the
remaining computations are simple tests in parallel which also have O(log n) depth.

8. P-uniform size bounds. In obtaining the O(log n) depth circuits for the problems
of the previous sections we have avoided using the full power of P-uniformity as much
as possible. This permitted us to focus on constructing "good modulus sequences" in
attempting to produce log-space uniform circuits for these problems. However, this
has made our circuits larger than necessary.

By making fuller use of polynomial time constructibility, the O(log n) depth
circuits can be simplified somewhat, yielding a reduction in their size. Since this
simplification is most dramatic for the POWERING circuits, we describe this case in
detail.

THEOREM 8.1. POWERING can be computed by P-uniform circuits of depth
O(log n) and size O(n log2 n).

Proof Precompute and hardwire into the circuit:

(a) Primes Pl,"" ", Ps such that [I=l P > 2":.
(b) The n / 1-bit under-approximations of the inverses of pj,/3j-1, for j 1, , s.

LOG DEPTH CIRCUITS FOR DIVISION 1001

(c) For i= 1,..., n,j= 1,..., s, tables of a modpj for each a, 0 -<a<pj.
(d) M Hi=1 PJ"
(e) The 2n2-bit under-approximation of the inverse of M,/Q-1.
(f) Interpolation constants 0 <= u < M such that

1 mod p,u=- i#j forj=l,...,s.
0 rood pi,

The circuit performs:

(1) Compute ti x/.-1 and truncate to obtain [t.J for j 1,. ., s.
(2) Compute x mod p forj= 1,. ., n as either zj x-p [tJ or z-p whichever

is between 0 and pi.

(3) Read Yo x mod p from the tables for i= 1,. , n andj 1,. , s.

(4) Compute y=. y.u. for i= 1,..-, n._=

(5) Compute t’= yM- and truncate to obtain [tJ for i= 1,... n.
(6) Compute x for i= 1,... n as either z’i= y-M [tJ or z’- M whichever is

between 0 and M.

Certainly s < n2 and thus by the Prime Number Theorem ps O(n2 log n). Since
multiplication of n-bit integers can be done in size O(n log n log log n) [11] and
O(log n) depth, steps (1) and (2) can be computed in size O(n log n log log n) as can
steps (5) and (6). Step (4) computes n sums of O(n2) terms which are each multiplica-
tions of O(log n)-bit integers by O(n2)-bit integers. The multiplications in (4) cost a
total of O(n log n) size and the summations cost O(n) in size. The table look-ups
in step (3) are computed separately for each value of and for each value of j. It
follows that the circuit size for step (3) is dominated by the size of the tables, which
contain O(nsp) O(n log n) entries of O(log n) bits each. Thus the total size of the
circuit is O(n log2 n), as stated.

The circuits for ITERATED PRODUCT are somewhat more complicated but are
still the same size as the POWERING circuits.

THEOREM 8.2. ITERATED PRODUCT can be computed by P-uniform circuits of
depth O(log n) and size O(n log2 n).

Proofsketch. These circuits are similar to the circuits in Theorem 8.1 above except
for the following:

(i) The steps corresponding to (1) and (2) are performed on each x for
i=l,...,n.

(ii) The steps corresponding to (4), (5) and (6) are performed so as to compute
only one n2-bit output.

(iii) The table look-ups in step (3) are replaced by circuits with tables of discrete
logarithms for each pj like the ones described in steps (5)-(8) of Part A in Theorem 4.2.

Applying changes (i) and (ii) to the arguments in Theorem 8.1, those portions of
the circuit may be computed in size O(nilog n log log n) and O(log n) depth. The
tables of discrete logarithms required by this circuit have only O(sp) entries of O(log n)
bits each, for a total size of O(n4 log2 n). However, the table for each p is accessed
n different times in parallel (once for each x) so the accessing hardware is of size
O(n log2 n). The other computations are easily within this size bound and the theorem
follows.

DIVISION circuits may be constructed, using the reduction circuits of Theorem
3.1 and the POWERING circuits in Theorem 8.1, of the same asymptotic size as those
for POWERING. By applying a trick suggested by Reif we obtain smaller, although
more complicated, DIVISION circuits.

1002 P.W. BEAME, S. A. COOK AND H. J. HOOVER

THEOREM 8.3. DIVISION can be computed by P-uniform circuits ofdepth O(log n)
and size O(n4 log3 n).

Proof sketch. In computing DIVISION, the hard part is computing the series,
1+ u + u2+ ., to at least n terms for a scaled n-bit u. Instead of computing each
term separately, apply the identity

k

I-I l + u2’) I + u + u2 + + u2k+’ I
i=0

with k- [log2 n]. The circuit then computes only O(log n) powers from the POWER-
ING circuit, adds to each of the scaled results, and then computes the ITERATED
PRODUCT of the O(log n) resulting terms. The powering portion of the circuit uses
only O(n4 log n) size because there are fewer powers to be computed, resulting in
smaller tables, and the iterated product portion of the circuit needs fewer simultaneous
table accesses and also uses size O(n4 log n).

9. Summary and open problems. From the O(log n) depth P-uniform circuits for
the problems presented here, using the results of Alt [1], a large class of natural
problems can now be shown to have O(log n) depth circuits. It is unknown whether
any of these circuits may be made log-space uniform, which would imply that the
problems are computable in deterministic log space.

An interesting problem related to powering is the conversion of integers from one
fixed base to another, e.g. base 3 to base 5, when the digits of integers in bases other
than 2 are represented by groups of bits. This problem can easily be seen to have
P-uniform O(log n) depth circuits even without the machinery presented here. In our
example all that is required is to precompute 3, 3 n-1 in base 5, hardwire them

n--1 b
into the circuit, and on input (bn_l bo) compute Yi--o Ej=I 3 in base 5. The base
5 summation circuits are simple modifications of standard fast binary summation
circuits 11]. It is an open question whether this problem, which is reducible to powering
for a fixed base, has O(log n) depth log-space uniform circuits when one base is not
a power of the other.

The class ofproblems which are reducible to the decision problem, DIVISIBILITY,
may be worth investigating since our results imply that such problems would have
log-space uniform O(log n) depth Boolean circuits.

Finally, there is a stronger and in some ways more natural definition of uniform
than log-space uniform. This stronger form was introduced by Ruzzo 10] and called
U.-uniform (see [4]). If this condition is used to define NC, then NC can be
characterized simply as the class of problems computable in time O(log n) on an
alternating Turing machine. Unfortunately, it is not clear whether all the results shown
here still hold with the stronger condition. In particular, it would be interesting to
know whether DIVISIBILITY, iterated product modulo small prime powers, and the
reduction of iterated product to powering, have NC circuits in this stronger sense.

REFERENCES

[1] H. ALT, Comparison of arithmetic functions with respect to Boolean circuit depth, Proc. 16th ACM
Symposium on Theory of Computing (1984), pp. 466-470.

[2] H. ALT AND N. BLUM, On the Boolean circuit depth of division related functions, Dept. Computer
Science, Pennsylvania State University, State College, PA, 1983.

[3] A. BORODIN, On relating time and space to size and depth, this Journal, 6 (1977), pp. 733-744.
[4] S.A. COOK, The classification ofproblems which havefast parallel algorithms, Lecture Notes in Computer

Science 158, Springer-Verlag, Berlin, 1983.

LOG DEPTH CIRCUITS FOR DIVISION 1003

[5] H.J. HOOVER, Some topics in circuit complexity, M.Sc. thesis and TR-139/80, Dept. Computer Science,
University of Toronto, 1979.

[6] L. K. HUA, Introduction to Number Theory, Springer-Verlag, New York, 1982.
[7] P. MCKENZIE AND S. A. COOK, The parallel complexity of Abelian permutation group problems,

TR-181/85, Dept. Computer Science, University of Toronto, 1985.
[8] J. REIF, Logarithmic depth circuitsfor algebraicfunctions, Proc. 24th IEEE Symposium on Foundations

of Computer Science (1983), pp. 138-145.
[9], Logarithmic depth circuits for algebraic functions, this Journal, 15 (1986), pp. 231-242.
10] W. L. Ruzzo, On uniform circuit complexity, J. Comput. System Sci., 22 (1981), pp. 365-383.

[11] J. E. SAVAGE, The Complexity of Computing, John Wiley, New York, 1976.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics

009

ON THE VALIDITY OF THE DIRECT SUM CONJECTURE*

JOSEPH JA’JA’t AND JEAN TAKCHE

Abstract. The direct sum conjecture states that the multiplicative complexity of disjoint sets of bilinear
computations is the sum of their separate multiplicative complexities. This conjecture is known to hold for
only a few specialized cases. In this paper, we establish its validity for large classes of computations. One
such class can be defined as follows. Let S be a set of r m x n bilinear forms, and let $2 be a different set
of s p x q bilinear forms. Then, if 2 r, m, n, s, p, q}, we show that the direct sum conjecture holds over any
field. The proof involves some nontrivial facts from linear algebra and relies on the theory of invariant
polynomials. This result also settles the multiplicative complexity of pairs of bilinear forms over any field
with large enough cardinality. It is also shown that the direct sum conjecture is true for the case when
r= mn -2.

Key words, algebraic complexity, bilinear forms, direct sum conjecture

AMS(MOS) subject classification. 68C

1. Introduction. Suppose that two sets of bilinear forms $1 {Bi xTGv" 1 _<-- --<
r, dim x m, dim y n} and $2 {/j :Tj)5.1 -<_j -<_ s, dim g p, dim 35 q} are to be
computed such that the indeterminates x and y are respectively disjoint from and
y-. The direct sum of $1 and $2, denoted by $10) $2, is the set ofbilinear forms {Bi} LI {Bj}
with indeterminates {Xi}l<=i<=m .J {,k}l<__k<__p and {Yl}l__<l_<_n [..J {Yu}l<=u<=q. Let {Sk} denote
the multiplicative complexity of Sk, k 1, 2. It is obvious that ($1 + $2) <- i(S) + i(S2),
over any field since one may combine optimal algorithms of S and $2 into an algorithm
for S10)$2. The direct sum conjecture, originally due to Strassen [St], states that
(S0)$2) i(S1)/ i(S2), which essentially means that disjoint bilinear problems can
be optimally solved separately. Since then, few facts have been established about this
conjecture.

Using a class of algorithms called approximation algorithms introduced by [Bet
al.], Pan [P] and Sch6nhage [S] showed that there exist certain pairs of matrix
multiplication problems with completely disjoint sets of variables which can be evalu-
ated faster in one compound computation than separately. Therefore, the direct sum
conjecture is not true for approximation algorithms. This also implies that the conjecture
for exact algorithms does not hold over rings with divisors of zeros but leaves open
its validity over fields.

On the other hand, the validity of the direct sum conjecture over fields has been
established for a few very specialized cases [AW], [FW].

In this paper, we show that if 2 {r, m, n, s, p, q}, then the direct sum conjecture
holds over any field F. This is a large class of bilinear computations since any of five
parameters could be arbitrary. Moreover, the proof relies on nontrivial facts from
Kronecker’s theory of pencils [G]. We extend several results of linear algebra and
strengthen the linear combination techniques to establish the lower bound. The same
techniques could be used to establish the multiplicative complexity of pairs of bilinear
forms over any field, proving a conjecture stated in [J]. On the other hand, we also
show that the direct sum conjecture is true if r- mn- 2 (or equivalently, s pq- 2).

* Received by the editors January 22, 1985, and in revised form July 18, 1985. Supported in part by
the National Science Foundation under grant MCS-83-15890.

f Electrical Engineering Department, University of Maryland, College Park, Maryland 20742.
Department of Mathematics, Penn State University, University Park, Pennsylvania 16802.

1004

VALIDITY OF THE DIRECT SUM CONJECTURE 1005

We start, in 2, by proving several preliminary results which will be used in 3
to establish the direct sum conjecture for the first class. Section 4 is devoted to the
solution of the direct sum conjecture for the case when r mn- 2.

2. Preliminary results. Several technical results will be shown that will play a
crucial role in the proof of the next section. Most of these facts are extensions of
well-known results in linear algebra whose proofs are interesting on their own.

We start by introducing some terminology [G]. Let G be an n x n matrix over a
field F. The invariant polynomials pt(h) are defined by

p,(A)
d,,_,+(AI-G)
d,_,(AI-G)

where dr(I-G) is the greatest common divisor of all minors of AI-G of order t,
1 <-t<-k, (Pk+l(A) p,(A) 1). Notice that p(A)Ip_(A)I’.. Ip(A). Finally, if
p(A)=Cto+alA+’.’+.’’+a_A"-l+A" is a monic polynomial, the companion
matrix of p(A), denoted by C(p(A)), is given by

0 1
0 1

C(p()) ".. "..
0 1

CIf0 --1 Cirri--

We are now ready for the first lemma.
LEMMA 2.1. Letp(A So+ alA +" "+ Olm-l, m-1 -[- , be an irreduciblepolynomial

over a field F and let C C(p(A)) be the corresponding companion matrix. If q(A)=
flo+fllA +" "+fir-1At-1 + A 0 is a polynomial over F of degree r less than m, then
det (q(C)) # 0.

Proof. If r=0, then det (q(C)) det (I)= 1 #0. Hence we can assume that r>0.
The proof will be by contradiction. Assume that det (q(C)) =0. Then there exists a
nonzero vector v such that q(C)v=0. Let F be the splitting field of q(A). Then
q(A)--+/-(Al-A)(AE-A)""" (At-A), where A,,, li<-r. We thus have (A,I- C) x
(A,_zI-C)... (AII-C) v=0. Let r’ be the smallest index such that (AiI-C)x
(A,_II-C)... (A|I- C)v=0. It follows that (A,,I-C)(Ar,_II-C)’" (AI- C)v=
0 and (Ar,_I-C)(Ar,_EI-C)’"(AII-C)v=#O. Hence (Ar,I-C)=O which
implies that Ar’ is an eigenvalue of C. Thus det (A,,I- C) 0. This implies that p(Ar’) 0.
But p(A) is irreducible over F, i.e. p(A) is the minimal polynomial of Ar’. Since
q(Ar,) 0, p(A) must divide q(A) which contradicts the fact that deg q(A) < deg p(A).
Therefore det(q(C))#0.]

A generalized Jordan form is given by the next lemma.
LEMMA 2.2. Given a square matrix G with thefollowing set ofinvariant polynomials:

1006 JOSEPH JA’JA’ AND JEAN TAKCHE

where 0 <- rkj <- ’Fk-1, Tlj 1 <--j <- r. Then G is similar to the matrix

C(q) H

C(ql) Ht
C(qt)

A

blocks

TI blocks

C(qr) H

C(qr) H

C(q)

C(ql) n
C(qt) H Tkl blocks

C(q,)’,

C(q,)
Tkr blocks

n
C(q,.)

C(G

where

with appropriate dimensions and C(qi) is the companion matrix of qi. In fact A and G
have the same invariant polynomials.

Proof. Straightforward (see [G]).
LEMMA 2.3. Let p(A)=aO+alA+...+a,,_Am-l+A"F[A] be a polynomial

which has no roots in F. Let C(p(A)) be its companion matrix, and let C be the ith
column of I,,,Sl + C(p(A))s2, where Sl and s2 are indeterminates. Then the m rows of
C C2 + fllC Ca + flEC1 C, + fl-i C1] are linearly independentfor any set offl s
in F.

Proof. It is clear that

!msl+C(p(A))s2--

S1 $2

S1

0

0 S2

--OoS2 --OIS2

S1 $2

0m-2S2 S1 Om-1 $2

and

$2"+ BlSl fl2S1 m-lS1
S1 S2

S

.. $2

(--0 100) $2 (--02 200)$2 S -" (--Om_ m_lOo)S2

The number of linearly independent rows does not change by performing elementary
row operations on C. Let R be the ith row of C. Multiply Ri/l by -fl and add it to

VALIDITY OF THE DIRECT SUM CONJECTURE 1007

the 1st row R1, we get

Sl

$2

Claim. The first row of is not identically equal to zero.
Proof of Claim. Assume that the 1st row is equal to zero. Then

1 "-]rn_l (O1 "- 100)-- --/31 ""]3m_l(O "" j3200) /3m_2 ""/3m_l(Om_l --]m_l O0)--0.Let x m_lOlO. Notice that Ceo # 0 because p(h) has no roots in F. Therefore we can
multiply all equations by ao. We obtain

O0"- X(O -"]100)"-- --O0/31 "- X(O2"F"/3200) O0m_2 -- X(Ogm_ + X)--0.

We thus have:

tX03m_2 "- X(tXm_ + X) 0== a0]3m_2 Olm_lX -F" X2,

O03rn_ "+- X(Om_2 -"/3m_200) --0=: O0]3m- Olm-2X + X(Ogm_lX "F X2)
X2 -+- XOrn -2x -]- Om

tX0]31 "- X(tX2 -- 32tX0) 0=:a0 a2X -F O3x2 +" -" Olm_lXm-2 -F Xm-l,

xm-2 xm-1OIO -F- X Ol -" OIo O OIo -- Ol X 4r" X OI2X "+ Og X
2 + "+Olin_ --)-"0

=::: O0-- OIX "+" O2X2- "F- Olm_lXm-1 "F X --0.

Therefore x =/3,_ao is a root of the polynomial p(A) which contradict the hypothesis
Therefore the 1st row of is #0. It is easy to see that has m linearly independent
rows if[the 1st row is #0. There C has m linearly independent rows.

We end this section by making one observation about the direct sum conjecture
when one of the dimensions is equal to 2. The direct sum conjecture can in general
be restated as follows: Let {Gi}l<__i<__r be a set of m x n matrices and let {Gj}__<j_<s be a
set of p x q matrices over a field F. If {Si}<-_i<=r and {}<__j__<s are 2 disjoint sets of
indeterminates, then

0Gisi

0

We will completely settle the case when r 2 over any field F. It is not hard to see
that this will imply that the direct sum conjecture is true if any one of the dimensions
is equal to 2. Let G(g) denote Y=l G. We have to show that

((Gls! + G2s2)@ G(g)) 8(GIs + G2s2) + 3(G(g)).

We can assume that the pencil Gs + G252 is regular, i.e., G1 and G2 are square matrices
and det (Glsl + G2s2) 0 (in all other cases, the pencil is called singular). In fact, if

1008 JOSEPH JA’JA’ AND JEAN TAKCHE

Gl$1 + G252 is singtrlar [J], then GlSl + G252 is equivalent to

T

where Gsl + Gs2 is a regular pencil and

$2Sl

S1 $2

L sl s

e,’l

It was shown in [J] that if Card (F)_-> e, then

Therefore, if Card (F)=> max (e,, ,) then

8((Glsl+G2s2)(G(g))= , (e,+ 1)+ Y’. (rh+ 1)+8((Gsl+Gs2)(G(g)).
i=1 i=1

In particular if G(g)= 0 we have

8(Gsl+G2s2) E (e,+l)+ E (rh+l)+8(Gsl+G’2s2).
i=1 i=1

If the direct sum conjecture is true for the regular pencil Gsl + G2s2, then 8((Gsl +
Gs2) G(g))= 8(Gs + Gs2) + 8(G(g)). Hence

a((Gs + Gs)(G(e))= a(Gs + Gs)+ a(G()).

We will show in the next section that this is indeed the case.

3. A solution to the direct sum conjecture for a large class of computations. Any
regular pencil ([1S1 "" (2S2 can De reduced into an equivalent pencil of the form
I,s + Gs2, where G is an n n matrix. Therefore, the problem is reduced to showing
that

8((I,sl + Gs2)O) G(g))= 8(I,s + Gs2) + 8(G(g)).

Let pk(A)lp-(x)l’’" IP(,) be the invariant polynomials of an n x n matrix G over
a field F. We say that F is a field of large enough cardinality if Card (F) => deg (pl(A)).

DEFINITION. A polynomial is called simple if it splits into a product of distinct
linear factors over the field F, otherwise it is called nonsimple.

LEMMA 3.1. IfF is afield oflarge enough cardinality, then 8((InSl + G$2)(G(g)) <=
8(G(g)) + n + number of nonsimple invariant polynomials of G.

VALIDITY OF THE DIRECT SUM CONJECTURE 1009

Proof. We know that 8((I,sl + GSE)O) G(g)) <-_ 8(I,Sl / Gs2) / 8(G()). By [J, Thm.
3.3], 8(I,sl + Gs2) n+number of nonsimple invariant polynomials of G. Therefore
8((I.S1 + GSE)O) G()) <- 8(G()) + n + number of nonsimple invariant polynomials
of G. El

We now state the main theorem of this section.
THEOREM 3.2. If F is a field of large enough cardinality, then 8((Isl

G(g)) 8(G()) / n / number of nonsimple invariant polynomials of G.
Before we prove this theorem in the general case, we start by settling the particular

case where all invariant polynomials are equal and irreducible.
LEMMA 3.3. Let G be an n x n matrix with k invariant polynomials p(h) pE(A)
Pk(A). Assume that F is a field of large enough cardinality. Ifpk(A is irreducible

over F and if deg (pk(h)) -> 2, then 8((ISl / Gs2)O) G()) 8(G()) / n / k.
Proof of Lemma 3.3. If p(h)=aO+alh+"" "+a,_h’-+h m, then m_>-2 and

n=mk.

((.s, + Os) o(g))

I,,,s,+C(pl(h))s2
k copies1I.,s,+C(pl(X))s2
() J

where

S1 $2

S1 $2

I,,,Sl+C(p,(A))SE= ".

--toS2 tIS2 Olm_2S2

$2

S1 lm_lS2

Let C C(pl(A)) and let C be the ith column of I,Sl + Us2. Using a substitution
argument [BD], we can delete the 1st column of the 1st block and add linear combina-
tions to the remaining columns to get 8 >_-1 /

c, c2 cm
;--57--J

for some matrix H(s, $2) and some constants fl, and ro in F. Let B22 Bkk--
I,Sl + Cs2 (m x m matrices), and let BI C2+ fll C1 Ca + flECk" C, + fl-I C], and
mx(m-1) matrix, and Bl.i+=[riiC1 r,2C1 r,,,C]=Cl[r, r,2 ri,]=Cr,
for i= 1,2,. ., k-1.
Then

8_->1+8

/11 B22/12 BI3 Blk H(, s2)

B33
’.

0 B () J

1010 JOSEPH JA’JA’ AND JEAN TAKCHE

Using row and column operations we want to eliminate the blocks Bi for >= 2. We
will eliminate the block B2 without changing the other blocks, and the same will work
for the other blocks Bi. Let

a2 a22 a2m]

am am2 amJ
be an arbitrary (m- 1)x m matrix to be determined later. Multiplying B by P and
adding it to B2, we get B2 B2+ BP, i.e.,

a21 a2m 1B12=[C,r, C,r,m]/[C2/ fl,C,"" Cm’JC’m_lC1]
am amm

m--1 m-I 1=[C,r,,... C,r,m]+ C, , /3,a,+,.,... C, E /3,a,+,. +[C2"’" Cm]P
i=1 i=1

=[C,(r,,+ fl,ai+,.1) C,(r,m+ fliai+,.m)]+[C2" Cm]l3.

Therefore B12 CC2" Cm]P where

r,l+E fliai+l,l

p a.2

am!

a2.m

Multiplying B22 on the left by -P and adding it to/2, we get

B2 B2- PBE2 ImSl / Cs2)P- P(ImS / CS2)

Ps + CPs2- Ps- PUs2

=(CP-PC)s.

We want to find P such that CP-PC O.
Claim. There exists an (m- 1)x m matrix/3 such that CP PC.
Proof of Claim. Let/5 be arbitrary and let Ri+ be the ith row of/5. Then

R
p= R2.

where R r +F’’- R+ and r (r ri= rm) as shown before.
Now

RI
PC CP ... C

0 1 R
0 1 R2.. 1

tO 0[1 Om--I

VALIDITY OF THE DIRECT SUM CONJECTURE 1011

RIC R2

__2C R

:[Rm_ C Rm
,RmC -aoR1- aiR2 Olm-lRm

fRE= RIC
R3 RIC2

:
JR,. RICm-I

,RI Cm -aoRl- alR2 am-lRm

2 RIC
3= RI CE

:[Rm RICm-I

.RCm= R(-ao-aC Olm_lCm-l).

C is a root of its minimal polynomialp(A) ao+ a +. + am- + A m. erefore
Cm-l.a0 + a1C + + am_ Cm-I + C O, i.e., C -a0 a1C am-, SO the

last equation ofthe system ofequations is always te. erefore, PC CP is equivalent
to

RE= RtC
R3 RIC2

Rm RICm-l.

But RI rl + .m-I iRi+ Therefore,i=1 1"

m--I m--I

gl rl + , fl,gl C’= r + gl , fl,C ,
i=1 i=1

Rl(Im-,C.-2C2 [m_lCm-,)-._ 1"1.

By Lemma 2.1 the matdx Im-C m_lCm-I is invertible. Therefore, we can
take R-- r(Im-C m_ICm-I)-1,

Cm-l)R2 RIC=rI(Im-IC-" --m-I C -l,

R RlCm-l_. rl(Im-[31C [m_lCm-l)-lcm-1.
Then

will be such that PC CP. 13

R2

/5= R3.
llm

1012 JOSEPH JA’JA’ AND JEAN TAKCHE

It follows that we can choose/3 such that/12 0o Similarly, we delete the blocks
B13, "’, Bk. Therefore,

8>=1+8

, H, s,

B22
"’. 0

0 O()

Since PI(A)= ao+aA +.. "+Olm_l,m-l+, has no roots in F, then by Lemma 2.3,
the m rows of BI are linearly independent. Hence, we get

2

8_>m+1+8 ".

0

0

Bkk
H2($1, $2)

G(e) +/-/(s,,

By induction 8>-_k(m+l)+(G(g)+H(s,s2)). Putting Sl=S2=0 we get ->_
k(m+l)+8(G(g))=n+k+$(G(g)). By Lemma 2.4 we have

8 <= 8(G(g)+ n +number of nonsimple invariant polynomials of G.

Since all k invariant polynomials of G are nonsimple then

8 8(((g))+ n + k. l-1

Before we prove Theorem 3.2, we claim that pk(A) can be assumed to be non-
simple. In fact, if pk(A) is simple, then let n=deg(pi(A)). Hence pk(A)=
(A- A1)(A- A2)""’ (A- A,k), where the Ai’s are pairwise distinct.

Let

C(pk_I(A))

G’=
C(pk-2(A))

0

Then G is similar to the matrix

0

C(p,(X)

Therefore,

((I,,s, + Gs)

=8

S + A1S2
$1 + A2S2

S + AnkS2
In-nkS + G’s2

VALIDITY OF THE DIRECT SUM CONJECTURE 1013

Hence nk + 8((I,-,kSl + G’$2) G(g)). By induction on k we can assume that

((I,-kSl + G’s2) G(g))= 8(G(g)) + n- nk

+ number of nonsimple invariant polynomials of G’.

The invariant polynomials of G’ are pk-(A)lp-(X)l’’" Ip(x). Since pk(A) is simple
then G and G’ have the same number of nonsimple invariant polynomials. Therefore,

nk+ (G(g))+ n-nk +number of nonsimple invariant polynomials of G’,

i.e.

8 8(G(g))+ n +number of nonsimple invariant polynomials of G.

We now restate the main theorem and prove it.
THEOREM 3.4. If F is a field of large enough cardinality, then ((I,,Sl+GS2)

G(g)) (G(g)) + n + number of nonsimple invariant polynomials of G.
Proof. As we have seen before, it is enough to show the theorem in the case where

pk(A) is nonsimple. If pk(A) is nonsimple, then one of the following must be true:
1. pk(A) has no roots in F.
2. pk(A)=(A-A1)(A-A2)... (A-Am)q(A) where the Ai’s are pairwise distinct

and q(A) has no roots in F.
3. pk(A) has a multiple root Ao in F.

We will settle each case separately.
Case 1. pk(t) has no roots in F.
Write the invariant polynomials as product of irreducible factors

qr r
p2(A)=q?’q22’’’ qr r

pk(A qi’q2 q’.

Since pk(A has no roots in F, then there exists an such that deg (qi) -> 2 and rki > 0.
For the sake of clarity, let us assume that i= 1, i.e. deg (q)=>2 and rk--> 1. Since
p(x)lp,(A), for i= 1,2,...,k-l, rilrS0, for i= 1,2,...,k.

Let A be the generalized Jordan form of G of Lernma 2.2. Then

where

A1
A2

A

Hi
C(q,)

C(q,)

tit copies

nr
C(q,)

1014 JOSEPH JA’JA’ AND JEAN TAKCHE

C(qi) being the companion matrix of the polynomial qi, and

,.,,
Let ((I,sl + Gs2) G(g)). Then ((Ins -" As2) G(g)), i.e.,

(*) =
I.sl + As2

In251 + A2s2 0

0 InkS + AkS2
()

where n, deg (p,(h)), 1, 2,. ., k.
Let mj deg (tb), j 1, 2,. ., r. Then, I,,Sl + Ais2

"lint + C q s2 Hts2
,s, +C(q,)s

tit copies

HI s2

elf copies

lmrSl + C(qr)s Hr(s2)
lmrSt + C(qr)s2

Hr(s2)
lmrS + C(qr)s

Consider the matrix in equation (.). By row transformations, we can move the last
/-ml rows of each block In,S1+ Ais2 to the bottom. By column transformations, we
can move the last n-m columns of each block In,s1+ Ais2 to the right-hand side.
since the complexity does not change under these transformations, we get

ImtSl + C(ql)s2

Im,S + C(ql)S
Hs

ImtSl + C(ql)s2-r()
0 r I._ +G"skmtSl

Since ln_kmt$1+G"s2 has n-km linearly independent rows, then, we have 3_->

n-kml +

ts+C(ql)s2

min 8 ".. 0
N Im,st+ C(ql)S2d<D Hs2+ N(ln_kmSl +

0

Eliminate the last n- kml columns to get:

>-- n kml + ((Ikml$1 + Bs2)@ G(g)),

where

C(ql) 0

B=
C(q)

k copies.

0 C(q,)

VALIDITY OF THE DIRECT SUM CONJECTURE 1015

It is easy to see that B has k invariant polynomials equal to ql. Then, since ql is
irreducible and ml deg (q) _-> 2, we can apply Lemma 3.3. Therefore 8((Ikm,S + Bs2)
G()) 8(G(g))+ km + k. Hence

8 >- n km+ 8(G(g)) + km + k= 8(G()) + n + k.

Since pk(A) has no roots in F and pk(A)[pi(h) for i= 1,2,..., k-l, then all k
invariant polynomials of G are nonsimple. Therefore, 8((I,Sl+GS2)G(g))>=
8(G(g))+n+number of nonsimple invariant polynomials of G. Since Lemma 2.4
settled the other inequality, then Theorem 3.2 is true for the case where Pk(h) has no
roots in F.

Case 2. pc(A)= (h- h)(h- h2) (h- hm)q(h), where the h’s are pairwise dis-
tinct and q(h) has no roots in E

We know that G is similar to its rational canonical form:

C(p,(X))
c(p_,(x)) 0

0 C(pl(*))

On the other hand, it is easy to check that C(pk(A)) is similar to the matrix

, 0

0
C(q(A)

In fact, they have the same unique invariant polynomial pk(A). Therefore, G is similar
to the matrix"

where A has the following invariant polynomials"

q(A)lp-(A)I"" Ipx(A).

Let 8((I,s, + Gs2) t(g)). Then,

S +his2

S " A252
8-8 .o

S -b Ares2

Therefore,

As28 m + 8 1
0

In-mS1 -[- As2

0]() m + 8((In_mS ""As) (g)).

1016 JOSEPH JA’JA’ AND JEAN TAKCHE

Since q(A), the first invariant polynomial of A, is irreducible, then by Case 1 we have:

i((I_,,,s + As2)O)G(g))= 8(G(g)) + n m + k.

Therefore,

8 8(G(g))+ n +number of nonsimple invariant polynomials of G.

Case 3. pk(A) has multiple root Ao.
Since pk(A)lPk-l(A)[’’" IPl(A) then Ao is a multiple root of pi(A) of multiplicity

m, _-> 2, 1, 2,. , k, i.e. p,(A) (A Ao)’,q,(A) where q,(Ao) # 0 and qk(A)lq_(A)l
ql(A). Therefore, G has k nonsimple invariant polynomials. By Lemma 2.4 we have

((s, + Gs) G()) -< (G()) + n + k.

The proof of the theorem will be complete if we can show that ((I,s + Gs2)(G())-
5(G(g))+ n+ k.

G is similar to its rational canonical form

C(pk-l(A)) 0

0 C(p(A))

It is easy to check that the matrix

1

Ao 1

o

mi

C(q,(A))

has only one invariant polynomial equal to (A-Ao)m’qi(A)=pi(A). Therefore it is
similar to the matrix C(p(A)). Hence, G is similar to

Therefore,

H_ 0

0 H

Is+ Hks2
Ink_iS -F" Hk_l,,2

I,,s + Hsl

VALIDITY OF THE DIRECT SUM CONJECTURE 1017

where

Inis "" His2

s -]- AoS2
s2

$2

’$1 -[- AOS2
In,-m,sl+C(qi(A))s2

We can use techniques similar to Case 1 to show that

8>- Y. (ni-mi)+8

$1 + AoS2 S2
-b AoS

$2

d- Ao$ m!

+ Ao$ S2
s + AoS

,o

$2

s! + AoS

Now apply the transformation

k

8>-n m+8
i=I

We get

s s’
s s

mk

s
m!

s
s s

s

Since mi--> 2, then each block has at least 2 rows and 2 columns. Then move the
first row of each block to the right-hand side and use the basic linear independence
and substitution argument [BD] to get

k

8>-_n mi+2k+8
i=I

for some matrix G.

1018 JOSEPH JA’JA’ AND JEAN TAKCHE

Putting s 0, we get

Therefore,

k

g->n- mi+2k+t
i=1

lZ(mi-l)S2 1"o(e)

k k

g>_-n- m,+2k+ ’. (m,-1)+6(G(g)),
i=1 i=1

i.e., 6>=n+k+6(G(g)).
This ends the proof of Theorem 3.4.
In [J], Ja’Ja’ showed that if p(x)l’’’ Ip(A) are the invariant polynomials of an

n x n matrix G and if F is a field of large enough cardinality which contains the roots
of pl(h), then 6(I,s+Gs2)=n+number of nonsimple invariant polynomials of G.
He conjectured that the condition "F contains the roots of p(h)" can be omitted.

The conjecture is true as the following corollary shows.
COROLLARY 1. Let Fbe afield with "large enough cardinality." en 6(I,s + Gs2)

n + number of nonsimple invariant polynomials of G.
COROLLARY 2. If GlS + G2s2 is a regular pencil, then 6((GlSl + G2s2) G(g))

(as + Gs)+ (a(g)).
COROLLARY 3. If GlSl + G2s is any pencil of n x m matrices, then

((as + Gs) a())= (as + Gs) + (a()).

COROLLARY 4 (Direct Sum Conjecture). If G1, G2, ", Gr are n x m matrices and
G1, G2, , Gs are p x q matrices over any field of cardinality >- max { r, s, n, m, p, q},
and if 2 { r, s, n, m, p, q }. Then

4. Direct sum conjecture for the case when r = mn- 2. When working with some
unknown m x n x r tensors defined by m x n matrices G1, G2," , Gr it is common to
assume that the tensor is nondegenerate, i.e., the matrices G,..., G are linearly
independent. If the tensor is degenerate, then it can be reduced to one of smaller size.
In this section, we will show the Direct Sum conjecture in the case where one of the
summands is a nondegenerate m x n x (mn- 2) tensor.

Let us start by stating a couple of definitions and a proposition from [ALl.
DEFINITION. A space of m n matrices is said to be perfect if it is generated (as

a vector space) by rank one matrices.
DEFINITION. TWO spaces V and W of m x n matrices are said to be equivalent if

there exist nonsingular m x m, n x n matrices P, Q such that

W= PVQ {PXQ: X V}.

PROPOSITION. If V is a vector space of m x n matrices of dimension mn- 2, then V
is perfect unless it is equivalent to the space ofall matrices X (xo) for which Xl + X22 0

and x2 O.
THEOREM 4.1. Let {Gi}_<_i__< be a set of m x n matrices and {Gj}l__<j__<t be a set of

p x q matrices.

VALIDITY OF THE DIRECT SUM CONJECTURE 1019

If r mn- 2 and if _.mn-2i=1 Glsi is nondegenerate, then

Proof. Let V be the vector space generated by the m x n matrices G, G2, , G.
Assume first that V is not equivalent to the space of all matrices X (x0) for

which x+ x22 0 and x2 0. Then, by the previous proposition, V is perfect. There-
fore, V is generated (as a vector space) by rank one matrices. Hence, there exist mn -2
rank one matrices whose span contains the matrices G1, G2,’", G. Therefore,
(,=lmn-2 G,s,) < mn 2. But (, G,s,) ()<= (, G,s,) + (), therefore

-2((E, G,s,)(E G))mn-2+(E G). On the other hand, since E=I G,s, is
nondegenerate, then dim (s)= mn- 2. Applying Theorem 1.2, we get

8 ((2 G,s)O)(j=l tg))> mn-2+8(H(g)O)(=
Setting xi 0, we get

Therefore

=mn+2+t(()=t(Gis,)+(jg).
j=l i=1 j=l

Assume now that V is equivalent to the space of all matrices X (0) for which
xl + x22 0 and x12 0. Then there exist nonsingular matrices P and Q such that

G PG,Q x(2). -xil. x23 ""(’

Therefore,

for i= 1,2,. ., mn-2.

Not all entries x(are 0; in fact if this were the case then the space generated by
G,..., G’s would have dimension_-< mn-3 < r. Therefore, the summand

__
Gs,

and hence

__
Gs is degenerate, which contradicts the hypothesis.

The (1, 1) entry of

__
G’is is

__
xis. By performing transformation on the

s’s, we can assume that the (1, 1) entry is sl. Hence,

S 0 /13(S) /1,(S)
/2,(S) S, /23(S) /2,(s)

/,.l(S) l,.2(s) lm3(S) Im.(S)

1020 JOSEPH JA’JA’ AND JEAN TAKCHE

Since Y= Gs is nondegenerate, then we get

t_>_ r-l+

s 0 l.(Sl, g)
121(s, g) s 12.(s, g)

lml(S, e) lm2(S,) lmn(Sl,)

Delete the last m-2 rows and the last n- 2 columns of the 1st block, we get

Therefore, 5 -> r- 1 + 2 + (E= (j), i.e. 5 -> mn 1 + 5(L (j). But we know that
8 8()"?=n72 Gisi)+t$(= j) and (?_--nl--2 G,s,)<-mn-1. Therefore
mn- 1 + t$(t)= 8(,=1 G,s,) + t(=l ().

[AL]

[AS]

[AWl

[B et al.]

IBM]

[BD]

[FW]

[G]
[J]
[P]

IS]
[st]

REFERENCES

M. D. ATKINSON AND S. LLOYD, The ranks ofm x n x (mn 2) tensors, this Journal, 12 (1983),
pp. 611-615.

A. ALDER AND V. STRASSEN, On the algorithmic complexity of associative algebras, Theoret.
Comput. Sci., 15 (1981), pp. 201-211.

L. AUSLANDER AND S. WINOGRAD, Direct sums ofbilinear algorithms, IBM TWRC, Yorktown
Heights, NY, 1979.

D. BINI, G. LOTTI AND F. ROMANI, Approximate solutions for the bilinearform computational
problem, this Journal, 4(9) (1980), pp. 692-697.

A. BORODIN AND I. MUNRO, The Computational Complexity ofAlgebraic and Numeric Problems,
American Elsevier, New York, 1975.

R. W. BROCKETT AND D. DOBKIN, On the optimal evaluation ofa set of bilinearforms, Linear
Algebra and Appl., 19 (1978), pp. 207-235.

E. FEIG AND S. WINOGRAD, On the Direct Sum Conjecture, Proceedings 22nd Annual Sym-
posium on Foundations of Computer Science, Nashville, TN, 1981, pp. 91-94.

F. R. GANTMACHER, The Theory of Matrices, Vols. and 2, Chelsea, New York, 1959.
J. JA’JA’, Optimal evaluation ofpairs of linear forms, this Journal, 8 (1979), pp. 443-462.
V. PAN, How to multiply matricesfaster, Lecture Notes Comp. Sci. 179, G. GoDs and J. Hartmanis,

eds, Springer-Verlag, 1984, pp. 65-66.
A. SCH6NHAGE, Partial and total matrix multiplication, this Journal, 10 (1981), pp. 434-455.
V. STRASSEN, Vermeidung yon Divisionen, J. Reine Angew. Math., 204 (1973), pp. 184-202.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
010

ON THE SINGLE-OPERATION WORST-CASE TIME COMPLEXITY
OF THE DISJOINT SET UNION PROBLEM*

NORBERT BLUM"

Abstract. We give an algorithm for the disjoint set union problem, within the class of algorithms defined
by Tarjan, which has O(log n/log log n) single-operation time complexity in the worst case. Also we define
a class of algorithms for the disjoint set union problem, which includes the class of algorithms defined by
Tarjan. We prove that any algorithm from this class has at least O(log n/log log n) single-operation time
complexity in the worst case.

Key words, disjoint set union, data structure, time complexity, lower bound

AMS(MOS) subject classification. 68C25

1. Introduction. Let $1, , Sn be n disjoint sets, each containing a single element.
The disjoint set union problem is to carry out a sequence of operations of the following
two types:

FIND (x): determine the name of the set containing x.
UNION (A, B, C)’ combine the disjoint sets A and B into a new set named C.

The operations must be carried out on-line, that is, each instruction must be completed
before the next one is known.

Let m denote the total number of unions and finds. The fastest known algorithm
for the disjoint set union problem amortized over m FIND- and UNION-operations
runs in time O(ma(m + n, n) + n) and uses O(n) space, where a is a functional inverse
of Ackermann’s function [3], [4].

Tarjan [4], [5] defines a class of algorithms for the disjoint set union problem,
which is general enough to include all known algorithms for this problem. In [4] he
also defines a machine model, the pointer machine, on which all this algorithms
can be implemented. Tarjan proves that any algorithm from this class has at least
fl(ma(m + n, n)+ n) amortized time complexity in the worst case.

If the structure of the UNION-operations is known in advance (i.e., the UNION-
operations are not carried out on-line) then a sequence of m FIND- and UNION-
operations can be executed in time O(m + n) [1].

Kurt Mehlhorn [2] asks for upper and lower bounds on the single-operation
worst-case time complexity of the disjoint set union problem. All the algorithms known
to the author have single-operation worst-case time complexity at least fl(log n).

In 2 we give an algorithm which is in Tarjan’s class and has single-operation
worst-case time complexity O(log n/log log n).

In 3 we define a class of algorithms for the disjoint set union problem, which
includes Tarjan’s class, and prove that any algorithm from this class has at least
fl(log n/log log n) single-operation time complexity in the worst case.

2. The upper bound. The data structure used by the algorithm is based on the
following tree structure:

Let k-> 2 be an integer. A tree T is called a k-UF tree exactly if
(i) all leaves of T have the same depth,
(ii) each node v of T except the root has >-k sons,
(iii) the root has >-2 sons.

* Received by the editors October 29, 1984, and in revised form June 15, 1985.

" Fachbereich 10, Universitit des Saarlandes, D-6600 Saarbriicken, West Germany.

1021

1022 NORBERT BLUM

The following lemma is easy to prove.
LEMMA 1. Let T be a k-UF tree with n leaves. Then T has height <-_ [1Ogk n].
Now we describe the algorithm in detail.
Sets are represented by k-UF trees. The elements of a set are stored in the leaves

and the name of a set is stored in the root of the tree. Every node has a pointer to its
father. The root has pointers to its sons and to the leftmost leaf. Additionally, the root
contains the height of the tree, and the information if the number of its sons is <_-k or
not. As usual we assume that the algorithm obtains with constant cost the leaf containing
the element x when it performs the operation FIND (x) and the nodes containing A
and B, respectively, when it performs the operation UNION (A, B, C).

The operation FIND (x) is performed by following the path from the leaf contain-
ing x to the root of the tree. It is easy to see that the worst-case running time of
FIND (x) is O(1Ogk n).

The procedure UNION (A, B, C) is performed by inserting the tree with smaller
height into the other tree as follows.

Without loss of generality let height (B)-< height (A). Let r be the root of B and
v be the root of the leftmost subtree of A with the same height as B. Note that v is
easy to find. If height (A) height (B), then v is the root of A. If height (A) > height (B)
then follow the pointer to the leftmost leaf and then the path upward from that leaf
to the root until v is found. We distinguish between two cases.

Case 1. The number of sons of r_-< k. Then for all sons of r we change the pointer
to r into a pointer to v.

Case 2. The number of sons of r > k. If v root of A we introduce a pointer from
r to the father of v. If v root of A and the number of sons of v <_- k then for all sons
of v we change the pointer to v into a pointer to r. If v root of A and the number
of sons of v > k then we create a new root to which the two nodes v and r point.

It is easy to see how to efficiently give the root of the new tree a pointer to the
leftmost leaf, the right value for the height of the tree, and the information if the
number of sons of’the root is <-k or not. Note that we can count the sons of the root
up to k. It is clear that the new tree is a k-UF tree. It is also easy to see that the
worst-case running time of UNION (A, B, C) is O(k+logk n).

Note that the algorithm has space complexity of O(n).
THEOREM 1. Disjoint set union can be performed with single-operation worst-case

time complexity O(log n/log log n).
Proof Use the algorithm described above with k- [log n/log log HI.
3. The lower bound. Next we sketch the class B of algorithms for which we prove

the lower bound. The data structures used by these algorithms are linked structures
which can be considered as directed graphs. The algorithms solve the disjoint set union
problem with respect to the following rules.

(i) To each set and to each element exactly one distinct node in the data structure
is associated containing the element or the name of the set, respectively.

(ii) The data structure can be partitioned into subgraphs such that each subgraph
corresponds exactly to a current set. There exists no edge from a node in
such a subgraph to a node outside the subgraph.

(iii) For executing FIND (x) the algorithm obtains the node v containing x. The
algorithm follows paths with start node v until it reaches the node which
contains the name of the corresponding set.

(iv) For executing FIND (x) or UNION (A, B, C) the algorithm may insert or
delete any edge as long as rule (ii) is satisfied.

TIME COMPLEXITY OF DISJOINT SET UNION 1023

Note that we allow that the algorithm can insert or delete edges when it performs
a FIND-operation. Our class B includes properly the class of pointer-machine solutions
defined by Tarjan [4]. The main difference is that with respect to rule (ii) we allow
any insertion or deletion of an edge in the data structure. What we forbid is that the
algorithms build data structures not motivated by UNION-operations.

LEMMA 2. Let A be an algorithm from the class B. If in every UNION-operation
A inserts at most k edges into the data structure then there is a FIND-operation which
needs at least time

II
logk+loglogn

Proof. Given n disjoint sets S,..., S,, each containing a single element, we
define a sequence of UNION-operations and then one FIND-operation which needs
time at least ll(log n/(log k + log log n)). The sequence of UNION-operations is parti-
tioned into 1/2. log n levels: level 1,. ., level 1/2. log n.

For 1 -<_ i_-< 1/2. log n the following hold.
(a) All unions at level i-1 are performed before the first one at level i, for > 1.
(b) A UNION-operation at level combines two disjoint sets of size 2i-1 to one

set of size 2 i.
Let S be a set which is constructed by the algorithm at level i. Then G(S) denotes

the subgraph in the data structure corresponding to S after the last UNION at level i.
We define

Ao := {Sl,""" Sn}

A := {S[S is constructed at level and
V nodes v Gi(S): degree (v)_-< ik. log n},

i= 1,...,1/2. log n.

The UNION-operations which are performed at level are the following. While
[A_[>I the algorithm takes two sets B and C from A_ and performs
UNION (B, C, B’).

CLAIM. I{slj{1,... ,n} and :::iS G A1/2logn: S
_

S}]>= n/2.
The claim can be used to prove the lemma in the following way: Note that

VS A/z.,og,: IS[=x/-. Hence from the claim it follows that [A/.,og,,l >= 1/24-. Let
S A/2.og Since IS[and tv Ga/.og ,(S): degree (v) -_< 1/2k. log n there exists
an element x with the following property:

The length of any path in G/z.og ,,(S) from the node which contains x to the node
which contains the name of S is at least

iogl/Z.k.log nX/r-ff log n

2(log k + 2. log log n)"

Hence the operation FIND (x) needs time of at least log n/(2(log k+log log n)).
This proves the lemma.

Proofof the claim. Since Ai_ contains at most n/2-1 sets, at most n/2 UNION-
operations are performed at level i. Hence at most nk/2 edges are inserted into the
data structure at level i.

Let the operation UNION (B, C, B’) be performed at level i. By the definition of
A_ it is clear that

/V E Gi-I(B) [,] Gi-I(C): degree (v) _-< (i- 1)k. log n.

1024 NORBERT BLUM

Hence if there exists a node re Gi(B’) with degree (v) > ik. log n, at least k log n edges
are inserted into Gi(B’) at level i. Hence there exist at most n. k/(2k log n)=
n/(2 log n) such sets. Each set which is constructed at level has 2 elements. Hence

I{Sjlj {1,.. , n} with :IS mi-1 and Sj S}I

Hence

-IIslj {1 n} with :lS A, and S c S}I < n

log n"

[{slj {1,. , n} with :IS A1/2.1og and

1 n n
_->n-.logn.logn 2

This proves the claim.
THEOREM 2. Every algorithm from the class B has single-operation time complexity

at least f(log n/log log n) in the worst case.
Proof. Apply Lemma 2 with k _<- log n/log log n.

Acknowledgment. I thank Kurt Mehlhorn for calling my attention to the single-
operation worst-case time complexity of the disjoint set union problem.

REFERENCES

[1] H. N. GABOW AND R. E. TARJAN, A linear-time algorithm for a special case of disjoint set union,
J. Comput. System Sci., 30 (1985), pp. 209-221.

[2] K. MEHLHORN, Data Structures and Algorithms 1, Sorting and Searching, Springer-Verlag, Berlin, 1984.
[3] R. E. TARJAN, Efficiency ofa good but not linear set union algorithm, J. Assoc. Comput. Mach., 22 (1975),

pp. 215-225.
[4] A class of algorithms which require nonlinear time to maintain disjoint sets, J. Comput. System

Sci., 18 (1979), pp. 110-127.
[5] R. E. TARJAN AND J. VAN LEEUWEN, Worst-case analysis of set union algorithms, J. Assoc. Comput.

Mach., 31 (1984), pp. 245-281.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
011

RANKING AND UNRANKING OF AVL-TREES*
LIWU LI?

Abstract. In this paper, we consider the problem of generating, ranking, and unranking of AVL-trees
with n leaves. We represent AVL-trees by integer-pair sequences, called LDP-sequences. Then we propose
a linear ordering among these sequences, i.e., among the AVL-trees. The problem of ranking is to determine
the order number (rank) of a given tree in this ordering, unranking means constructing the tree of a given
rank. The main result is that ranking and unranking can be done in O(n log n) and O(n log n) time,
respectively, after a preprocessing step that takes O(n log n) time.

Key words, algorithm, procedure, function, complexity, AVL-trees, partial preorder, dynamic program-
ming, dividing and conquering, ranking and unranking

1. Introduction. The problem of generating, ranking, and unranking of some
classes of trees has received considerable attention in the recent past. In [3], [4], [5],
[6] and [9], algorithms are given for binary trees and k-ary trees. Zaks and Richards,
in [7], present algorithms for generating, ranking, and unranking all trees with ni nodes
having ki sons each, i= 1,2,..., t, and no+l leaves (no=l_<_t (k-l)n). In [10]
and 11], the problem of ranking, unranking, and generating of 2-3-trees with n leaves
and ordered B-trees with n leaves, respectively, is solved. As pointed out in 10], these
algorithms mentioned above have obvious use in the generation of random data to
test and predict the behavior of algorithms that manipulate these classes of trees.

AVL-trees are one kind of balanced-tree schemes, proposed for the organization
of information so as to generate worst case logarithmic search time. AVL-trees are
introduced by Adel’son-Vel’skii and Landis in 12], and are studied by some computer
scientists recently. The height of a tree, which is also the height of the root, is the
length of a longest path from the root to a leaf. An AVL-tree is a binary tree such that
at each vertex v the heights of the left and right subtrees of v differ by at mostone.
If a subtree is missing, it is deemed of "height" -1.

In the papers mentioned above, typically, a one-to-one correspondence is estab-
lished between a class of trees and certain integer sequences. A linear ordering is
established among these sequences. It is then shown how to determine the position
(rank) of a given sequence in this ordering (ranking), and vice versa (unranking). In
[3] and [4], a binary tree is represented by the sequence listing the level numbers of
the leaves from left to right. The sequences representing binary trees are called feasible
sequences. The fact which is made use of in [3] and [4] to alter a feasible sequence
to another feasible sequence is that deleting the two leaf-sons of a vertex in a binary
tree results in another binary tree. The fact generally does not hold in AVL-trees. In
[5], a permutation tr on {1, 2,..., n} which is generated by labeling the vertices of a
binary tree T in preorder and reading off the labels in inorder, represents the binary
tree T. By inserting number n + 1 in one of some positions, another permutation tr’ on
{1, 2,. ., n + 1} will be resulted in and represents a binary tree with n + 1 vertices. In
[6], a binary tree with n internal vertices and n + 1 leaves is represented by the
0-1-sequence generated by visiting the vertices in preorder and replacing the internal
and external vertices by 1 and 0, respectively. Other equivalent representations are
also studied in this paper. In [7], a one-to-one correspondence between all the ordered
trees, which have no+ 1 leaves and n internal vertices with ki sons each for
1, 2,..., t, and all the lattice paths in the (t + 1)-dimensional space from the point

* Received by the editors June 24, 1983, and in final revised form August 26, 1985.

" Department of Computer Science, Nankai University, Tianjin, People’s Republic of China. Present
address, Department of Computing Science, University of Alberta, Edmonton, Alberta, Canada.

1025

1026 LIWU LI

(no, hi, , n,) to the origin, which do not go below the hyperplane Xo YI (ki- 1)xi.
In [8], by listing all level numbers of the vertices in preorder, the sequence represents
a unique rooted tree. In [9], Knott shows a correspondence between binary trees and
"tree permutations." The ordering he defines on binary trees corresponds to a lexico-
graphic ordering of tree permutations. The representations mentioned above do not
provide a mechanism which regards, directly or indirectly, the height of a binary tree
and the height-balance requirement of an AVL-tree. In other words, the methods apply
to those trees each vertex of which can have two subtrees of any different heights
provided they satisfy other specified requirement. On the other hand, the problem of
generating, ranking, and unranking of such trees that all of the leaves of one tree are
on the same level is studied in [10] and [11]. The authors represent a 2-3-tree or a
B-tree by listing the numbers of sons of internal vertices, level by level, from left to
right on the same level. Obviously, because the leaves of an AVL-tree are generally
on different levels, two different AVL-trees may result in the same sequence according
to the above method.

Before introducing our representations of AVL-trees, we state an important
property of AVL-trees in the following lemma, which is an easy corollary of [2, Thm.
A, p. 453].

LEMMA 1. The maximum ofthe heights over all A VL-trees with n leaves is O(log n).
In the following sections, we use UN(n), or simply UN where n is apparent from

the context, to denote the maximum of the heights over all AVL-trees with n leaves.
In fact, the calculation of value UN(n) can be included into algorithm PREPROCESS-
ING described in 3 without affecting its time complexity.

2. LDP-sequenees of AVL-trees and their linear ordering. In this paper, the set of
vertices of an AVL-tree with m vertices will be represented by integer set { 1, 2, , m},
and the tree itself, which is a binary tree, is represented by two arrays, LEFTSON [i]
and RIGHTSON [i], where 1 <=i -< m, and LEFTSON [i] (RIGHTSON [i]) points at
the left (right, respectively) son of vertex i, if the son exists, otherwise at empty symbol. Therefore, we sometimes do not differentiate the two data types, integer and vertex.
Because we are interested in the number of leaves of an AVL-tree and there are three
different AVL-trees with one leaf, we treat each of them as a single element. In other
words, if the father of a leaf has exactly one son, the leaf and its father will not be
treated with separately. The following concept reflects this point of view. The partial
preorder traversal of a binary tree, denoted as P-preorder traversal, is defined recursively
as follows:

1. Visit the root;
2. If the root has both a left and a right son, visit the left subtree in P-preorder,

and then visit the right subtree in P-preorder.
Figure 1 shows three AVL-trees; the vertices which can be visited in P-order

traversal are darkened.

(a) (b) (e)

FIG.

RANKING AND UNRANKING OF AVL-TREES 1027

For a given AVL-tree T, we associate an integer pair (11, ri), called leaf.distribution-
pair or LDP, to each vertex which can be visited in the P-preorder traversal of T,
where l(r) is the number of leaves in the left (right, respectively) subtree of vertex i.
The LDP-sequence of an AVL-tree T is obtained by listing the LDP of each vertex
visited in the P-preorder traversal of T. Therefore, the LDP-sequence of the AVL-tree
in Fig. lc is (1, 1)(0, 0)(1, 0). We should notice that the vertex with LDP (0, 0) has no
proper descendents which are leaves, but it is a leaf itself.

Obviously, not all of integer pair sequences are LDP-sequences. The following
algorithm tests whether a given nonnegative integer pair sequence is an LDP-sequence,
and if the answer is positive, gives the corresponding AVL-tree described by arrays
LEFTSON and RIGHTSON.

We use a Pascal-like language to describe algorithms.

ALGORITHM 1. VERIFYING
Input. A sequence of nonnegative integer pairs (11, rl)(/2, r2)""" (Ik, rk). For sim-

plicity, we assume that no pair has the form (l, r), where + r > 1 and (/= 0 or r 0),
since such a pair is inhibited from appearing in an LDP-sequence.

Output. "YES," if the sequence is an LDP-sequence, "NO," otherwise. If the
answer is "YES," the corresponding AVL-tree is described by arrays LEFTSON [i]
and RIGHTSON [i], 1 <- <- m. Array HEIGHT [i], 1 <_- <= m, is the height of vertex
in the AVL-tree.

Method. We follow the input sequence to construct an AVL-tree whose vertices
possess the pairs as their LDP’s.

We use a stack ANC to store the vertices whose subtrees are being constructed.
When the left(right) subtree is being constructed, integer -i (i, respectively) is stored
in ANC.

We define a two-operand logic function @. The result of (C)(opl, op2), where the
first operand opl is an integer and the second operand op2 is a nonnegative integer
pair (l, r), is true if and only if (op 1 1 and r 0) or op 1 + r. In other words,
(C)(opl, op2) is true if and only if the number of leaves of the AVL-tree with root LDP
op2 is op l.

vat top, m" integer;
begin (, the main program ,)

top := 0; (, make stack ANC empty *)
m := k; (, m points at the maximum existing vertex k ,)
VERIFY (1)

end;
procedure VERIFY (i" integer);
var p" vertex; H: integer;
begin

if @(1, (li, ri))
then (, the subtree rooted at has only one leaf,)
begin

if I=0 and r=0
then (, the subtree consists of one vertex ,)
begin
LEFTSON i] := RIGHTSON i] := ;
HEIGHT i] := H := 0

end
else (, vertex is the father of a leaf,)

1028 LIWU LI

begin
m := rn + 1; (, m will be the son of vertex ,)
LEFTSON [m]:= RIGHTSON Ira]:= ; (, m is a leaf,);
HEIGHT rn := 0;
if l, =0
then (, rn is the right son ,)
begin
LEFTSON [i] := ; RIGHTSON i] := m

end
else
begin
LEFTSON [i]:= m; RIGHTSON [i]:= Q5

end;
HEIGHT i] := H := 1

end;
while top > 0 and ANC [top] > do(, we come back from the right son of vertex

ANC [top] ,)
ifIHEIGHT[ANC[top]+I]-HI>I (,left son of ANC[top] is

ANC [top]+ 1 ,)
then return "NO" (, lose balance here ,)
else
begin
HEIGHT [ANC [top]] := H := max {HEIGHT [ANC [top] + 1], H} + 1;
top := top- 1

end;
if top > 0
then (, fight subtree of vertex-ANC [top] is to be constructed ,)
begin
ANC [top] := p := ANC [top];
if not (C)(rp, li + 1, ri+ 1))
then return "NO"
else VERIFY (i + 1); R1GHTSON [p] := + 1

end
else
ifk=i
then return "YES" (, input is exactly an LDP-sequence ,)
else return "NO" (, input is too long ,)

end
else (, the subtree rooted at has more than one leaf,)
begin

top := top + 1;
ANC [top] := -i; (, we are to construct the left subtree of vertex ,)
if i=k
then return "NO" (, input is too short ,)
else

if not (C)(1, 1+ 1, r+l))
then return "NO"
else VERIFY (i + 1); LEFTSON i] := +. 1

end
end.

RANKING AND UNRANKING OF AVL-TREES 1029

Since for each input integer pair, we call procedure VERIFY only once and put
the subscript of the pair onto stack ANC only once, the time complexity of algorithm
VERIFYING is O(k), linear to the length of input.

The following lemma is an easy result.
LEMMA 2. Two AVL-trees are isomorphic if and only if they have the same LDP-

sequences.
We shall define a linear ordering among AVL-trees with the same number of

leaves, in fact, among the LDP-sequences. After defining a priority, which is a partial
relation, among LDP’s, we define the linear ordering as the lexicographic ordering
among LDP-sequences, where each LDP is deemed to be a symbol.

DEFINITION 1 (Priority among LDP’s). We say LDP (/1, rl) is prior to LDP (l_, rE)
denoted by (11, rl)< (/2, rE), if and only if:

(C)(/2 + rE, (/, r)) and ((l =/2 r-0 and rE-- 1) or l <2).

DEFINITION 2. (Linear ordering<among LDP-sequences). Among the LDP-
sequences whose AVL-trees have the same number of leaves, we say LDP-sequence
L1 is prior to LDP-sequence L2, denoted by L1 < L2, if and only if in lexicographic
ordering on the basic relation < of LDPs, L1 is precedent to L2.

To prove the ordering < among LDP-sequences whose AVL-trees have the same
number of leaves is a linear ordering, we need the following lemma.

LEMMA 3. Let L1, L2 and L3 be LDP-sequences whose AVL-trees have the same
number of leaves. If L1 < L2 and L2 < L3, then L1 < L3.

-(i)Proof. Let Li (1 r’))(/(2’) r(2i)) (lkii, r(ki)), i= 1, 2, 3. Since L1 < L2 and L2 <
L3, there are two integers J and K such that

(1), r)) ,,(2) r2)), for 1 < < K- 1

(1), r)) < (l), r)),

for 1 <-j<-J- 1,

We prove the lemma in three cases.
Case 1. K < J. Since (I, r1) (12, r2))= (113), r3), 1 _-< i_-< K 1, and (1, r) <

(1, r) (1, r)), we can deduce that L1 < L3.
Case 2. K > J. Since (/)1, rJl)= (/j2, rJ2)= (/)3), rJ3), 1 -<j _-< J- 1, and (l, r1)

(/2, r2) < (13), r3), we can deduce L1 < L3.
Case 3. K -J. By the constructing of LDP-sequences from AVL-trees, it is easy

to see that if 1+r)= 1, the three LDa’s (1), r), (1, r), and (1, r) must be

(0, 0), (0, 1), (1, 0),

respectively. Since (0, 0) < (1, 0), we can deduce L1 < L3 when l +r 1. Ifl + r >
1, by Definitions 1 and 2, we know that

1()< 1)< 1).

The relation L1 < L3 follows from (1), r)) < (1), r)). lq

Now we can say that the relation < among LDP-sequences whose AVL-trees have
the same number of leaves is indeed a linear ordering. In the following sections, the
number of leaves is fixed as n.

3. Ranking and unranking. In this section, we first present a preprocessing
algorithm to assign values to some arrays with the help of which we can rank and

1030 LIWU LI

unrank AVL-trees with n leaves in O(n log2 n) and O(n log n) time, respectively. This
idea is also used in the ranking and unranking of a 2-3otrees and B-trees in [10] and
11], respectively.

The two-dimension array K I[(I, r), h], where (1, r) is an LDP with 1+ r< n and
h is an integer, contains the number of AVL-trees of height h with root LDP (1, r).
Array K2[k, hi contains the number of AVL-trees of height h with k leaves. Another
useful array is K3[(I, r), hi, which contains the number of AVL-trees of height h with
root LDP prior or equal to (I, r). For the simplicity of the algorithms, we follow a
convention that when an item of an array which has not been assigned any values is
used, the content of the item is understood to be integer zero.

ALGORITHM 2. PREPROCESSING
var I, k, h" integer;
begin
K 1[(0, 0), 0] := K3[(0, 0), 0] := 1;
KI[(0, 1), 1]:= K3[(0, 1), 0]:= K3[(0, 1), 1]:= 1;
K1[(1, 0), 1]:= K3[(1, 0), 0]:= 1; K3[(1, 0), 1]:= 2; (. there are three AVL-trees

with one leaf whose LDP-sequences are (0, 0), (0, 1) and (1, 0) respec-
tively

K2[1, 0]:= 1; K2[1, 1]:=2;
for k :- 2 to n do

for h := 1 to UN do
begin

K2[k, h]:= K3[(0, k), h]:- 0; (. initiation .)
forl:=l tok-ldo
begin
Kl[(l,k-1),h]:=KE[l,h-2]. K2[k-l,h-1]

+ K2[/, h 1] KE[k- l, h -2]
+ K2[l, h 1] K2[k- l, h 1];

K2[k, h] := KE[k, h]+ K 1[(1, k- 1), h];
K3[(/, k-I), h]:= K3[(I- 1, g-(l- 1)), h]+ K 1[(/, k-1), h]

end
end

end.

Since UN is O(log n), it is easy to prove that the time complexity of algorithm
PREPROCESSING is O(n2 log n).

For any given LDP-sequence whose AVL-tree has n leaves, the following algorithm
will output its order number in the linear ordering <. The difficulty involved in ranking
AVL-trees lies on the height-balance requirement. In other words, though
(ll, rl) (Iv_l, rp_l)(Iv, rp) is the prefix of an LDP-sequence and (lp, rp) .(lq, to) is an
LDP-sequence, (/1, r)...(lp_, rp_)(lp, rp)...(lq, to) need not be the prefix of any
LDP-sequences. Following the input sequence (1, rl)(/2, rE)’’’ (lk, rk), when we meet
an LDP (li, ri) we count only those LDP-sequences (l, r)... (/’s, r’s), where (l, r)<
(li, ri) and (/1, rl)"" (li_, r_)(l, r)... (l’, r’) is the prefix of an LDP-sequence. For
each i, 1 _-< <_- k, we actually calculate the height of the vertex corresponding to (l, r).

ALGORITHM 3. RANKING
Input. An LDP-sequence (11, rl)(12, r2)""" (lk, rk) whose AVL-tree has n leaves.
Output. The rank of input LDP-sequence in the linear ordering <.
Method. Since the linear ordering < is essentially a lexicographic ordering, we

proceed to treat with the LDP’s (11, rl)(/2, rE),’’’, (lk, rk) in this order. For each LDP

RANKING AND UNRANKING OF AVL-TREES 1031

(li, ri), we make use of function ACCUMULATE to calculate the number of LDP-
sequences (ll, rl)(/2, r2)""" (li-l, ri-1)(l, r) where (l’i, r) < (li, ri).

begin (, RANKING ,)
top := 0; (, make stack ANC empty ,)
sum:=l; (,variable sum will contain the rank upon completion of

RANKING ,)
RANK (1);
write sum

end;
procedure RANK (i: integer);
begin

case (li, r) of
(0, 0): HEIGHT[i]:= H:=0; (* no LDP is prior to (0, 0) *)
(0, 1): begin (, only one LDP (0, 0)< (0, 1) ,)

HEIGHT i] := H := 1;
L:=0;
U:=0;
K[0] := 1

end;
(1, 0): begin (, the LDPs (0, 0), (0, 1) are prior to (1, 0) ,)

HEIGHT i] := H :- 1;
L:=0;
U:=I;
K[0] := K[1]:= 1

end;
others: begin

L:=I;
U:= UN;
forh:=l toUNdo
K[h] := K3[(/, 1, r, + 1), h]

end
end; (* case end ,)
if (l, r) (0, 0) then sum := sum +ACCUMULATE; (, the number of LDP-

sequences with prefixes (11, rl)... (li_, r-l)(l, r), where (l, r)< (l, r),
is added to the variable sum ,)

if (1,, r,) {(0, 0), (0, 1), (1, 0)}
then (, we must continue ranking the descendants of vertex ,)
begin

top := top + 1;
ANC [top] := -i; (, left son of vertex is to be treated with ,)
RANK (i+ 1)

end
else (, we will go back to the lowest ancestor of whose right subtree has not

been treated with ,)
begin

while top > 0 and ANC [top] > 0 do
begin
HEIGHT [ANC [top]] :- H := max {HEIGHT [ANC [top] + 1], H};

(, note that the left son of vertex ANC [top] is ANC [top] / 1 ,)
top := top- 1

end;

1032 LIWU LI

if top > 0
then (, ANC [top] < 0 and the right son, which is i+ 1, of vertex -ANC [top]

has not been treated with ,)
begin
ANC [top] := -ANC [top];
RANK (i+ 1)

end
end

end (, procedure RANK end ,)
function ACCUMULATE;
var p, h, x" integer; j" vertex;
begin

for p := top downto 1 do
if ANC [p]> 0
then (, the LDP being considered is in the right subtree of vertex ANC [p] ,)
begin
L-HEIGHT[ANC[p]+I]+I; (,the left son of ANC [p] is vertex

ANC [p]+l ,)
U := HEIGHT [ANC [p]/ 1]/ 2;
K[U] := K[L];
K[L]:= K[L-2]+K[L-1]

end
else
begin
j:=-ANC [p]; (,the LDP being considered is in the left subtree ofj *)
K[U+2]:= K[U], K2[r, U+I];
for h := U+ 1 downto L+ 2 do
K[h]:= K[h-2], K2[rj, h-1]

+ K[h- 1], K2[rj, h-2]
+ K[h-1] , K2[r), h- 1];

K[L+ 1]:= K[L] (K2[r, L]+ K2[r), L- 1]):
L:= L+I;
U:= U+2

end; (, now, K[h], L<_-h =< U, is the number of LDP-sequences with prefix
(11, rl)" (li-1, ri_)(l, r), where (I, r) < (li, r), whose AVL-trees are of height h ,)

x:=0;
for h:= L to U do x:=x+K[h]:
ACCUMULATE := x

end.

Because U in the function ACCUMULATE is always less than 2 top / UN, and
top is at most UN, by Lemma 1, the time spent for each call offunction ACCUMULATE
is O(log2 n). For each LDP (lt, ri), we call ACCUMULATE once and push the vertex
on stack ANC at most once in procedure RANK, it is easy to prove the time complexity

of algorithm RANKING is O(n log2 n).
We will discuss in the following the problem of unranking, i.e., given an integer

r, where 1 _-< r<=h K2[n, h], how we can construct an LDP-sequence which has the
order number (rank) r in the linear ordering <. As linear ordering < is a lexicographic
ordering, we produce LDP’s (/1, rl), (12, rE),..., one by one, such that for each there
is an LDP-sequence with prefix (11, rl)(12, rE)’’ (l, r) which has rank r in the linear
ordering <.

RANKING AND UNRANKING OF AVL-TREES 1033

ALGORITHM 4. UNRANKING
Input. Integers n and r, where 1 _-< r_-< Eh K2[n, h].
Output. An LDP-sequence (11, rl)(/2, rE)’’’ (lk, rk), whose AVL-tree has n leaves

and the rank of which in the linear ordering < is r.
Method. We produce the LDP’s (11, rl), (/2, r2),"’, (lk, rk) in this order. To deter-

mine (li, ri), in fact, to determine li, such that there is an LDP-sequence with prefix
(/1, rl)(/2, r2)... (/i, ri) which has rank r, the binary search technique and function
ACCUMULATE defined in algorithm RANKING are used.

begin (, UNRANKING *)
top := 0; (* make stack ANC empty ,)
i:= 1; (, integer is used as a pointer pointing at the LDP being constructed ,)
UNRANK (r, n)

end;
procedure UNRANK (s, m: integer);
begin (, we are to determine an LDP (I, ri) such that @(m, (li, ri)) is true and the

number of all the LDP-sequences with prefixes (11, rl)"" (/i-l, ri-1)(l, r), where
(l’i, r) (li, ri) (where (1, r) < (li, ri) or (1, r) (li, ri)), is less than (greater than or equal
to, respectively) s ,)

ifm=l
then
begin

L:=0;
U:=0;
K[0]:= 1;
k I :- ACCUMULATE;
L:=0;
U:=I;
K[0] := KIll:= 1;
k2 := ACCUMULATE;
if S<-_kl

then
begin

(li, ri):= (0, 0);
HEIGHT i] := H := 0

end
else

if s<=k2
then
begin

(li, ri) :---- (0, 1);
HEIGHT i] := H := 1; s := s- kl

end
else
begin

(li, ri) := (1, O);
HEIGHT i] :- H :- 1; s := s k2

end;
while top 0 and ANC [top] 0 do

begin
HEIGHT [ANC [top]] := H := max {HEIGHT [ANC [top]+ 1], H}+ 1;

1034 LIWU LI

top := top- 1
end;

if top > 0
then (, right subtree of vertex -ANC [top] has not been constructed ,)
begin
ANC [top] :=j := -ANC [top];
:= + 1; UNRANK (s, rs)

end
else k :=

end
else (, rn > 1 ,)
begin

I:= l; J:= m-1;
while J- I > 0 do

,begin
K := [(I + J)/2J
L:=0; U:= UN;
forh:=Lto Udo
K[h] := K3[(K, m-K), h];

if ACCUMULATE < s
then I := K + 1
else J := K

end; (, binary search end ,)
(li, ri) := (I, m I);
L:=0; U:= UN;
for h:=L to U do K[h]:=K3[(I-l,m-(I-1)),h];
s := s ACCUMULATE;
top := top + 1;
ANC [top] := -i; i:= + 1;
UNRANK (s, I) (, constructing the left subtree ,)

end
end.

For each call of UNRANK, the most costly part is the second while statement
which will repeat O(log m) tiles. Since ACCUMULATE is of O(log2 n) time com-
plexity, UNRANK is of O(log n) time complexity. UNRANK is to be called O(n)
times for each execution of the main program, and therefore, the time complexity of
algorithm UNRANKING is O(n log n).

To generate all the AVL-trees with n leaves represented by LDP-sequences in the
order <, we can make use of algorithm UNRANKING. Let S=h K2[n,h]. The
following algorithm will generate all AVL-trees with n leaves.

ALGORITHM 5. GENERATING
begin

for u:=l tosdo
begin

call UNRANKING with integers n and u;
write (I1, rl)(12, r2) (lk, rk)

end
end.

RANKING AND UNRANKING OF AVL-TREES 1035

In the algorithms described in this paper, we often make use of the dividing-and-
conquering technique by putting onto the stack ANC a negative integer, indicating
that we are ranking or unranking the left subtree, or a positive integer, indicating that
we are ranking or unranking the right subtree. Meanwhile, we keep the balance between
the left and right subtrees.

Acknowledgment. The author wishes to thank the referees for their patience in
carefully reading an earlier version of this paper. Their comments and suggestions
were quite constructive and helpful.

REFERENCES

A. V. AHO, J. E. HOt’CROFT AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1976.

[2] D. E. KNUTH, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-Wesley,
Reading, MA, 1973.

[3] F. RUSKEY AND T. C. Hu, Generating binary trees lexicographically, this Journal, 6 (1987), pp. 745-758.
[4] F. RUSKEY, Generating t-ary trees lexicographically, this Journal, 7 (1978), pp. 706-712.
[5] A. E. TROJANOWSKI, Ranking and listing algorithmsfor k-ary trees, this Journal, 7 (1978), pp. 492-509.
[6] S. ZAKS, Lexicographic generation of ordered trees, Theoret. Comput. Sci., 10 (1980), pp. 63-82.
[7] S. ZAKS AND D. RICHARDS, Generating trees and other combinatorial objects lexicographically, this

Journal, 8 (1979), pp. 73-81.
[8] T. BEYER AND S. M. HEDETNIEMI, Constant time generation of rooted trees, this Journal, 9 (1980),

pp. 706-712.
[9] G. D. KNOTT, A numbering system for binary trees, Comm. ACM, 20(2) (1977), pp. 113-115.

[10] U. GUr’TA, D. T. LEE AND C. K. WONG, Ranking and unranking of 2-J trees, this Jo,urnal, 11 (1982),
pp. 582-590.

[11] U. J. GUPTA AND D. T. LEE, Ranking and unranking of B-trees, J. Algorithms, 4 (1983), pp. 51-60.
12] G. M. ADEL’SON-VEL’SKII AND Y. M. LANDIS, An algorithmfor the organization ofinformation, Dokl.

Akad. Nauk SSSR, 146 (1962), pp. 263-266; Soviet Math. Dokl., 3 (1962), pp. 1259-1262.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
012

A SIMPLE PARALLEL ALGORITHM ,FOR THE MAXIMAL
INDEPENDENT SET PROBLEM*

MICHAEL LUBYf

Abstract. Two basic design strategies are used to develop a very simple and fast parallel algorithms
for the maximal independent set (MIS) problem. The first strategy consists of assigning identical copies of
a simple algorithm to small local portions of the problem input. The algorithm is designed so that when
the copies are executed in parallel the correct problem output is produced very quickly. A very simple
Monte Carlo algorithm for the MIS problem is presented which is based upon this strategy. The second
strategy is a general and powerful technique for removing randomization from algorithms. This strategy is
used to convert the Monte Carlo algorithm for this MIS problem into a simple deterministic algorithm with
the same parallel running time.

Key words, parallel computations, NC, maximal independent set, randomizing algorithms, pairwise
independences

AMS(MOS) subject classifications. 05B99, 05C99, 62E25, 62K99, 6800, 68E10, 68G99

Introduction. A maximal independent set (MIS) in an undirected graph is a
maximal collection of vertices I subject to the restriction that no pair of vertices in I
are adjacent. The MIS problem is to find a MIS. in this paper, fast parallel algorithms
are presented for the MIS problem. All of the algorithms are especially noteworthy
for their simplicity.

One of the key properties behind any successful parallel algorithm design is that
the algorithm can be productively subdivided into a number of almost identical simple
algorithms, which when executed in parallel produce a correct problem output very
quickly. Monte Carlo Algorithm A for the MIS problem (3.2) has an even stronger
property: the subdivision into almost identical simple algorithms respects the inherent
subdivision in the problem input. More specifically, the problem input is a local
description of the graph in terms of vertices and edges. Algorithm A is described in
terms of two algorithm templates called ALGVERTEX and ALGEDGE. A copy of
ALGVERTEX is assigned to each vertex in the graph and a copy of ALGEDGE is
assigned to each edge in the graph. The algorithm runs in phases. During each phase
all copies of ALGVERTEX are executed in parallel followed by the execution of all
copies of ALGEDGE in parallel. The algorithm has the property that after a very
small number ofphases the output is a MIS. This property ofthe Monte Carlo algorithm
may make it a useful protocol design tool in distributed computation.

One of the main contributions of this paper is the development of a powerful and
general technique for converting parallel Monte Carlo algorithms into deterministic
algorithms (4.1). Monte Carlo Algorithm B (3.3) is very similar to, but slightly more
complicated than, Algorithm A. The random variables in Algorithm B are mutually
independent. The general technique is used to convert Algorithm B into a deterministic
algorithm with the same running time. The first major step in the conversion process
is a more sophisticated analysis of the algorithm (4.3), which shows that if the random
variables are only pairwise independent [Fr] then the algorithm has essentially the same
expected running time as when the random variables are mutually independent. The
second major step is a method for generating a probability space over n random
variables containing O(n2) sample points, where the n random variables are pairwise

* Received by the editors July 1, 1985, and in final form September 18, 1985.
f Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4.

1036

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1037

independent (4.2). Algorithm C, which is almost exactly the same as Algorithm B,
chooses values for the random variables by randomly choosing one of the sample
points in this probability space (4.4). The number of random bits needed to choose
a random sample point is O(log n). Algorithm D tests in parallel all of the sample
points and uses the best (4.4). This algorithm is deterministic.

For purposes of analysis the P-RAM parallel computer is used [FW]. Two models
of a P-RAM are considered: the CRCW P-RAM, in which concurrent reads and writes
to the same memory location are allowed; and the less powerful but perhaps more
realistic EREW P-RAM, in which concurrent reads and writes to the same memory
location are disallowed. Algorithm A is the simplest Monte Carlo algorithm and has
the best running time on a CRCW P-RAM. Algorithm B is slightly more complicated,
but it is presented because it is the basis for Algorithms C and D. Algorithm D can
be implemented by a logspace-uniform circuit family, where the circuit which accepts
inputs of length k has depth O((log k)2) and polynomial in k gates. (All logs are base
2 in this paper.) This establishes that the MIS problem is in NC2 (see [Co] for a
discussion of the complexity class NC). Let n be the number of vertices and m be the
number of edges in the graph. Let EO(k) denote "the expected values is O(k)." Table
1 summarizes the features of each algorithm. The analysis for Algorithm A assuming
implementation on a EREW P-RAM is the same as for Algorithm B. The column
labelled "Random bits" indicates the number of unbiased random bits consumed
during the execution of the algorithm.

1. History of the MIS problem. The obvious sequential algorithm for the MIS
problem can be simply stated as: Initialize I to the empty set; for 1, , n, if vertex

is not adjacent to any vertex in I then add vertex, to I. The MIS output by this
algorithm is called the lexicographically first maximal independent set (LFMIS). Valiant
[Va] noted that the MIS problem, which has such an easy sequential algorithm, may
be one of the problems for which there is no fast parallel algorithm. Cook [Co]
strengthened this belief by proving that outputting the LFMIS is NC-complete for P.
This gave strong evidence that there is no NC algorithm which outputs the LFMIS.
Thus, it became clear that either there was no fast parallel algorithm for the MIS
problem or else the fast parallel algorithm had to have a completely different design
than the sequential algorithm.

TABLE

Algorithm P-RAM Type Processors Time Random bits

A CRCW O(m) EO (log n) EO (n(log n)
B EREW O(m EO ((log n)2) EO n log n
C EREW O(m) EO ((log n)2) EO ((log n)2)
D EREW O tlE. m) O ((log n)2) none

Surprisingly, Karp and Wigderson [KW] did develop a fast parallel algorithm for
the MIS problem. They presented a randomized algorithm with expected running time
O((log n)4) using O(n2) processors, and a deterministic algorithm with running time
O((log n)4) using o(na/(log n)3) processors on a EREW P-RAM, also establishing
the result that the MIS problem is in NC4. This paper describes algorithms which are
substantially simpler than their algorithm, and establishes that the MIS problem is in
NC2.

1038 MICHAEL LUBY

Alon, Babai and Itai [ABI] independently found a Monte Carlo algorithm for the
MIS problem, which is similar to Algorithm B, shortly after the present author found
Algorithms B, C and D [Lu]. Their algorithm can be implemented on a EREW P-RAM
with the same efficiency as is shown for Algorithm B in Table 1. They have an
implementation of their algorithm on a CRCW P-RAM where the running time is
EO(log n) using O(Am) processors, where A is the maximum degree of any vertex in
the graph. Algorithm A was developed after seeing a preliminary version of [ABI],
inspired by the CRCW P-RAM parallel computation model they consider. Algorithm
A is the simplest Monte Carlo algorithm for the MIS problem. It has a more processor
efficient implementation then the algorithm described in [ABI], using O(m) processors
versus O(Am).

2. Applicatioas of the MIS algorithm. A growing number of parallel algorithms
use the MIS algorithm as a subroutine. Karp and Wigderson [KW] gave logspace
reductions from the Maximal Set Packing and the Maximal Matching problems to the
MIS problem, and a nondeterministic logspace reduction from the 2-Satisfiability
problem to the MIS problem. In this paper, it is shown that there is a logspace reduction
from the Maximal Coloring problem (6.1) to the MIS problem. Thus, using the results
of this paper, all of these problems are now known to be in NC2. However, Cook and
Luby [CL] previously showed that 2-Satisfiability is in NC2.

Lev [Le], previous to [KW], designed an algorithm for the Maximal Matching
problem with running time O((log n)4) on a P-RAM (and also established that the
problem is in NCS). Subsequently, Israeli and Shiloach [IS] found an algorithm for
Maximal Matching, implemented on a CRCW P-RAM, where the running time is
O((log n)3). More recently and independently of this paper, Israeli and Itai [II] found
a Monte Carlo algorithm for the Maximal Matching problem. The running time of
their algorithm implemented on a EREW P-RAM is EO((log tl)2) and implemented
on a CRCW P-RAM is EO(log n). The reduction of [KW] from the Maximal Matching
problem to the MIS problem together with the results in this paper establishes the
stronger results that there is a deterministic algorithm for Maximal Matching which
can be implemented on a EREW P-RAM with running time O((log tl)2), and that the
Maximal Matching problem is in NC2.

Karloff [Kfl] uses the MIS algorithm as a subroutine for the Odd Set Cover
problem. This algorithm can be used to convert the Monte Carlo algorithm for Maximum
Matching [KUW] into a Las Vegas algorithm. Also, [KSS] use both the MIS algorithm
and the Maximal Coloring algorithm to find a A vertex coloring of a graph when A is
O((log n) c) for some constant c, where A is the maximum degree of any vertex in the
graph.

3. Monte Carlo MIS algorithms.
3.1. A high level descriptioa of the algorithm. All of the MIS algorithms in this

paper adhere to the outline described below. The input to the MIS algorithm is an
undirected graph G (V, E). The output is a maximal independent set I

_
V. Let

G’-(V’, E’) be a subgraph of G. For all W_ V’, define the neighborhood of W to
be N(W) (V’: :lj W, i, j) E’).

begin

’=(V’,E’)=(V,E)
while G’ do

begin
select a set I’_ V’ which is independent in G’

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1039

IIL} I’
Y-I’UN(I’)
G’= (V’, E’) is the induced subgraph on V’-. Y.

end
end

It is easy to show that I is a maximal independent set in G at the termination of
the algorithm. The crux of" the algorithm is the design of the select step, which must
satisfy two properties:

1. The select step can be implemented on a P-RAM so that its execution time is
very small.

2. The number of executions of the body of the while loop before G’ is empty is
very small.

For each MIS algorithm presented in this paper only the description of the select
step will be given.

The analysis of the algorithms assumes that n IV[and m [El are stored in the
first two common memory locations of the P-RAM, and that the edge descriptions
follow in consecutive memory locations. The body of the while loop, excluding the
select step, can be implemented on a CRCW P-RAM using O(m) processors, where
each execution takes time O(1). The same portion of the loop can be implemented on
a EREW P-RAM using O(rn) processors, where each execution takes time O(log n).
Here and throughout the rest of this paper the low level implementation details are
omitted.

3.2. Monte Carlo Algorithm A description. The simplest Monte Carlo algorithm
for the MIS problem is described in this section. Without loss of generality, assume
that V’= {1,. , n’}. For all V’, define adj (i) {j V’l(i,j) E’}. A very high level
description of the select step is:

1. Choose a random reordering (permutation) 7r of V’,
2. I’{i V’[zr(i)<min {,rr(j)ljadj (i)}}.

Here is a more detailed description ofthe select step. Define an algorithm to be executed
by each vertex i V’ as follows.

ALGVERTEX
begin

7r(i)--> a number randomly chosen from {1,..., n4}.
end

Define an algorithm to be executed by each edge (i,j) E’ as follows.

ALGEDGE (i, j)
begin

if zr(i) => r(j) then I’ <- I’- { i}
else I’- I’-{j}

end

The select step is:

begin
In parallel, Vie V’, execute ALGVERTEX (i)

In parallel, V(i, j) E’, execute ALGEDGE i, j)
end

1040 MICHAEL LUBY

The random choices of the values of r(i) in ALGVERTEX (i) are mutually
independent. This is not literally an implementation of the high level description of
the algorithm because there is some chance that for some (i,j)e E’, r(i)= r(j).
However, since each pair of vertices receives the same r value with probability 1In4,
and there are at most (.) pairs of vertices from V’, r is a random reordering of the
vertices with probability at least 1-1/2n2.

The select step can be implemented on a CRCW P’RAM using O(m) processors,
where each execution takes time O(1) and consumes O(n log n) random bits. An
implementation on a EREW P-RAM uses O(m) processors, where each execution
takes time O(log n). In 3.4, the number of executions of the while loop before
termination of the algorithm is proven to be EO(log n). Thus, an implementation of
the algorithm on a CRCW (EREW) P-RAM uses O(m) processors, where the total
execution time is EO(log n) (EO((log n)2)).

3.3. Monte Carlo Algorithm B description. In this section a Monte Carlo algorithm
for the MIS problem is described which is slightly more complicated than Algorithm
A. Algorithm B is the basis for the deterministic algorithm presented in the following
sections.

The notation of 3.2 is retained. For each i V’, define d(i), the degree of i, to
be ladj(i)l. Define a collection of mutually independent (0, 1) valued random variables
(coin (i)lie V’) such that if d(i)-> 1 then coin (i) takes on value 1 with probability
1/2d(i) and if d(i)=0 then coin (i) is always 1. The select step is:

begin
In parallel, Vie V’, compute d (i)
X,-
In parallel, V V’ {choice step}

randomly choose a value for coin (i)
if coin (i) 1 then X - X U { i)

In parallel, V i, j) E’
if X and j X then

if d (i) _-< d (j) then I’ - I’- { i}
else I’ - I’-{j)

end

The select step can be implemented on a EREW P-RAM using O(m) processors,
where each execution takes time O(log n) and consumes EO(n) random bits. In 3.4,
the number of executions of the while loop before termination of the algorithm is
proven to be EO(log n). Thus, an implementation of the algorithm on a EREW P-RAM
uses O(m) processors, where the total execution time is O((log n)2).

3.4. Analysis of Algorithms A and B. Let tA and t be the number of executions
of the body of the while loop before G’ for Algorithms A and B, respectively. In
this section it is shown that E (tA) O(1og n) and E (ta) O(log n). The proof is very
similar for both algorithms. It is shown that on the average each execution of the body
of the while loop eliminates a constant fraction of the edges in E’.

Let Y and Y be the number of edges in E’ before the kth execution of the
body of the while loop for Algorithms A and B, respectively. The number of edges
eliminated from E’ due to the kth execution of the body of the while loop for A and
a is Y- Y+I and Yff- Y+I, respectively.

THEOREM 1.
(1) E[Y- Y+I]_-> Y-6.
(2) E[Y- Y+I] >- " Y.

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1041

From Theorem 1 it is easily shown that E(tA) O(log n) and that E(tB) O(log n).
One can make even stronger claims. For example,

Pr y+i <=]_gls y] => .
Thus, Pr[tB->700log n]<=2n-2. This can be shown using an inequality due to
Bernstein which is cited in R6nyi [R, p. 387]. From this it is easy to see that the bounds
on the running time and on the number of random bits used by Algorithms A and B
hold with high probability. These details are omitted from this paper.

For all i V’ such that d(i)_-> 1, let

1
sum(i) Z

jadj(i) d (j)"

Proof of Theorem 1. Let G’= (V’, E’) be the graph before the kth execution of
the body of the while loop. The edges eliminated due to the kth execution of the body
of the while loop are the edges with at least one endpoint in the set I’U N(I’), i.e.,
each edge (i,j) is eliminated either because e I’Ll N(I’) or because j e I’U N(I’).
Thus,

1
Z d(i). Pr[ieI’UN(I’)]E[Y Y+l] =>’, v’

1
>--" E d(i). Pr[iN(I’)].

2 iv’

The remaining portion of the proofs for part (1) and part (2) of Theorem 1 are based
upon Lemmas A and B, respectively. Here, only the proof for part (2) is given. (The
proof for part (1) is a consequence since Lemma A is strictly stronger than Lemma B
except for the 1-1/2n2 multiplicative factor.) Lemma B states that Pr[i N(I’)]=>-. min {sum (i)/2, 1}. Thus,

E[Yf- Y+,] _-> . E d(i).sum(i)+ ., d(i))i V’ i V’
(i)2 (i)>2

1(Y. E 9 d(i]
d(i___) + E E 1)ieV’ jeadj(i).-.’..\j, ieV’ jeadj (i)

(i)2 (i)>2

1((i,j)eE’ 2 (i,j)eE’
(i)-<:2 (i)=<2 (0>2
(j)<=2 (j)>2 (j)>2

1
’1

1>--.IE Y [3
-8

Lemmas A and B are crucial to the proof of Theorem 1. Lemma A, due to Paul Beame,
was proved after Lemma B and uses some ofthe same ideas as Lemma B. For expository
reasons, it is presented first.

LEMMA A (Beame). For Algorithm A, Vi V’ such that d(i)>- 1,

(1)Pr[ieN(I’)]->[.min{sum(i),l}]. 1-n2

1042 MICHAEL LUBY

Proof With probability at least 1-1/2n2, r is a random reordering of V’. Assume
that r is a random reordering of V’. Vj V’, let Ej be the event that

and let

Without loss of generality let

and let

7r(j) < min {Tr(k) k adj (j)}

pj Pr [E] d(j)+ 1"

adj (i)=(1,..., d(i)}

Pl >= >= Pd(i)"

Then, by the principle of inclusion-exclusion, for 1 -<_ =< d (i),

Pr[ieg(I’)]>-Pr >-_ , p-_, , Pr[EfqEk].
j=l j=l k=j+l

For fixed j, k such that 1 -<j < k_-< l, let E be the event that

7r(j) < min {r(u)l v adj (j) t_J adj

and let E be the event that

7r(k) < min {Tr(v)I v adj (j) t.J adj (k)}.

Let

Then,

d(j, k) ladj (j) U adj (k)l.

Pr [E fq Ek] <= Pr [Ej] Pr [Ekl Ej]+ Pr [E,] Pr [Ejl E

<-- <2 pj" pk.
d(j, k)+ l d(k)+ l d(j)+ l

__-d(i)Let a z--1 P. By the technical lemma which follows,

Pr[i N(I’)] =>1/2 min {a, 1/2}=>1/4 min {sum (i), 1}

when 7r is a random reordering of V’. [3

LEMMA B. For Algorithm B, Vi V’ such that d (i) >-_ 1,

Pr[i N(I’)]>. min {sum (i--2) 1}2

Proof. Vj V’, let E be the event that coin (j)= 1 and let

1
P3= Pr [EJ]

2 d(j)"

Without loss of generality let

adj (i)={1,..., d(i)}

and let

Pl >= >=pal(i).

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1043

Let E be the event El, and for 2<=j<=d(i) let

E; -nE Ej.

Let

Then,

But

Aj N -E.
vadj (j)
d(v)>--_d(j)

a(i)

Pr[i g(I’)]=> E Pr[E]. Pr[AjlEj].
j=l

and

Pr [Aj Efi] >- Pr [Aj] >= 1- 1

veadj (j)
d(v)>--d(j)

E Pr[E;]=Pr C
j--1

For/ j, Pr [E n Ek] p’ pk. Thus, by the principle of inclusion-exclusion, for 1 =< =<
d(i),

Pr Ej >--_ Pr Ej - pj Pj Pl.
j= j= k=j+

vd()Let a =j= p. The technical lemma which follows implies that

Pr e.min{,l}e.min ,1
It follows that Pr[ie N(I’)]. rain {sum (i)/2, 1}.

TECHNICAL LEMMA. Letp p 0 be real-valued variables. For 1 N N n, let

where c > 0 is a constant. en

Proo It can be shown by induction that is maximized whenp p /l,
and consequently N. (l-I) Thus,. 1-c.. 2i
If N 1/c then /2. If 1/c then N 1/c. Otherwise, l, 1 < < n such that_

N 1/ c N N 1/ c. l/(l 1). The last inequality follows because p. p. Then,
1/2c.

4.1. Oee. This section outlines a general strategy for conveing fast parallel
Monte Carlo algorithms into fast parallel deterministic algorithms. Algorithm B is

1044 MICHAEL LUBY

converted into a very simple and fast deterministic algorithm using this strategy. The
general strategy contains several ideas that were discovered and used by previous
authors. The relationship of the general strategy to other work is discussed in 5.

To use the general strategy to convert a specific parallel Monte Carlo algorithm
into a deterministic algorithm, it must be possible to describe the Monte Carlo algorithm
in the following way. All of the randomization is incorporated in one step of the
algorithm called the choice step (which may be executed more than once during the
course of the algorithm). In the choice step, values for random variables Xo," , Xn-1
are chosen mutually independently, such that on the average a set of values for these
random variables is good. The algorithm can determine very quickly whether or not a
set of values is good after the execution of the choice step. The analysis of the algorithm
shows that if at each execution of the choice step a good set of values are chosen, then
the algorithm outputs a correct output within a specified time bound.

To be able to convert a Monte Carlo algorithm which fits the above description
into a deterministic algorithm, the following additional criteria are sufficient.

1. Let r be a positive integer and let q->_ n be a prime number, such that both r
and q are bounded by a polynomial in n. The set of random variables Xo,’’ ", Xn-1
can be modified so that the range of random variable Xi is R (R1,’’ ", Rr), such
that Xi takes on value Rj with probability no q, where no is an integer greater than
or equal to zero and j__l nj- q.

2. The analysis of the algorithm can be modified to show that if Xo,’’ ", Xn_
are only pairwise independent [Fr] then with positive probability a random set of values
for Xo,’’’, X-I is good.

The deterministic algorithm is the same as the Monte Carlo algorithm except that
the choice step is simulated by the following: Construct the probability space described
in 4.2 with q2 sample points, where each sample point corresponds to a set of values
of Xo," , Xn-1. In parallel, spawn q2 copies of the algorithm, one for each sample
point, and test to see which sample points are good. Use the set of values for
Xo, , Xn_l corresponding to a good sample point as the output from the choice step.

Since the analysis shows that with positive probability a random sample point is
good, at least one of the sample points must be good. Since at each choice step a good
set of values for Xo, , X-I is used, the algorithm is deterministic and is guaranteed
to run within the specified time bound.

This strategy for converting a Monte Carlo algorithm into a deterministic algorithm
can be generalized by relaxing criterion 2 above to allow d-wise independence for any
integer constant d->_ 1.

4.2. Generating pairwise independent random variables. Let Xo, , X_ be a set
of random variables satisfying the first criterion stated in 4.1. In this section a
probability space of q2 sample points is generated, where the random variables are
pairwise independent. In contrast, the number of sample points in a probability space
where the random variables are mutually independent is 1"/(2"), assuming each random
variable takes on at least two values with a nonzero probability.

Consider an n by q matrix A. The .values in row of A correspond to the possible
values for random variable X. Row of A contains exactly no entries equal to Rj. Let
0 <_-x, y-< q- 1. The sample space is the collection of q2 sample points

where b Ai,(x+y. i)mod q is the value ofX at sample point bx’y. The probability assigned
to each sample point is 1/q2.

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1045

LEMMA 1. Pr IX Rj] rio/q.
Proof. For fixed l, there are exactly q pairs of x, y such that (x + y. i) rood q I.

There are nq values of such that Ai, Rj.]

LEMMA 2. Pr [Xi R7 and Xi,=Rj,]=(no no,)/q2.
Proof. For fixed and l’, there is exactly one x, y pair such that (x + y. i) mod q

and (x + y. i’) mod q l’ simultaneously. [3

Lemma 2 shows that the random variables Xo," , Xn-1 are pairwise independent
in the probability space.

4.3. Reanalysis of Algorithm B assuming pairwise independence. In this section
Algorithm B is analyzed assuming events are only pairwise independent. More
specifically, assume that the collection of random variables {coin (i)li V’} are only
pairwise independent. ’i V’, let E be the event that coin (i)= 1 and let

1
P, Pr Ei 2d

The analogue of Lemma B is the following.
LEMMA C. Pr[i N(I’)] >_- min {sum (i), 1}.
Proof. The notation introduced in the proof of Lemma B is retained. Let ao 0

and for 1 _-< _-< d (i), let al

__
pj. As in the proof of Lemma B,

a()

Pr[ie N(I’)] >= E Pr[Efi] Pr[AjlE;].
j=l

A lower bound is first derived on Pr [A EJ]. Pr [AI EJ] 1 Pr [-A E;]. But,

Pr [Aj E] <- Pr [EvlEJ]
vadj (j)
a(o)d(j)

and

Pr [Eo Ej]
Pr [Eo (q -E, fq... fq -]Ej_ Ej]

Pr [-qE ["1 ["1 "qEj_, [Ej]

The numerator is less than or equal to Pr [Eol E] po. The denominator is equal to

1-Pr EIEj -> 1- Pr[EIE]= 1--tXj_,.
l=l

Thus, Pr [Eo E] <= pv/ (1 aj_l). Consequently,

1PvPr [-aA E] <- E
oaa s) 1 s-1 2(1 s_)"
a(v)>=a(j)

Thus,

Pr [A Ej] >- 1
1 1 2tj_

1 (1 as_) 2(1 as_I)"
Now, a lower bound is derived on Pr [E].

Pr [E] Pr[Es] Pr [-IE1 ’’" Il --IEj_ Ej]

=p 1-Pr EI >-ps(1-%-).

1046 MICHAEL LUBY

Thus, for -< <= d (v) and ai < 1/2,

Pr[ie N(I’)]>= P(1-2c9-)
j=l 2 "-’" j=lPj -2" E P" Pk

j=l k=j+l

By the technical lemma,

Pr[ie N(i’)]->1/4 min {aa(,,1/2}>= min {sum(i), 1}.

The analogue to Theorem 1 for Algorithm B when the random variables are only
pairwise independent is"

THEOREM 2. E[Yg Y+] >= Y when the random variables {coin i) e V’} are
only pairwise independent.

Proof. Use Lemma C in place of Lemma B in the proof of Theorem 1.

This analysis shows that Algorithm B almost fulfills the criteria stated in 4.1.

The range of the set of random variables {coin (i)1 V’} is {0, 1 }. A good set of values
for {coin (i)li e V’} is a set of values such that when they are used in the choice step
at least 6 of the edges in E’ are eliminated. Theorem 2 implies that in any probability
space where the random variables {coin (i)[i e V’} are pairwise independent there is
at least one sample point which is good. To determine whether or not a set of values
for {coin (i)[i e V’} is good, the steps in the body of the while loop are executed using
these values and the number of edges eliminated is computed. The only reqtlirement
that is not fulfilled is criterion 1.

4.4. Algorithms C and D for the MIS problem. In this section, the deterministic
implementation of Algorithm B is presented. The only missing requirement is that the
set of random variables {coin (i)lie V’} as defined in 3.3 does not fulfill criterion 1
of 4.1. To fulfill this criterion there are two changes: (1) the probabilities assigned
to the random variables {coin (i)lie V’} are modified slightly, and (2) the algorithm
is modified slightly.

The probabilities are modified as follows. Let q be a prime number between n
and 2n. The probability that coin (i)= 1 is p’i [pi. qJ/q, where pi= 1/2d(i) is the
previous probability.

Here is a description of the choice step for Algorithm C.
Case 1. There is a vertex ie V’ such that d(i)>= nil6. The algorithm sets I’ to {i}.
Case 2. /ie V’, d(i)<n/16. The algorithm constructs the probability space

described in 4.2 and randomly chooses a sample point. The algorithm uses the values
for {coin (i)li e V’} corresponding to the sample point to choose I’ as before.

Here is the analysis for Algorithm C. Case 1 can occur at most 16 times, because
each time it occurs at least l of the vertices in the original graph G are eliminated.
In Case 2, fi e V’, d(i) < nil6, which implies q/2d(i)>- n/2d(i) > 8 and consequently
p >- 8/q. But this implies that [Pi" qJ / 8 -> 1. Thus, since [p, q] + 1)/q >- pi, p, <= p <= p.

LEMMA D. Let the set ofrandom variables {coin i) e V’} be pairwise independent
such that Pr [coin (i)= 1]=pl andsuch that Vie V’, d(i)<n/16. Then Pr[ie N(I’)] >
min {sum (i), 1).

Proof. The same proof as for Lemma C, except p is used as a lower bound and
p is used as an upper bound on Pr [coin (i)= 1].

THEOREM 3. Consider Algorithm B, where the random variables {coin (i)li e V’}
are as described in this section and where Vie V’, d(i)<n/16. Then E[Y- Yff+]>-
+/-Yg.18

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1047

Proof. Use Lemma D in place of Lemma B in the proof of Theorem 1.
Thus, if Case 2 is true then Algorithm C eliminates at least 8 of the edges in E’

on the average. From this it is easy to see that the bounds on the running time and
on the number of random bits used by Algorithm C hold with high probability.

The code for Algorithm C follows. This algorithm is very practical because it is
simple, fast, uses a small number of processors and a small number of random bits.
Each execution of the body of the while loop can be implemented in O(log n) time
on a EREW P-RAM using O(m) processors, where the expected number of random
bits used is O(log n). The expected number of executions of the while loop before
termination of the algorithm is O(log n). Thus, the expected running time of the entire
algorithm on a EREW P-RAM is O((log n)2) using O(m) processors, where the
expected number of random bits used is O((log n)2).

Algorithm D is the same as Algorithm C, except that the choice step is executed
by testing in parallel all q2 sets of values for {coin (i)[e V’} and using the set of values
which maximizes the number of edges eliminated from G’. Theorem 3 shows that the
best set will eliminate at least of the edges in the graph G’. This algorithm can be
implemented on a EREW P-RAM with O(mn2) processors with running time
O((log n)2). The number of executions of the while loop is guaranteed to be at
most

log n2)
log (18/17)

+ 16 _-< 25 log n + 16.

begin
I-
compute n IV]
compute a prime q such that n <_-q _<-2n

G’=(V’,E’)<--G=(V,E)
while G’ do
begin

In parallel, ’i e V’, compute d(i)
In parallel, Vie V’

if d(i)=0 then add to I and delete from V’.
find e V’ such that d(i) is maximum
if d(i)>= nil6 then add to I and let G’ be the

graph induced on the vertices V’-({i}LI N({i}))
else (Vie V’, d(i)<n/16)
begin

(choice) randomly choose x and y such that 0 -<_ x, y <= q 1
X-
In parallel, V e V’,
begin
compute n(i)= [q/2d(i)J
compute l(i) (x + y. i) mod q
if l(i)<= n(i) then add to X

end

In parallel, ’i e X, j e X,
if (i, j) e E’ then

if d (i) <- d (j) then I’ <-- I’- { i}
else I’<-- I’-{j}

1048 MICHAEL LUBY

I’,-IUI’
Y- I’U N(I’)
G"-(V’, E’) is the induced subgraph on V’- Y.

end
end

end

5. A history of the ideas used in the general strategy. Some of the ideas outlined
in 4 have been developed in other contexts. The purpose of this section is threefold"

1. Give proper credit to previous researchers.
2. Indicate the innovations in 4 by contrasting this work with previous work.
3. Highlight techniques common to a large body of seemingly unrelated work.
The last point may be the most important: fragments of these techniques have

been used successfully many times in different contexts by many authors. By making
the connections between these techniques explicit, a more unified approach to problem
solving using these techniques may evolve.

Ther are many randomizing algorithms in the computer science literature. These
algorithms generally use random input bits to generate in a straightforward way a
number of mutually independent random variables. One of the general strategies used
in this paper consists of two parts"

(1) Prove that the necessary probability theorems still hold when the random
variables are pairwise independent instead of mutually independent (the proof
itself is not always straightforward, e.g. the proof in this paper).

(2) Construct a sample space with special structural properties where the random
variables are pairwise independent (constructing the same space with the
necessary structural properties is usually quite easy, given the plethora of
previous research in this area which is discussed in 5.1 and 5.2).

The reason for doing this is that the special structural properties of the sample space
can be used to great advantage. Previous papers which exploit this strategy are [ACGS],
[CW], [Si], [Sh]. In this paper, the special structural property of the sample space is
that all of the sample points can be constructed efficiently in parallel. This property
is used to deterministically find a good sample point quickly in parallel.

5.1. Generating d-wise independent random variables. The construction given in
4.2 was subsequently generalized to a probability distribution where the random

variables Xo," , X,_I are d-wise independent, where there are qd sample points for
any integer constant d >= 1. Credit for this generalization goes to Noga Alon [A1],
Richard Anderson [An] and Paul Beame [Be], each of whom found it independently.

Let 0 =< Xo, , xd_l =< q 1. The sample space is the collection of qa sample points

b’’’’’’’-’ (bo," ", b,_),

where b is the (i, (Yga__- x./) mod q) entry in matrix A. The probability assigned to
each sample point is 1/qa. It is possible to show that the random variables Xo, ,
are d-wise independent and that Pr[X= R]= nq/q. [CFGHRS] proves that any
probability space with n d-wise independent random variables must contain at least
n d/2 sample points.

5.2. History of d-wise independence constructions. The first person to give an
example ofrandom variables which are pairwise independent but not mutually indepen-
dent is Bernstein in 1945 (see [Fr, p. 126]). His example consists of three {0, 1} valued
random variables. Lancaster [La] generalizes this example to n 1 pairwise independent

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1049

variables on n sample points, giving constructions involving the Hadamard matrix and
Latin squares. Jotie [Jo 1], [Jo2] gives a construction for generating d-wise independent
random variables which is exactly the same as the constructions given in 4.2 and
5.1, except as noted below. O’Brien [OB] discusses generating pairwise independent
random variables with additional properties. Incomplete Block Designs (see [Ha]) are
another way to generate pairwise independent random variables.

All of the work mentioned in the preceding paragraph concentrates solely on
constructions of pairwise (d-wise) independent random variables such that each value
of each random variable is equally likely. The constructions given in 4.2 and 5.1
generalizes this slightly: the random variables are allowed to take on different values
with different probabilities.The freedom to specify nonequal probabilities for different
values of the random variables is essential to the general strategy described in 4.

5.3. Techniques for analyzing d-wise independent random variables. One of the
important features of the general strategy given in 4 is the separation of the analysis
of d-wise independent random variables from the construction of the probability space.
The modularity of this approach allows the researcher to study the properties of d-wise
independent random variables without worrying about the details of the probability
space construction. A short list of techniques for analyzing d-wise independent random
variables is given here.

1. Markov’s inequality holds for random variables assuming no independence.
2. Chebyshev’s inequality holds for pairwise independent random variables.
3. Bonferroni bounds and stronger similar bounds ICE], [Ga] are useful. These

types of bounds are used extensively in the proof of the technical lemma, which is
similar to a lemma contained in ICE].

4. Use of the d-wise independence in a natural way to divide a complicated
expression into simpler expressions. For example, E[AIB] E[A] if A and B are
pairwise independent random variables.

5. The pigeon-hole principle. For example, if it can be proved that E[X]> c
assuming d-wise independent random variables, where X is a real-valued random
variable which is possibly a function of several of the original random variables and
c is a constant, then there must be a sample point where X > c.

The proofs of Lemmas A, B, C and D use a rich mixture of these techniques.

5.4. Other applications of d-wise independent random variables. In this section,
some of the uses of d-wise independent random variables are highlighted. A complete
history is beyond the scope of this paper.

Carter and Wegman [CW] use constructions for pairwise independent random
variables to generate hashing functions with certain desirable properties. One of the
constructions they use is very similar to that discussed in [Jo2], but not quite as general
as the construction given in 5.1. They are perhaps the first to separate the analysis
of the algorithm from the construction used to generate the probability space. The
techniques they use to analyze the algorithm include techniques 1, 3 and 4 from the
previous section. The work of [CW] is used by Sipser to simplify the proof in [Si] that
BPP is at the second level ofthe polynomial time hierarchy. Similar ideas appear in [St].

Alexi, Chor, Goldreich and Schnorr [ACGS] prove that RSA/Rabin bits are
secure. They use the same construction as given in [Jo2] to generate pairwise indepen-
dent random variables and they use Chebyshev’s inequality in their analysis. Chor and
Goldreich [CG] have a simple solution to a problem originally introduced and solved
in a more complicated way by Karp and Pippenger [KP]. The solution of [CG] uses
the same construction as given in [Jo2] to generate pairwise independent random

1050 MICHAEL LUBY

variables and Chebyshev’s inequality in the analysis. Shamir [Sh] uses the construction
given in [Jo2] to distribute a secret among n people in such a way that no subset of
d people can determine anything about the secret, but any subset of d + 1 people can
completely determine the secret.

Karp and Wigderson [KW] are the first to introduce a special case of the strategy
given in 4. They use their strategy to convert their Monte Carlo MIS algorithm into
a deterministic algorithm. They use an incomplete block design to construct a probabil-
ity space with {0, 1 } valued pairwise independent random variables, where each random
variable takes on value with probability 1/2. Their analysis of the algorithm, which is
heavily dependent upon their particular construction of the probability space, is quite
complicated. There is a simpler analysis of their algorithm, which uses the techniques
in 5.3, which shows that the algorithm still works well on the average if the random
variables are only pairwise independent. This analysis, together with the construction
given in 4.2, where random variables can take on different values with different
probabilities, gives a much simpler and faster deterministic algorithm than the one
they give. However, the algorithm is still not as simple nor as fast as those presented
in this paper.

6. Generalizations of the MIS problem.
6.1. The Maximal Coloring problem. The Maximal Coloring problem generalizes

the MIS problem. The input to the Maximal Coloring problem is an undirected graph
G (V, E) and a set of colors Cv for each vertex v V. The output is a maximal
coloring. In a maximal coloring, each vertex v is either assigned a color from Cv or
is not assigned a color, subject to the restrictions that no two adjacent vertices are
assigned the same color and that if v is not assigned a color then each color in C
must be assigned to at least one neighbor of v. The MIS problem is a special case of
the Maximal Coloring problem where Cv {red} for each vertex v V. The set of
vertices colored red in any maximal coloring are a MIS.

Another problem which the Maximal Coloring problem generalizes is the A + 1VC
problem. The input to the A + 1VC problem is an undirected graph (3 (V, E). Let A
be the maximum degree of any vertex in V, let A’= A + 1 and let C {cl,. , CA’} be
a set of distinct colors. The output is an assignment of a color from C to each vertex
such that no two adjacent vertices are assigned the same color. The A + 1VC problem
is the special case of the Maximal Coloring problem where for each vertex v V,
C C. In any Maximal Coloring each vertex will be assigned some color from C
because A’ is larger than d(v). The obvious sequential algorithm for the A+ 1VC
problem follows: For v 1, , n, vertex v is assigned the smallest indexed color from
C which is not assigned to a smaller indexed adjacent vertex. One might hope to
devise a fast parallel algorithm for the A+ 1VC problem by emulating the sequential
algorithm. However, this is unlikely since

LEMMA 3. The problem of deciding what color vertex n is assigned by the above
sequential algorithm is NC complete for P.

Proof There is an easy reduction from the LFMIS problem (see 1) to this
problem. [3

Thus, as was the case for the MIS problem, the coloring algorithm cannot simply
emulate the sequential algorithm.

There is a logspace reduction from the Maximal Coloring problem to the MIS
problem. Given a Maximal Coloring problem with input G (V, E) and color sets
{C}, a new graph G’ is formed. The vertices in G’ are V’= {(v, c): v V and c C}.

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1051

The edges in G’ are

E’= {((v, c,), (v, c)): ve V and 1, 2 e Cv}
{((v, c), (w, c)): (v, w) e E and ce Cf3 C}.

There is a one-to-one correspondence between maximal colorings in G and maximal
independent sets in G’. This reduction together with the MIS algorithm shows that
the Maximal Coloring problem is in NC2.

The AVC problem is to color all the vertices using only A distinct colors. Brooks’
theorem [Br] proves that all but very special graphs can be colored with A colors, and
implicitly gives a polynomial time sequential algorithm. Karloff, Shmoys and Soroker
[KSS] have found a NC parallel algorithm for the AVC problem when A is polylog
in the number of vertices. Their algorithm uses the algorithm for the A + 1VC problem
as a subroutine. The classification of the AVC problem with respect to parallel computa-
tion is still open for unrestricted A.

6.2. Binary coherent systems. Recently, researchers in Artificial Intelligence have
been actively investigating various connectionist models of the brain [Fe], [Go], [Hi],
[Ho]. Some of the basic features of the connectionist model are shared by knowledge
representation schemas [Ts].

One particular model of the brain is a binary coherent system [Ho], [Hi]. The
binary coherent system (BCS) problem, which is studied by Hopfield [Ho], can be
formally stated as follows. The input is an undirected graph G (V, E) together with
a real-valued weight We for each edge and a real-valued threshold tv for each vertex.
Each vertex v has a state sv which can be either -1 or 1. The state of the system is a
tuple (sl,..., Slvl). The energy of vertex v in a system state is

The output is a system state where all vertices have energy greater than or equal to
zero. The BCS problem has a polynomial time sequential algorithm if all of the weights
and thresholds are input in unary. The algorithm repeats the following step until all
vertices have energy greater than or equal to zero: find a vertex with negative energy
and flip its state. The running time of this algorithm is slow if the system is large.
Hopfield suggests a simple asynchronous parallel algorithm for this problem, but
provides no formal analysis of its running time, although he does give some empirical
evidence that it is fast. An open question is whether or not the BCS problem has an
NC algorithm.

The MIS problem is a special case of the BCS problem, where all edge weights
are -1 and for each v V, t =-d(v) + 1. Thus, Algorithm D shows that at least a
special case of the BCS problem is in NC, and Baruch Awerbuch has observed that
Algorithm A can be easily modified to run asynchronously in parallel.

Another natural problem which is a special case ofthe BCS problem is the Different
Than Majority Labelling (DTML) problem. The input to this problem is an undirected
graph G (V,/). The output is a label of-1 or 1 for each vertex v such that at least
half of the neighbors of v have the opposite label. The DTML problem is a BCS
problem where all thresholds are zero and all edge weights are -1. The DTML problem
may also be viewed as a graph partition problem: partition the vertices of an undirected
graph into two sets such that for each vertex v at least half of the edges out of v cross
the partition. (Using the techniques developed in this paper, there is a fast parallel
algorithm for an easier graph partition problem which can be stated as follows: partition

1052 MICHAEL LUBY

the vertices of an undirected graph into two sets such that at least half of the edges
in the graph cross the partition.) Karloff [Kf2] has found a NC algorithm for this
problem when the input is a cubic graph, but the general problem is still open. However,
there is evidence that a different type algorithm than the MIS algorithm will have to
be found.

THEOREM 4. The problem of deciding whether there is a DTML for a graph such
that two specified vertices receive the same label is NP-complete.

This theorem gives evidence that no fast algorithm for the DTML problem can
permanently decide the labels of vertices in a local manner in the same way as is the
case for the MIS algorithm.

7. Open problems and further work.
1. Find other Monte Carlo algorithms for which the techniques developed in this

paper are applicable for converting the algorithm into a deterministic algorithm.
2. Develop probabilistic bounds on random variables that are d-wise independent.
3. Algorithm A has a local property which seems particularly well suited to

distributed computing networks where the processors can only communicate with
neighboring processors. Find applications for this algorithm in distributed computing
protocols.

4. There is no known lower bound on the parallel complexity of the MIS problem.
Either find a problem which is complete in some complexity class (like NL) and reduce
it to the MIS problem, or else find a faster MIS algorithm.

Acknowledgments. I thank Paul Beame for extensive discussions which sig-
nificantly simplified the analysis of the algorithms. Paul also made numerous sugges-
tions which substantially streamlined the presentation. I thank Stephen Cook for many
discussions about the MIS problem and related problems, and for his unswerving
belief that there must be a faster algorithm for the MIS problem. Thanks go to both
Charlie Rackoff and Gary Miller for helpful discussions about the MIS problem, and
more specifically for suggesting that an analysis be done on an algorithm very similar
to the algorithm described in 3.2. I thank Allan Borodin for introducing me to the
work on connectionist models. I thank both Paul Beame and Richard Anderson for
pointing out some of the references discussed in 5.

[AI]
[An]
[ACGS]

[ABI]

REFERENCES

N. ALON, private communication.
R. ANDERSON, private communication.
W. ALEXi, B. CHOR, O. GOLDREICH AND C. SCHNORR, RSA/Rabin bits are 1/2+

1/poly (log N) secure, Preliminary version in Proc. 25th IEEE Symposium on Foundations
of Computer Science, October 1984; this Journal, to appear.

N. ALON, L. BABAI AND A. ITAI, A fast and simple randomized parallel algorithm for the
maximal independent set problem, private communication.

[Be] P. BEAME, private communication.
[Br] R.L. BROOKS, On colouring the nodes of a network, Proc. Cambridge Philos. Soc., 37 (1941),

pp. 194-197.
ICE] K. CHUNG AND P. ERDOS, On the application of the Borel-Cantelli lemma, Amer. Math. Soc.,

72 (1952), pp. 179-186.
[CFGHRS] B. CHOR, G. FRIEDMAN, O. GOLDREiCH, J. HASTAAD, S. RUDICH, AND R. SMOLANSKI,

The bit extraction problem, preprint, accepted to Proc. 26th IEEE Symposium on Foundations
of Computer Science.

[CG] B. CHOR AND O. GOLDREICH, On the power of two-points based sampling, technical report,
MIT Laboratory for Computer Science, Cambridge, MA.

[Co] S. COOK, A taxonomy ofproblems with fast parallel algorithms, Information and Control, Vol.
64, Nos. 1-3, January/February/March 1985, Academic Press, New York.

SIMPLE PARALLEL ALGORITHM FOR THE MIS PROBLEM 1053

[CL]

[cw]

[Fe]

[Fr]

[FW]

[Ga]
[Go]

[Ha]
[Ho]

[Hi]

[II]

[IS]

[Jol]

[Jo2]

[Kfl]
[Kf2]
[KP]

[KSS]

[KW]

[KUW]

[La]
[Le]

[Lu]

[OB]
[R]
[Si]

[Sh]
[St]

[Ts]

[Va]

S. COOK AND M. LUBY, A fast parallel algorithm for finding a truth assignment to a 2-CNF
formula, in preparation.

J. CARTER AND M. WEGMAN, Universal classes ofhash functions, J. Comput. System Sci., 18
(1979), pp. 143-154.

J. A. FELDMAN, A connectionist model of visual memory, Parallel Models of Associative
Memory, G. E. Hinton and J. A. Anderson, eds., Lawrence Erlbaum Associates, Hillsdale,
NJ, 1981.

W. FELLER, An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd edition,
John Wiley, New York, 1968.

S. FORTUNE AND J. WYLLIE, Parallelism in random access machines, Proc. Tenth ACM
Symposium on Theory of Computing, 1978, pp. 114-118.

J. GALAMBOS, Bonferroni inequalities, Ann. Probab., 5 (1977), pp. 577-581.
L. M. GOLDSCHLAGER, A computational theory of higher brain function, Technical Report,

Stanford Univ. Stanford, CA, April 1984.
M. HALL, Jr., Combinatorial Theory, Blaisdell, Waltham, MA, 1967.
J. J. HOPFIELD, Neural networks and physical system with emergent collective computational

abilities, Proc. National Acad. Sci., 79 (1982), pp. 2554-2558.
G. E. HINTON, T. SEJNOWSKI AND D. ACKLEY, Boltzmann machines: constraint satisfaction

networks that learn, Technical Report CMU-CS-84-119, Carnegie-Mellon Univ., Pittsburgh,
PA.

A. ISRAELI AND A. ITAI, Afast and simple randomizedparallel algorithmfor maximal matching,
Computer Science Dept., Technion, Haifa, Israel, 1984.

A. ISRAELI AND Y. SHILOACH, An improved maximal matching parallel algorithm, Technical
Report 333, Computer Science Dept., Technion, Haifa, Israel, 1984.

A. JOFFE, On a sequence of almost deterministic pairwise independent random variables, Proc.
Amer. Math. Soc., 29 (1971), pp. 381-382.

On a set ofalmost deterministic k-independent random variables, Ann. Probab., 2 (1974),
pp. 161-162.

H. KARLOFF, Randomized parallel algorithm for the odd-set cover problem, preprint.
private communication.

R. KARP AND N. PIPPENGER, A time-randomness tradeoff, presented at the AMS Conference
on Probabilistic Computational Complexity, Durham, NH, 1982.

H. KARLOFF, D. SHMOYS AND D. SOROKER, Efficient parallel algorithms for graph coloring
and partitioning problems, preprint.

R. M. KARP AND A. WIGDERSON, A fast parallel algorithm for the maximal independent set

problem, Proc. 16th ACM Symposium on Theory of Computing, 1984, pp. 266-272.
R. M. KARP, E. UPFAL AND A. WIGDERSON, Constructing a perfect matching is in random
NC, Proc. 17th ACM Symposium on Theory of Computing, 1985, pp. 22-32.

H. LANCASTER, Pairwise statistical independence, Ann. Math. Statist., 36 (1965), pp. 1313-1317.
G. LEV, Size bounds and parallel algorithms for networks, Report CST-8-80, Dept. Computer

Science, Univ. Edinburgh, 1980.
M. LuaY, A simple parallel algorithm for the maximal independent set problem, Proc. 17th ACM
Symposium on Theory of Computing, 1985, pp. 1-10.

G. O’BRIEN, Pairwise independent random variables, Ann. Probab., 8 (1980), pp. 170-175.
A. RINYI, Probability Theory, North-Holland, Amsterdam, 1970.
M. SIPSER, A complexity theoretic approach to randomness, Proc. 15th ACM Symposium on
Theory of Computing, 1983, pp. 330-335.

A. SHAMIR, How to share a secret, Comm. ACM, 22 (1979), pp. 612-613.
L. STOCKMEYER, The complexity of approximate counting, Proc. 15th ACM Symposium on
Theory of Computing, 1983, pp. 118-126.

J. TSOTSOS, Representational axes and temporal cooperative processes, Technical Report RBCV-
84-2, Univ. Toronto, Toronto, Ontario, April 1984.

L. G. VALIANT, Parallel computation, Proc. 7th IBM Symposium on Mathematical Foundations
of Computer Science, 1982.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
013

FINDING A MAXIMUM CLIQUE IN AN
ARBITRARY GRAPH*

EGON BALAS- AND CHANG SUNG YU$

Abstract. We describe a new type of branch and bound procedure for finding a maximum clique in an
arbitrary graph G=(V, E). The two main ingredients, both of O<IvI+IEI) time complexity, are (i) an
algorithm for finding a maximal triangulated induced subgraph of G; and (ii) an algorithm for finding a
maximal k-chromatic induced subgraph of G. We discuss computational experience on randomly generated
graphs with up to 400 vertices and 30,000 edges.

Key words, maximum clique, vertex packing, triangulated subgraphs, k-chromatic subgraphs, implicit
enumeration

AMS(MOS) subject classifications. 05, 90, 68

1. Introduction. In this paper we address the problem of finding a maximum
cardinality clique in an arbitrary undirected graph. Given a graph G (V, E) with
vertex set V and edge set E, a complete subgraph of G is one whose vertices are pairwise
adjacent. A clique is a maximal complete subgraph. For the sake of brevity, the vertex
set of a clique is also called a clique. A vertex packing (or stable set or independent set
of vertices) is a vertex set whose elements are pairwise nonadjacent. A vertex cover is
a set of vertices that cover (i.e., meet) all the edges. The complement of a graph
G=(V,E) is the graph G:=(V,E), where E:={(i,j)C:E" i,j V, ij}. For S V,
the subgraph of G induced by S is G(S) := (S, ($ x S) fq E).

The following three statements concerning any S V are easily seen (and well
known) to be equivalent:

(1) S is the vertex set of a maximum clique in G,
(2) S is a maximum vertex packing in G,
(3) V\S is a minimum vertex cover in G.

Accordingly, the three problems of
(1) finding a maximum clique in G,
(2) finding a maximum vertex packing in G,
(3) finding a minimum vertex cover in G,

are equivalent. They are also known to be NP-complete. These problems have many
applications, a few of which are listed below.

Information retrieval. If the vertices of a graph represent stored pieces of informa-
tion and the edges describe the interrelations between the pieces, then the problem of
retrieving from storage a maximum subset of totally interrelated pieces of information
is a maximum clique problem.

Experimental design. If the vertices of a graph represent subsets (blocks) of size
n of a set S of treatments in a statistical experiment and the edges designate those
pairs of subsets having at most k elements in common, then the problem of finding a

Received by the editors February 12, 1985, and in revised form September 15, 1985. The research
underlying this report was supported by the National Science Foundation under grant ECS-8218181 and
the U.S. Office of Naval Research under contract N00014-82-K-0329 NR047-607.

t Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, Pennsylvania
15213.

: AT&T Bell Laboratories, Murray Hill, New Jersey 07974.

1054

FINDING A MAXIMUM CLIQUE 1055

maximum collection of blocks with at most k common elements between any two
blocks is a maximum clique problem.

Signal transmission. If the vertices of a graph represent signals and the edges mark
those pairs of signals that can be clearly distinguished from each other, then the
problem of selecting a maximum set of clearly distinguishable signals is again a
maximum clique problem.

Computer vision. A relational structure is a set of elements partitioned into color
classes, along with a binary relation between the elements. Given two relational
structures, an input A and a reference B, one wants to optimally "match" A to B, i.e.,
find a substructure of B, to which A comes as "close" as possible. To this end one
constructs an association graph G that has a vertex (a, b) for every pair of elements
a A, b B, belonging to the same color class, and an edge for every pair of vertices
(a, b), (c, d) such that the relation between a and c in A is the same as that between
b and d in B. Then optimally "matching" A to B amounts to finding a maximum
clique in the association graph G.

In each of the above cases, if we adopt definitions for the edges complementary
to the above ones, we obtain of course a maximum vertex packing problem.

Earlier work on vertex packing or vertex covering algorithms includes the papers
by Nemhauser and Trotter [1975], Balas and Samuelsson [1977], Tarjan and
Trojanowski [1977]. The first two of these present branch and bound methods that
use information from a partial polyhedral description of the convex hull of feasible
points, and were tested on randomly generated graphs with up to 50 vertices and 50%
density. The third one describes a recursive algorithm that depends on a somewhat
complicated case analysis, but has a worst case bound of 0(2n/3). For the maximum
clique problem itself, we mention the procedures of Bron and Kerbosch [1973],
Gerhards and Lindenberg 1979], and Loukakis and Tsouros 1982]. These are implicit
enumeration algorithms that use some logical tests to eliminate subproblems. We
implemented and tested two of them and used them as benchmarks for, the testing of
our own procedure.

The approach that we describe in this paper uses the properties of a special class
of perfect graphs, known as triangulated or chordal, in which it is easy to find a
maximum clique. It also uses the relationship between cliques and vertex colorings of
a graph in order to derive bounds on the clique size. It tends to create fewer branches
than any of the above methods and is consequently more efficient.

The paper is organized as follows. Section 2 gives the necessary background
information on triangulated graphs and outlines our general approach. Sections 3 and
4 describe the two main ingredients of our procedure: algorithms for finding (i) a
maximal triangulated induced subgraph, and (ii) a maximal k-chromatic induced
subgraph, of a given graph. Section 5 states the procedure in its entirety, while 6
discusses computational experience.

2. Cliques, colorings and triangulated graphs. A (vertex) coloring of a graph G
assigns colors to the vertices of G in such a way that no two adjacent vertices get the
same color. Thus a coloring is a partitioning of the vertex set of G into independent
sets (color classes). The cardinality of a minimum (vertex) coloring is called the
chromatic number of G. G is k-chromatic if its chromatic number is k.

If G V, E) is a graph and A is the incidence matrix of maximal vertex packings
(independent sets) versus vertices of G, i.e., A (aij) with a0 1 if independent set
contains vertex j, ai 0 otherwise, then the maximum clique and the minimum coloring

1056 EGON BALAS AND CHANG SUNG YU

problems can be stated as

(P1)
to(G) max lx

Ax<= 1

and

3’(G) min 1y

(P2) aT"y >- I

y{O, 1} Vi,

respectively. Since the relaxation of the integrality conditions on x and y turns (P1)
and (P2) into a pair of dual linear programs, clearly to(G)-< 3’(G) always holds. G is
called perfect if to(G’)= 3’(G’) for all induced subgraphs G’ of G. The perfect graph
theorem (conjectured by Berge [1961] and proved by Lovfisz [1972]) asserts that G is
perfect if and only if G is.

When G is perfect, the linear programming relaxations of (P1) and (P2) have
integer solutions for arbitrary objective functions (Chvfital [1975]); hence they can be
solved in time polynomial in the input. Although this does not imply polynomiality
in n IV[, since the matrix A may have a number of rows exponential in n, it has
recently been shown by Gr/Stschel, Lovfisz and Schrijver [1984] that if G is perfect,
problem (P1) is solvable in time polynomial in n.

A special class of perfect graphs whose properties make them particularly well
suited for our purposes, is the class of triangulated graphs. A graph G is triangulated
(or chordal) if every cycle of G of length at least 4 has a chord (or, equivalently, if G
has no holes, i.e., no chordless cycles of length -> 4). Triangulated graphs have been
studied by Dirac [1961], Fulkerson and Gross [1965], Gavril [1972], Rose, Tarjan and
Lueker [1976] and others. For an up-to-date survey of their properties see Golumbic
[1980].

A vertex v of an arbitrary graph G is called simplicial if all vertices adjacent to
v are pairwise adjacent among each other, i.e., if v belongs to exactly one clique. An
ordering v,..., v, of the vertices of G is called perfect if for k= 1,..., n, v is
simplicial in G({v,. ., v,}). The basic properties of triangulated graphs that we will
be using can now be stated as follows:

(i) every triangulated graph has at least two simplicial vertices;
(ii) G- (V, E) is triangulated if and only if V admits a perfect ordering; and
(iii) determining whether G is triangulated requires O(IV[+ IE]) steps.

If G is triangulated, then
(iv) every induced subgraph of G is triangulated;
(v) the cardinality of a maximum clique is equal to that of a minimum coloring;
(vi) G has at most Ivl cliques; and
(vii) finding a maximum clique and a minimum coloring in G requires O([V[+ IEI)

steps.
We use the above properties to give an o(lvl/tEl algorithm for generating a

maximal triangulated induced subgraph (MTIS) G(T) of an arbitrary graph G, and
finding a maximum clique of G(T). This algorithm, called TRIANG, is one of the
two main ingredients of our procedure. The second ingredient, called COLOR, finds
a minimum coloring of G(T), which is of the same cardinality k as the maximum
clique; then it extends G(T) by appending vertices to it while maintaining its chromatic
number, until it becomes a maximal k-chromatic induced subgraph of G.

FINDING A MAXIMUM CLIQUE 1057

Let this subgraph be G(W). If G(W)= G, we are done: the maximum clique
found in G(T) is maximum in G. Otherwise we branch, based on the principle that
any clique larger than the current largest one must contain one of the vertices in V\ W.
The branching thus replaces the current problem by a set of new subproblems, each
one defined on a vertex set contained in the neighbor set of some v6 V\W. The
procedure, or part of it, is then applied to each new subproblem, with variations to
be discussed after we have described the main subroutines.

3. Finding a MTIS and its maximum clique. Determining whether a graph G-
(V, E) is triangulated can be done most efficiently by checking whether G admits a
perfect ordering. This can be done by applying n times, for k 1,. ., n, the following
step:

Find a simplicial vertex in G(V\(wi,..., We-i}). If none exists, stop: G is not
triangulated. Otherwise call the new vertex we and set k<-k+ 1. If k+ 1 n, stop:
(Wl," ", w,) is a perfect ordering. Otherwise repeat.

The complexity of this procedure is O(IVI3); but one can do better, as shown by
Rose, Tarjan and Lueker [1976], whose procedure has a complexity of
Their approach essentially uses the following property.

Given an arbitrary ordering r (vl,. ", v,) of V, call the elements of the set

N+(vi):={vj V\{vi}l(vi, vj) E and j> i}

the successors of v, and call the successor of vi with smallest index, the first successor
of v. We say that v is quasi-simplicial in tr (vl,. ", vn) if the first successor of v
is adjacent to every other successor of v.

THEOREM 1. Given a graph G (V, E) and an ordering tr (Vl," Vn), the
following two statements are equivalent;

(i) for i= 1,..., n, vi is simplicial in G({vg, vn});
(ii) for i= 1,..., n, v is quasi-simplicial in

Proof. (i) obviously implies (ii). Now suppose (ii) holds; then vn is simplicial in
G({v,}). Assume v is simplicial in G({v,. , v,}) for i= n, n 1,. , k + 1, and let

k. If Vk has less than two successors, we are done; otherwise let wl,’", Wp be the
successors of Vk, with wl Vl the first successor. Since Vk is quasi-simplicial, w2, , Wp
are adjacent to wl Vl. Since Vl by assumption is simplicial, w2,..., Wp are pairwise
adjacent. Hence Vk is simplicial, and the induction is complete.

COROLLARY 1.1. An ordering O’:(Vl,""" Vn) is perfect if and only if for i=

1,. ., n, v is quasi-simplicial in
While the complexity of checking whether a vertex is simplicial is O(vIE), checking

for quasi-simpliciality requires only O(I V[) adjacency tests.
Rose, Tarjan and Lueker [1976] use a lexicographic labeling algorithm (LEX P)

for generating an ordering of V that is perfect if and only if G is triangulated; they
then use an adjacency testing algorithm (FILL) to check whether the ordering produced
by LEX P is perfect. The adjacency testing algorithm is a straightforward application
of Corollary 1.1.

As to LEX P, it starts by assigning the label to every vertex. It proceeds by
numbering the vertices n, n-1,..., 1 in an order based on the lexicographic labels
which are updated at every iteration. For n, n-1,..., 1, it thus performs the
following steps:

1. Choose a vertex v with lexicographically largest label, and assign the number
itov.

2. Append to the label of every unnumbered vertex adjacent to v, and set 1.

1058 EGON BALAS AND CHANG SUNG YU

THEOREM 2 (Rose, Tarjan and Lueker [1976]). G is triangulated if and only if the
ordering generated by algorithm LEX P is perfect.

Our procedure combines this lexicographic labeling algorithm with a modified
version of the adjacency testing algorithm, which screens the vertices to be included
into the MTIS, rejecting all those whose addition would make the ordering imperfect.
Thus our algorithm orders V into a sequence or, but also generates a subsequence or(T)
whose elements T induce a maximal triangulated subgraph in G.

ALGORITHM TRIANG. Let denote the current number (rank in or) to be assigned,
T the set of vertices currently included into the triangulated subgraph, or(T) the
ordering defined on T.

O. Initialization. Assign the label to every vertex. Set i-n, T-, or(T) -.
1. Choosing v. If 0, stop: G(T) is a maximal triangulated subgraph. Otherwise,

choose an unnumbered vertex v with lexicographically largest label, assign number
to v, i.e., set vi *- v, and go to 2.

2. Checking whether v can be added to T. Let cr be the sequence obtained from
or(T) by adding v as the first element. If v is quasi-simplicial in cr, set T- TU {v},
or(T),-cr, and go to 3. Otherwise set ii-1 and go to 1.

3. Labeling. Append to the label of each unnumbered vertex w adjacent to v,
set ii-l, andgoto 1.

THEOREM 3. Algorithm TRIANG finds a MTIS of G in O(I V + ILl) time.

Proof (i) Let or(T) (Wl, , witI) be the ordering generated by TRIANG. Since
step 2 guarantees that for i= 1,..., ITI, wi is quasi-simplicial in G({w,..., Wlrl}),
from Theorem I the ordering or(T) is perfect. Hence the subgraph G(T) is triangulated.

(ii) We claim that G(T) is maximal. For if not, then there exists a vertex v V\ T
such that G(TU {v}) is triangulated. Since v T, v was rejected at some iteration as
not being quasi-simplicial in the sequence tr formed in step 2. Let this particular
sequence be cr and let TO be the vertex set ordered by cr (containing v as its first
vertex). Then G(T) is not triangulated. But T TU {v}, and G(Tt3 {v}) is triangu-
lated, a contradiction. Thus G(T) is a MTIS of G.

(iii) Next we establish the complexity of TRIANG. One way of carrying out the
steps of TRIANG efficiently is to keep a list of subsets of vertices with the same label,
where the subsets are ordered according to lexicographically decreasing labels.
Whenever we append an entry to the label of a vertex v in step 3, we take v out of
its subset S. It is easy to see that the new label of v cannot be greater than that of the
vertices in the subset S’ preceding S. If it is the same as the latter, we put v into S’;
otherwise we create a new subset S"= {v}, placed between S’ and S. This operation
requires constant time for each vertex whose label is updated, and it keeps the vertex
with lexicographically largest label at the head of the list. Thus each application of
step 3 requires O(deg (v)) time (where v is the vertex whose neighbors are having
their labels updated and deg (v) is the degree of v), and each application of step 1
requires a constant amount of time (choose the vertex at the head of the list). Finally,
checking in step 2 whether v is quasi-simplicial in cr involves checking for each
successor of v in cr, other than the first one, whether it is adjacent to the latter; and
this again requires O(deg (v)) time. To obtain the complexity of the entire sequence
of steps we have to sum over all v V, which yields o(Ivl/ IEI).

Notice that, as a byproduct of applying TRIANG, we also identify the (or a)
largest clique of G(T): it consists of the vertex v with the largest number of successors
in or(7") (the perfect ordering produced by TRIANG), together with the successors of
v. A minor modification of step 2 provides for counting the successors of v and storing
the new largest clique whenever the earlier largest clique size is exceeded.

FINDING A MAXIMUM CLIQUE 1059

Next we illustrate TRIANG on an example.
Example 1. Let G be the graph of Fig. l(a), where the number (rank in or) of

each vertex is shown in parentheses, while its label is shown in square brackets.
After initializing the label of each vertex with (not shown in the figure), we

choose vertex 1 (breaking ties arbitrarily) and assign to it number 14. Clearly, vertex
1 is quasi-simplicial in G({ 1 }), and so we set T { 1 }, o-(T) (1). We then append 14
to the label of the, unique vertex adjacent to 1, namely 2. At the next iteration we
choose vertex 2, assign to it number 13, set T {1, 2}, or(T)--(2, 1), and append 13
to the labels of 4 and 5. Next we choose vertex 4 (tied with 5 for the lexicographically
largest label), number it 12, set T {1, 2, 4}, or(T) (4, 2, 1), and add 12 to the labels
of 3, 5, 8, 9.

At the next iteration, vertex 5 becomes number 11, and 11 is added to the labels
of 6, 8, 9. Then vertex 8 becomes number 10, and 10 is appended to the labels of 7,

(14)

14]

(8)[12] (121113__] / (II),[13,12] (7)[11]

1:t’10]

(5) [:tO] (4)[10,5] (2) [9] (1) [9,2]

(a)

(14)

(12) (Ii)

(5) (4) (2)

(b)

FIG.

1060 EGON BALAS AND CHANG SUNG YU

9, 11, 12. Vertex 9 becomes number 9, and 9 is appended to the labels of 10, 13 and
14. Vertex 3 becomes number 8, and 8 is appended to the label of 7. Vertex 6 becomes
7, with 7 added to the label of 10.

At this point, the next vertex with lexicographically largest label is 7; it gets the
number 6, but setting r= (7, 6, 3, 9, 8, 5, 4, 2, 1) in step 2 shows that 7 is not
quasi-simplicial in tr: the first successor of 7, which is 3, is not adjacent to 8, also a
successor of 7. Thus 7 is rejected (not included in T).

As the process continues, vertex 10 is also rejected (upon becoming number 3),
and all the remaining vertices are added to T. The final sequence tr(T) is (14, 13, 12,
11, 6, 3, 9, 8, 5, 4, 2, 1), and the MTIS G(T) is shown in Fig. l(b). The vertex with
the largest number of successors in tr(T) is 9, and the corresponding maximum clique
has vertex set {9, 8, 5, 4}.

The MTIS found by TRIANG is maximal with respect to set inclusion, but not
necessarily of maximum cardinality. The problem of finding a maximum cardinality
triangulated induced subgraph of an arbitrary graph is NP-complete (Yannakakis
[1978]). A graph may have many MTIS’s, and they may be of different sizes. More
importantly, they may have maximum cliques of different sizes.

Note that in Step 1 of TRIANG one is free to choose any unnumbered vertex
with a lexicographically largest label, and different rules for breaking ties produce
different MTIS’s. We implemented and tested four tie breaking rules, based on the
following criteria: (1) random choice; (2) largest number of adjacent vertices in the
current set T; (3) largest number of adjacent vertices in Tt_J C, where C is the set of
candidates; (4) largest degree in G. The comparative results are discussed in 6.

4. Finding a maximal k-chromatic induced subgraph. Having generated a MTIS
G(T), next we extend G(T) to a maximal induced subgraph G(W) of G with the
same maximum clique size as G(T). This is done as follows. Since G(T) is triangulated,
its maximum clique size is the same as its chromatic number, i.e., the cardinality of a
minimum coloring of (the vertices of) G(T). Furthermore, given a perfect ordering
O"-" ()1,""", /)ITI) of the vertices of G(T), finding a minimum coloring in G(T) is
quite straightforward: initialize k color classes (independent sets), where k is the size
of a maximum clique in G(T), and examine the vertices of G(T) in the reverse order
of tr (i.e., starting with ViTi) putting each vertex in the first color class where it fits
(i.e., where it has no neighbors). Since each vi has at most k-1 successors in
G(vi, , VlT-i), each vertex fits into some color class. Expanding G(T) while preserving
k color classes can then be done simply by examining each vertex v V\T in turn,
and putting it into the first color class where it fits, or leaving it out if it does not fit
into any class. Here is a formal statement of the procedure.

ALGORITHM COLOR.
0. Initialize k color classes C1,’", Ck, C./=, j- 1,..., k, set V,- V\T, and

go to 1.
1. If T , go to 2. Otherwise, choose v T with the highest rank in tr, and a

color class C that contains no vertex adjacent to v, set Cj ,- C {v}, T,- T\{v}, and
go to 1.

2. Choose any v V. If there exists a color class that contains no vertex adjacent
to v, choose such a color class C./and set C - C t.J {v}. In any case, set V,- V\{v}. If
V , go to 2. If V , stop: G(W), where W Uk

Ci, is a maximal k-chromatici=1

induced subgraph of G.

The above algorithm extends a MTIS of G with maximum clique size k to a
maximal k-chromatic induced subgraph of G. In the branch and bound procedure to

FINDING A MAXIMUM CLIQUE 1061

be described below, we sometimes need to find a maximal k-chromatic induced
subgraph of some graph for which we do not have a MTIS. In these cases we use a
modified version of the above algorithm, called COLOR 2, in which the instruction
"set V- V\T and go to 1" of the Initialization Step is replaced by "go to 2," and
Step 1 is skipped.

Since checking whether a vertex v fits into any of the k color classes requires
deg (v) adjacency tests, the complexity of COLOR is again O([

A more sophisticated version of the coloring procedure, called COLINT, amends
the above algorithm with an interchange heuristic; i.e., having found a maximal
k-chromatic induced subgraph G(W) by steps 0-1-2 (or 0-2) above, it then tries to
increase the cardinality of W by performing the following step for each v V\W in
turn (here V is again the vertex set of G):

3. Put v into the color class Cj that contains the smallest number of vertices
adjacent to v, and try to transfer each w C adjacent to v into some other color class
that contains no vertex adjacent to w.

If Step 3 is successful for cr vertices v c V\ W, the cardinality of W increases by

Step 3 is computationally more expensive than the procedure 0-1-2. Its calculations
can at best be organized so as to keep its complexity within O(deg (v)) for each vertex
v whose coloring is attempted without success, and O(]E]) for each vertex colored in
Step 3. To attain this performance, it is recommendable to amend the adjacency list
of each v V, say Ll(V), with a second list of the form

Lz(v) (Jl, ,JIL,I;J.; n(j.)),

where for i= 1,..., ILl[, ji is the index of the color class containing the ith element
of Ll(v); j. is the index of the color class containing the fewest vertices adjacent to
v; and n(j.) is the number of vertices adjacent to v in color class Cj.. Then identifying
the color class C, containing the smallest number of vertices adjacent to v requires
looking up the next to last entry of L2(v); and checking for every w e C, adjacent to
v whether it can be transferred into some other color class where it has no neighbors
amounts to checking whether the last entry of L2(w) is 0. However, upon the successful
transfer of some w e C, to a new color class, the lists L2(u) have to be updated for
every u adjacent to w, a task which for all w e C. adjacent to v requires a total effort
of O([E[). Hence the total effort involved in the interchange heuristic is O([V[.

Thus the worst case bound on the computational effort required by COLINT is
higher than for COLOR, and it is not clear a priori whether the increase in the size
of W justifies the increased effort. Therefore, pending some computational testing that
we intend to carry out in the near future, we have not incorporated COLINT into the
current version of our algorithm.

5. The algorithm as a whole. Our algorithm starts by finding a MTIS G(T) of G,
and then extends G(T) to a maximal k-chromatic induced subgraph G(W) of G,
where k is the size of a maximum clique in G(T) (hence in G(W)). If W= V, we are
done; otherwise we branch, based on the following considerations. For v e V, we denote
N(v)={we V\{v}l(v, w)eE}.

THEOREM 4. Let k be the cardinality of a maximum clique of G(W), and let
(vl," ", V,n) be an arbitrary ordering of the set V\ W. If G has a clique K* such that
[K*[> k, then K* is contained in one of the m sets

V/:= { vi} t_J N(vi)\{ Vl, Vi--1}, 1,’’’, m,

where for 1 we define { vl, ", vi-1} f.

1062 EGON BALAS AND CHANG SUNG YU

Proof Since]K*[> k, K* W and thus vi K* for some i {1,. ., m}. Since
K* is a clique, this implies K*{vi}U N(v) for some i{1,..., m}. Thus either
K*

_
{v} U N(v), or else K* is contained in one of the sets {v} U N(vi)\{v},

2, ..., m. In the latter case, either K* {v2} U N(v2)\{vl}, or else K* is contained in
one of the sets {v}U N(v)\{vl, v2}. The result follows by induction.

Theorem 4 leads to the following branching rule. Node of the search tree (where
is a string) is characterized by the pair [I,, E,], where I, and E, are the sets of vertices

forcibly included into, and excluded from, the graph on which the current subproblem
is defined. In the language of implicit enumeration, the variables corresponding to
and E, are fixed at 1 and 0, respectively, while the variables corresponding to S,
V\(L U E,) are free. Let G(W) be a maximal k-chromatic induced subgraph of G(S,),
and let S,\Wt={Vl, v,,}. We then generate rn new nodes (subproblems)
1,..., tm, by setting

(5.1)
L, L u { v,},

Ea E, U (S,\({v,} U N(v,))) U {v,,. , Vi_l}

By construction, for any the set S,= V\(L U E,) is contained in rqvi, N(v).
Therefore I, consists of pairwise adjacent vertices, and the cardinality of It (which is
the same as the length of the string t) is equal to the level of node in the search tree
(where the level of the root of the tree is defined to be 0). The subproblem associated
with node of the search tree consists of finding a maximum clique in G(St): if K, is
a clique in G(S,), then K* Kt U I is a clique in G.

The problems G(S,) could be solved by applying to them recursively the two
subroutines TRIANG and COLOR. However, computational testing has convinced us
that this is not the best way to proceed: finding a MTIS in each subgraph G(S,) is
relatively expensive, and the occasions when G(S,) contains a vertex set K, such that
K U I is a clique larger than the current largest one, are not too frequent. It is
considerably cheaper to simply use the algorithm COLOR to find a maximal (k-
II, l)-chromatic induced subgraph of G(St) (where k is the size of the largest clique in
G found so far), except in cases where there is serious indication that G(S,) may
contain a clique larger than k-]I,[. Such is the case, for instance, whenever Iz, l-k
and S, . The motivation for choosing k ILl as the chromatic member ofthe maximal
subgraph we construct, is that if G(S,) itself turns out to be such a subgraph, then P,
can be eliminated.

We are now in a position to state our algorithm formally. We denote by L the list
of live (active) nodes of the search tree, and by P, the subproblem at node t.

Step 0 (Initialization). Put into L the problem Po of finding a maximum clique
in G= (V, E). Set t=0, I,=E,=,S,=V, k=0, andgoto 1.

Step 1 (Subproblem selection). If L=, stop: the current clique is maximum in
G. Otherwise choose an element P, of L and remove it from L.

If V\Et <---- k, eliminate Pt and go to 1.
If lV\Et[> k but [It[--k, go to 2.
Otherwise go to 4.
Step 2 (TRIANG). Find a MTIS G(T) of G(St), and a maximum clique K, in

G(Tt). Store /t C Kt as the current largest clique, and set k[It U Kt]. If Tt St,
eliminate Pt and go to 1. Otherwise go to 3.

Step 3 (COLOR). Find a minimum coloring of G(Tt), and expand its color classes
to find a maximal [Ktl-chromatic induced subgraph G(Wt) of G(S). If W =St,
eliminate P, and go to 1. Otherwise go to 5.

FINDING A MAXIMUM CLIQUE 1063

Step 4 (COLOR 2). Find a maximal (k-[LI)-chromatic subgraph G(Wt) of
G(S,). If W, S,, eliminate Pt and go to 1. Otherwise go to 5.

Step 5 (Branching). Order the set St\ Wt into a sequence (v,. ., v,,). Generate
m new subproblems defined by (5.1), place them into L, and go to 1.

The strategy of this algorithm differs from that of most branch and bound pro-
cedures in that no attempt is made to derive an upper bound on the objective function
value of the subproblems Pt generated during the procedure. Instead, the focus is on
finding maximal subgraphs (i.e., subproblems) for which the current lower bound is
also an upper bound, and which can thus be eliminated. Since we have no known
upper bound on the value of each Pt, the search strategy used is depth first.

Our approach is based on the idea of finding a maximal induced subgraph G’ of
G, of a type for which it is easy to find a maximum clique in G’; and we chose G’ to
be triangulated. But triangulated subgraphs are not the only ones in which it is easy
to locate a maximum clique. Another such class is that of cotriangulated graphs, i.e.,
complements of triangulated graphs. Finding a maximum clique in a cotriangulated
graph G" amounts to finding a maximum vertex packing in the corresponding triangu-
lated graph (" (the complement of G"), and this can also be done in O(I VI + IEI) time
(see, for instance, Golumbic [1980]). In particular, when the graph G is dense, there
are good chances that a maximal cotriangulated induced subgraph (MCIS) is larger,
and contains a larger clique, than a MTIS of the same graph. Thus Step 2 of our
algorithm can be replaced by the following more expensive, but also more efficient
version.

Step 2’ (TRIANG). Find a MTIS G(T’t) of G(St) and a maximum clique K’t in
G(T’t). Find a MCIS G(T’[) of G(St) and a maximum clique with vertex set K’ in
G(T’). Choose Ig, I- max {Ig’,l, IgTI}, and set T= T’ if the maximum is attained for
g;I, T-T" otherwise. Break ties by choosing TI max IT’I, T"I . Store It t_J K, as
the current clique and set k lit t.J Ktl. If Tt St, eliminate Pt and go to 1. Otherwise
go to 3.

Another version, which avoids the effort involved in finding both a MTIS and a
MCIS of G, makes a decision as to which one to use, based on the density of the
given subgraph: if the number of edges of G(St) is <- 1/41StI([S, 1), it finds a MTIS;
otherwise, it finds a MCIS in G(St). Then it finds a maximum clique K, in the resulting
graph G(Tt).

These amended versions of the algorithm have not yet been implemented: our
computational experience is limited to the basic version stated above.

Next we illustrate this basic version of the algorithm on a numerical example.
Example 2. Consider the graph G shown in Fig. 2(a). We initialize and go to

Step 1. We choose and remove from L the problem Po defined on G. Since V\E] VI >
k and [It[k =0, we go to Step 2, i.e., apply TRIANG. Suppose we generate the
ordering or= (2, 12, 8, 5, 9, 1, 4, 11, 10, 7, 3, 6) and the maximal triangulated subgraph
G(To), with To--{1, 3, 5, 6, 7, 8, 10, 11} shown in Fig. 2(b). A maximum clique in
G(To) has vertex set Ko {5, 7, 8}. We store Ko, set k 3 and go to Step 3.

COLOR finds the minimum coloring ({6, 1,5}, {3,7, 10, 11}, {8}) in G(To), and
extends it by including vertex 12 into the first, and vertex 2 into the second color class.
Thus our maximal 3-chromatic induced subgraph is G(Wo), with all but 2 vertices (4
and 9) contained in W0.

The Branching Step leads to the creation of two subproblems, P1 and P2, defined
by

11 {4}, E, {2, 6, 10, 11, 12}

1064 EGON BALAS AND CHANG SUNG YU

3

6

11

1 2

4 5

8

FIG. 2(a)

12

11

G(To)

7

10

FIG. 2(b)

1

7 8

9

FIG. 2(c)

FINDING A MAXIMUM CLIQUE 1065

k=3

k--0

P2 E 2,3,4,6,11,12}

k=5

IVEII21 _< k

Iii 4,8}

Ell 1,2,3,6,10,II,12]

k= 3

k=5

TII1 Si11

112 {4,9]

El2 {1,2,3,6,8,10,II,12]

k 5 IV\ElI21 _< k

112

112

4,8,9}

1,2,3,5,6, i0,II,12}

k=5

IV\ElI21 _< k

FIG. 2(d)

and

I2 {9}, E2- {1,2,3, 4, 6, 11, 12},

respectively.
We choose P, first. Since V\Ell y > k 3, and Illl 1 < k, we go to Step 4. Since

k-II11 2, we use COLOR 2 to find a maximal 2-chromatic induced subgraph of
G(S,) G((1, 3, 5, 7, 8, 9}). This is G(W1), shown in Fig. 2(c), with the coloring ((1, 7},
{3, 5}) and W, (1, 3, 5, 7}. Since S\ W1 {8, 9} # , we go to Step 5.

Branching creates two successors of P,, the subproblems Pll and P12, defined by

and

I,, I, U {8} {4, 8},

1,2 I, Id {9} {4, 9},

E,, E1U {1, 3} {1, 2, 3, 6, 10, 11, 12}

E,2=E, U {1, 3, 8} {1, 2, 3, 6, 8, 10, 11, 12}

respectively.
We choose problem P, and since Iv\E l=5> k=3 and we go to

Step 4. Since k-libel= 1, we construct a maximal 1-chromatic induced subgraph
G(W) of G(S,) G({5, 7, 9}). We have W {7} and since S,\ W,, {5, 9} # , we
go to the Branching Step. P, has two successors, P,,, and P,I, defined by

I,t, I,, U {5} {4, 5, 8}, E,,, E,1

1066 EGON BALAS AND CHANG SUNG YU

and

II12 Ill [,-J {9}= {4, 8, 9}, El12 EI1 [,.J {5}-- {1, 2, 3, 5, 6, 10, 11, 12},

respectively.
We choose Pill and since 1Ii11]--k 3, we go to Step 2. Applying TRIANG to

G(Slll) G({7, 9}) yields the clique {7, 9}, which together with Illl forms the 5-clique
with node set {4, 5, 7, 8, 9} in G. Thus we store this as the current clique (in place of
{5, 7, 8}), set k 5 and since T111 Sill, eliminate Plll.

Next we choose Pl1_. Since IV\Ell21 =4--< k 5, we eliminate Pll2. Then choosing
Ply, we find that]V\EI] =4 -< k and eliminate PI. The only subproblem remaining
in L is now P. Since IV\E2] 5- k, we eliminate P2 and terminate with the maximum
clique induced by {4, 5, 7, 8, 9} found at Pill.

The search tree is shown in Fig. 2(d).

6. Computational experience. Several variants ofthe basic version of our algorithm
were implemented and tested. Four of the variants (TC1-TC4) correspond to the tie
breaking rules used in TRIANG, as defined at the end of 3. The variant TC* does
not have Step 4; instead, Step 1 is always followed by 2 and 3. In other words, this
variant finds a MTIS in every subgraph generated by the procedure. Finally, the variant
C does not use TRIANG at all, and from Step 1 either goes to Step 4 or again to Step
1 (thus both Steps 2 and 3 are eliminated).

For purposes of comparison, we have also implemented Algorithm CACM457 of
Bron and Kerbosch [1973], described by Gerhards and Lindenberg [1979] as the
currently known most efficient clique finding procedure. Since CACM457 was originally
designed to list all the cliques of a graph, we modified it to just find a largest clique,

TABLE 5.1
Computational results with PASCAL codes on a DEC 20-60, on random graphs with 50 vertices.

CPU time (ms)

D Q CACM457* TC1 TC2 TC3 TC4 TC* C

5 3 100 49 45 92 53 91 32
10 4 118 54 51 83 52 130 43
15 4 147 67 64 113 60 184 51
20 4 200 85 69 129 76 282 66
25 6 218 89 87 108 87 365 75
30 6 263 84 112 121 78 354 96
35 6 372 69 116 117 128 761 100
40 6 615 130 168 202 149 2731 119
45 7 630 146 147 173 162 + 153
50 7 969 249 262 234 210 + 207
55 8 1346 291 223 274 269 + 287
60 9 1838 293 406 346 309 + 336
65 9 3333 675 514 479 510 + 478
70 11 4809 543 634 750 463 + 568
80 13 19548 3212 2170 1732 1476 + 2023
85 18 18458 638 1350 753 1030 + 1430
90 23 25763 832 966 462 571 + 1674
95 27 45542 712 358 490 277 + 4086

D density of the graph (%). Q size of maximum clique. + runs not attempted in view of the obvious
inferiority of this version.

FINDING A MAXIMUM CLIQUE 1067

by adding tests to eliminate those nodes of the search tree that cannot contain a clique
larger than the current largest one. We call this modified algorithm CACM457*. We
also implemented a more recent algorithm, due to Loukakis and Tsouros [1982],
originally designed for finding a maximum vertex packing. Our implementation, which
we call LT, finds a maximum clique in (3 by essentially applying the Loukakis-Tsouros
algorithm to (3. Both CACM457* and LT are rather straightforward implicit enumer-
ation procedures, very similar to each other. CACM457* has one more logical test
(exclusion rule), which makes it on the average more efficient than the LT algorithm.
(Although the Loukakis-Tsouros paper is more recent, its authors do not seem to have
been aware of the existence of the Bron-Kerbosch algorithm of 1973.)

TABLE 5.2
Computational results with C codes on a VAX 11-780, on random graphs with 50-400 vertices.

Graph characteristics

Size of
maxi- No. of search tree nodes CPU time (ms)

Density mum
Vertices (%) clique CACM L-T B-Y CACM L-T B-Y

50 10 3 28 21 7 116 133
50 20 4 62 59 25 183 200
50 30 5 87 84 40 233 283
50 40 6 175 208 82 467 617
50 50 8 244 265 139 700 983
50 60 9 547 968 284 1,283 3,450
50 70 12 1,310 4,076 551 3,100 20,199
50 80 15 4,334 16,143 825 10,600 104,096
50 90 22 9,907 85,869 421 27,499 778,335

50
67
67
116
200
383
883

1,917
1,983

100 10 4 73 62 27 500 567
100 20 5 225 234 92 999 1,067
100 30 6 623 670 327 2,233 2,499
100 40 7 1,459 1,600 643 4,966 5,816
100 50 9 4,186 5,290 1,938 13,416 22,716
100 60 12 14,304 20,600 7,798 50,648 126,645
100 70 15 93,392 335,011 53,074 308,254 1,073,020

200
267
599

1,083
3,217
15,883

112,695

200 10 4 291 277 160 2,799 2,750
200 20 5 1,368 1,341 700 7,233 6,283
200 30 7 5,247 5,400 2,464 26,732 26,832
200 40 9 19,118 22,445 9,490 94,730 128,045
200 50 11 61,374
200 60 14 526,852

983
1,899
5,599

19,782
123,628

1,164,170

300 10 5 538 354 8,482
300 20 6 4,420 1,775 30,382
300 30 8 17,409 11,587 127,611
300 40 10 114,416 55,417 654,790
300 50 13 526,078

2,416
5,783

25,965
118,495

1,156,020

400 10 5 1,266 619 17,056
400 20 7 9,391 3,575 78,463
400 30 8 63,753 32,092 435,916
400 40 10 238,790

4,066
13,383
80,997

562,627

CACM CACM457*; L-T Loukakis-Tsouros; B-Y Balas-Yu.

1068 EGON BALAS .-.ND CHANG SUNG YU

The computational results listed below are of two kinds. The six variants of our
algorithm, as well as the algorithm CACM457*, were first coded in PASCAL and run
on a DEC 20-60 computer at CMU, on 18 problems defined on randomly generated
graphs with 50 vertices, of density (i.e., probability of presence of a given edge) ranging
from 5% to 95%. The results are shown in Table 5.1.

A comparison of the 6 variants of our algorithm shows TC*, i.e., the variant that
finds a MTIS at every iteration, clearly inferior to the other five. Of the remaining five
variants, TC4, i.e., the one that uses the degree in (3 as a tie breaking rule for choosing
the next vertex to be numbered in TRIANG, seems slightly superior to the others on
the harder problems, i.e., on graphs with largest clique size of at least 7, whereas on
the easier problems TC1, the variant that breaks ties by random choice, performs best.
Surprisingly, the variant C that uses only the coloring routine without looking for a
MTIS, does equally well or even better than the others on problems with largest clique
size _-< 7, although its relative performance rapidly deteriorates for largest clique sizes
greater than 11.

In the above discussion we used the largest clique size rather than the density of
the graph as a criterion for distinguishing between easy and hard problems. Both
criteria are of course relevant, but the size of the largest clique seems to be a better
measure of problem difficulty.

Variant TC4 of our algorithm, along with CACM457* and the Loukakis-Tsouros
algorithm, were subsequently coded in C and run on a VAX 11-780 at Bell Labs, on
a set of larger random graphs, with up to 400 vertices and 30,000 edges. The results
are shown in Table 5.2.

REFERENCES

[1] E. BALAS AND H. SAMUELSSON, A node covering algorithm, Naval Res. Log. Quart., 24(2) (1977),
pp. 213-233.

[2] C. BERGE, Farbung yon Graphen, deren siimtliche bzw. deren ungerade Kreise Start sind, Wiss. Z.
Martin-Luther-UniversitSt, Halle-Wittenberg, Math-Natur. Reihe (1961), pp. 114-115.

[3] C. BRON AND J. KERBOSCH, Finding all cliques of an undirected graph, Comm. ACM, 16(9) (1973),
pp. 575-577.

[4] V. CHV,TAL, On certain polytopes associated with graphs, J. Combin. Theory, B, 18 (1975), pp. 138-154.
[5] G. A. DIRAC, On rigid circuit graphs, Abh. Math. Sem. Univ., Hamburg, 25 (1961), pp. 71-76.
[6] D. R. FULKERSON AND O. A. GROSS, Incidence matrices and interval graphs, Pacific J. Math., 15

(1965), pp. 835-855.
[7] F. GAVRIL, Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and

maximum independent set of chordal graph, this Journal, (1972), pp. 180-187.
[8] L. GERHARDS AND W. LINDENBERG, Clique detection for nondirected graphs: Two new algorithms,

Computing, 21 (1979), pp. 295-322.
[9] M. GOLUMBIC, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York, 1980.
10] M. GR6TSCHEL, L. LovAsz AND A. SCHRIJVER, Polynomial Algorithms for Perfect Graphs, C. Berge

and V. Chvfital, eds., Topics on Perfect Graphs, North-Holland, Amsterdam, 1984, pp. 325-
356.

Ill] E. LOUKAKIS AND C. TSOUROS, Determining the number of internal stability of a graph, Intern. J.
Computer Math., 11 (1982), pp. 207-220.

12] L. LovAsz, Normal hypergraphs and the perfect graph conjecture, Discrete Math., 2 (1972), pp. 253-267.

13] G. L. NEMHAUSER AND L. E. TROTTER, JR., Vertex packings: structural properties and algorithms,
Math. Programming, 8 (1975), pp. 232-248.

14] D. J. ROSE, R. E. TARJAN AND G. S. LUEKER, Algorithmic aspects of vertex elimination on graphs,
this Journal, 5 (1976), pp. 266-283.

[15] R. E. TARJAN AND A. E. TROJANOWSKI, Finding a maximum independent set, this Journal, 6 (1977),
pp. 537-546.

16] M. YANNAKAKIS, Node and edge deletion ofNP-completeproblems, Proc. 10th Annual ACM Symposium
on Theory of Computing, ACM, New York, 1978, pp. 253-264.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
014

AVERAGE CASE ANALYSIS OF MARKING ALGORITHMS*

D. S. HIRSCHBERG" AND L. L. LARMORE:I:

Abstract. The Lindstrom marking algorithm uses bounded workspace. Its time complexity is O(n2) in
all cases, but it has been assumed that the average case time complexity is O(n log n). It is proven that the
average case time complexity is O(n2) for a wide variety of probability distributions. Similarly, the average
size of the Wegbreit bit stack is shown to be (R)(n).

Key words. Lindstrom, garbage collection, marking algorithm

AMS(MOS) subject classification. 68Q25

1. Introduction. Consider a data store organized into nodes, each of which has
two link fields, L and R. Each link field contains either the address of a node in the
store, or an uninterpreted atomic value. One specific node will be designated as the root.

In garbage collection, we may wish to mark all nodes accessible from the root;
assume then that each node has a mark bit. Several algorithms to do this are known.
Baer and Fries 1 analyze some of these, including the Schorr-Waite tag bit algorithm
[4], the Wegbreit bit-stack algorithm [5] and the Lindstrom algorithm [3].

Both the Schorr-Waite and Wegbreit algorithms have time complexity O(n) where
n is the number of nodes accessible from the root, and both use O(n) additional
workspace. The Schorr-Waite algorithm requires a tag bit in each node, whereas the
Wegbreit algorithm uses a bit stack, whose size is O(n) in the worst case, for the same
purpose. At first glance, it may appear that the maximum size of the Wegbreit bit stack
is O(log n) in the average case, but we show that it is (R)(n) under a witie variety of
probability distributions.

The Lindstrom algorithm uses bounded workspace; in particular, it uses no stack
or tag bits. Its time complexity is O(n2) in all cases, but Lindstrom asserted [3] that
the average case time complexity is O(n log n). We show that this assertion is false.
In particular, we prove that the average case time complexity is l.(n2).

2. The Lindstrom algorithm. We refer the reader to [3] for a description of the
algorithm. It is important to note that A, the nil address, is not an atom. Essentially,
descent is always to the left, providing the left link leads to a previously unvisited
node. Otherwise, descent is to the right. If no descent is possible because both links
are either atomic or lead to previously visited nodes, ascent is initiated and continues
until a node with an unvisited right child is found.

At all times, all fully-processed nodes (all of whose descendents have been visited)
have a marked mark field (value 1), and all unvisited nodes have an unmarked mark
field (value 0). All other nodes must be on the trace path, the path of nodes from the
root to the current node. For a node on the trace path, the mark field is 0 if both links
are nonatomic and descent from that node was to the right. Otherwise, it is 1.

The algorithm uses link reversal so it is necessary, during asent, to determine
whether that ascent is from the left or the right. If one link field is atomic, there is no
problem. Otherwise, the mark bit contains the information.

* Received by the editors February 10, 1984, and in revised form October 15, 1985. This research was
supported in part by National Science Foundation grant MCS-82-00362, and by a California State University
PAID grant.

" Department of Information and Computer Science, University of California, Irvine, California 92717.
t Department of Computer Science, California State University, Dominguez Hills, California 94707.

1069

1070 D.S. HIRSCHBERG AND L. L. LARMORE

During descent, if a node whose mark bit is 0 (unmarked) and both of whose link
fields are nonatomic is encountered, there is no immediate way to determine whether
the node is unvisited or is on the trace path. The algorithm must search for this node
upward along the trace path. If the node is unvisited, the time required for this step
is clearly gl(k), where k is the length of that trace path. Lindstrom’s error was his
supposition that the length of the trace path is O(log n) in the average case. Under
that hypothesis, the upward searching portion of the algorithm could be done in
O(n log n) time, and other parts of the algorithm are clearly O(n). It may actually be
true that the depth of an average node is O(log n), measured along the shortest possible
rooted path. But the Lindstrom algorithm does not visit each node first by the shortest
path, but rather by the leftmost path which may be far longer. In fact, by Theorem 2
of this paper, the average case length of that path is O(n).

3. The trace tree. We use the term list structure to refer to the collection of all
nodes accessible from the root, together with their pointers. The Schorr-Waite, Weg-
breit, and Lindstrom marking algorithms visit the nodes of a list structure, X, in the
same order (counting only first visits). We call this the visitation order.

We denote the trace tree of list structure X by -(X), or by just " when X is
understood. " is a binary tree which has exactly the same nodes as does X, but only
a subset of the links. For all nodes in X, the father of node x in - is the node in X
from which x was first visited in the visitation order. All other links of " are A. As a
result of this definition, the preorder of " will be the visitation order of X, and a path
in " from the root to a given node P will be exactly the trace path when that node is
visited for the first time by one of the marking algorithms.

The following algorithm visits all nodes of X in visitation order (i.e., preorder
for ’). Let S be a stack.

Visitation Traversal
S-
P- root
While S is nonempty or P is a new node, do

If P is an atom or an old node,
P - top of stack S; pop S

Otherwise (i.e., P is a new node),
visit P; push R(P) onto stack S; P - L(P)

4. Time analysis. For any node P, let depths(P) be the depth of P in ’. The time
required for the upward searching portion of the Lindstrom algorithm is clearly
O(Epx depths(P)).

Let height be the height of ’. We can put a lower bound on the time complexity
of the Lindstrom algorithm as follows.

THEOREM 1. The time complexity of the Lindstrom algorithm is l-l(n log n+
(height)a).

Proof. Since the average depth of a node must be fl(log n), the number of upward
searches must be l)(n log n). On the other hand, let Qo, Q," ", Qheight be a longest
rooted path in -, where Qo is root. Then px depth(P)>=o-hghtdepth(Qi)
o,-,gh i---- height (height+ 1)/2. F1

5. Average case analysis. In order to do an average case analysis, it is necessary
to have some understanding of what an "average case" is. We shall assume that we
are given some distribution on the class of all list structures of size n, and that when

AVERAGE CASE ANALYSIS OF MARKING ALGORITHMS 1071

we say "average" we shall mean average weighted by this distribution. We will freely
use words such as probability, conditional probability and expected value in their usual
meanings, where we assume that a list structure has been selected at random from all
list structures, using the given distribution. We use Prob (x) to denote the probability
that x occurs.

Uniform Distribution. Fix n, and fix a. Let N[n, a] be the number of shapes of
list structures which have n nodes and a atoms. Note that a structure which has n
nodes has 2n address fields, and at least n- 1 of them must be links for the structure
to be connected. Thus, a =< n + 1. The Uniform Distribution is that distribution such
that the probability that the structure has a given shape with n nodes and a atoms is
1/N[n, a].

Weaker conditions more likely to occur in practice. It is unlikely that the uniform
distribution would occur in practice, since in any given application there would be
some sort of bias. We would like to do an average case analysis which gives valid
results for a wide class of reasonable distributions.

Henceforth in this section, fix n, the number of nodes in the structure. We suppose
there exists a constant a such that, when any link is examined, the probability that
that link contains an atom does not exceed a. Since the structure must be connected,
a-< 1/2. However, we do not, in this paper, analyze distributions for which a 1/2. We
only consider distributions for which a < 1/2.

We impose one more requirement on our distribution. Suppose that the algorithm
has already traversed k nodes, and is currently examining a new link. If the link does
not contain an atom, it must contain the address of one of the n nodes of the structure.
If all addresses were equally likely, the probability that the address would point to an
old node would be kin. We require only the much weaker assumption that the
probability that the address points to an old node is O(k/n).

We hypothesize that the distribution of list structures which will arise in most
practical applications will satisfy the above two conditions, which we combine and
formalize (below), as the Weak Randomness Assumption.

Weak Randomness Assumption. There exist constants 0 -< a < 1/2,/3 > 0, and 0 < 3’ --<
1 (not dependent on n) such that, if P is a new link and k =< yn is the number of nodes
already visited:

(i) the probability that P is an atom does not exceed a,
(ii) the probability that P is an old node does not exceed k/n.
Intuitively we mean that, although we may allow knowledge of previously

examined links to influence the expectation of P, we place a definite bound on that
effect. In particular, the probability that a given link is an atom is bounded below 1/2,
and the probability that it points to an old node is of the order of the proportion of
old nodes in the structure.

Note that/3 is sufficiently large, y is sufficiently small, and a is sufficiently close
to 1/2o

We expect that most distributions which arise in practice satisfy the Weak Random-
ness Assumption. In particular, we show (in the Appendix) that the Uniform Distribu-
tion satisfies this assumption.

THEOREM 2. In the average case, height- O(n).
Proofi Refer to the Visitation Traversal Algorithm of 3. Consider what the

situation is after iterations of the loop in that algorithm. Stack S will have some size,
say size (t), P will be some node, say node (t), and P will be at depth depths(P) in
the trace tree. But note that each element on stack S is the right child of some node
in the trace path of P. It follows that depths(node (t))>= size (t).

1072 D.S. HIRSCHBERG AND L. L. LARMORE

We think of size as a stochastic function. It is clear that the number of old nodes
after iterations of the loop of the above algorithm is -< t, and that

size (t)+ 1 if node (t) is a new node,
size + 1)

size (t) 1 otherwise.

By the Weak Randomness Assumption, the probability that node (t) is a new node
is at least 1-a- fit/n, and the probability that node (t) is not a new node is at most
a + fit/n. Therefore (see, for example, [2]),

E (t) the expected value of size (t)

E 1 + Prob node (t) is a new node)

Prob (node (t) is not a new node)
>- E(t- 1)+(1-c-flt/n)-(c+fit/n).

Since size(O)-0, we therefore have

E(t) >-_ , (1-2a-2fli/n)= t(1-2a)-t(t+ l)/n.
l_it

Now choose In(1-2a)/(2/5)J or),n, whichever is smaller. It is seen that the
expected value of size (t), and hence the expected value of depths(node (t)), must be
at least n(1-2a)2/4fl- 1 or, if),n was chosen, at least fl),(/n-1).

COROLLARY. The size of the Wegbreit bit-stack is @(n) in the average case.
THEOREM 3. The average case time complexity of the Lindstrom algorithm is O(
Proof. It is already known [3] that the time is O(r/2), and it is f(n2) by Theorems

1 and 2.

6. Opea questioas. The Schorr-Waite algorithm has both time and space com-
plexity (R)(n). The Wegbreit algorithm has time complexity O(n) and average case
space complexity @(n). The Lindstrom algorithm has bounded space complexity and
average case time complexity ((/12).

A natural question to ask is whether there exists any marking algorithm, the
product of whose average time and space complexities is less than quadratic.

The question could arise whether the results of this paper would apply if the Weak
Randomness Assumption were modified to allow a >-1/2. The given proofs depend on
a being strictly less than 1/2, and we conjecture that distributions exist, which satisfy
the modified Weak Randomness Assumption with a -1/2, for which the average height
of the trace tree of the list structure is less than linear.

Appendix. We show here that the Uniform Distribution satisfies the Weak Ran-
domness Assumption.

Fix 0_-< probatom < 1/2. Let n be a positive integer, and a [probatom. 2nJ (since
there are 2n links). Suppose that a random list structure of size n with a atoms has
been partially traversed, and that exactly k < n nodes have been visited, and that the
next step is to examine a link. Let current be this link.

There are three possibilities:
1. IsNew ="current contains the address of a new (i.e., unvisited) node," or
2. IsOld "current contains the address of an old (i.e., visited) node," or
3. IsAtom "current contains an atomic value."
All probabilities are necessarily conditional probabilities; we have already visited

k nodes, and some number of links have already been examined and found to contain
addresses of nodes or atoms. We can refer to the portion of the list structure thus

AVERAGE CASE ANALYSIS OF MARKING ALGORITHMS 1073

already examined as the Stem, and the uniform distribution implies that all list structures
consistent with the Stem are equally likely.

Let S be the set of all list structures with n nodes and a atoms consistent with
the Stem. The Weak Randomness Assumption deals with the conditional probabilities
of the events IsNew, IsOld and IsAtom, and is restated below as Theorem 4.

THEOREM 4. There exist constants a < 1/2, > O, and 3’ > O, dependent on probatom
but not dependent on n, such that

(I) k < 3,n=:>Prob (IsAtom) <- a,
(II) Prob (IsOld) <= ilk n.

Proof of Theorem 4. Pick a=(1/2+probatom)/2, pick /3=1, and pick y=
1/2-probatom. Assume that k <- yn (recall, k =number of nodes in the Stem). We first
state and prove two lemmas:

LEMMA 4.1. Prob (IsOld)<-(k/n) [Prob (IsOld)+ Prob (IsNew)].
LEMMA 4.2. Prob (IsAtom)<=a/(2n-2k+ 1).
Proof of Lemma 4.1. Recall that S is the set of all link structures with n nodes

and a atoms which are consistent with the Stem, the portion of the list structure already
examined. Let T be the subset of S consisting of those list structures which would
remain connected if current is changed to an atom. Under the uniform distribution
assumption, the list structure must be some member of S, and is equally likely to be
any one of them. If it is a member of S but not of T, then current must contain the
address of a new node, by definition of T. On the other hand, among all members of
T, the value of current, if it is the address of a node, is equally likely to point to any
node in the entire structure. Thus,

Prob (IsNew)/[Prob (IsNew)+ Prob (IsOld)]= (ISI-ITI + ITi(n-k)/n)/[SI

1 (k/n)lTI/ISI

>-_l-kin.

Lemma 4.1 follows directly. [3

ProofofLemma 4.2. Let X be the subset of S consisting of those structures where
current is an atom. Let Y be the subset of S consisting of those structures where current
contains the address of a node. Note that X and are disjoint, and their union is
S. Lemma 4.2 can be rephrased to state that]XI/lS]<=a/(2n-2k+ 1), i.e., that
(2n 2k + 1)IX <-_ a[SI.

In order to compare the cardinalities of IX[and [SI, we shall employ a representation
graph of the set of list structures. Define a bipartite graph G as follows: the nodes
correspond to list structures in S X w Y. Each edge of G is between an element of X
and an element of Y. There is an edge between X X and Y Y if and only if Y can
be obtained from X by exchanging the values of exactly two link fields, one of which
is current, an atom, and the other of which is some link field of X which is not an atom.

We will finish the proof by analyzing the degrees of the nodes of the graph G. If
X X, the number of Y Y connected to X is equal to the number of choices of the
other link, other, whose value must be exchanged with that of current to obtain Y.
Other must not be an atom, and must be examined after current in the visitation order,
since Y and X are both consistent with the Stem. The number of links in list structure
X is 2n, of which a are atoms, and at most 2k-1 precede current in the visitation
order. Thus, the degree of X in the graph G is at least 2n-a- 2k / 1.

If Y, for each X connected to Y in G there must be a link field other in Y
which, when exchanged with current, yields X. Since other must be an atom in Y, there
are no more than a choices of other. Hence Y has degree no greater than a in G.

1074 D.S. HIRSCHBERG AND L. L. LARMORE

It follows that (2n-a-2k+ 1). IX[-<_ a. IYI. Add a. IX[to both sides to obtain
(2n 2k + 1). IX[--< a. IX[+ a. [Y[a. IS[. Finally, Prob (IsAtom) [X[/IS[<=
a/(2n-2k+ l). lq

We now complete the proof of Theorem 4. Part (II) follows immediately from
Lemma 4.1, since Prob (IsOld)+ Prob (IsNew)<- 1 ft.

To prove part (I) of the theorem we use Lemma 4.2. First, note that if probatom 0,
it is trivial, since a 0. Otherwise, assume that probatorn > 0. We will need to make
use of a well-known algebraic inequality: if x, y are positive real numbers, then
1/(x+y)<-_ 1/(4x)+ 1/(4y). Also, by hypothesis of (I),

k < 3,n n2 probatom, n.

Then,

Prob (IsAtom) <- a/(2n-2k + 1) from Lemma 4.2,

<= all n + 2n probatom] from(**),

<= a/ (4n) + a/ (8n probatom) by well-known algebraic
inequality,

<- probatom/ 2 + 1/4 since a <- probatom 2n,

REFERENCES

1] J.-L. BAER AND M. FRIES, On the Efficiency of Some List Marking Algorithms, Inform. Process. 77,
IFIP, North-Holland, Amsterdam, 1977, pp. 751-756.

[2] P. G. HOEL, S. C. PORT AND C. J. STONE, Introduction to Stochastic Processes, Houghton Mifflin,
Boston, MA, 1972.

[3] G. LINDSTROM, Copying list structures in bounded workspace, Comm. ACM, 17 (1974), pp. 198-202.
[4] H. SCHORR AND W. M. WAITE, An efficient machine independent procedure for garbage collection in

various list structures, Comm. ACM, 10 (1967), pp. 501-506.
[5J I. A. WEGBREIT, A space efficient list structure tracing algorithm, IEEE Trans. Comput., C-21 (1972),

pp. 1009-1010.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
015

SEARCHING IN TREES, SERIES-PARALLEL AND INTERVAL ORDERS*

u. FAIGLEf, L. LOV/SZ, R. SCHRADER" AND GY. TURIN

Abstract. Linial and Saks [2] have shown that O(log N) evaluations of an order preserving mapf: P R
are necessary and sufficient to determine whether a f(P), where N is the number of ideals of P and a R
is a given real number. In this paper, we investigate the problem of how to perform the evaluations so that
Linial and Saks’ bound is guaranteed, and solve the problem for the classes of interval and series-parallel
orders and hence, in particular, for rooted trees. We observe that the greedy-type binary search algorithm,
which is optimal for chains, already need not be optimal for general rooted trees. We furthermore discuss
the computational complexity of the general search problem and obtain results indicating that the general
problem might be hard.

Key words, searching trees, series-parallel orders, interval orders, complexity

AMS(MOS) subject classifications. 68E05, 06A10

1. Introduction. The complexity of retrieving data depends on the order structure
of the stored data. For instance, if f: P- is an arbitrary function assigning real
numbers to the elements of the finite set P, IPI evaluations of f will generally be
necessary (and sufficient) to decide whether a given real number a is in the image
off. If P is linearly ordered andf: P is order-preserving, i.e., <-j impliesf(i) <-f(j),
one may carry out a binary search and decide whether a f(P) in at most log2
evaluations of f.

Linial and Saks [2] have considered the corresponding general search problem:
Let P be a finite (partially) ordered set and f:P an (unknown) order-preserving
function. Given a E, decide whether a f(P) by evaluating f at elements of P.

Linial and Saks have shown that the problem can always be solved in at most
c. log2 N(P) evaluations of f, where N(P) is the number of ideals of P, and c is a
constant with value c 3.73. They also show that log2 N(P) evaluations are necessary.
The upper bound is implied by the following remarkable theorem:

In every finite ordered set P, there exists an element x for which

N(x)
<_ 1 80,80<- N(P)-

where N(x) is the number of ideals containing x and 8o=1/4(3-1og2 5) 0.17. (A result
of Sands [5] shows that the best possible value for 80 is at most 0.228.)

Linial and Saks use an intricate averaging argument together with the FKG-
inequality in order to obtain an existence proof, which, however, does not provide an
efficient algorithm to find an element x with the desired property.

* Received by the editors July 17, 1984, and in revised form October 25, 1985. This work was done at
the Institut fiir Operations Research, Universitit Bonn, Bonn, West Germany, and was supported by the
joint research project "Algorithmic Aspects of Combinatorial Optimization" of the Hungarian Academy of
Sciences (Magyar Tudomfinyos Akad6mia) and the German Research Association (Deutsche Forschungs-
gemeinschaft, SFB 21).

" Institut fiir Okonometrie und Operations Research, Rheinische Friedrich-Wilhelms-Univers/it Bonn,
D-5300 Bonn 1, West Germany.

$ On leave from ELTE Matematikai Intezet, Budapest, Hungary.
On leave from the Automata Theory Res. Gr. of the Hungarian Academy of Sciences, J6zsef Attila

University, Szeged, Hungary.

1075

1076 FAIGLE, LOVASZ, SCHRADER AND TURIN

Thus Linial and Saks’ result raises the questions"
(i) For what classes of ordered sets can the best constant 5o be determined?
(ii) For what classes of ordered sets can a "good" point be determined efficiently?
(iii) How difficult is it to determine a "good" point in general?
In this paper we investigate some classes of orders with respect to (i) and (ii).

For series-parallel and interval orders (both generalize the classes of linear orders and
antichains discussed above), it is shown that the sharper bound 5o 1/4 holds (and is
the best possible constant for these classes). For the class of trees we derive the best
possible constant 5o=1/2. These bounds imply sharper bounds for the number of
evaluations necessary in orders belonging to the classes considered. Moreover, there
exists a polynomial algorithm for series-parallel and interval orders to find a point x
with ratio closest to 1/2. (For comparison we note that for linear orders the above search
algorithm reduces to binary search.) We point out that the "greedy" algorithm evaluat-
ing f at this element is not optimal (although it is clearly optimal for linear orders).
These results are presented in 3 and 4. (We note that in the earlier paper 1], Linial
and Saks give sharp bounds for the complexity in terms of log2 N in the case of rooted
forests.)

In 5, we give some arguments indicating that the determination of a "good"
point may be a hard computational problem for general ordered sets. A polynomial
algorithm for this problem would imply that the number of ideals can be approximated
within a tactor of 1 + e in polynomial time.

2. Preliminaries. Let (P, <-) be a (finite) ordered set with IPI- n. An element x is
a lower (resp. upper) cover of y in P if x < y (resp. x> y) and there is no z with
x<z<y (resp. x>z>y). The set of minimal (resp. maximal) elements is
MIN P(resp. MAX P). The dual of (P, =<) is (P,-<’) with x <-’y iff y<-x. For every
x P we let S(x) {y P: x < y}. A subset I P is an ideal, if x I and y < x implies
y L The number of ideals of P is denoted by N, and the number of ideals containing
a given element x is denoted by N(x). A subset F g P is a filter, if x F and y > x
implies y F. The number of filters is M and the number of filters containing x is M(x).

The class of series-parallel orders is defined inductively as follows"
(i) a single node is series-parallel;
(ii) if (P1,"-<1) and (P2, <-9) are series-parallel with P1 fq P2=, then the series

composition P (P t.J P2, <-) is series-parallel, where x <- y in Pitt x <- y or x 2 Y or
x P1 and y P2;

(iii) If (P1, <-1) and (P2, --<2) are series-parallel with P1 fq P2 , then the parallel
composition (P P2, <-) is series-parallel, where x <- y in P iff x _-< y or x --<2 Y.
An interval order is an ordered set whose elements are nonempty closed intervals in
R such that for all x, yPx<yinPiita<binRforall axand by.

We shall need the following well-known property of interval orders.

(2.1) For any two elements x, y P, either S(x)_ S(y) or S(y)_ S(x).

This property easily follows from the definition. In fact, it characterizes interval
orders (see, e.g., Papadimitriou and Yannakakis [3]).

An element x of an interval order (P, <-) is called S-maximal if S(y)_ S(x) for
all y P. It is obvious that every S-maximal element of P is a member of MIN P.

FACT:

(2.2) If x is S-maximal and y P\MIN P, then x < y.

Proof. Let z MIN P with y $(z). Since x is S-maximal we have S(z)
_

S(x).

SEARCHING IN TREES, SERIES-PARALLEL AND INTERVAL ORDERS 1077

An ordered set is a tree if its Hasse diagram is a tree as a graph. It is a rooted
tree if when directing edges (x, y) of the Hasse diagram from y to x for x < y, we
obtain an outtree. (Thus a rooted tree is series-parallel, while a general tree is not
necessarily series-parallel.) An ordered set is a forest if it is the parallel composition
of trees.

FACT. If P is an ordered set, then

(2.3) N M and N(x)+ M(x) Nfor every x P.

3. Recursion formulas for series-parallel and interval orders. In this section we
give simple recursion formulas for the computation of the values of N and N(x) for
series-parallel orders and interval orders.

LEMMA 1. Let P1 and P_ be two ordered sets, N1 and N2 the respective number of
ideals and Nl(X), N2(x) the corresponding ideal counting functions. Then the following
formulas hold:

(i) If P is the series composition of P1 and P2 then N N1 + N2-1 and

-1 forxeP,
N(x)

N2(x) for x P2.
(ii) If P is the parallel composition of P1 and P2 then N N N2 and

f Sl(X) S forx e P,
N(x)

N(x) N forx e P.
Proof. It is easily verified.
We remark that the labeling rule of Steiner [6] for the class of ordered sets with

order dimension at most two may also be used to determine the numbers N and N(x)
efficiently. Even for the subclass of series-parallel orders, Steiner’s rule yields a different
algorithm than Lemma 1, which is based on series-parallel decomposition. It would
be interesting to know whether Theorem 4 holds, more generally, for ordered sets of
dimension at most two.

LEMMA 2. Let P be an ordered set and a MIN Psuch thatfor every y P\MIN P,
a < y holds. Consider P’= P\{a} and let N’ be the number of ideals of P’ and N’(x) be
the ideal counting function of P’. Then

N N’+ 2IMIN

N’ forx=a,
N(x) N’(x) for x P\MIN P,

N’(x)+2IMNPI-2 forxMIN P\{a}.

Proof. If I is an ideal of P’ then I U {a} is an ideal of P. This establishes a bijection
between the ideals of P’ and of the ideals of P containing a. The ideals of P not
containing a can only consist of minimal elements of P since a is S-maximal.

Conversely, every subset of MIN P\{a} is an ideal of P not containing a. Hence
N N’+ 2IMIN PI- 1.

Similarly, one proves the recursion for N(x).
The two lemmas above imply
THEOREM 3. If P is a series-parallel order or an interval order and x P then N

and N(x) can be computed in polynomial time.

Proof. First assume P is a series-parallel order. We can find a decomposition tree
for P in polynomial time using, e.g., the algorithm of Valdes, Tarjan and Lawler [7].
Based on this decomposition and Lemma 1 we can compute N and N(x) recursively.

1078 FAIGLE, LOV,SZ, SCHRADER AND TURIN

If P is an interval order, then we can find in polynomial time a sequence
(xl,xE,...,xn) of elements of P such that xi is S-maximal in the interval order
P\Xi/l,..., xn). By (2.2) and Lemma 2 we again can compute N and N(x) recur-
sively.

Remark. Note that Theorem 3 in fact yields an efficient algorithm for the determi-
nation of a "good" point x: one simply computes the ratios N(x)/N for all x P
according to the updating formulas given in Lemma 1 and selects a x P with good
ratio. For the two extreme cases discussed in the Introduction, of course, explicit
updating is not necessary. For linear orders a "best" point x is a point closest to the
"middle," whereas for antichains any point may be chosen.

4. Bounds for . We now turn to the question of determining the possible values
of 8 for series-parallel orders, interval orders and trees. First we consider an example.

Example. Let P" {Xl, , x,, Yl, ",Y} be an ordered set with xi < y for
1 <_- i, j-<_ n. Then N 2"/1-1, N(xi) 2" + 2"-1- 1 for 1 <- =< n and N(y) 2"-1 for
1 <=j _-< n. Hence N(x)/N is either 1/4+ e, or - e,, where e, - 0 when n - .Since P is a series-parallel as well as an interval order, this example shows:

(4.1) For series-parallel and interval orders, the best is at most -.
We now show that in the first two cases 1/4 can be guaranteed, whereas in the

third case the bound 1/2 is sharp.
THEOREM 4. Let P be a series-parallel order. Then there exists an x P with

<-S(x)/S<=.
Proofi Proceeding by induction on [P[n, we order the elements Xl, x2,’’ ", xn

of P such that N(Xl)_-<N(XE)_<-..._<-N(xi)<-...<-N(xn). Then we claim for
i- 1,..., n-1,

(4.2) S(Xi+l) S(xi) _-< 1/2N.
Observing that a maximal (minimal) element x P must satisfy

(4.3)
N(x)

<_- >_
N -2 N

Theorem 4 will immediately follow from the claim since Xl is maximal and x, is
minimal in P.

We prove (4.2) by considering two cases.
Case 1. P is the series composition of P1 and P2. As x < y for x P1, Y P2, we

have x, , xi P2, xi+l, ",x, P, for some 1 -<_ -<_ n 1. For j -<_ 1, we have

S(xj+l)- S(xj)-- N2(xj+I)- N2(xj) <-1/2N2 < 1/2N
by Lemma 1 and induction. For j>=i+ 1 we have

N(X+l)- N(x) NI(Xj+I)-NI(x)<=1/2N1 <1/2N
also by Lemma 1 and induction. In the remaining case j we have to show

N(xi+I)-N(xi)<=1/2N.
Using Lemma 1, this is equivalent to

Nl(X,+l) + N2-1 NE(Xi) --< (N1 + N2-1).
But xi must be a minimal element in P: and Xi+l must be a maximal element in P1. Thus

N2-1- NE(Xi)--< (N2- NE(Xi))-1/2<--1/2(N2 1),
and (4.2) follows.

SEARCHING IN TREES, SERIES-PARALLEL AND INTERVAL ORDERS 1079

Case 2. P is the parallel composition of P1 and P2. Consider N(xi+) and N(xi).
If xi, x+ PI (l 1, 2) then

N(X,+l) N(x) (Nl(X,+l) Nl(X,)) N3_I <= 1/2NI N3-1-- 1/2N
by Lemma 1 and induction. If there exists a j > + 1 such that xj, xi Pt (l 1, 2) or a
k < such that x/, Xk PI (l 1, 2) then

N(x,+)- N(x,) <- N(xj)- N(x,) <-_ 1/2N,
and

N(Xi+l) N(x,) -< N(x,+) N(Xk) <= 1/2N
follows similarly.

If we can find neither a j nor a k with the above property, then we have
xl, , x Pt, X+l, , x, P3-1. Taking (4.3) into consideration this implies N(x)
1/2N for i= 1,..., n and the claim holds again (in fact, in this case P is an antichain).

We now turn to the case of interval orders.
THEOREM 5. Let P be an interval order. Then there exists an x P with

<-N(x)/N<-.
Proof. Let (x,..., x,) be the sequence selected in the proof of Theorem 3, i.e.,

assume x is S-maximal in Pi P\{x/,..., x,}. Denote by Ni the number of ideals
of P and by N,(x) the ideal counting function of P. Lemma 2 implies

Then

N 1 + 2]MIN PI-1
j=l

N(Xi+l)- N(xi) Ni+l(Xi+l) + 2IMINPI-2-- Ni(xi)
j=i+2

using Lemma 2 for X+l and N(xi)<= N(x),
Ni+l(Xi+l) Ni, Ni(xi) Ni-1

from Lemma 2. Thus

N(x,+I)-N(x,)<--N-Ni-+ 21MINPI--2
j=i+2

1 IMIN PI-11 21MINP.[q- , 2
2 2j=i+2- N+ 2 1- 1

2 =i+
N,

where we used 21MNI N. Similarly

N(x,) N(xi+,) N,(x,) +
=i+1

+ 2

This implies IN(x+) N(x)l N N.
Fuhermore, x must be a maximal element and x must be minimal. Thus, by

(4.3), N(x)/N , N(x)/N . If N N(x)/N, we are done; otherwise let x_ be
the last element in the sequence x,..., x with N(x_)/N < . Then by the above,

(xl/.

1080 FAIGLE, LOV,SZ, SCHRADER AND TURIN

Next we discuss the cases of forests. Observing Lemma 2 we can restrict ourselves
to trees.

The series composition of a k-element antichain and a 2k-1 element chain yields
a family of trees showing that the best 6o we can have is (if k-1, we have the
2-element chain).

First we prove a lemma.
LEMMA 6. Let P be a tree, I an ideal ofP with MIN P

_
I, MAX P f I . Then

either there exists an element y : I s.t. y has a unique lower cover x and x I, or there
exists an element y I s.t. y has a unique upper cover x and x : I.

Proof. Let a (x, , x) be a path in the Hasse diagram of P with the maximal
number of edges, connecting I and P-I.

Assume Xl, , Xk I, Xk+I - I. This implies Xk Xk+I We claim Xk+I is the unique
upper cover of Xk. If this is not the case, MAX P f3 1- and the fact that P is a tree
imply the existence of a path fl-(y,..., yl, Xk) s.t. Yl I and fl a- {Xk}. Then
a :- (y , y, Xk, Xk+ ", X) is a path containing more edges, connecting I and
P-I, than a. This shows that Xk+ is the unique upper cover of Xk.

When x, , Xk : I, Xk/I I, an analogous argument shows that Xk+ is the unique
lower cover of Xk.

THEOREM 7. Let P be a tree. Then there exists an x P with

1 S(x) 2
3 N 3

Proof. Assume the statement is false for P. Let I :-{x P: N(x)/N}. Then I
is an ideal of P and MIN P_/, MAX P f3 I= hold. For every y I we have
S(y)/S<1/2.

Using Lemma 6, assume first that there exists a y I s.t. y has a unique lower
cover x and x e/.

Then N(x)= N(y)+I{" is an ideal, xe , y }l-
But I{o" ff is an ideal, x e r, y }1 <- N(y) as adding y to any such we get

an ideal containing y (thereby using that x is the unique lower cover of y).

Thus N(x) <= 2N(y), contradicting N(x) > N, N(y) < IN.
If, using Lemma 6, we get an element y e I with a unique upper cover x and x /,

we apply the same argument to the dual of P. (Fact (2.3) implies that if P is a
counterexample, its dual is a counterexample as well.) I-I

5. Searching algorithms. The bounds above have direct implications for the com-
plexity of the search problem in the corresponding classes of ordered sets.

COROlLaRY 8. The search problem for series-parallel and interval orders can be
solved with at most 2.41. log N evaluations of f. In the case of forests, at most
1.71 log_ N evaluations suffice.

Proof. The algorithm is identical to the one indicated in [2] and is based on
evaluating at x with N(x)/N closest to 1/2.

If f(x)=a we are done. If f(x)> a (f(x)<a) we can reduce the search to
P’:= {ye P" y:x}, (P’:= {y P: yNx}) and thus proceed recursively. Using

N(P’) the number of ideals in P not containing x,

(N(P’) the number of ideals containing x), the number of steps in the case of
series-parallel and interval orders is bounded by 1094/3 N (2-1og 3)-. log N. The

SEARCHING IN TREES, SERIES-PARALLEL AND INTERVAL ORDERS 1081

same argument gives the bound for forests. (Note that all these classes are closed
under forming suborders.) 13

The algorithm described above is "greedy" in the sense that it always performs
the next evaluation at the element with ideal ratio closest to 1/2. Clearly in the case of
chains this strategy is optimal. However, the examples below show that already for
rooted trees the greedy algorithm can have a relatively poor performance.

Let Q(P) denote the number of evaluations used by an optimal algorithm for P
(such an algorithm clearly exists), and G(P) denote the number of evaluations used
by the greedy algorithm. (As usual, both are worst-case measures.)

THEOREM 9.
(a) li- { G(P)/Q(P)" P rooted tree} >- 2 -1/2 log2 5 >_- 1.226;
(b) li-- {G(P)/ Q(P)" Pseries-parallel} >= .
Proof. a) Let P have elements x (1 -< _-< n, 1 _-<j <-/), y(1 _-< _-< k) with covering

pairs (x, x+1) for 1 _-< _-< n, 1 _-<j -< l- 1, (x, y) for 1 <_- _-< n, and (y, Y+I) for 1 _-< _-< k-
1. (Thus P is the series composition of n parallel/-chains and a k-chain.) Then

N=(l+l)"+k, N(y,)=k-i+l, N(x{)=(l-j+l).(l+l)"-+k.

If k> (l- 1)(/+ 1) ", then

S(x) S(xl) + l "-l+k
S N (l+l)"/k (/+ 1)"

In this case the greedy algorithm chooses y with

k-i+l= [1/2((/+ I) + k)],

implying

i>-1/2(k-(l+l)").

Thus putting

i0:= k, ij := 1/2(/_1-1 (/+ 1)"),

if for some r, ir > (l + 1)"+1, then the greedy algorithm chooses elements in the y-chain
for at least r stepsmassuming that all evaluations give larger values than the original
number c we are searching for. In each/-chain the algorithm can be forced to ask at
least [log (l + 1) questions. Thus

(5.1) G(P) _-> r + [log2 + 1]. n.

Let k:= 2 "’rg(t+l)l. Then Q(P)<= n. [log2 (l+ 1)]+ 1 follows from the strategy that
evaluates yl first. (In fact, Q(P)= n. [log2 (1 + 1)]+ 1.)

The recursion above gives

Thus it> (l- 1)(/+ 1)" for r= [n([log (l+ 1)]-log (l+ 1))-log (l+ 1)] and sub-
stituting into (5.1) we get

G(P)> [(2 [log (l+ 1)] -log (l+ 1)). n-log (l+ 1)]
Q(P) [log (l + 1)]. n + 1

Putting := 4, we get a).

1082 FAIGLE, LOVASZ, SCHRADER AND TURAN

b) This case is proved similarly with P being the series composition of 2
n-antichains and a 22"-chain. The computation is omitted. D

6. Relations to ideal counting problems. The question of course arises whether a
polynomial algorithm exists in general for finding an element in an arbitrary ordered
set guaranteeing an ideal ratio between 8 and 1- & In this section we will give some
partial results into this direction. It appears unlikely that such an algorithm exists" in
particular, we show that its existence would also imply the existence of a polynomial
algorithm for approximating the number of ideals of an arbitrary ordered set.

THEOREM 10. The following statements are equivalent:
(1) there is a 8 > 0 and a polynomial algorithm A which, given an order P, determines

an element x of P with 8 <- N(x)/N <- 1 8;
(2) for every 8 > 0 there is a polynomial algorithm A which, given an order P,

determines an element x of P with 8o 8 <- N(x)/N <= 1 8o 8 (where 8o
0.17... is given in the Introduction);

(3) there is an r > 0 and apolynomial algorithm B which, given an order P, determines
an integer B(P) with 1/r<-B(P)/N<-r;

(4) for every e > 0 there is a polynomial algorithm Be which, given an order P,
determines an integer Be P with 1 e <- Be P /N <-_ 1 + e.

Proof. We show (1)::>(3)::>(4)::>(2). (The implication (2)=>(1) is obvious.)
(1)O(3). Let C be an antichain on elements and P be the series composition

of Cl and P (i.e. elements of CI are smaller than elements of P). NI is the number of
ideals in P! and N(x) is the corresponding ideal count function. From Lemma 1, we
have

(6.1)
N= N+2-l;

NI(X) { N(x) if x P,
N+2i-1-1 ifxCl.

As every P with IPI n has n + 1 _-< N _-< 2" (the lower bound follows, e.g., by considering
ideals of a linear extension of P), we can assume that n satisfies (n + 1)/(n + 2) > 1 8
as the small cases can be checked directly.

Then for 1-1 and x CI it follows from (6.1) that

(6.2)
NI(X N n + 1

---->> 1-8.
N N+ 1 n+2

Thus applying algorithm A to P, we get an element x P. On the other hand for
l= n+ [log2 (1/8)] and y P, (6.1) yields

(6.3)
Nt(y) N(y) N

< <2"-t< 8.
N, N+2’-I =

Thus applying algorithm A to Pl, we get an element y Ci.
Hence applying the algorithm to P, P2, , P, we get an with 1 -< _-< 1 such

that for Pi the algorithm A gives xi P and for P+ it gives xi+ Ci+l. Then

(6.4)
N(x,) N(x,) N

N N+2-I 2

and

(6.5)
N/+I

N+2i-1
<-1-8

N+2i+-I

SEARCHING IN TREES, SERIES-PARALLEL AND INTERVAL ORDERS 1083

imply

8 2i 1
(6.6) 1-8-N-8"

Thus we get an algorithm B for r 1/8 by applying A to Px," ", P and putting
B(P) 2 as above.

(3)=:>(4). Consider the parallel composition Pk of k copies p(1),..., p(k) of P.
Then for the number Nk of ideals in Pk we have Nk Nk. Algorithm B determines
an integer B(Pk) with

(6.7)
1 B(Pk)-<-r Nk <= r.

Thus

1 B(Pk)’/k<rl/k(6.8)
r1/--<-- N

Hence for every e > 0 we can determine a k s.t. rX/k<= 1 + e, r-X/k>= 1--e and the
algorithm Be can be the computation of [B(Pk)l/k].

(4)=:>(2). Given an order P and x P, put L(x):= {y P: y-< x}. Then

(6.9) N(x) =the number of ideals in P-L(x).

Given 8 > 0, choose e > 0 so that

o- < 80 and (1 80) < 1 80 + 8.
+

Compute N. and N(x) for every x P approximately using algorithm Be to obtain the
values N, N(x). Let the output of Be be the first element x with

(x) +
(6.0) -ao--< _-< (1-ao).

l+e N 1-e

Such an element exists as if x has 8o<=N(x)/N<=(1-8o) (the existence of such
an element is guaranteed by the theorem of Linial and Saks); then

1- e N(x)/N N(x) N l + e
(6.11)

l+e N(x)/N N(x) N 1-e

holds. For any such element

(6.12) + 80<
N(x)

< (1-8o)
N

7. Some remarks and open problems. The problem of computing the number of
ideals in ordered sets is shown to be # P-complete in the sense of Valiant [8] in a
recent paper of Provan and Ball [4], even if the ordered sets are restricted to be of
height 1. They also show that for some counting problems even approximation is
P-complete. It is an open problem whether approximating the number of ideals
within a constant factor is CA P-complete as well.

In 4 we have described how an element xP satisfying 1/4 <= N(x)/N <= 3/4
can efficiently be found if P is a series-parallel ordered set or an interval order.
Series-parallel ordered sets form a proper subclass of the class of N-free ordered sets,
i.e. ordered sets containing no N in their Hasse diagram. Furthermore, single element

1084 FAIGLE, LOV,SZ, SCHRADER AND TURIN

decomposition reveals structural similarities between interval orders and N-free
ordered sets. It would therefore be interesting to know whether the results of 4 also
extend to the class of N-free ordered sets.

Also note that the updating formulas of Lemma 1, in particular, allow the determi-
nation of N and N(x) for rooted trees. We do not know whether efficient updating
formulas exist for general trees. It is also not known, even in the case of rooted forests,
whether there exists an optimal (or asymptotically optimal) algorithm which determines
the next step efficiently.

REFERENCES

[1] N. LINIAL AND M. E. SAKS, Searching ordered structures, J. Algorithms, 6 (1985), pp. 86-103.
[2] ., Information bounds are good for search problems on ordered data structures, Proc. 24th IEEE

Symposium on Foundations of Computer Science, 1983, pp. 473-475.
[3] C. H. PAPADIMITRIOU AND M. YANNAKAKIS, Scheduling interval-ordered tasks, this Journal, 8 (1979),

pp. 405-409.
[4] J. S. PROVAN AND M. O. BALL, The complexity of counting cuts and of computing the probability that a

graph is connected, this Journal, 12 (1983), pp. 777-788.
[5] I. SANDS, Counting antichains in finite partially ordered sets, Disc. Math., 35 (1981), pp. 213-228.
[6] G. STEINER, Single machine scheduling with precedence constraints of dimension 2, Math. Oper. Res., 9

(1984), pp. 248-259.
[7] J. VALDES, R. E. TARJAN AND E. L. LAWLER, The recognition of series-parallel digraphs, this Journal,

11 (1981), pp. 298-313.
[8] L.G. VALIANT, The complexity ofenumeration and reliability problems, this Journal, 8 (1979), pp. 410-421.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
016

PROCESSOR-SHARED TIME-SHARING MODELS
IN HEAVY TRAFFIC*

DONALD P. GAVERt AND PATRICIA A. JACOBSf

Abstract. Probability models are presented for computer systems with processor-shared (time-sliced)
service discipline. The response (sojourn) time of an arriving job that requires T units of processing time
is shown to be approximately Gaussian/normal under moderately heavy traffic conditions, e.g. when the
number of terminals is large.

Key words, integral of Markov process, time transformation of Markov processes, heavy traffic approxi-
mation, diffusion process, central limit theorem, response time, Markovian computer system model

1. Introduction. Processor sharing (PS) is a mathematically tractable approxima-
tion to time sharing, a procedure followed in many actual computer systems. In effect,
PS assigns to each job of the i, (i= 1, 2,. .) present for processing 1/ith of the total
processing effort; equivalently, a single job with Markovian service rate/ completes
processing in (t, t+ dt) with probability (//i)dt + o(dt). One advantage of PS is that
short jobs are not trapped behind long jobs, as is possible in a FC-FS discipline.

Various mathematical results have been obtained about certain processor sharing
models. An early example was the paper of Coffman et al. (1970). Recently extensive
results have been obtained for Markovian systems by D. Mitra (1981), and for non-
Markovian single-server Poisson arrival systems by T. Ott (1984) and V. Ramaswami
(1984).

This paper is a continuation of ,work reported in Gaver, Jacobs, and Latouche
(1984), henceforth GJL, where emphasis was placed on proposing and evaluating
simple approximations to the distribution of delay experienced by a particular "tagged"
job approaching a time-shared processor. In that paper it was shown that under heavy
traffic conditions, or if the tagged job duration became large, then the distribution of
tagged job response time (also called sojourn time by others) approaches the normal
or Gaussian distribution.

We first show that the analysis of our system and the problem solution can naturally
and conveniently be conducted in work time rather than in ordinary clock time.
Subsequently we focus upon heavy-traffic approximations to the distribution of
response time, R(T), given the actual work (computer time) requirement, T. Specific
models proposed and examined are (i) for a system of many identical terminals that
independently submit jobs or programs according to the same Markovian process, and
(ii) for a system having two terminal types, each of which submits jobs in a manner
governed by its own Markov process. The methodology extends to general k terminal
types as well, and to other models.

The approximation solutions are evaluated for accuracy by means of Monte Carlo
simulations.

2. The work-time concept. Imagine that a tagged job requiring T units of processing
approaches the computer. Assume that it arrives when the system is in steady state.
After that initial moment it undergoes processing, at various rates governed by the

* Received by the editors January 30, 1985, and in revised form December 3, 1985. This research was
partially supported by the National Science Foundation under grant ECS 82 16852 and by the Probability
and Statistics Program of the U.S. Office of Naval Research.

" Operations Research Department, Naval Postgraduate School, Monterey, California 93943-5100.

1085

1086 DONALD P. GAVER AND PATRICIA A. JACOBS

amount of its accompaniment, until T units of service or work are accumulated, at
which point it departs after a random delay of R(T). In following the tagged job’s
delay, it turns out to be convenient to measure time in terms of the amount of actual
work or processing that has been accomplished on the taggedjob. Thus let {X(w), w >= 0}
denote the number of programs or jobs undergoing service at a moment when exactly
w units of processing have been accomplished on the tagged job. The instantaneous
rate of accrual of clock or response time at work time w is clearly X(w): if X(w)= 1
then the tagged job is alone and response (clock) time and work time advance at the
same rate, while if X(w) 17 the tagged job is accompanied by 16 others and 17 units
of response time accrue for every single work time unit. It follows that

(2.1) R(T)= X(w) dw.

For the models to be considered, the process X(w) is a birth-and-death, or simple
Markov, process related to N(t), the number of jobs in the system at clock time t; its
transition rates, after adjusting for tagged job entry, are seen to be

dt=A(N-i) dt=A(N-i)idw=A’ dw,
(2.2)

dt dt Ii dw dw,/i / txi

for 1-< i_-< N where N is the total number of terminals in the system. The term dw
is required to allow the work-time process to advance appropriately in clock time.
Henceforth we drop the superscripts, allowing the context to imply the appropriate rate.

The approach taken here invokes the work time concept described above to
facilitate calculations, first for a single terminal or job type situation, but later on for
a system with more diversified traffic patterns.

3. Heavy traffic analysis of a single terminal type Markovian system. Suppose that
N terminals have access to a single computer. Each terminal has Markovian demand
rate A, and expected service time/x-. Service times are assumed to be independently
and exponentially distributed. The discipline at the computer is PS. It is clear that if
N(t) is the number of terminals that have submitted jobs that are undergoing service
at the computer at (clock) time t, then {N(t), t-> 0} is a Markov process in continuous
time that is identical to the classical single repairman problem; see Feller (1957, p. 416).
This is so, since if N(t)-i>0, then each individual job or program receives (dt/i)
units of processing time in (t, t+dt), and hence departs with probability tx(dt/i)+
o(dt), but the probability that some job departs is ilz(dt/i)+o(dt)=lxdt+o(dt). It
has been shown by Iglehart (1965) and by Burman (1979) that under heavy traffic
conditions (N -> c) one may approximate N(t) by a suitable Gaussian process, namely
the Ornstein-Uhlenbeck process. This fact alone enables one to study the distribution
of R(T), and to deduce approximate normality; see GJL for a first analysis.

3.1. Diffusion approximation in work time. Here is a diffusion process approxima-
tion for X(w). On the basis of intuition write down the stochastic differential equation
for ’(w), the approximationn to X(w)"

(3.1)
d’(w) a[N- ff(w)](w) dw-tx(w) dw

+x/’a’[N- f(w)](w)+ tx(w) dB(w),

where {B(w), w->0} is standard Brownian motion. The first right-hand side term
represents infinitesimal drift of X(w), while the second is the diffusion or infinitesimal
variance term, the form of which is obtained from the observation that arrival and

MODELS IN HEAVY TRAFFIC 1087

departure processes compete like independent Poisson processes in short time periods.
Now suppose that, as N ,
(3.2) ff(w)= Nrn(w)+x/- Z(w)
where rn(w) is a deterministic function of time, and {Z(w), w=>O} is a stochastic
process, the properties of which must be discovered. Substitute (3.2) into (3.1) to obtain

(3.3)

Ndm(w)+4- dZ(w)

A[N- Nm(w)-x/-Z(w)][Nm(w)+v/-Z(w)] dw- tx[Nm(w)+v/-Z(w)] dw

+x/A IN- Nm(w)-x/-Z(w)][Nm(w)+x/-Z(w)]+ tx[Nm(w)+x/Z(w)]
an(w).

Next isolate terms of order N and x/-; the result is, after stipulating that A’= AN, a
constant as N o,

din(w)
(3.4) O(N)" A’[1 m(w)]m(w) -/zm(w),

dw

(3.5) O(x/’-)" dZ(w)= {A’[1-2m(w)]- Ia,}Z(w) dw

+4X’[1 m(w)]m(w)+ la,m(w) dB(w);

the stochastic differential equation (3.5) is of Ornstein-Uhlenbeck (O-U) form; see
Arnold (1974).

Next obtain the approximate long-run mean as the solution of (3.4) with dm/dw
0, examining only the heavy-traffic situation in which A’>

(3.6)

m() 1-,, A’>

If the above solution is used to define the stochastic differential equation param-
eters, there results

(3.7) dZ(w)=-(A’+)Z(w) dw+x/2lz(1-(lz/A’)) dB(w),

which suggests that {Z(w)} can be considered an O-U process with constant coefficients,
namely

(3.8) dZ(w) -pZ(w) dw + cr dB(w),

the solution to which is

(3.9) Z(w) Z(O) e-‘ + o" e- dB(u).

The parameters p (M + z and r 2/z (1 -/x/ ’).

3.2. Response time evaluation. Let

i0(3.10) /(T) 2(w) dw- [Nm(w)+v/-Z(w)] dw

approximate the response time; in this approximation R(T) is normally distributed

1088 DONALD P. GAVER AND PATRICIA A. JACOBS

(Gaussian). First,

Io ((3.11) E[R(T)]-E[(T)]-N m(w) dw-N 1- T.

Second,

Var R(T) Var [/(T) Var Z(w) dw

(3.12)

for ease of writing we have left the initial condition Z(0) implicit. In order to evaluate
the above, recall that the tagged job approaches the server when the latter is in
equilibrium, i.e., at c. It may be shown that the diffusion approximation for N(t),
the number undergoing service at clock time t, is

(3.13) (t) Na(t) + Y(t)
where a(t) is a deterministic function of time and { Y(t)} is a particular Ornstein-
Uhlenbeck process. A similar analysis to that leading to (3.6) and (3.7) yields

(3.14)
a()=l- /x NA>NA’

and

(3.15) E[Y()] 0, Var Y(c)] ---- ,
NA

see GJL for a derivation; (3.13) provides the initial condition for evaluating moments
of R(T), using (3.10). Identify Z(0), the initial value of the work time noise process
Z(w), with Y(). According to (3.9), this implies that E[or Z(w) dw] =0. In order
to compute the Var [R(T)] it is next necessary to evaluate the following integral:

I(T) E Z(w) dw Z(u) du

(3.16) 2 Z(w) dw Z(w) e-(- du

z(az([(

= [z(),z(o)]!(-e(-) a
Square (3.9) and take the expectation to see that, conditionally on Z(O),

(r) (z(0 e-+o (-e -(-e(-)

=0 [Z(O)] e-(1-e(r-) d + (1-e-)(1-e-(r-)

MODELS IN HEAVY TRAFFIC 1089

Now put E[Z(0)2] E[Y(0O)2] I/A’= tr2/2p to see that

I(T)=-- [1-e-(T-w)]dw=- T--(1-e-p =- 1-(1-e-"T)

Thus it follows that

(3.17) Var[R(T)]=Var[R(t)]= NT- 1 --(1-e-r)
To terms of order T this agrees with (4.10) of GJL; not surprisingly, the additional
factor in (3.14) can actually provide numerical results superior to those of GJL.

The form of the heavy traffic approximation, namely the limiting normal form
with parameters (3.11) and (3.14), can be more rigorously validated by use of the
theory of convergence of suitably normalized sequences of semigroups of transforma-
tions; see Burman (1979). Details appear in the Appendix to this paper.

4. Heavy traffic analysis of a K-terminal-type processor sharing system. Consider
the following natural extension of the previous model. The processor is jointly utilized
by K sets of terminals, each generating distinctive job types. There are Ni terminals
in the ith set, and arrival rate and service rate are Ai and/x respectively. Again the
discipline at the computer is PS. Of course this is not the same as a situation in which
all terminals are the same, but Type j jobs occur with probability pj from each terminal.
The latter model can, however, be studied in an analogous heavy-traffic manner, as
can other interesting models.

4.1. A diffusion model for the work-time process. Let {X(w), i= 1,..., K} rep-
resent the number of jobs of all types present at the computer at work time w. The
present model implies that {X(w)} is a multivariate or vector-state birth and death
Markov process. We choose to study a diffusion approximation {X(w)} to {Xi(w)}
that is described by the following system of s.d.e.:

dff(w) A(Ni (w) (=l "k(W)) dw Iii(w) dw

(4.1)

+4A,(N,-L(w)) Z fk(W)+l,f(i(w)dB,(w), i=l,2,...,K
k=l

where {Bi(w)} are mutually independent standard Brownian motion or Wiener proces-
ses. The work-time process is a transformation of the clock-time process; in particular,
the drift of the ith component of the clock-time process {N(t)} is seen to be

N,(t) dt
(4.2) A,(N,-N,(t)) dt-tZ, Zl= S(t)

which exhibits the processor-sharing effect in the term multiplying/zi. Multiplication
by the total in service, N(t), converts to the work-time transition rates, in analogy
with (2.2).

Now once again approximate by writing

(4.3) (w) Nm,(w)+x/- Z(w), i= 1, 2,..., K;

mi(w) and {Z(w)} are to be determined, subject to the normalization N k Nk 0O

but with

(4.4a) N/N- 1,, 0 <= I <- 1,

1090 DONALD P. GAVER AND PATRICIA A. JACOBS

and

(4.4b) Nhi- h’ 0 < h’ <c,i, i--- fti

Conditions (4.3) and (4.4) are referred to as the heavy traffic normalization (HTN).
The result of isolating terms according to order in (4.1) is:

dmi(w)
(4.5) O(S)’=h’(1-m(w)) lkmk(W)--pim,(w),

dw k=

0()" dZ(w)= lm(w) Z(w)+(1- m,(w)) 2 Z(w) dw
k=l k=l

(4.6)

z() + (m() 2 lm() +m() ()
k=l

for 1, 2, , K. Thus (mi(w); w 0; 1, 2, , K) must be found by solving a
system of ordinary first-order, but nonlinear differential equations, while (4.6) shows
that {Zi(w); w>=0, i= 1, 2,..., K} is a multivariate Ornstein-Uhlenbeck process.

4.2. A diffusion model for the clock-time process. In order to provide the initial
conditions encountered by the tagged job, it is necessary to study the clock-time process
Ni(t); see (3.13). The corresponding approximation has s.d.e.

Ni(t)
dNi(t)= Ai(Ni- Ni(t)) dt-tzir__ l(t) at

(4.7) + hi(Ni- li(t))+ fti iQi(t) 2 Qk(t) dB,(t),
k=l

Now invoke the HTN:

(4.8)]Qi(t) Niai(t)+x/i Yi(t),
Kand again N --1 N oo, with

(4.9) NilN- li, 0 <--_ 1 <- 1,

but

i-1,2,...,K.

(4.10)

The result of isolating terms is

0<ft CX), i"

da,(t) ai(t)
(4.11) O(N)" dt-X’(1-ai(t))-tz, I(lkak(tk=l

Y(t) ,k:l dt(4.12) O(v/) dY(t)=-h,Y/(t) dt-tx’, E Kk=, lgag(t)
+v/ a,(t) (Ek=/i)

-I- x/Ai (1 ai(t) -I- ft ti(ai(t)/EKk=1 lkak (t)) dB,(t).

These equations closely resemble those describing the work-time approximation; again
the semigroup approach is applicable.

If a long-run solution to the O(N) term exists in work time, and consequently
dmi/dw - 0 as w oo, the result is the system of equations for mi(oc)) =-- m:

K

(4.13) pi(1 m,) lkmk m, O,
k=l

MODELS IN HEAVY TRAFFIC 1091

where p, A//x, Nh,/li. Now these same equations are satisfied by a presumed
long-run solution in clock time, i.e., if dai/dt 0 in (4.11); for a,(oo)= a,:

(4.14) p,(1- a,)-
a,

=0.
E l(Ikakk=l

Consequently the long-run solutions in work and clock time agree at the O(N) term
level; this means that the long-run mean number present in both clock and work time
agree:

(4.15) E[Ni(t)] Nai(oo) Nmi(o) E[Xi(t)].

Next substitute these long-run results in the s.d.e, to see that as t, w- o, Y and
are essentially the same process. Put S Y.kr__l lkak to simplify writing. Then

(4.16)

dye(t) -h,Y(t) dt- tx
Yk(t)Y(t)

dt + h,(1 a,)x/ Ek=l dt
S S

+ /2h,(1 a,) dB,,

or

(4.17)

K } dt dt
dYe(t)= h, YS+x/ (l-a,) E Vk Yk(t) --txY(t)k=l

1+ x/2A,(1 a,)S dB,(t),

and a direct comparison with the corresponding equation in work time, (4.6), shows
that the long-run behaviors of the two processes {Zi(w)} and { Y(t)} are identical except
for a constant time-scale change: for large w and t,

(4.18) {Z,(w)} and Y -have the same probability law; i.e., finite-dimnsional distributions and limiting distri-
bution.

4.3. Response time. We discuss the response time under these conditions: a tagged
job approaches the processor when the latter has been operating for some time, so the
long-run clock-time distribution prevails; after arrival, the job remains present until
the total work time accumulated on the job is T, the requested service time, giving

(4.19)
R(T) E [X,(w) dw]= E X,(w) dw

i=1 i=1

Io IoN , 1, mi(w dw+x/ x/T, Zi(w) dw
i=1

where it is understood that the initial condition for the Z(w) integrand in (4.19) is
given by the approximate stationary distribution from the clock-time process. In view
of (4.18), this is equivalent to removing the initial condition by the long-run distribution
of the work-time process itself.

1092 DONALD P. GAVER AND PATRICIA A. JACOBS

Since the long-run situation is being discussed it is first necessary to solve the
steady-state version of (4.5)

K

(4.20) 0 A (1 m,) Z lkmk Ix,m,, 1, 2,..., K.
k=l

Then the solution provides parameters for the long-run version of (4.6), here written
in matrix form

(4.21) dZ(w) A__Z(w) dw+ tr dB.

Now to find the variance of R(T), append the row

K

(4.22) dZk+l(W) Z x/r Zi(w) dw
i=1

to the former drift matrix A of (4.21), and consider the system

(4.23) dZ*(w) A*Z*(w) dw + g* dB*

the solution to which can be formally written out in terms of the appropriate funda-
mental matrix, and computed in terms of eigenvalues and eigenvectors of the matrix
A*. See e.g. Arnold (1974, Chap. 8) and Coddington and Levinson (1955) for details.
A convenient way of formalizing the calculations is actually by using Laplace trans-
forms. Unfortunately, no truly simple formulas result. Finally, the covariance matrix
__C(w) of the components of Z*(w) satisfies the matrix differential equation

de(w)
dw

(A*)__C(w) +__C(w)(A*)’ + (_)(_)’

where denotes transpose; the initial conditions are provided by the long-run distribu-
tion in clock time, or in view of (4.18), of the work-time process {Z} itself. It is the
(K + 1)st diagonal element of C(w), evaluated at w= T and multiplied by N that
provides the required approximate Var [R(T)].

5. Simulation studies of the accuracy of the normal approximations to the distribution
of response time. In this section we use simulation to study the numerical accuracy of
normal approximations to the distribution of the response time. Two continuous time
Markov chain models were simulated. In one there is a single terminal type; in the
second, a two-terminal type system is examined. Two normal approximations were
evaluated: one results from a central limit theorem, and the other results from applying
the previously derived diffusion approximation to the Markov processes.

5.1. A single terminal type Markovian system. Let X(w) denote the number of
other jobs undergoing service at a moment when exactly w units of processing has
been accomplished on the tagged job for the single terminal type Markovian model
of 3. Since {X(w); w->0} is a Markov process and

R(T)= (X(w)+ 1) dw,

it follows that there are constants re(c) and tr(c) such that

g(7")-m(c)T
,(c)4-

MODELS IN HEAVY TRAFFIC 1093

converges in distribution to a standard normal distribution as T-> (cf. Keilson
(1979, p. 121)). Call this a central limit theorem (CLT) for such a process. In this case

m(c) 1 + Y’, "a’(j)j

where r is the stationary distribution of {X(w); w->0} and a formula for evaluating
tr(c) is given in Keilson (1979). The CLT normal approximation states that R(T) has
a normal distribution with mean rn(c)T and variance o’(c)2T. The CLT mean is the
true mean for R(T) under steady state (cf. GJL). The CLT normal approximation
should be increasingly accurate as T becomes large, despite values of other system
parameters, including the number of terminals.

The derivation of the heavy traffic (or diffusion) approximation is detailed in 3.
In summary, the HT approximation is that R(T) has a normal distribution with mean

and variance

where

and

p= NA+.
The mean and variance of the HT approximation are easier to compute than those for
the CLT. It is anticipated that the HT approximation should be increasingly accurate
as N becomes large when heavy traffic conditions prevail, i.e. p/AN < 1. It is inappli-
cable under other circumstances. We have conducted simulations to assess these
anticipations. We report here only some of the results. More extensive simulation
results are reported in Gaver and Jacobs (1985) and Pornsuriya (1984). All simulations
were carried out on an IBM 3033 computer at the Naval Postgraduate School using
the LLRANDOMII random number generating package (see Lewis and Uribe (1981)).

Conditional response times given the number of jobs being processed at the time
of arrival of the tagged job were simulated; the tagged job required T time units of
processing. For each initial condition, 500 replications were done. Sample moments
and relative frequencies were computed for each initial condition giving conditional
response time sample moments, and selected response time relative frequencies, i.e.,
estimated probabilities of response times in selected ranges. Unconditional sample
moments and relative frequencies were then computed by multiplying each conditional
moment or relative frequency by the appropriate stationary probability of there being
j jobs present at the time of arrival of the tagged job and then summing over all
possible j. The stationary probability is of the form kATr(j) where k is chosen so that
the probabilities sum to 1 (cf. Kelly (1979)). A detailed description of the simulation
program can be found in Pornsuriya (1984).

Simulated and approximating means and standard deviations for N 10, A -25
and/. 100 appear in Table 1. When N 10, h 25 and/z 100, it follows from (3.6)
that approximately (10)(1-(100/250))--6 jobs are being processed along with the
tagged job; thus the traffic is moderate in this case. The HT mean is lower than the

1094 DONALD P. GAVER AND PATRICIA A. JACOBS

TABLE
Simulated mean and standard deviation for R(T) and their

approximating values.

N 10, A 25,/ 100
TIME T Mean Std. dev.

0.01 Simulation .0606 .0503
(.0002)*

CLT .0605 .0245
HT .0600 .0160

0.025 Simulation .1507 .0315
(.0004)

CLT .1513 .0288
HT .1500 .0314

0.05 Simulation .3021 .0497
(.0008)

CLT .3027 .0548
HT .3000 .0481

0.10 Simulation .6036 .0748
(.0012)

CLT .6053 .0776
HT .6000 .0706

* Standard error for the estimate of the mean.

simulated mean. As mentioned before, the CLT mean equals the true mean. The CLT
standard deviation approaches the simulation value as T becomes large, as anticipated.
In order to assess the degree of normality of the distribution of R(T), the a-quantiles
for each approximating normal distribution were computed. The relative frequency of
being less than or equal to each a-quantile was computed using the simulated data.
The results appear in Table 2. The HT approximation does better than the CLT.
However, as expected, the CLT improves for larger values of T. Note, however, that
all simulations have been carried out for the modest system size, N- 10. If N grows
to say 50, or 100, the HT approximations can be expected to improve correspondingly;
they are often not bad even at the level of N 10.

5.2. Simulation results for Markovian model with two-terminal types. In this subsec-
tion we describe the results of a simulation of the general K-type Markovian model
of 4, in the case of K 2 sets of terminals. As before let Xi(w) represent the number

TABLE 2
Simulated probability (relative frequency) that the response time is

less than or equal to the approximating o-quantile.

N= 10, h =25,/z 100
TIME a’ .10 .25 .50 .75 .90 .95 .99

0.01 CLT .04 .15 .45 .85 1.0 1.0 1.0
HT .11 .22 .43 .72 .91 .98 1.0

0.025 CLT .08 .19 .45 .80 .98 1.0 1.0
HT .10 .22 .44 .73 .92 .98 1.0

0.05 CLT .09 .22 .45 .77 .95 .99 1.0
HT .11 .22 .44 .71 .91 .97 1.0

0.10 CLT .10 .24 .47 .76 .93 .98 1.0
HT .11 .23 .45 .70 .89 .95 1.0

MODELS IN HEAVY TRAFFIC 1095

of other jobs of type being processed when the tagged job has acquired exactly w
units of processing. As before the response time for the tagged job requiring T units
of work is

R(T)= [Xl(w)+X2(w)+ 1] dw.

The process {(Xl(w), X2(w)); w _-> 0} is Markovian. Hence again R(T) satisfies a central
limit theorem as T-. The normal approximation for the distribution of R(T)
resulting from the central limit theorem will again be referred to as CLT.

The mean term (rnl + m2)T for the heavy traffic approximation was computed by
solving the system of equations (4.20) for rn and m2. The variance term for the
approximation was computed by solving the system of stochastic differential equations
(4.23) as detailed in Arnold (1974, Cor. (8.2.4)). The fundamental matrix (Arnold
(1974, p. 129)) was found by computing Laplace transforms of the sstem of defining
differential equations and then inverting the solution. The approximating variance term
was found by computing the variance of the solution of the s.d.e. As in the case of
one-terminal type, it is a linear combination of exponentials and constant terms. Its
exact form is uninformative and will not be given here.

Conditional response times, given the number ofjobs of each type being processed
at the time of arrival of the tagged job, were simulated. The tagged job was always
taken to be a Type 1 job. For each initial condition, 300 applications were carried out.
Sample moments and probabilities (relative frequencies) were computed for each initial
condition giving conditional sample moments and probabilities (relative frequencies).
Unconditional sample moments and probabilities were computed in a similar manner
to that in the one-terminal type simulation; see Pornsuriya (1984).

TABLE 3
Simulated means and standard deviations for R(T) and

their approximating values.

N1 5, N2 5, hi 20, ’2 30,].t 50, /2, 100
TIME T Mean Std. dev.

0.01 Simulation 0.0713 0.0135
(o.oool)*

CLT 0.0707 0.0204
HT 0.0710 0.0132

0.025 Simulation 0.1783 0.0263
(0.0003)

CLT 0.1766 0.0322
HT 0.1775 0.0253

0.0375 Simulation 0.2664 0.0353
(0.0005)

CLT 0.2650 0.0395
HT 0.2663 0.0325

0.050 Simulation 0.3570 0.0414
(0.0005)

CLT 0.3533 0.0456
HT 0.3550 0.0384

0.0625 Simulation 0.4439 0.0478
(0.0006)

CLT 0.4416 0.0510
HT 0.4438 0.0435

* Standard error of the estimate of the mean.

1096 DONALD P. GAVER AND PATRICIA A. JACOBS

TABLE 4
Simulated means and standard deviations for R(T) and

their approximating values.

N 5, N2 5, A 10, A2 =40,/x 25, jl, 125
TIME Mean Std. dev.

0.01 Simulation 0.0717 0.0134
(0.0001)*

CLT 0.0717 0.0237
HT 0.0720 0.0133

0.025 Simulation 0.1788 0.0280
(0.0004)

CLT 0.1793 0.0375
HT 0.1799 0.0271

0.0375 Simulation 0.2690 0.0376
(0.0005)

CLT 0.2684 0.0459
HT 0.2699 0.0359

0.0500 Simulation 0.3588 0.0456
(0.o006)

CLT 0.3585 0.0530
HT 0.3599 0.0433

0.0625 Simulation 0.4481 0.0527
(0.0007)

CLT 0.4481 0.0529
HT 0.4498 0.0496

* Standard error of the estimate of the mean.

Values of the simulated means and standard deviations and their approximating
values for R(T) for various cases in which N1- 5 and N2- 5 appear in Tables 3-4.
Once again the CLT mean is the true steady-state mean for R(T). The means and
standard deviations of R(T) for each T differ surprisingly little for the two cases. This
suggests that perhaps the two-type terminal model can often be satisfactorily approxi-
mated by a one-type model in which the arrival rate and service rates are the average
arrival and service rates in the two-type model. Values of the simulated means and
standard deviations and their approximating values for the approximate one-type
model with N 10, A 25 and/x 75 appear in Table 5. The values for the approximate
one-type model are acceptably close to those for the two-type model. Note that the
quality of the HT approximation is generally quite good, even though the system sizes
N and N2 can hardly be called "large."

To assess the quality of the normal approximation to the distribution of R(T) for
the two-type model, the a-quantiles for each two-type approximating normal distribu-
tion were computed. The relative frequency of being less than or equal to each
c-quantile was then computed, using the simulated data. The results appear in Tables
6-7. From the heavy traffic approximation to the mean it follows that approximately
7 jobs are being processed with the tagged job. Thus, all the cases considered are really
moderate traffic cases. The tables indicate that the HT approximation tends to describe
the quantiles better than does the CLT. However, as is expected, the CLT improves
with larger T.

Appendix. Heavy traffic approximation by convergence-of-semigroups methodology.
The purpose of this appendix is to outline a mathematical framework upon which the
heavy traffic approximations of this paper may be rigorously based. The approach is

MODELS IN HEAVY TRAFFIC 1097

TABLE 5
Simulated means and standard deviations for R(T) and

their approximating values for the one-type model.

N= 10, A =25,/x =75
TIME T Mean Std. dev.

0.1 Simulation 0.0701 0.0139
(0.0002)*

CLT 0.0701 0.0206
HT 0.0700 0.0135

0.025 Simulation 0.1766 0.0263
(0.0005)

CLT 0.1752 0.0325
HT 0.1750 0.0258

0.0375 Simulation 0.2620 0.0361
(0.0008)

CLT 0.2628 0.0398
HT 0.2625 0.0330

0.0500 Simulation 0.3501 0.0430
(0.0009)

CLT 0.3504 0.0460
HT 0.3500 0.0390

0.0625 Simulation 0.4388 0.0478
(0.0011)

CLT 0.4380 0.0514
HT 0.4375 0.0441

* Standard error of the estimate of the mean.

TABLE 6
Simulated probability (relative frequency) that the response time is less than or equal to the

approximating a-quantiles.

N 5, N2 5, Ax 20, ’2 30,/z 50, /[/2 100
TIME T a" 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.010 CLT 0.041 0.137 0.433 0.838 0.998 1.0 1.0
HT 0.109 0.221 0.443 0.719 0.915 0.977 1.0

0.0250 CLT 0.062 0.170 0.425 0.765 0.969 0.997 1.0
HT 0.103 0.223 0.438 0.708 0.911 0.975 1.0

0.0375 CLT 0.079 0.191 0.429 0.754 0.952 0.991 1.0
HT 0.118 0.229 0.447 0.713 0.905 0.969 0.999

0.0500 CLT 0.075 0.181 0.417 0.724 0.939 0.986 1.0
HT 0.106 0.222 0.431 0.693 0.897 0.965 0.998

0.0625 CLT 0.081 0.198 0.436 0.745 0.932 0.980 1.0
HT 0.115 0.238 0.451 0.719 0.898 0.960 0.997

to use an analytical theory of convergence of semigroups of operators apparently first
applied to queueing problems by Burman (1979) in a regrettably unpublished thesis.
See also Lehoczky and Gaver (1981) where the technique is used to obtain results
concerning a data-voice traffic sharing multichannel system. The theory of semigroups
of operators is introduced in Feller (1971), and detailed in Dynkin (1965); the conver-
gence ideas are discussed in Trotter (1974) and Kato (1976). The basic notion is that
the state variable of a process, say the work time process of 4.1, {Xi(w; N), w >= 0},
is one of a sequence of birth-and-death Markov processes indexed by system size N.

1098 DONALD P. GAVER AND PATRICIA A. JACOBS

TABLE 7
Simulated probability (relative frequency) that the response time is less than or equal to the

approximating a-quantiles.

N 5, N 5, A 10, A =40, 1 25,/2, 125
TIME T a 0.10 0.25 0.50 0.75 0.90 0.95 0.99

0.010 CLT 0.027 0.119 0.447 0.906 1.0 1.0 1.0
HT 0.110 0.230 0.458 0.737 0.931 0.982 1.0

0.0250 CLT 0.061 0.178 0.451 0.824 0.991 0.999 1.0
HT 0.121 0.236 0.464 0.734 0.930 0.985 1.0

0.0375 CLT 0.068 0.191 0.441 0.790 0.979 0.999 1.0
HT 0.117 0.239 0.451 0.725 0.927 0.983 1.0

0.0500 CLT 0.081 0.189 0.430 0.776 0.975 0.997 1.0
HT 0.117 0.232 0.444 0.729 0.935 0.985 1.0

0.0625 CLT 0.085 0.199 0.442 0.772 0.960 0.995 1.0
HT 0.121 0.237 0.456 0.737 0.923 0.979 1.0

Given such a sequence of Markov processes, ({Xi(w; N)}), each with its appropriate
state space, Sv, it is desired to show that the corresponding sequence of probability
transition functions converges to that of some limiting process that has state space So;
in the present case So +r. The limiting process under the normalization of {X(w; N)}
chosen will be a particular diffusion process, namely, in the present heavy traffic
situation the multivariate Ornstein-Uhlenbeck.

The Trotter-Kato theory of convergence deals with the convergence of infinitesimal
operators Av of the normalized processes {Xi(w; N)}: if ANfAf in sup norm for
a suitable class oftest functions (e.g.,f(z): Rr - R1 m-times continuously differentiable,
rn _-> 3, that vanish identically outside a bounded subset of r and further such that
the functions, f, together with their first and second derivatives do not increase faster
than some fixed power of z) it can be concluded that the semigroups converge, and
hence the Markov probability transition functions themselves converge.

We now proceed with the formal calculation of the limiting generator for our
normalized process. Invoke (4.4) so

(A1) Z(w) X(w)- Nm,(w) X(w)- Nl,m,(w)

By definition, for z (zl, Z2, ZK) and f in the above class

1
(A2) Alf(z) lim {E[f(ZU(w+ A))lZV(w)= z] -f(z)} .A0

Given Z(w)= z, and Ci(w, w + A) represents the change in X(w),

(A3)

X(w)+ Ci(w, w+ A)- Nimi(w+ A)

C,(w)
x/-i + z’ + "v/i m w A+ o A

MODELS IN HEAVY TRAFFIC 1099

Consequently, for _z such that zi>-vi mi(w)A-(1/v/-i),

(A4)

m(w)A,..., zr) A,(N)A
(1) }+f z z

vi v/- vi m w A zr /.ti(N)A

+f(zl-Vl m(w)A, z/ V/K X/ m(w)A)

x 1- 2 {(hi(N)+/zi(N))A} -f(z1, z2,’’’, ZK)"" o(A)
Ai=1

where for simplicity (and generality) we abbreviate

(A5) h,(N)=h,[Ni-N,mi(w)-x/ z,](., (Nmj(w)+x/-- zj))
j=l

(A6) "---(A,N) li(1-m,(w))---z, N lmj(w)+--z
j=l

and

(A7) p..i(N) ,(Nimi(w)+v/- zi)’-" p.iN l,mi(w)+-- zi

Upon passage to the limit via Taylor series expansion it is seen that

(A8)

ANf(Z) ,E.= f Zl ,’’’, Zi -" i’"’ ZK li(N)

(1) }+f Zl" " zi-i ";-" zK fti(N)

+f(z,, z,, zr) E (hi(N)+m(N))
j=l

K

fs mj(w).
j=l

Note that no specific normalization has been utilized up to this point. Now, however,
invoke the HTN of (4.4) and utilize (A6) and (A7) specifically; allowing N to become
large,

K{ A,(N) tx,(N) A,(N) +/x,(N) }Auf(z)"-" ., f’z, t- f"(zi) -f, m(w)
i= tiN

,Elf A](1-m,(w)) E bm(w) , m,(w)- m](w)
j=l

(Ag) +(-m,()) -’iz, E bm(w) ,z, + O(N-1/2)
j=l

+ i=1 j=l

Choose the functions mi so that they satisfy the system of differential equations
(4.5). Let N- c. Then forf in the above class of functions, the operator As converges

1100 DONALD P. GAVER AND PATRICIA A. JACOBS

to yield

Af(z) f’, Ax/ 1 m,(w)) ., z. A z, lm(w)
i=1 j=l j=l

1 fz",{A(1-m,(w))(lmj(w))+tx,m,(w)}."q-’
i=1 j=l

The operator Ao is the infinitesimal operator of the diffusion whose stochastic differen-
tial equation is (4.6) (cf. Arnold (1974, p. 152)). The Trotter-Kato theorem can now
be applied to assert that the semigroups converge (cf. Burman (1979)).

REFERENCES

L. ARNOLD (1974), Stochastic Differential Equations: Theory and Applications, John Wiley, New York.
D. BURMAN (1979), An analytic approach to diffusion approximations in queueing, Unpublished Ph.D.

dissertation, Dept. Math., New York University, New York.
E. A. CODDINGTON AND N. LEVINSON (1955), Theory of Ordinary Differential Equations, McGraw-Hill,

New York.
E. G. COFFMAN, R. R. MUNTZ AND H. TROTTER (1970), Waiting time distributions for processor-sharing

systems, J. Assoc. Comput. Mach., 17, pp. 123-130.
E. B. DYNKIN (1965), Markov Processes, Vol. 1, Springer-Verlag, Berlin.
W. FELLER (1957), An Introduction to Probability Theory and Its Applications, Vol. I, 2nd ed., John Wiley,

New York.
(1971), An Introduction to Probability Theory and Its Applications, Vol. 2, 2nd ed., John Wiley, New
York.

D. P. GAVER, P. A. JACOBS AND G. LATOUCHE (1984), The normal approximation and queue control for
response times in a processor-shared computer system model, Naval Postgraduate School Technical
Report, NPS 55-84-001.

D. P. GAVER AND P. A. JACOBS (1985), Processor-shared time-sharing models in heavy traffic, Naval
Postgraduate School Technical Report, NPSo85-004.

D. L. IGLEHART (1965), Limiting diffusion approximationsfor the many-server queue and repairman problem,
J. Appl. Probab., 2, pp. 429-441.

T. KATO (1976), Perturbation Theory for Linear Operators, Springer-Verlag, Berlin.
J. KEILSON, Markov Chain Models--Rarity and Exponentiality, Springer-Verlag, New York, 1979.
F. P. KELLY (1979), Reversibility and Stochastic Networks, John Wiley, New York.
J. P. LEHOCZKY AND D. P. GAVER (1981), Diffusion approximations for the cooperative service of voice and

data messages, J. Appl. Probab., 18, pp. 660-671.
P. A. W. LEWIS AND L. URIBE (1981), The new naval postgraduate school random number packagem

LLRANDOMII, Naval Postgraduate School Technical Report, NPS-81-005.
D. MITRA (1981), Waiting time distributionsfrom closed queueing network models ofshared processor systems,

Bell Laboratories Report.
D. MITRA AND J. A. MORRISON (1983), Asymptotic expansions ofmoments of the waiting time in closed and

open processor-sharing systems with multiple job classes, Adv. Appl. Probab., 15, pp. 813-839.
J. A. MORRISON AND D. MITRA (1985), Heavy-usage asymptotic expansions for the waiting time in closed

processor-sharing systems with multiple classes, Adv. Appl. Probab., 17, pp. 163-185.
T. J. OTT (1984), The sojourn time distribution in the M/G/1 queue with processor sharing, J. Appl. Probab.,

21, pp. 360-378.
S. PORNSURIYA (1984), Normal approximations for response time in a processor-shared computer system

model, M. S. thesis, Naval Postgraduate School, Monterey, CA.
V. RAMASWAMI (1984), The sojourn time in the GI/M/1 queue with processor sharing, J. Appl. Probab., 21,

pp. 437-442.
H. F. TROTTER (1974), Approximation and Perturbation ofSemigroups, P. L. Butzer and B. Szokefalvi-Nagy,

eds., Conference on Linear Operators and Approximations, 2nd 1974, Mathematisches Forschungs-
institut Oberwolfach Proceedings, Birkhauser, Basel.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and App!ied Mathematics
017

SOME OBSERVATIONS ABOUT THE RANDOMNESS
OF HARD PROBLEMS*

DUNG T. HUYNH

Abstract. In this note we investigate some connections between hard languages and random languages.
We show that there exist languages that are both hard and random. We also show that every EXPTIME-hard
language is polynomial-time weakly random.

Key words, complexity, hardness, immunity, language, randomness, P, EXPTIME

1. Introduction. Following Church’s definition of random sequences [4] (which
have been studied further in [5], [9] in the subrecursive setting), Wilber introduced
in 11 the notion of polynomial-time (P-) random languages. Intuitively, a language
L is P-random if no polynomial-time algorithm that serves as an acceptor for L can
be correct with a probability greater than 1/2. It is shown in [11] that there exists a
P-random language in EXPTIME that is P-isomorphic to an EXPTIME-complete
language that is not P-random. This means that P-random languages are not invariant
under polynomial-time isomorphisms. This phenomenon is somewhat unsatisfactory.
Moreover, with this strong notion of P-randomness, it seems unlikely, as noted in [11],
that one can show that natural random languages exist.

In this paper we will show that the notions ofrandom languages and hard (immune)
languages are independent. The idea is that the randomness of a language is invariant
under slight variations, whereas immunity is a property that can rely on a very sparse
subset of the language under consideration. We also show that with a somewhat weaker
notion of P-random languages that is invariant under polynomial-time isomorphisms
every EXPTIME-hard language is P-random. This result has an interesting con-
sequence: Any polynomial-time algorithm with yes/no answers that "tries to recognize"
an EXPTIME-hard language must be wrong on an exponentially dense set of input
instances. (This improves substantially Theorem 4.3 in 12] which states that the density
of instances with wrong answers cannot be O(log log (n)).)

The second result mentioned above can also be related to a classical approach in
mathematics as explained in the following. In various areas of mathematics there is
an interesting approach to solve hard problems: instead of trying to obtain correct
answers on all input instances (which is not feasible for provably hard problems), one
develops easily decidable invariants that allow oneself to obtain correct answers on
many (but not all) input instances. For example, consider the isomorphism problem
for groups, which is known to be undecidable. A polynomial-time decidable invariant
for this problem may be obtained as follows: from the presentations of two groups
G1, G2 in the input, one adds commutative relations and checks in polynomial time
whether the resulting Abelian groups are isomorphic; in case of a negative outcome
one concludes that G1, G2 are not isomorphic, whereas they may be nonisomorphic
in the other case. (See also [6] for an invariant for the equivalence problem for
context-free grammars, and [7] for its polynomial-time version.)

The above idea about polynomial-time computable invariants for computationally
intractable problems can be formalized in the complexity-theoretic fashion as follows:
For a language Lc X*, L1 P is said to be a polynomial-time invariant for L if L1 D L.

* Received by the editors April 3, 1985, and in revised form November 19, 1985.

" Computer Science Department, Iowa State University, Ames, Iowa 50011.

1101

1102 DUNG T. HUYNH

Thus, a polynomial-time algorithm for L1 is also a polynomial-time algorithm "for"
L that gives wrong answers on instances in L1- L. From our main result, it follows
that if L is EXPTIME-hard, then L1-L, must have exponential density, where L is
any polynomial-time invariant for L.

2. Preliminaries. In this note, N denotes the set of nonnegative integers. All
languages are subsets ofX*, where X is the binary alphabet {0, 1}. For a string w
denotes its length. For a set S c *, card (S) denotes the cardinality of S, S := *- S
denotes its complement. *-{wili >- 1} is linearly ordered as follows" the index of
wi is the integer with binary representation lw. From this ordering we define a linear
ordering on X*xX* as follows" (wi, wj) precedes (Wk, W) iff either i<k, or i=k and
j<l.

For a set S c X*, the census function of S, denoted by ds, is a function from N
into N defined by:

ds(n) := card ({w S" Iwl-< n}).

S is said to have subexponential density if for every e > 0, ds(n)= o(2"). If S and S
do not have subexponential density, then S is said to have symmetric density. If S does
not have subexponential density, it is said to have exponential density.

We use the multi-tape deterministic Turing machine (DTM) as our computational
model. Time complexity classes are defined as usual. EXPTIME := LI c>o DTIME (2c").
We consider only polynomial-time bounded many-one reductions (=< P,,,). A language
is EXPTIME-hard if it is EXPTIME-hard w.r.t. -<_ P,,,.

A transducer is a DTM with an extra write-only output tape. A transducer computes
a value y on an input string x if there is an accepting computation on input x for
which y is the output string. F-DTIME (t(n)) denotes the class of functions from
into * that are computable by t(n)-time bounded transducers.

3. P-random languages and P-bi-immune languages. Following [4], P-random
languages have been introduced in 11].

DEFINITION 1. A language L is said to be DTIME (t(n)) random iff for all

L DTIME (t(n)), the census function dL, of L’ :- (L L1) L3 (L L) satisfies the
condition that lim,_ 2-(n+l)dv(n) exists and is 1/2. L is P-random iff it is DTIME (n k)
random for all k N.

The above definition intuitively means that no polynomial-time "acceptor" for a
P-random language can be right more than 50% ofthe time. In some sense, this suggests
that such a language is hard. On the other hand, almost everywhere hard languages
have been extensively studied in complexity theory (cf., e.g. [2]). In the following we
want to compare these two notions.

DEFINITION 2. A language L is said to be DTIME (t(n))- immune iff L is infinite
and it does not contain any infinite subset in DTIME (T(n)). L is said to be
DTIME (t(n))- bi-immune iff both L and L are DTIME (t(n))-immune. L is said to
be P-(bi-)immune iff L is DTIME (nk)-(bi-)immune for all k N.

Thus, P-immune languages are hard in the sense that they contain only finite
subsets in P. The first observation is that a P-random language is not necessarily
P-immune.

LEMMA 3. Let L be a P-random language. Then the union or difference of L with
any subexponentially dense set is again P-random.

Proof. Obvious.
PROPOSITION 4. There is a P-random language that is not P-immune.

RANDOMNESS OF HARD PROBLEMS 1103

Proofi Let L be a P-random language. By Lemma 3, L t_J 1" is again P-random.
However, it is obviously not P-immune.

Next, we want to show that a P-bi-immune language is not necessarily P-random.
It has been observed in [9] that there exist almost everywhere hard (immune) languages
with subexponential (or even polynomial) density. Such languages cannot be random.
In the following we show that for "any" given function d from N into N there is a
P-bi-immune language in EXPTIME that has d as census function and is not P-random.

LEMMA 5 [1], [8]. Let d:N->N be a strictly monotone increasing function with
d(O)=O,n<-d(n)<-_2n+l-(n+2) for all n>-I such that on->d(n) is computable in
polynomial-time. Then there exists a P-bi-immune language in EXPTIME that has d as
its census function.

Proof sketch. For the sake of completeness we reproduce a construction in [1]
here. Let {Tli N) be an enumeration of transducers. S will be a list of indices of
transducers to be diagonalized. The desired language will be constructed in stages.

Stage O:
L:=;
s:={0};

Stage n > O:
S:=SU{n};
if there is some S and x, y E* (x precedes y in the linear ordering on
E*) with Ixl--< lyl n such that there are two accepting computations of T/
on x and y, respectively, that perform at most 2 steps and T(x)= T(y)
then let io be the least with this property and Xo, Yo be the smallest corre-

sponding pair (x, y);
if Xo does not belong to L then L := L [A {Yo};
S:= S-{io};

Add to L the smallest strings of length n which are distinct from Xo, Yo (if
they have been found) so that dL(n)= d(n);
go to next stage;

end.

It can be shown that L is P-bi-immune (even P-strongly-bi-immune (cf. Definition
8 and Fact 9 below)) and L EXPTIME.

From Lemma 5 we obtain
PROPOSrrION 6. Let d :N-> N be a strictly monotone increasingfunction with d (0)

O, n <-_ d (n) <-_ 2 n+ (n + 2) for all n >- 1 such that O -> d (n) is computable in polynomial-
time. Then there is a language L in EXPTIME with census function d so that L is
P-bi-immune but not P-random.

Proof. Let L be the language constructed in the proof of Lemma 5. Observe that,
by construction, for all n >-1, the first d(n)-d(n-1), except possibly one or two,
strings of length n that begin with 0 are in L. Obviously, L is not P-random. l-1

From Proposition 6 we obtain
COROLLARY 7. There is a P-bi-immune language L with censusfunction dL satisfying

dL(O)=O, dL(1)= 1 and d/(n)=2 for all n>-_2 so that L is in EXPTIME and is not
P-random.

Propositions 4 and 6 and Corollary 7 reveal the fact that the notions of P-random
languages and P-immune languages are independent. From these results, it seems
interesting to show that there exist languages in EXPTIME that are both P-bi-immune
and P-random. In the following we show that such languages do exist. For technical

1104 DUNG T. HUYNH

convenience, we introduce the notion of "strong bi-immunity" (cf. [1]), which has
been motivated by a construction in [3].

DEFINITION 8. A function f: E* --> X* is said to be one-one almost everywhere (1 1
a.e.) on a set S iff there are at most finitely many pairs x, y S such that x # y and
f(x)-f(y). A language L is said to be DTIME (t(n)) strongly-bi-immune iff every
function f:X*->X* in F-DTIME (t(n)) that satisfies f(L)fqf(LC)=f is 1-1 a.e. on
both L and Lc.

The difference between the notions of DTIME (t(n))-bi-immune languages and
DTIME (t(n))-strongly-bi-immune languages is as follows. DTIME (t(n))-bi-immune
languages can also be defined as in Definition 8 by weakening the requirement on

f: f-l(w) has to be finite for all w.
FACT 9. If L is DTIME t(n strongly-bi-immune, then it is DTIME t(n hi-

immune.
In the following we will show that there exist languages in EXPTIME that are

simultaneously P-strongly-bi-immune and P-random. The existence of such languages
will have an interesting consequence in the next section. We introduce a technical
notion. A language L1 is said to be obtained from L by polynomial variation if their
symmetric difference has polynomial density.

LEMMA 10. Let L be a language in EXPTIME that is P-random. Then there is a
language L1 obtainedfrom L by polynomial variation so that L1 is P-strongly-bi-immune.

Proof. Consider the diagonalization in the proof of Lemma 5. At stage n, at most
one string must be added to L and at most one string must be added to L in order
to make L P-strongly-bi-immune. It can easily be seen that by polynomial variation,
any P-random language L in EXPTIME (whose existence has been shown in [11])
can be transformed, by the same method, into a P-strongly-bi-immune language that
is still in EXPTIME.

From Lemmas 3, 10 and Fact 9, we obtain as corollary
THEOREM 11. There is a language in EXPTIME that is both P-bi-immune and

P-random.

4. P-weakly-random languages. As pointed out in 10, p. 52], the notion of recur-
sive invariance plays a fundamental role in recursive function theory: almost all
concepts are recursively invariant. In complexity theory, many notions concerning
recursive languages are invariant under polynomial-time isomorphisms. Unfortunately,
the notion of P-randomness, as defined above, is not polynomially invariant. Indeed,
it has been shown in [11] that there is a P-random language that is polynomially
isomorphic to an EXPTIME-complete language that is not P-random. This means that
P-randomness is a too strong notion in studying properties of complete languages.
Moreover, with respect to the above notion of P-randomness, it seems unlikely, as
noted in 11], that one can show that certain natural problems are P-random. To avoid
these difficulties, we introduce a weaker notion of P-randomness that is polynomially
invariant, and show that every EXPTIME-hard language is P-random under this new
notion.

DEFINITION 12. A language L is said to be DTIME (t(n)) weakly-random iff for
every L DTIME (t(n)) the language L’ := (L fq L1) [..J (L fq L) has symmetric density.
L is P-weakly-random iff L is DTIME (rl k) weakly-random for all k N.

PROPOSITION 13. IfL is P-weakly-random, thenf(L) is P-weakly-randomfor every
polynomial-time isomorphism f.

Proof. Obvious.
From Lemma 10 we obtain

RANDOMNESS OF HARD PROBLEMS 1105

THEOREM 14. Every EXPTIME-hard language is P-weakly-random.
Proof. Let L be an EXPTIME-hard language. Let L be the language constructed

in Lemma 10: L is P-strongly-bi-immune and P-random, and L EXPTIME. Since
L is EXPTIME-hard, there is a polynomial-time reduction f from L1 to L. f must be
1-1 a.e. on L1 and L, because L is P-strongly-bi-immune. Therefore, f(L)c L and
f(L) L both are not subexponentially dense, because L1 has symmetric density.
Now, it is obvious that L is P-weakly-random. fl

Remark 15. The set K :=f(L1)Uf(L) in the proof of Theorem 14 is also a
polynomial complexity core for L (cf. [8]): any DTM that recognizes L requires a
nonpolynomial number of steps on almost all instances in K. On the other hand, if
we allow algorithms to give wrong answers, then the proof of Theorem 14 implies that
any polynomial-time bounded DTM that "tries to recognize" L must give wrong
answers on an exponentially dense subset of K. (In a fashion similar to [8], this result
can be generalized for other time and space complexity classes.)

Acknowledgments. The author is grateful to two anonymous referees for helpful
suggestions that greatly improve the presentation of this paper.

REFERENCES

1] J. L. BALCAZAR AND U. SCHtNING, Bi-immune sets for complexity classes, Math. Systems Theory, to
appear.

[2] L. BERMAN, On the structure ofcomplete sets: almost everywhere complexity and infinitely often speedup,
Proc. 17th IEEE Symposium on Foundations of Computer Science, 1976, pp. 76-80.

[3] L. BERMAN AND J. HARTMANIS, On isomorphisms and density of NP and other complete sets, this
Journal, 6 (1977), pp. 305-322.

[4] A. CHURCH, On the concept of random sequence, Bull. AMS, 46 (1940), pp. 130-135.
[5] R. A. DI PAOLA, Random sets in subrecursive hierarchies, J. ACM, 16 (1969), pp. 621-630.
[6] G. HOTZ, Eine Neue Invariantefiir Kontext-Freie Sprachen, Theor. Comp. Sci., 11 (1980), pp. 107-116.
[7] O. T. HUYNH, Remarks on the complexity of an invariant of context-free grammars, Acta Informatica,

17 (1982), pp. 89-99.
[8] D.T. HUYNH, Exponentially dense complexity coresfor provably intractable problems, manuscript, 1984.
[9] A. R. MEYER AND E. M. MCCREIGHT, Computationally complex and pseudo-random zero-one valued

functions, in Theory of Machines and Computations, Kohavi and Paz, eds., Academic Press, New
York, 1971, pp. 19-42.

10] H. ROGERS, Theory ofRecursive Functions and Effective Computability, McGraw-Hill, New York, 1967.
[11] R. E. WIENER, Randomness and the density of hard problems, Proc. 24th IEEE Symposium on

Foundations of Computer Science, 1983, pp. 335-342.
12] Y. YESHA, On certain polynomial-time truth-table reducibilities ofcomplete sets to sparse sets, this Journal,

12 (1983), pp. 411-425.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
018

PROBABILISTIC ANALYSIS OF
TWO HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM*

MING-TE CHAO AND JOHN FRANCO:

Abstract. An algorithm for the 3-Satisfiability problem is presented and a probabilistic analysis is
performed. The analysis is based on an instance distribution which is parameterized to simulate a variety
of sample characteristics. The algorithm assigns values to variables appearing in a given instance of
3-Satisfiability, one at a time, using the unit clause heuristic and a maximum occurring literal selection
heuristic; at each step a variable is chosen randomly from a subset of variables which is usually large. The
algorithm runs in polynomial time and it is shown that the algorithm finds a solution to a random instance
of 3-Satisfiability with probability bounded from below by a constant greater than zero for a range of
parameter values. The heuristics studied here can be used to select variables in a Backtrack algorithm for
3-Satisfiability. Experiments have shown that for about the same range of parameters as above the Backtrack
algorithm using the heuristics finds a solution in polynomial average time.

Key words, satisfiability, probabilistic analysis, heuristics

1. Introduction. This paper is concerned with the probabilistic performance of
two heuristics for the 3-Satisfiability problem (3-SAT). 3-SAT is the problem of
determining whether all of a collection of 3-literal disjunctions (clauses) of Boolean
variables are true for some truth assignment to the variables. This problem is NP-
cornplete so there is no known polynomial time algorithm for solving it. 3oSAT is a
special case of the Satisfiability problem (SAT) which is the problem of determining
whether all of a collection of clauses are true for some truth assignment to the variables
contained in those clauses.

The analysis is based on an equally likely instance distribution which has been
used in other studies of algorithms for this problem. This model has two parameters:
n, the number of clauses, and r, the number of variables from which clauses are
composed. The model (which we refer to as M(n, r, 3)) is described in greater detail
in the next section. In [7] it was shown that, under M(n, r, 3), if lim,,r-,oo (n/r) > 5.2
then random instances have no solution with probability approaching 1. In [2] it was
reported that, according to experiments, random instances have no solution with
probability approaching 1 if lim,,r_oo (n/r)> 4. Iflim,,r_,o (n/r)= B and B is a constant
less than 4 then the average number of truth assignments satisfying a random instance
of 3-SAT is exponential in n; however, the probability that a random truth assignment
satisfies a random instance tends to zero as n c so, although random instances have
many solutions on the average, these instances are not so trivial that a random probe
is likely to result in a satisfying truth assignment. Still, it may be argued that the model
generates instances with more satisfying assignments than one would expect in a
practical setting. We respond by pointing out that perhaps the greatest value of the
results presented here is that they may be compared with results obtained for other
heuristics for 3-SAT under the same model.

Results obtained previously and in this paper under model M(n, r, 3) are as
follows. In [1] it was shown that Backtracking solves 3-SAT in exponential average
time for all limiting ratios of n to r which are constant. In [7] it was shown that a

* Received by the editors January 7, 1985, and in revised form September 7, 1985. This work was
supported in part by Air Force grant AFOSR 84-0372.

f Case Western Reserve University, Department of Computer Engineering and Science, Cleveland,
Ohio 44106.

t Indiana University, Department of Computer Science, Bloomington, Indiana 47405.

1106

HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM 1107

variant of the Davis-Putnam Procedure [3] which searches for all solutions to the
given instance requires exponential time in probability under M(n, r, 3) for all limiting
ratios of n to r which are constant. But, in [5] it was shown that the Pure-Literal
heuristic can be used to solve random instances of 3-SAT in polynomial time with
probability approaching 1 when lim,,r_oo (n/r)< 1. In this paper it is shown that the
Unit-Clause heuristic and a maximum occurring literal selection heuristic can be used
to solve random instances of 3-SAT in polynomial time with probability bounded from
below by a constant when lim,,r_oo (n/r)<2.9. A similar analysis shows that the
Unit-Clause heuristic alone solves random instances in polynomial time with bounded
probability when lim,,_o (n/r)<2.66. These results are useful because they indicate
the effectiveness of the two heuristics when used in a Backtrack algorithm for 3-SAT.
Experiments suggest that Backtracking, using the two heuristics to determine which
literal to consider at each step, will verify in polynomial average time that a solution
exists for about the same range of limiting ratios of n to r.

There are a number of papers which investigate the probabilistic performance of
SAT; these papers present results which are closely related to the results obtained for
3-SAT. These results are based on the constant-density model for SAT: construct each
of n clauses independently by placing each of r variables independently in a clause
with probability p and complementing those variables in each clause with probability
1/2. Average case results using the constant-density model or variation are in [1], [8],
[9], [10] and [11]. Probabilistic results using the constant-density model are in [6].
According to the results in [6], when the average number of literals in a clause is 3,
random instances of SAT are nearly always proven to have no solutions in polynomial
time.

2. 3-Satisfiability and the probabilistic model. The following terms are used to
describe 3-SAT. Let V {vl, /)2" Dr} be a set of r Boolean variables. Associated with
each variable vi is a positive literal, denoted by vi, and a negative literal, denoted by

and literal vi has value true iff the variable v has value true and literal t3i has value
true iff the variable v has value false. The literals v and are said to be complementary.
If is a literal then comp (l) is the literal which is complementary to /. A clause is a
subset of the set of all literals associated with the variables of V such that no two
literals in the subset are complementary. A truth assignment to V is an assignment of
truth values to every variable in V. A clause c is satisfied by truth assignment if at
least one literal in c has value true under t. Let A(V) denote the set of i-literal clauses
that can be composed of literals associated with the variables of V. An instance I of
3-SAT is a collection of clauses chosen from A3(V) and the problem is to find a truth
assignment to V which satisfies all clauses in I, if one exists, and to verify that no
such truth assignment exists otherwise. A truth assignment which satisfies all clauses
in I is said to be a solution to L

The probabalistic model used for analysis is presented by describing the method
used to construct random instances. A random instance of 3-SAT contains n clauses
chosen uniformly, independently and with replacement from A3(V). The distribution
associated with this construction is referred to as M(n, r, 3).

3. The algorithm SC. The algorithm we consider, called SC1, takes as input a
collection of clauses I and outputs "a solution exists" or "cannot determine whether
a solution exists". SCI contains a single loop. At each iteration of the loop a literal is
chosen and some clauses and literals are removed from/. Let C’(j), for all 1 -< i_-< 3,
denote the collection of clauses in I containing exactly literals at the end of the jth
iteration where tr denotes the sequence of chosen literals. We shorten C"(j) to C(j).

1108 MING-TE CHAO AND JOHN FRANCO

Then Ci(0) for all 1 _-< i<= 2 and 1C3(0)[n. If the j + 1st chosen literal is then the
lines

Remove from I all clauses containing
Remove from I all occurrences of comp (l)

have the following effect:

Vl _<- _-< 2 C(j + 1) { c: c Ci(j) and : C(j) and comp (1) C(j)
or c U {comp (I)} C+(j)}

C(j + 1) { c: c C3(j) and : C(j) and comp (l) C3(j)}.

In what follows card (v, C3(j)) is the number of clauses in C3(j) which contain
the literal v and card (fi, C3(j)) is the number of clauses in C3(j) which contain the
literal 3. Clauses in C(j) are said to be unit clauses. Finally, var (l) is the variable
associated with literal /.

SC(I):
jO
Repeat

If [C(j)[0 Then Begin
Choose v randomly from V
V V-{v}
If card (fi, C3(j)) > card (v, C3(j)) Then fi Else v
End

Else Begin
Choose randomly from C(j)
V V- {var (1)}
End

Remove from I all clauses containing
Remove from I all occurrences of comp (I)

Until I is empty or there exist two complementary unit clauses in I
If I is empty Then Output ("a solution exists")

Else Output ("cannot determine whether a solution exists")

The reader may be disturbed by the loop condition since it is more natural to break
out of the loop when a null clause has been created in I than when two complementary
unit clauses exist in I. We have chosen to write SC(I) as above because, in our
opinion, the analysis is slightly easier and more natural. Our results, of course, hold
in either case.

SC runs in less than O(r2n) time since I must be empty after r iterations of the
loop and the remove and card operations need look at no more than r, n literals. An
instance I of SAT has a solution if SC run on I outputs "a solution exists": one
solution to I may be found by assigning the value true to the variables whose positive
literals were chosen and the value false to all other variables.

4. Analysis of SC1. In this section it is shown that if instances are generated
according to M(n, r, 3) and lim,,_, (n/r)<2.9 then for some e >0, the probability
that SC outputs "a solution exists" is greater than e.

The following theorem will be used to show how the collections of clauses in
C(j) are distributed.

HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM 1109

THEOREM 1. Let Vr-j be the subset of variables associated with unchosen literals
after j literals have been chosen. Suppose for all 1 <-i<-3 the clauses in Ci(j) are
independent and are equally likely to be any clause in Ai(Vr_j). Then for all <-_ <-_ 3 the
clauses in Ci(j + 1) are independent and equally likely to be any clause in Ai(V_j_).

Proof. Either the variable v is chosen randomly from V_j if ICx(j)I 0 or it is
chosen randomly from CI(j). Consider the first case. Let c and c2 be two clauses in
C(j+ 1), let 1 and c be the two clauses in C(j) or C+I(j) from which c and c2
were derived after the j + 1st literal was shown and let x, x, x2, y, y and Y2 be arbitrary
clause configurations of literals. Then

pr (c x) pr (1 x or 1 x [_J { v}and was chosen or 1 x

I_1 {t3} and v was chosen)
pr (y or y 13 { v} and was chosen or y

U {} and v was chosen)

pr (Cl y).

Also,

pr (Cl Xl and c2 x2)
pr (x and c"2 x2 or t x and 2 x t.J { v} and was chosen or

’ Xl and c" x2 LI {} and v was chosen or

t Xl [.J { v} and c2 x and was chosen or

t x [_J { t3} and d x2 and v was chosen or

’ xl LI { v} and t2 x2 t_J { v} and was chosen or

x [.J { iT} and x2 U { g} and v was chosen)
pr (1 Yl and c Y2 or ’ y and c" y2 t.J { v} and was chosen or

’ y and c y2 [.J {t3} and v was chosen or

1 Yl [-J {v} and c y and 3 was chosen or

’ Yl {} and Y2 and v was chosen or

y LI { v} and ’ y LI { v} and was chosen or

’ x t.J { 3} and c y t_J {} and v was chosen)
pr (Cl yl and c Y2).

And so on.

Consider the second case. The j+ 1st chosen variable is equally likely to be any of
r-j variables and is selected independently of clauses in C(j) for all 2-< <= 3. Hence
for all 2 =< =< 3 we may use the proof of the first case. For 1 the result follows from
the independence and equal likelihood of the unit clauses.

COROLLARY 1. For all O<-j <-r and 1 <-i<= 3 all clauses in C(j) are independent
and equally likely to be any clause in Ai(Vr_).

Proof. By induction on j. The basis step holds because of the assumed distribution
on instances given to SC. The induction step holds because of Theorem 1.

Because of Corollary 1 a system of diiterential equations for finding the expected
number of clauses in Ci(j) for all 2_-<i-<3 may be obtained. Let n(j) denote the
number of clauses in C(j), let w(j) denote the number of/--literal clauses added to
C(j) as a result of choosing the jth variable and let z(j) denote the number of clauses
eliminated from Ci(j) as a result of choosing the jth variable. These three terms depend

1110 MING-TE CHAO AND JOHN FRANCO

on I and r but this dependence is omitted from the terms for the sake of simplicity.
The wi(j) term may be thought of as representing the "rate of flow" of clauses into
Ci(j) when the jth variable is chosen and the z(j) term may be thought of as
representing the "rate of flow" of clauses out of C(j) when the jth variable is chosen.
If the average rate of flow into CI(j) is always less than 1 the number of clauses in
CI(j) will not, in probability, grow very large since at least one clause is removed from
CI(j) whenever CI(j) . In this case the probability that a complementary pair of
clauses exists in CI(j) for some j is small. However, if the average rate of flow into
CI(j) rises above 1 for a constant fraction of the values of j! r then the number of
clauses in C(j) gets large for a fraction of the values ofj/r since the flow out of C (j)
is asymptotically no more than one unless ICl(j)l is large. In this case the probability
that there is a complementary pair of clauses in C(j) for some j is near 1. Since, as
will be seen from the analysis below, if the expected flow into CI(j) goes above 1 + e
for any e > 0 then it stays above 1 for a constant fraction of values of j! r, the point
at which E{w(j)} (the expectation of wl(j)ufrom now on all expectations will be
written similarly) is around 1 is a critical one regarding the probabilistic performance
of SC

We now develop the differential equations for finding E{w(j)}, solve them and
find the condition on n/r which causes E{w(j)}< 1. Later, it will be shown that this
implies SC finds a satisfying truth assignment when one exists with probability greater
than some positive constant.

Clearly, for 1 _-< =< 3
n(j + 1) n(j) + wi (j + 1) zi (j + 1).

Taking expectations gives

E{n(j + 1)} E{n(j)} + E{w(j + 1)} E{z(j + 1)}
which can be written

(1) E{ni(j+ 1)}-E{n(j)}= E{w(j+ 1)}-E{z(j+ 1)}.
For large r we can approximate (1) by

(2) dE{n(j)}= E{w(j+ 1)}-E{zi(j+ 1)}.
aj

But, for all 1 _<- -< 3

(3a)
E{z,(j+ 1)}= E{E{z,(j+ 1)ln,(j)}}

i* n,(j)} i, E{n,(j)}
r -j r -j

because of Corollary 1. Also,
E{Wl(j+ 1)}= E{E{wI(j+ 1)[n(j)}}

(3b)

{2 n2(j)} E{n2(.j)}=E
2(r-j) r-j

and

E{w3(j+I)}=O.
Finally,

E{n3(j)}
E{w_(j+l)}=3

2(r-j)
(4)

H2(j + 1) pr (j + 1st chosen literal does not come from C(j))

HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM 1111

where H2(j + 1) is the average number of extra clauses removed from C3(j) given the
j + 1st chosen literal does not come from CI(j). Therefore (2), for i= 3 can be written

(5) dE(n(j)}= _3 * E{n3(j)}.
dj r-j

The solution to this differential equation under the assumption that E{n3(0)} n is
the following.

THEOREM 2.

(E(n3(j)} 1- n.

Proof. Straightforward solution to (5).
In order to solve (2) for 2 we must first find H2(j + 1) and the probability that

the j + 1st chosen literal does not come from CI(j). It suffices to find a lower bound
for H2(j + 1) and the probability mentioned since we require only an upper bound on
E{wI(j)}.

THEOREM 3.

Hz(j+I)>=9E
y=l Y / -Proof The probability that a particular literal appears in x clauses given the

variable associated with that literal appears in y clauses is

Hence the expected number of clauses containing the least frequently occurring literal
associated with the chosen variable given y is

[y/2J X(Yx)()y-F y (y--x)(Yx)()y

-2 X[Y/2/
x=O [y/2] x=O

y 2 [y/2J
2 2)’

ify is odd

and

(y/2)--I

+- y/2 2
y/2
2y

if y is even.

Let

G(y)

[y/2J
2y

y even,

yodd.

1112 MING-TE CHAO AND JOHN FRANCO

Then

E{Hz(j+ 1)[n3(j)}= E yG(y) 1-
y=o y

>98 "3’J) v/_f
=o (n3(j)) (r3--j)Y(Y1-rj) "3j)-y

since, by Stirling’s formula, G(y) > 16/92x/2x/. Taking the expectation gives the desired
result.

If E{n3(j)} and r-j are large and n/r is a constant, since lim,.. (E{n3(j)}/
(r-j)) is bounded by a constant and since n3(j) is binomially distributed then the
lower bound for Hz(j + 1) may be approximated by the expression

8 /3 E{n3(j)}
9fl r-j

where/3 depends on the value of the expression under the large square root sign. A
few values of/3 are as follows:

3 * E{n3(j)}

1 .7731
2 .891
4 .96
8 .983

16 .992

But, E{n3(j)} (1-(j/r))3n so, for 1 =<j =< 6r where 6 is any constant between zero
and one, the lower bound for H2(j + 1) is approximately

(6)
92,-fl (1-).

Only a lower bound for the probability that the j+ 1st chosen literal does not
come from C(j) still needs to be found.

THEOREM 4.

(7) Pr (j + 1st chosen literal does not comefrom C(j)) >- 1 E{w(j)}

for all j from 1 tojo where E{w(jo)}>- {wl(j)} for allj #jo.
Proof The flow of clauses through C may be modeled as the flow through a

single-server, work-conserving, nonpreemptive queueing system. In this system a unit
of time corresponds to a single iteration of SC. At the start of every unit time interval
a number of jobs (corresponding to unit clauses) arrives at the queue. The arrival rate
at the start of the jth interval is E{w(j)}. The average service time is at most one time
unit since at least one job (clause) is serviced (removed) during a unit time interval
if the queue is not empty at the start of that interval. For such a system in equilibrium
with constant arrival rate it is well known that the probability that the queue contains
at least one job at the start of an arbitrary unit time interval is the product of arrival
rate and the average service time. In this case, the product is at most the arrival rate
since the average service time is at most 1. The system we consider here is not in

HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM 1113

equilibrium, however, since the arrival rate, E{w(j)} is increasing with j up to jo. But
this implies that the probability that the queue contains at least one job at the start of
the jth time interval, j -jo, is at most the product mentioned above and, therefore,
the arrival rate at the jth interval (we can add dummy jobs and increase the service
time to one time interval to get a system that is in equilibrium, has at least as high a
probability that the queue is not empty and that probability is E{wi(j)}). Thus,
the probability that CI(j) is less than E{wI(j)}. The probability required is the
probability that C(j)= and is, from the above argument, at least 1- E{w(j)}.

Substituting (6), (7), (1-(j/r))3n for E{n3(j)} and E{n2(j)}/(r-j) for E{w(j)}
(from (3b)) into (4) and substituting the result and (3a) into (2) with set to 2 gives

(8)

For the moment suppose/3 is constant. Then the solution to (8) with boundary condition
E{n2(O)} =0 and with a substituted for 8x//92x/ is

E{n(j)} 1- e(/’/-g7
n o,/-gT)a "---(/n/r 1 e

Thus, from (3b)

E{w(j)} (l _{) eO/r),o4-a73[1 _n(l_e
afl nv//r r

(9) + aft In (1 -{) (a/3)2(’n (1 -{) +{)
+(a/3 /)3 (In (1 -{) +{+)].

The expression on the right in (9) has a maximum in the vicinity of and greater
than j r/2. We call the point at which the maximum occurs jo. If n/r-2.9 then
3* E{n3(jo)}/(r-jo)l.9 so fl.89 at j=jo. Since 3* E{n3(j)}/(r-j)<3n/r<9,
/3 > .89 for all 0=j <jo so (8) with/3 set to .89 gives an upper bound on E{n2(j)} and
therefore E{w(j)} up to jo. It can be seen from (9) that E{w(j)} for 1 jjo is less
than 1 when/3 .89 and n/r 2.9.

The solution to (8) with/3 =0 is an upper bound on E{n2(j)} in the rangejoj < r.
When divided by (r-j) and an appropriate boundary condition is added this solution
is an upper bound for E{w(j)} in the range jo-j < r and has value equal to the value
of E{w(jo)} at j=jo. Since this bound is maximal at j= r/2 the maximum value of
this bound in the range jo=j < r is equal to the maximum value of the first bound in
the range 0=j jo. Hence, we get the following result.

1114 MING-TE CHAO AND JOHN FRANCO

THEOREM 5. Given that inputs to SC1 are distributed according to M(n, r, 3),

n
E{wl(j)}< 1 forall O<-j < rwhen lim -<2.9.

n, r

We now prove the main result.
THEOREM 6. SC verifies that a solution exists for satisfiable instances generated

according to M(n, r, 3) with probability greater than e for some e>O when
lim,,r_, (n/ r) < 2.9.

Proof. From Theorem 5 E{Wl(j)}<l for all O<-j<r when lim,,r_.(n/r)<2.9.
From Corollary I the clauses entering CI(j + 1) from C2(j) are statistically independent.
Suppose all clauses entering CI(j + 1) are regarded as entering CI(j + 1) in some order
which is decided arbitrarily. Then the probability that the qth clause entering CI(j + 1)
is complementary to no clause in CI(j / 1) is

) nl(J)+q-1
1

2(r-j)

Therefore, the probability that none of the clauses entering CI(j + 1) is complementary
to any clause in C1 (j + 1) is

) nl (j) Wl(J)+Wl(J) (Wl(J)-l)/2
1

2(r-j)

so the probability that no complementary pair is encountered during a run of SC is

(10)

1) nl(J) wl(J)+Wl(J) (wl(J)--l)/2

2(/-j) pr (... n,(j), wl(j)’’’)

pr(...n(j),wl(j)...)

" (1__)
2ry- (2n’(j)* w’(j)+w’(j)* (w’(j)-l))/2(r-j)

pr (... nl(j), wl(j)’’’).

If the sum in the exponent of (10) is less than :n/r (where K is a constant) with
probability bounded from below by then (10) is bounded from below by (1-
(1/2r))2"K which approaches a constant as r approaches infinity if the limiting ratio
of n to r is constant. To show that the sum in the exponent of (10) is less than Kn/r
with probability greater than we show that the expectation of the sum is bounded
from above by r,n/3r and apply Markov’s inequality.

To show that the expectation of the sum in the exponent of (10) is less than n/3r
we need only show that the expectation of each term in the sum is less than n/3r2.
Denote by Pl(j) the jth term in the sum. Then

(11) E{pl(j)}<-
2(r-j) E{w21(J)}+s=o,=o2*S*t*pr(nl(j)=t’wl(j)=s)

The second term within parentheses is bounded by 2’1(1 -(j/r))n/r forj < r- r8/9 and
by 2"2(1-(j/r))n/r for j>= r-r8/9 where 2’1 and 2’2 are constants greater than zero.
Consider the first case, 1 <=j < r- r8/9. Suppose SC is modified so that all literals not
chosen from C1(j) are chosen randomly from the set of all unchosen literals and

HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM 1115

suppose that 2(j) and kl(j) have the same meaning as n2(j) and wl(j) except applied
to the modified SC1. Define nl E{2(j)}- 71

3/4 and nu E{2(j)}+ /3/4. It is easy to
see that 2(j) is binomially distributed with mean E{2(j)} proportional to j/r(1-
(j/r))-n so the probability that nl < 2(j) < nu is greater than 1-2e-"3/2/ea’-(j)} from
[4] and this is greater than 1-e

-:y-a"
since E{2(j)}<n. The double sum of (11) can

be bounded from above by using k,(j) for wl(j). We do so and split the result into
three parts:

Y 2 * s * * pr (n(j)= t, (j)= u, wl(j)= s)
s=0 t=0 u=0

+ 2,s,t,pr(nl(j)=t,2(j)=u,,(j)=s)
S=0 t=O

(e)
+ 2*s,t,pr(nl(j)=t,_(j)=u,l(j)=s)

s=0 t=0 u=nu

4n2

<-+2 E{I(j)} * E{n(j)}

in the limit since n/r<2.9 and In,-nl-o. But E{(j)} may be shown to be propor-
tional to (1-(j/r))n/r by solving (8) with/3 =0 and dividing by r-j. Also, E{n(j)}
is bounded by a constant for all 1-<_j-< r since E{w,(j)} < 1 and at least one clause is
removed from C(j) if CI(j)# . So (12) is less than 3q(1-(j/r))n/r where 3’1 is a
constant greater than zero. Now consider the case r- r8/9 <=j < r. In this range E{I(j)}
is proportional to (1 (j/r))n/r and is decreasing with increasingj. Clearly, in this range

2 * s * pr (n(j)= t, wl(j)= s)
s=O t=0

as r.
We now need to find a bound on E{w(j)}. Let l(j) be as before. Clearly,

E{w(j)}<-_E{(j)}. But (j)is distributed binomially; hence E{(j)}=
o’2(l(j))+(E{l(j)})2 < E{I(j)}+(E{q(j)})2 and

E{w21(j)}< T3 * (1-{) n

r"
Let),=max {Yl, Y2}. Substituting y(1-(j/r))n/r for the double sum in (11) and then
3’3 * (1-(j/r))n/r for E{wZ1(j)} in the resulting inequality gives

E{pl(j)}<(y3+y) n t n__
2 =* r2"

From this the expectation of the sum in the exponent of (10) is less than Kn/3r. By
Markov’s inequality the probability that the sum is greater than Kn/r is less than 1/2.
Therefore, the probability that the sum is less than n/r is greater than . Thus (10)
is greater than (1- (1/2r))2" which approaches e-"/ as r approaches infinity. Let
e](1- (1/2r))2".

The Unit-Clause heuristic and the maximum occurring literal heuristic have been
incorporated into a Backtrack algorithm for 3-SAT and experiments run. This algorithm
is not useful for solving instances of 2-SAT (two literals per clause) since, as is well

1116 MING-TE CHAO AND JOHN FRANCO

known, 2-SAT can be solved in polynomial time. The algorithm is

BA(I):
If there exist two complementary unit clauses in I Then return UNSAT
Else If I b Then return SAT
Else If there is a unit clause in I Then Begin

While there is a unit clause {l} in I Do Begin
Remove from I all clauses containing
Remove from I all occurrences of comp (1)
End

Return BA(I)
End

Else Begin
Choose a variable v which is present in I
If card (3, C3) > card (v, C3) Then <-- 3 Else <- v
I1 { c: c I and l, comp (l) c or c (.J { l} I}
I2={c: cI and l, comp(l).c or cU{comp(l)}I}
If BA(I1) SAT Then return SAT
Else If BA(I2)= SAT Then return SAT Else return UNSAT

Algorithm BA was run on random instances of 3-SAT generated according to
M(n, r, 3) with n/r set to 2.4, 2.6, 2.8, 3.0, 3.2, 3.4 and 3.6 for r ranging from 10 to
200 in steps of 10. At each data point the average number of calls to BA per instance
was computed for 100 instances. The results are presented in Fig. 1. Note that for

500

400

300

100

=3.4

=3.2

=2.4

=2.6

0 O /30 00 120 tO O 180 200

Number of variables (r)

FIG. 1. Average case performance of BA with n fixed.

HEURISTICS FOR THE 3-SATISFIABILITY PROBLEM 1117

n r <- 2.6 the performance curves are practically straight lines, for n r 2.8 there are
occasional peaks and for n/r >= 3.0 the performance curves rise dramatically. Upon
looking at the performance of individual instances for the case n/r 2.8 it was noted
that the peaks were due to a few runs that required many calls to BA.

5. A modification to SC. In this section we discuss why, in SC, if C(j)=
then the j+ 1st chosen literal is chosen only on the number of occurrences of that
literal and its complement in C3(j) and not in C2(j). Suppose that the j + 1st literal is
chosen on the number of times it occurs in C3(j) and C2(j) if C1(j)= . Assume the
most optimistic case: the literal appears in more clauses of both C3(j) and C2(j) than
its complement (then the "flow" into C(j + 1) is minimized since the number of two
and three literal clauses removed due to the j + 1st chosen literal is maximized). Let
E{w*(j)} denote the new average "flow" of clauses into C(j). Then

E{w* (j)} E{w,(j)}- H,(j)(1 E(w* (j)})

where H(j) is the extra number of clauses removed from the "flow" into C(j) when
the chosen literal is not a unit clause and 1- E{w* (j)} is the probability (to within
O(1/r)) that the chosen literal is not a unit clause. So

E{wl(j)I-H,(j)
1 H,(j)

Thus E{w*(j)} < 1 is equivalent to E{Wl(j)} < 1 and no benefit is gained by considering
the number of occurrences of the chosen literal in C2(j).

6. Conclusions. We have presented an algorithm for 3-SAT based on the Unit-
Clause and maximum occurring literal heuristics and have shown that this algorithm
finds a solution to a random instance of 3-SAT in polynomial time with probability
bounded from below by a constant under M(n, r, 3) when lira.... (n/r) < 2.9. Experi-
ments indicate that a Backtrack algorithm containing these two heuristics performs
extremely well probabilistically over the same range of values of the limiting ratio of
n/r. The method used to get these results has the advantages of providing intuition
and being general enough to be used on other algorithms for 3-SAT and other
NP-complete problems. The method can be used to show that the Unit-Clause heuristic
alone finds a solution to a random instance of3-SAT in polynomial time with probability
bounded from below by a constant under M(n, r, 3) when limn, (n/r)<2.66: the
analysis is the same as presented here except that/3 0.

The results are interesting because they may be compared with similar results
obtained for other 3-SAT algorithms under the same model (see the introduction) and
they indicate the degree to which solutions to random instances of 3-SAT are
"clumped."

REFERENCES

[1] C. A. BROWN AND P. W. PURDOM, An average time analysis of backtracking, this Journal, 10 (1981),
pp. 583-593.

[2] M. Z. CHAO, Probabilistic analysis and performance measurement of algorithms for the satisfiability
problem, Ph.D. dissertation, Case Western Reserve University, Cleveland, OH, 1984.

[3] M. DAVIS AND H. PUTNAM, A computing procedurefor quantification theory, J. Assoc. Comput. Mach.,
7 (1960), pp. 201-215.

[4] P. ERD6S AND J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, New York, 1974.

[5] J. FRANCO, Probabilistic analysis of the pure literal heuristic for the satisfiability problem, Ann. Oper.
Res., (1984), pp. 273-289.

1118 MING-TE CHAO AND JOHN FRANCO

[6] J. FRANCO, Sensitivity ofprobabilistic results on algorithmsfor NP-completeproblems to input distributions,
Inform. Process. Lett., to appear.

[7] J. FRANCO AND M. PAULL, Probabilistic analysis of the Davis-Putnam Procedure for solving the
satisfiability problem, Discrete Appl. Math., 5 (1983), pp. 77-87.

[8] A. GOLDaERG, Average case complexity of the satisfiability problem, Proc. 4th Workshop on Automated
Deduction, 1979, pp. 1-6.

[9] A. GOLDBERG, P. W. PURDOM AND C. A. BROWN, Average time analysis ofsimplified Davis-Putnam
procedures, Inform. Process. Lett., 15 (1982), pp. 72-75.

10] P. W. PURDOM, Search rearrangement backtracking and polynomial average time, Artificial Intelligence,
21 (1983), pp. 117-133.

11 P. W. PURDOM AND C. A. BROWN, The pure literal rule and polynomial average time, this Journal, 14
(1985), pp. 943-953.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics

019

WORST CASE BOUND OF AN LRF SCHEDULE FOR THE
MEAN WEIGHTED FLOW-TIME PROBLEM*

TSUYOSHI KAWAGUCHIf AND SEIKI KYAN"

Abstract. This paper studies the problem of scheduling a set of n independent tasks on m identical
processors so as to minimize mean weighted flow-time. The problem is known to be NP-complete for m >_- 2
and to be NP-complete in the strong sense for m arbitrary.

The worst case behavior of a heuristic algorithm which requires time O(n log n) is investigated, and it
is shown that the mean weighted flow-time obtained by the algorithm does not exceed (/+ 1)/2 1.207
times that of an optimal schedule. Moreover the bound (,/+ 1)/2 is best possible.

Key words, independent tasks, identical processors, mean weighted flow-time, LRF schedule, worst
case behavior

AMS(MOS) subject classifications. 68C25, 68C15, 90B35

1. Introduction. The MWFT (Mean Weighted Flow-time) problem is stated as
follows [2]. A set of n tasks is to be processed on rn identical processors. Tasks
i(i 1,..., n) require processing times ti and have positive weights wi. The tasks are
independent. In other words, there exists no precedence relation among them. The
objective is to find a schedule which minimizes the cost E w, where f is the finishing
time of task i.

When rn 1, the problem can be solved using the algorithm of Smith in which
tasks are sequenced in nonincreasing order of wi! t [7]. However, the MWFT problem
is known to be NP-complete for m => 2 and to be NP-complete in the strong sense for
m arbitrary [4]. An approximation algorithm has been proposed for the problem of
rn-> 2 by Sahni [6]. However this algorithm is efficient only for small m because the
algorithm requires time O(n(n2/e) m-l) to find an approximate solution whose cost
does not exceed 1 + e times that of an optimal schedule for the problem of m => 3.

2 whereMoreover, Chandra and Wong [1] have studied the problem of minimizing E cj
cj(j 1, , m) denote finishing times of processors j. Their result implies that if tasks
have the same w!t, then E wf of processing tasks in nonincreasing order of their
processing times does not exceed 1.04 times that of an optimal schedule.

Our paper investigates the worst case behavior of a heuristic algorithm which
finds a feasible schedule in time O(n log n) for an arbitrary problem instance of the
MWFT problem.

DEFINITION. An LRF (Largest Ratio First) schedule is a schedule obtained by
the following algorithm which will be called the LRF heuristic in this paper.

(i) A priority list is constructed, where task precedes task j if wi/ti > w/t, and
precedence relations among tasks with the same w/t are arbitrary.

(ii) During execution, whenever a processor becomes free for assignment, the list
is scanned for the first unexecuted task, which is then assigned to the processor.

DEFINITION. Since the LRF heuristic imposes no priority rule among tasks with
the same w/t, we may have more than one LRF schedule for a problem instance. An
LRF schedule maximizing the cost E w./ will be called a maximal LRF schedule in
this paper.

* Received by the editors December 12, 1982, and in revised form December 16, 1985.
t Department of Electronic Engineering and Computer Science, University of the Ryukyus, Nishihara,

Okinawa, 903-01 Japan.

1119

1120 TSUYOSHI KAWAGUCHI AND SEIKI KYAN

Let ML and M* denote the cost of a maximal LRF schedule and that of an optimal
schedule respectively. Then Eastman et al. [3] have shown that ML<
M/m+(m-1)E Wgti/m and M*>-M/m+(m-1)E wdi/2m where M denotes the
cost of processing tasks in nonincreasing order oftheir ratios w/t on a single processor.
These bounds are useful for evaluating the value of M/M* for an individual problem
instance. However as for an upper bound of M/M*, these bounds only show that
MIJM* < 3/2.

Our paper shows that an arbitrary problem instance of the MWFT problem satisfies

(1) M/M* -<_ (x/+ 1)/2 1.207.

Moreover a problem instance is given for which the ratio of M/ to M* attains to
(x/+ 1)/2, and in which all tasks have distinct values of wg/t. Thus the worst case
bound on the LRF heuristic never takes a smaller value than (x/+ 1)/2 even if any
priority rule is imposed among tasks with the same wg/

First it is shown in 2 that (1) holds for tasks with the same w/ti. Next using
the induction on the number of distinct values of ratios w/t, 3 proves that (1) holds
for an arbitrary problem instance of the MWFT problem.

2. Bound of ML/M* for tasks with the same wi/ti. If tasks have the same
then an LRF schedule is a schedule obtained by applying step (ii) of the LRF heuristic
to an arbitrary list of tasks. Therefore for convenience sake, an LRF schedule and a
maximal LRF schedule for tasks with the same w/tg will be called any list schedule
and a maximal schedule respectively in this section. The main result of this section is
as follows: if tasks have the same w/ ti, then

(2) ML/M*<=(x+ I)/2,

where M and M* denote the cost E w.i of a maximal schedule and that of an optimal
schedule respectively.

We shall use the following assumption and notations in this section.
ASSUMPTION. Tasks have the same wg/ti and are numbered in nonincreasing order

of their processing times, that is,

(3) tl>=. .>=t,,.

Notation
[aJ: the greatest integer <- a,
t" processing time of task i,
wg: weight of task i,
T a 22i=1 ti,

f: finishing time of task in some schedule,
cj" finishing time of processor j in some schedule,
M: cost= w of a maximal schedule,
M*: cost= w./of an optimal schedule,

2CL: cost "j=l Cj of a maximal schedule,
2C*" cost j= c of an optimal schedule.

(As will be shown in Proposition 2, an optimal (maximal) schedule of E w minimizes
(maximizes) E c if tasks have the same wi/ti.)

In the proof of (2), it is necessary to divide a set of tasks into two subsets according
to their processing times. The succeeding notation is used for this reason.

B a-- k=i+l tk/(m-- i)(O<---- <-- m--1),
p(O<_-- p _<-- m 1): the smallest index such that tg+l -<- Bi,

WORST CASE BOUND OF AN LRF SCHEDULE 1121

v =p/m(O<=v<l),

A{0Z ifp=0,
z p

ti if p > 0,i: ti/i:p+l
xj(1 =<j =< m): total processing times of tasks which are included in the last n -p

tasks and are processed on the jth processor in some schedule.

2.1. Preliminary results. We give some preliminary results needed in order to
prove (2).

PROPOSITION 1. An optimal schedule for the MWFT problem is included in the set

of list schedules, that is, permutation schedules.
Proof. It is clear from [5, Thin. 4-1].
PROPOSITION 2. If Wi/ ti a for all tasks, then

)/(4) w a cj + T 2
i=1 j=l

in any list schedule [3, p. 270].
The above proposition implies that an optimal (maximal) schedule of E w

minimizes (maximizes) E c if tasks have the same w/6.
PROPOSITION 3. Ifp > 0 then

(5) t> B and z> v/(1-v).

Proof. First t> Bp_ from the definition ofp. Moreover since (m-p+ 1)(m-p)x
(Bp_l-Bp)-(m-p)tp-Ei=p+l ti=(m-p+l)(tp-Bp_l)>O, we have Bp_l>Bp and
so tp > Bp. Furthermore this result, together with the definition of v and z yields the
second inequality of (5).

PROPOSITION 4. Each of the first p tasks is assigned to the end ofa processor in any
list schedule.

Proof. Let k denote the smallest index of tasks that violate the proposition in
some list schedule S. Then we can assume without loss of generality that each of the
first k-1 tasks is assigned to the end of the ith processor respectively and task k is
processed on the kth processor. Since this assumption implies Y=kC=<
m k + 1)Bk- < m k + 1)tk and Ck > tk, there exists a processor which has a smaller

finishing time than tk. Therefore each task starts at an earlier time than tk because S
is a list schedule. This contradicts our first assumption that task k is not assigned to
the end of a processor in S.

PROPOSITION 5. Each of the first p tasks occupies a processor by itself in an optimal
schedule S*.

Proof. By Proposition 4, we can assume without loss of generality that each of
the first p tasks is processed on the ith processor, respectively. Also let k denote the
smallest index of tasks that violate the proposition in S*. That is, x Xk- 0
and Xk > 0. Since these assumptions imply Y= c (m k + 1)Bk_ < (m k + 1) tk and
Ck > tk, there exists a processor which has a smaller finishing time than tk. Assume
without loss of generality that the mth processor is such a processor. If all tasks but
task k processed on the kth processor are removed to the mth processor, then the cost

2)2C* decreases because (tk + Xk)2 + C, > t2k + (Xk + Cm by tk > Cm and Xk > 0. This contra-
dicts that S* is an optimal schedule, and so the proposition holds.

such that c+cj=PROPOSITION 6. Given nonnegative numbers c, ", Cm, C, C
+ Ic, >-Icl- c l,

2 2 2 >c2+...+(c +...+(cj +...+c,.c2+ .+ c +. .+ cj +. .+

This proposition has been shown in [1, Lemma 1].

1122 TSUYOSHI KAWAGUCHI AND SEIKI KYAN

2.2. Bound of ML/M*. We have the following theorem for a problem instance
in which tasks have the same wi/ti.

THEOREM 1. For a problem instance with v 0 and z O,

(6) ML/M* 1 <-_ maximum of H1 a subject to 0 <= a <= 1

where

(7) H,(a) & (-a2 + a)/(2- a).

For a problem instance with v > 0 and z > v/ (1- v),

ML/M* I <- I / 5 or
(8)

ML/M* 1 <- maximum of H2(a subject to 0 <= a <- 1

where

(9) H2(a)A[-a2+a{2z+2-1/(1-v)}]{2z2/v+(2-a)/(1-v)} -1.

Moreover this theorem yields the following corollary.
COROLLARY 1. For any problem instance in which tasks have the same wi/ ti,

(10) ML/M*<=(x/+ 1)/2.

Specially for a problem instance with v O,

(11) ML/M* <- 4- 2x/.

Moreover these bounds are best possible.
Firstly, Theorem 1 is proved in the next subsection. Secondly (10) and (11) are

derived from Theorem 1 in 2.4. Before proceeding with these proofs, we give two
problem instances showing that (10) and (11) are best possible.

An instance with ML/M* (x/+ 1)/2.

m m* + [(l +,,/)m*J,
rl ran*+ m*,

t=w=l/n* for l<--_i<--mn*,

t w 1 + for ran* + 1 <- <= ran* + m*,
where m* denotes some integer, and n* is such a integer that can be divided by
[(1 +,)m*].

Let Mc be the cost of a list schedule in which the first ran* tasks are earliest
processed. Also let M* denote the cost of a list schedule in which the last m* tasks
are earliest processed. Then

ML=(1 +x/)(2+x/)m*+(m/2)(1 + I/n*),
M* (1 + x/)2m* + (m/2){m [(1 + x/) m*J + 1/n*}.

Therefore the ratio of M/ to M* tends to (1 +x/)/2 as m*--> oo and n*--> oo.
An instance with v 0 and M/M* 4- 2x/.

m= m*+ [x/- m*J,
n ran*+ m*,

t w 1/n* for 1 <= <= ran*,

ti w (2 +,,/)/2 for ran* + 1 <= <= ran* + m*,
where m* denotes some integer, and n* is such a integer that can be divided by [,,/ m*].

WORST CASE BOUND OF AN LRF SCHEDULE 1123

First we have v 0 for this instance because Bo A i"=l ti/m >- (2 +,)/2. Moreover
let ML be the cost of a list schedule in which the first mn* tasks are earliest processed.
Also let M* denote the cost of a list schedule in which the last m* tasks are earliest
processed. Then

ML=(5+3x/)m*/2+(m/2)(1 + l/n*),

M* (3 + 2,/) m*/2 + (m/2)(m/[/ m*] + 1/n*).

Therefore the ratio of ML to M* tends to 4-2x/ as m*m and n* m.

2.3. Proof of Theorem 1. In addition to (3), we make the following assumptions
without loss of generality in the proof of Theorem 1.

(I) Processing times of tasks are normalized by i--p/l ti/m, that is, Y.i=p+l ti m.
(II) Each of the first p tasks is assigned to the end of the ith processor

respectively in any list schedule.
(III) Xp+l >>-" X

It is clear that (I) has no effect on the ratio M/M*. Moreover validity of (II)
and (III) is guaranteed by Proposition 4.

LEMMA 1. If tasks have the same w/ t, then

(12)

(13)

(14)

(15)

(16)

(17)

M/M* 1 + C- C*)/ C* + T).

Proof This lemma is easily derived from Propositions 1 and 2. l-1

LEMMA 2. For a problem instance with fixed m, p and t,. tp),

C*>-_ Co & t. + m2/(m-p).
j=l

Proof. Proposition 5, together with Cauchy’s inequality, yields (13).
LEMMA 3. The following relations hold among xj in any list schedule.

Xp+ 2 Xm,

O<=xj<-_x, for l <-j<-_p,

O<-_x-xm<- Bp= m/(m-p) forp+ l <-j<- m.

Proof. No task starts at a later time than Xm in any list schedule. Moreover by the
definition of p, none of the last n-p tasks have larger processing times than Bp.
Therefore the assumptions (I) to (III) lead to the lemma. [3

2 2The following lemma gives an upper bound of C. Note that =p/l t < (m-p)Bp
by using =p+ tj m and t <= Bp(p + 1 <=j <- n).

LEMMA 4. If a problem instance with fixed m, p and tl, tp) satisfies

t2 =< A for a real number A such that 0 < A < m p)B2p,(18)
j=p+l

then the problem instance satisfies

C<-_ C or CL CII(19)

where Ct and Ct are defined as follows"

1124 TSUYOSHI KAWAGUCHI AND SEIKI KYAN

(i) CI &" maximum of C(x) subject to (14) and

(20)
(l<=j<=p,p+r+2<----j<--m),

xj= xm+Bp (p+l<-_j<-p+r),

Xm+e (j=p+r+l),

where

p
2(21) C(x) a- Y (b+xj)2+ x,

j=l j=p+l

(22) r" integer and 0 <- r <-- [A/B2pJ,
2 1/2(A Bp [A/ B2] or 0 if r [A/ a2]

(23) e=
Bp or O otherwise.

(ii) Cn a_ maximum of C(x) subject to (14) and

X (l<=j<-q,p+l<=j<-_m),
(24) x= 0 (q + l <=j <- p),

where q is a integer such that 0 <-_ q <= p.
(Figure 1 illustrates the relations among x shown in (20) and (24). The hatched

parts represent xj and we should notice that Bp m/(m-p).)
2 is given by C(x). Therefore weProof It is clear from Proposition 4 that =1 c

shall prove that the maximum of C(x) subject to (14)-(18) is given by x which satisfy
(20) or (24). Let P+ a__ {xl,..., Xp} and p-a_ {Xp+,..., x,,}. First using Proposition
6, we have

1) Xm-XI’’’Xp.

Hence it suffices to consider the following two cases.

/---- -r / (m-p) -/m

p+r:

p+r+1

p+r+2:

"1: //A tl I:

p: ///// tp] q:

m:
X___ m/(m-p)

p:

p+1:

171."

m/(m-p+q)

///// tl

///// tq
tq+1

(a) x# given by (20). (b) x# given by (24).

FIG.

WORST CASE BOUND OF AN LRF SCHEDULE 1125

Case 1. x Xm for all x of P+. Then Proposition 6 leads to:

(# 2) No more than one xj of P- satisfies O<x-xm < Bp. (Namely the
remainings of P- are equal to x,, or Xm + Bp.)

Therefore it follows from (18) that (20) holds among x if r satisfies (22) and e

is given by:
2 /2 for r [A/B],0 <= e <= (A- Bp[A/BJ)’

0 =< e _-< Be for the others.

Then C(x) is a quadratic function as to e. Thus the maximum of C(x) is obtained by
e which satisfies (23).

Case 2. x <x for some x of P/. Then Proposition 6 leads to:

3) X+l x+2 Xp =0 and Xp+l xp+2 x,.

Assume x e(0< e < x,) for some x of P/. Then C(x) is a quadratic function
as to e, and it follows that the maximum of C(x) is given by e 0 or e Xm. This is
a contradiction, and so (24) holds. D

In the remainder of this subsection, Theorem 1 is derived for each case of C/ <- C
and CL <= Cu. We should notice that C/ <- Ct always holds for a problem instance with
v=0. Because, for such an instance, Proposition 6 directly leads to (# 2) without
passing through # 1) in the proof of Lemma 4.

2.3.1. CL<= C. It will be shown that

Ct Co [maximum of Hl a subject to O <= a <= if v=0,
(25)

Co + T .maximum of H2(a) subject to 0 -< a <= 1 otherwise,

where Hi(a) and H2(a) are given by (7) and (9), respectively.
The above bound, together with Lemmas 1, 2 and 4 yield Theorem 1 in this case.

Now let us prove (25). First we have

p p+r

C,= E (t+a)2+ E
j=l j=p+l

(a+ Bp)2+(a+ e)2+(m-p r- 1)a 2,

where a a= 1-e/m-r/(m-p).
Moreover (22) and (23) imply A >- rBZp+ e 2. Therefore,

2the least upper bound of (C Co)/(Co + EjP-_I tj + A) subject to
0 < A < m p)B, (22) and (23)

does not exceed

+ rBp + e2) subject tothe maximum of (Ci Co)/(Co+.=,.,
O<= r<= m -p and O<= e <- Bp.

2Furthermore for fixed m, p, Y’jP=I tj and r, the maximum of (C/- Co)/(Co+jP__I tj +
rBp + e 2) is obtained by

e=0 and tl tp.

Thus we have (25).

2.3.2. CL<- Cn. As previously stated, a problem instance with v 0 satisfies C_-<
Ct. Hence assume v > 0 in this case. The following lemma, together with Lemma 1, 2
and 4 yields Theorem 1.

1126 TSUYOSHI KAWAGUCHI AND SEIKI KYAN

LEMMA 5. For v > 0,

Cti Co < {1/Co+ T H2(1)
ifz > (1 +
otherwise,

where H2(1) is given by substituting a 1 into (9).
This lemma is proved by the following three claims.
CLAIM 1. If v/(1-v)<z<=(l+v)/{2(1-v)}, then

(26) Co- 1

Proof. First we have

Ct,=Co+m(m-p+q)-l{2 tj-qm(m-p)-l}.
j=l

It is easily verified that a problem instance maximizing Ct/Co satisfies

ti tq and tq+l tp.

Let s&q/m. Then we have sq+(v-s)tp=z and Ct/Co=I+N/D where N
2{2sq-s/(1-v)}/(1-v+s) and D a-st21+(v-S)tp+l/(1-v). Since tp> l/(1-v) >-

z+l/2 by virtue of Proposition 3 and z<-(l+v)/{2(1-v)}, we have 2tp>2z+l.
Therefore stl + (v- s)tp z yields 2Z--2st > (V-- S)(2Z + 1), and so (2z + 1)(1
2sq + 1, and it follows that N <2z-v/(1-v). On the other hand, D>-z2/v+ 1/(1- v)

2>because st+(v-s)t,={sq+(v-s)t,}/v z2/v. Thus the claim holds.
CLAIM 2. CII / Co 1 <-.
Proof Let I* be a problem instance maximizing CII/Co. First it will be shown

that q =p for I*. Suppose q <p for I*. Let J* and m* denote a set of tasks and the
number of processors, respectively, in I*, and I’ be another problem instance in which
a set of tasks is J*-{q + 1,..., p} and the number of processors is m*-(p-q). Then
Cti(I’)/Co(I’)={Ct,(I*)-(p-q)t2p}/{Co(I*)-(p-q)t2p}> Ct(I*)/Co(I*) which
contradicts that I* maximizes the ratio CI/Co. Thus we have q =p for I*, and it
follows that (26) also holds for I*. Moreover G-< for any v and z because {zZ/v+
1/(1-v)}-3{2z-v/(1-v)}=(z-3v)Z/v+(3v-1)2/(1-v)>-O. Therefore the claim
holds. [-]

CLAIM 3. For v>0, Co/T<=l+v/{(1-v)z2}.
Proof This is easily derived from (13), T >- p 2 2Yj=l t and J’=l t >= (mz)Z/p.
If z> (1 +v)/{2(1-v)} then z2> 2v/(1-v), and so Claim 3 yields (1 + T/Co) -1 <

3/5. This, together with Claim 2 leads to the first inequality of Lemma 5. Otherwise
using (CII-Co)/(Co+ T)=(CII/Co-1)(1 + T/Co) -, Claim 1 and 3 yield the second
inequality of Lemma 5.

2.4. Derivation of Corollary 1 from Theorem 1. Since the maximum of Hi(a)
subject to 0 -< a -< 1 is 3 2,, we have (11) for a problem instance with v 0. Therefore
it remains to show that H2(a) does not exceed (,,/-1)/2 if O<v<l,z>v/(1-v)
and 0_-<a-<l. Let g(v,z,a)&a2-{2z+2+(-a+x/)/(2(1-v))}a+(x/-l)x
{z/v+l/(1-v)}. Then g(v,z,a)>-_O implies HE(a)<-(x/-l)/2. First we have
g(v, z, 1)_-> 0 because g(v, z, 1) is minimized on z (x/+ 1)v for any v and g(v, z, 1)=
(x/+ 1){ v -(2- x/)/2}2/(1 v) _-> 0 on this curve. Partially differentiating g with respect
to a, Og/Oa 2a -{2z + 2 + (-3 +,/)/(2(1 v))}. Consider two cases.

Case 1. z>-(3-x/)/{4(1-v)}. Then 0_-<a-<l implies Og/Oa<-O. Therefore g is
a monotonically decreasing function of a, and so g(v, z, a) >_- g(v, z, 1) => 0.

WORST CASE BOUND OF AN LRF SCHEDULE 1127

Case 2. z < (3-x/)/{4(1- v)}. Then we can assume v < (3 x/)/4 because other-
wise z>=(3-x/)/{4(1-v)} by z> v/(1-v). Moreover g(v, z, a) is minimized on a=
a*(v, z) --a z+ 1 + (-3 +x/)/{4(1 v)}. Let h(v, z) a-A g(v, z, a*(v, z)). Partially differen-
tiating h with respect to z, ah/az 2(x/- 1 v)z/v-(1 +x/- 4v)/{2(1 v)}. Consider
two subcases.

Case 2-1. (x/-l)/2<-v<(3-,)/4. Then Oh/Oz<(4v2-4v+4x/-5)/
{2(1 v)v} <= 0 by z < (3 x/)/{4(1 v)}. Thus h is a monotonically decreasing function
of z. Since a*(v,z)=l on z=(3-x/)/{4(1-v)}, we have h>=g(v,z, 1)=>0.

Case 2-2. 0<v<(x/-l)/2. Then h is minimized on z=v(l+x/-4v)/
{4(1 v)(v/ l- v)}, and h =(3-2x/){(9-5x/)/8-v}/{2(1-v)2(x/ 1 v)}>=0 on
this curve. This completes the proof of g(v, z, a)_>-0. Thus (10) is obtained.

3. Worst case I}ound of an LRF schedule. In this section we prove the following
theorem.

THEOREM 2. Let ML and M* denote the cost w of a maximal LRF schedule
and that of an optimal schedule respectively. Then

(27) M./M*<=(x/+ 1)/2

for an arbitrary problem instance of the MWFT problem.
Moreover there exists a problem instance which satisfies MIllM*> (x/+ 1)/2-

for any > O, and in which all tasks have distinct values of wi/ ti.
The second half of Theorem 2 states that the worst case ratio of MtJM* never

takes a smaller value than (x/+ 1)/2 even if any priority rule is imposed among tasks
with the same w/t. The following theorem, together with an instance gi.ven in Corollary
1 proves the second half of Theorem 2.

THEOREM 3. Let A denote the ratio Mt./ M* for a problem instance in which tasks
have the same w/ t. Then there exists another problem instance which satisfies Mt./ M* >
A- for any > O, and in which all tasks have distinct values of wi/ t.

3.1. Proof of Theorem 2. We shall prove (27) by the induction on the number of
distinct values of ratios w/t. The following notation is used in the proof of (27).

A =a (x/+ 1)/2,

M(S): mean weighted flow-time of some schedule S,

j__a {T,. ., T,}: a set of n tasks which have t and wi as processing times and
weights, respectively, where wt/ t >-_. >= w,/ t.,

r a= w/ t,

v: the number of distinct values of ratios r,

q: the number of T whose ratios are equal to rl,

j, __.a { T, , T’,}: a set of n tasks whose processing times are t and whose weights
are given by

(ew forl<=i_-<q,
wi=w forq+l<=i<=n,

where e A rq+l/rq < 1,
ri wi/ ti,

$: an LRF schedule for J,

1128 TSUYOSHI KAWAGUCHI AND SEIKI KYAN

x:

y:

x*:

y*:

an optimal schedule for J,

a schedule for J’ in which T is put in the position of T/determined by St‘,
respectively,

a schedule for J’ in which T is put in the position of T determined by S*,
respectively,

the part of M(St‘) comprised of costs of the first q tasks,

the part of M(SL) comprised of costs of the last n-q tasks,

the part of M(S*) comprised of costs of the first q tasks,

the part of M(S*) comprised of costs of the last n-q tasks.

the number of distinct values ofSince r rq > rq+ and r rq rq+l,
ratios r is v--1. Therefore in what follows, we shall prove that if (27) holds for J’,
then (27) also holds for J.

From the definition of x, y, x* and y*, we obtain

(28) and M(S*) x* + y*,

(29) M(S’) ex + y and M(S*’) ex* + y*.

Moreover, if r > r then r > j, and so T precedes T in St‘, and it follows that T
precedes T in S,. Thus S is an LRF schedule for J’. Therefore applying the inductive
hypothesis,

(30) M(S’) <- AM(S*’).

Furthermore the first q tasks of J are earliest processed in St., and it follows from
Corollary 1 that x does not exceed A times the minimum of 7= wf/. Therefore

(31 x _<- Ax*.

If y<-Ay* then by (28) and (31), the proof of (27) is completed. Otherwise,
(1-e)x*y>(1-e)xy* from e<l and (31). Therefore by (28) and (29),
M(S’)M(S*)=(ex+ y)(x*+ y*)> (ex*+ y*)(x+ y)= M(S*’)M(St‘). This, together
with (30) yields M(St‘)<= AM(S*). Thus the proof of (27) is completed again.

3.2. Proof of Theorem 3. Let I be a problem instance in which tasks T(i
1,. ., n) have processing times ti and weights wi ati for a positive number a, and
assume MI(I)/M*(I) A. Also let [i] denote the index of the task processed in the
ith order in an optimal schedule for I. Moreover we assume without loss of generality
that tasks T are processed according to numerical order in a maximal schedule.

Consider another problem instance I’ in which tasks T(i 1, , n) have process-
ing times t and weights a(1 + ei)ti where el>’’ "> en>O and e-e.<=6/A. Also let
the number of processors in I’ be equal to that in/. Then

Mt‘(I’) X a(1 + ei)t.i > (1 + e.)a X t (1 +
Moreover if M*(I’) is the cost of processing T in the same order as T/in an optimal
schedule for/, then

M*(I’) X a(1 + E[i]) t[i] i] < (1 + 1)o X t[i]f[i]---(1 + el)M*(I).

Thus we have ML(I’)/M*(I’) > (1 + e,)A/(1 + el) > {1 -(e- e,)}A >= A &

Acknowledgment. The authors wish to thank the referees for helpful suggestions.

WORST CASE BOUND OF AN LRF SCHEDULE 1129

REFERENCES

[1] A. K. CHANDRA AND C. K. WONG, Worst-case analysis of a placement algorithm related to storage
allocation, this Journal, 4 (1975), pp. 249-263.

[2] E. G. COFFMAN, JR., Computer and Job-Shop Scheduling Theory, John Wiley, New York, 1976.
[3] W. L. EASTMAN, S. EVEN AND I. M. ISAACS, Boundsfor the optimal scheduling ofnjobs on m processors,

Management Sci., 11 (1964), pp. 268-279.
[4] M. R. GAREY AND D. S. JOHNSON, Computers and lntractability--A Guide to the Theory ofNP-Complete-

Hess, Freeman, San Francisco, CA, 1979.
[5] R. MCNAUHTON, Scheduling with deadlines and loss functions, Management Sci., 6 (1959), pp. 1-12.
[6] S. SAHNI, Algorithmsfor scheduling independent tasks, J. Assoc. Comput. Mach., 23 (1976), pp. 116-127.
[7] W. E. SMITH, Various optimizersfor single-stage production, Naval Res. Logist. Quart., 3 (1956), pp. 59-66.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

1986 Society for Industrial and Applied Mathematics
020

ON MAINTAINING DYNAMIC INFORMATION IN A
CONCURRENT ENVIRONMENT*

UDI MANBER

Abstract. This paper considers the amount of cooperation required for independent asynchronous
processes to share a simple dynamic data structure. We present a scheme for designing efficient concurrent

algorithms to add and remove elements from a shared pool of elements. The efficiency is measured mainly
by the number of non-local operations that a process may have to make. Non-local operations may involve
writing into a shared variable, locking, or sending a message, hence they introduce interference (or require
cooperation). We derive upper and lower bounds on the interference in the worst case. Applications to
distributed computation are also discussed.

Key words, asynchronous processes, concurrent data structures, distributed computing, load balancing,
lower bounds, multisets, queues, trees

AMS(MOS) subject classification. 68B20, 68C05, 68C25

1. Introduction. This paper studies the amount of cooperation required for indepen-
dent asynchronous processes to share a simple dynamic data structure. Consider, for
example, a problem that we want to solve by using k processes (or processors) in
parallel. Assume that the problem can be divided into n independent subproblems
(n >> k). We would like to assign subproblems to processes in a way that minimizes
the (parallel) running time. In many cases, there is no way to predict the sizes of the
subproblems or the relative speed of the processes. Hence, the best strategy is to
allocate the subproblems dynamically. In this paper we study data structures for the
type of concurrent dynamic allocation described above. We define an abstract data
structure, called a concurrent pool, consisting of a multiset of elements (corresponding
to subproblems in the example above) and the operations add and remove. Concurrent
pools are used for load balancing, resource management, garbage collection, and more.

We present a scheme for designing efficient concurrent algorithms for the
operations listed above. The efficiency is measured mainly by the number of nonlocal
operations that a process may have to make (we also have to make sure that the local
computation is efficient). In general, non-local operations may involve writing into a
shared variable, locking, or sending a message, hence they introduce interference (or
require cooperation). Our goal is to derive upper and lower bounds on the interference
in the worst case.

The scheme consists of two parts. The first part is an efficient sequential algorithm
for another, more complicated, data structure, which includes a split operation. The
second and main part is a concurrent algorithm to locate elements distributed among
the processes. The algorithm is based on a tree traversal. The processes traverse a tree,
whose leaves point to the locations of the elements, leaving marks indicating where
they have already searched so that other processes minimize their search. The traversal
is complicated since processes proceed in an unpredictable order and since elements
can be moved, added, and removed.

* Received by the editors July 10, 1984, and in final revised form October 15, 1985. A preliminary
version of this paper appeared in the Sixteenth Annual ACM Symposium on the Theory of Computing,
Washington, DC, April 30-May 2, 1984. Copyright 1984, Association for Computing Machinery, Inc. This
article was typeset at the University of Wisconsin-Madison using a troff program running under UNIX.
The final copy was produced on January 31, 1986. This research was supported in part by the National
Science Foundation under Grants MCS-8303134 and DCR-8451397.

" Department of Computer Science, University of Wisconsin, Madison, Wisconsin 53706.

1130

DYNAMIC INFORMATION IN A CONCURRENT ENVIRONMENT 1131

We also present a model of concurrent computation, based on a shared memory
model, and prove lower bounds on the amount of interference. The gap between the
upper bounds achieved by our algorithm and the lower bounds is small (a factor of
O(k), where k is the number of processes and e > 0).

The algorithms presented in this paper served as a basis for the design of DIB--a
package for Distributed Implementation of Backtracking [2]. DIB runs on an experi-
mental multicomputer with no shared memory. Applications to distributed computation
are discussed in section 6.

2. The problem. We want to develop an efficient data structure to represent multisets.
We make no assumptions on the type of elements in the multisets. The data structure
should support the following operations:

Remove(M, y): if M is not empty then choose an arbitrary element of M (any
element will do), delete it from M, and assign it to y.

Add(M, x): add the element x to the multiset M. Whether or not x is already in
M has no effect on this operation.

Data structures that support the operations listed above will be called pools. Pools
can be used to store pointers to all waiting (independent) tasks in a multicomputer
system. When a processor (or process) becomes available it removes a task from the
pool and performs it; during its execution it may generate more tasks, which are added
to the pool. Pools can also represent available resources in a system, available blocks
of memory, independent events in a simulation, etc.

Pools can be very efficiently implemented in a sequential environment by stacks
oi" queues, in which case every operation takes constant number of steps. (Stacks and
queues are even more powerful than what we need since we are satisfied with arbitrary
order of removals and we do not require LIFO [or FIFO] ordering.) If there are only
two processes we can use a double-ended queue and let each process add and remove
from a different end. Each operation still takes constant time; moreover, the only time
one process may interfere with the other process is when the queue is almost empty.
In this case interference in unavoidable since the processes must compete for the same
elements. (Double-ended queues were in fact used in that way in the design of a
parallel garbage collection algorithm with two processes, a list process, and a garbage
collector [6]. This algorithm was generalized to many processes in 10] where a shared
pool was used but there was no discussion on efficient implementation.) Obviously
only one process can add or remove from one end of a queue at any given time, so a
better data structure is required in order to achieve a high level of concurrency. In
addition, we would like the design to be adaptable to a distributed environment. We
assume that, although sometimes the multiset may be small or even empty, in general
the number of elements involved is much greater than the number of processes. When
the number of elements is small interference is unavoidable.

The processes perform add and remove operations in an arbitrary order and
frequency. It is possible, for example, that only one process adds while all the others
remove, or that all processes only add.

3. The model. A shared memory model, similar to the one described in [7], is used
throughout the paper, except for section 6 which deals with distributed models. We
use a shared memory model because of its simplicity. It allows us to gain some insight
to the required cooperation of asynchronous processes that may be harder to get from
a more complicated model. Lower bounds for this model should apply to other models
with more expensive means of communication. We assume that the memory is

1132 UDI MANBER

unbounded, and, in particular, we do not deal with memory allocation and garbage
collection problems (nor do we use them in the lower bound proofs). These problems
add complexity to the algorithms, which we ignore, but solutions to them usually
strongly depend on the particular concurrent (or distributed) environment.

We assume a random access memory shared by many autonomous asynchronous
reliable processes. A process is a state machine with its own local memory. In one
atomic step a process can either read one variable of the shared memory, write into
one variable of the shared memory, or lock part of the shared memory, and change
its own state (a more general operation, test and set, is allowed in [7]). Several processes
can read the same variable at the same time; however, if a process writes into a shared
variable then no other process is allowed to access that variable at that time. Hence,
some kind of locking is required. We use the regular notion of read and write locks
(see for example [1,4]). A write lock gives exclusive access to its holder while a read
lock only prevents writers from accessing the variable. If a process is denied access to
a variable that is locked by another process then it waits until the lock is removed.
We call such occurrences collisions. We make no assumptions on the implementation
of locks (e.g., we do not assume that the allocation of the locks is according to a first
come first serve policy). Our main goal in designing the algorithm is to minimize the
number of collisions.

We believe that the definition of collision captures the simplest form of interference
(or cooperation depending on the point of view) among asynchronous processes. This
definition is also primitive enough to enable us to prove lower bounds. We do not
consider in this paper issues of fairness or starvation. We think of the processes as
being servers rather than customers. We also do not deal with issues of fault tolerance
in this paper.

We make no assumptions on the order in which the processes access the shared
memory. All operations are completely asynchronous. Thus, it is possible that some
processes are much faster than others or that a process "goes to sleep" for a period
of time and "wakes up" later.

In order to prove lower bounds on the add and remove operations we have to
define them precisely. We assume that there is a unique variable associated with each
element when it is created. This variable changes its value when the element is removed
or added. Removing or adding an element may involve changing more than just one
variable; however, the element is "formally" removed only when the unique variable
associated with it has been changed. This assumption is required to rule out the
possibility of two processes removing the same element concurrently.

4. The algorithm. The algorithm was designed to work best when all the processes
have approximately the same behavior (i.e., it is designed for the average case).
Surprisingly, it turns out that the algorithm is not far from optimal in the worst case.

The basic idea of the algorithm is as follows. The multiset is initially partitioned
among the processes. Every process maintains a segment of the multiset and performs
the operations add and remove locally as long as possible. Collisions will only occur
when a process P empties its local segment and it still wishes to remove. In this case,
P searches the other segments ,for a non-empty one. Since removing an element from
another process’ segment may involve collisions we have to minimize such occurrences.
For example, if few processes are adding and most processes only remove and if
non-local removals consist of only one element, then most removals may lead to
collisions. We improve this simple solution in the following way. Once a process finds
a non-empty segment and interrupts the "owner", it tries to take more than just one

DYNAMIC INFORMATION IN A CONCURRENT ENVIRONMENT 1133

element at a time. Since the size of a local segment may vary substantially, we should
not take a fixed number of elements but a fixed portion. If the segment contains only
one element then the "foreign" process simply removes it.

The algorithm consists of two separate independent parts. The first part includes
a data structure to represent a local segment and constant time sequential algorithms
for the operations add, remove, and split. The split operation divides a segment into
two segments such that the larger segment has at most twice as many elements as the
smaller; one of these segments will be given to the asking process. The second part is
a scheme for finding a non-empty "donor".

Each process uses the sequential algorithms of add and remove within its local
segment until the segment becomes empty. Then, it uses the second part ofthe algorithm
to find a non-empty segment, locks it, performs the split operation, and takes one half
as its new local segment. (In a non-shared memory environment the operation of
moving the data from one process to another is a major one, while the splitting of a
local segment is less important; these issues are discussed in section 6.)

4.1. Splitting a local segment. In some cases, splitting a local segment is straightfor-
ward. For example, the elements may differ only in one parameter (e.g., the address
where the task resides, a probabilistic choice in a simulation). The n elements can be
represented as a set of values for this parameter. If the set consists of all values in a
given range then a segment always corresponds to a sub-range, and splitting a segment
is easy. In this section we describe general algorithms for splitting, removing, and
adding to an arbitrary multiset in constant time.

We use balanced binary trees in which each node corresponds to an element of
the multiset. Nodes are added level by level from left to right and are removed in the
opposite order. One way of achieving constant time per add and remove is to maintain
a pointer to the last inserted node at the bottom of the tree, and put at each node
pointers to its two siblings, parent, and two children. The parent and children pointers
are then updated as new nodes are added or removed. It is straightforward to perform
add and remove in constant time. It seems, however, that in order to split the tree we
need to update O(log n) pointers, where n is the number of nodes in the tree. We can
reduce the O(log n) complexity to O(1) using the observation that except for the
bottom level all the levels are full. In order to find out whether a node .is at either the
left or the right end of a level while we are adding or removing, it is sufficient to know
what level (depth) it is. We keep a header with pointers to the root and last inserted
node and with the bottom level number and the number of nodes at that level. When
we are adding (removing) and the level is full (empty) we start a new level (go higher
up using the parent pointers), and update the level number and the number of nodes
at that level. To split we need only to decrement the level number of the lowest level.
This automatically makes the two children of the root two new roots. There are two
ways to take care of the old root, both take constant number of steps. We can either
insert it at the bottom or maintain two types of trees, one with an additional root, call
it a 2-roots tree, and the regular 1-root tree. Splitting a 1-root tree forms a 1-root tree
and a 2-roots tree, and splitting a 2-roots tree forms two 2-roots trees. In any case, we
need to keep a pointer to the root. It is easy to see that in the worst case we split to
a third and two thirds (provided that there are at least 2 nodes in the tree).

We also have to find the middle of the lowest level (or next to lowest level in case
it is less than half full); removals and additions from the other half should start at
that middle. We solve this problem by using arrays instead of a linked list representation
for each level (see Figure 1). Since the size of each level is fixed the arrays will never

1134 UDI MANBER

FIG. 1. The data structure.

have to be extended. Using arrays in this manner saves the sibling pointers and one
of the children pointers (if one child is known then the other one can be easily found).
The children pointers are needed in order to find the two new roots after a split and
the parent pointers are needed to move up the tree when a level becomes empty.

Overall, we have an interesting data structure consisting of a collection of arrays
of variable size linked into a tree, and we have shown that it can be expanded and
split, all in constant time. Obviously, a process that performs split, add, or remove
must lock the tree with a write lock. One drawback for using arrays in this way is that
it makes memory allocation more complex.

4.2. Finding a non-empty segment. The problem of finding a non-empty segment
is an interesting problem of locating dynamic entities in a concurrent environment.
We want a solution that minimizes the total amount of non-local access in the worst
case. We first present a simple algorithm and discuss its limitations, and then describe
more efficient solutions. Since additions are always done locally we assume first that
only removals take place. Additions will be considered at the end of this section. We
assume that there are k processes attempting to remove n elements in an unpredictable
order.

Denote the processes by Po to Pk-1, and consider them organized in a (logical)
ring. Each process P maintains a local variable s i, which is initially set to (i + 1) mod k
(the successor of P in the ring). P starts its search for a non-empty segment from
Ps,. If this segment is empty then Pi continues the search in a cyclical order along the
ring (excluding itself) until a non-empty segment Pj is found; s is then set to
(j + 1) mod k. In other words, all the processes search by traversing the ring in cyclical
order. Notice that the algorithm does not assume a knowledge of n but it does assume
a knowledge of k. A period of time during which all processes are "visited" at least
once is called a traversal. Traversals are important as the following theorem shows.

THEOREM 1. Assume that the maximal total number of non-local accesses (visits)
performed by the algorithm during any traversal is V(k). Then the total number ofcollisions
caused by k processes to remove n elements is O(V(k) log n).

Proof To bound the number of collisions that occur while all processes remove
all elements we look at the change in the number of elements during a traversal. It is
possible that very few elements are removed during a traversal since segments may be

DYNAMIC INFORMATION IN A CONCURRENT ENVIRONMENT 1135

split and elements may be moved around, and thus may be "missed" by most visits.
However, even if very few elements are removed, the elements are distributed more
evenly. At some point during the traversal the number of elements in each segment
was either cut by a third (as a result of a visit) or it was reduced to 0. Since there are
no additions, this fact implies that the number of elements in the largest segment after
a traversal is at most two thirds of what it was before the traversal. As a result, all the
elements will be removed after O(log n) distinct full traversals. By the results of the
previous section, each non-local access can cause only constant number of collisions.
Thus, the number of collisions occurring in the algorithm is O(V(k) log n) in the worst
case.

COROLLARY 1. The total number of collisions caused by k processes removing n
elements by the ring algorithm described above is O(k2 log n) in the worst case.

Proof. It is easy to see that the maximal number of non-local accesses during a
ring traversal is O(k2). The corollary follows from Theorem 1. D

It seems at first that the algorithm above can be improved by "spreading" the
processes and letting each one make a traversal in a different order. We show that any
order of traversals leads to f(k2) non-local accesses per traversal in the worst case as
long as the only way to find whether a segment is empty is to visit it. Let S il,Si2,... ,Sik

be the order of traversal of process and assume for simplicity that k is even. Consider
all the segments sij such that j>1/2k (i.e., the segments at the second half of each
traversal). Since there are 1/2k2 such segments one of them must appear (in the second
half) at least 1/2k times. Take now the 1/2k processes that visit this segment in the second
half of their traversal. We can "force" them to a total of 1/4k2 non-local accesses without
any complete traversal. Hence, the only way to improve the algorithm is to use global
variables that contain information about empty processes. However, we have to be
careful to update these global variables efficiently. For example, we cannot afford to
have only one variable that contains all the information since the processes may all
collide there frequently (this is basically the queue solution).

We first solve a restrictive case of the problem and then show how to extend the
solution to the general case. We assume that initially there is exactly one element in
the local segment of each process. Let each process be associated with a leaf in a
complete binary tree (for simplicity we assume that the number of processes is a power
of 2). Each leaf initially contains the element associated with the process. When this
element is removed the leaf is said to be empty. An internal node contains two flags,
corresponding to its two children, which are set to empty if all the leaves in the child’s
subtree are empty. Since we assumed that there are no additions, once a node becomes
empty it stays empty; however, the flag is not set immediately after the node becomes
empty, hence a process may pursue an empty subtree.

Each process starts the removals from its own leaf and traverses the tree according
to the procedure described below (an example follows the procedure). We assume that
only one process can access a node at any given time (this can be implemented through
locking). Every such access will be counted as a possible collision. A process P arrives
at an internal node v always from below, and this happens when P finds one of v’s
subtrees to be empty. P then sets the corresponding flag in v to empty. If both flags
in v are empty then P continues up the tree. Assume that P arrived from the right
side. If the left flag of v is not empty then P goes down the left subtree of v directly
(in one step) to a leaf that is in the same relative position in the left subtree of v as
P’s starting leaf is in the right subtree of v; we call this leaf the matching descendant
of P and v. The case of reaching v from the left child is similar. This way, if many
processes collide at an internal node they are spread among the leaves. Since the tree

1136 UDI MANBER

is static the nodes can be stored in a linear array and all the index calculation required
to move from one node to another can be implemented in constant time.

Example 1. The tree is given in Figure 2. First consider the case of only one
process, P, initially at h. P traverses the tree in the following order:

h,d,i,d,b,j,e,k,e,b,a,l/,m,c,n,g,o,g,c,a.

Let us now start with 3 processes" P at h, Q at i, and R at m, and assume that in each
time unit one process completes the computation on one node. The following is an
example of one possible order of execution. Each process is followed by the node it
visits. A boldface node indicates that the node has been found empty in this step for
the first time.

P:h, P:d, Q:i, P:i, P:d, P:b, Q:d, Q:b, P:j, P:e, P:k, P:e, Q’k, Q’e, Q:b, Q:a, P:b, P:a,
R:m, R:f, R:I, R:f, R:c, P:I, P:f, R:o, R:g, R:n, R:g, R:c, P:c, Q:m, R:a, P:a, Q:f,
Q:c, Q:a.

To analyze the algorithm we count not only collisions but actual steps. Notice
that if only one process is active then although the traversal algorithm is more
complicated than a straightforward sequential tree traversal the number of steps is still
linear in the number of nodes (each internal node is visited twice). Let S(k) denote
the maximal number of steps taken by k processes traversing a tree with k leaves. The
analysis of the algorithm relies on the following lemma.

LEMMA 1. For any internal node v, all processes that visit leaves in both subtrees of
v visit the left subtree first, or they all visit the right subtree first.

Proof. Assume the contrary. Let P be a process that started in the left subtree of
v and then visited the right subtree, and let Q be a process that visited the subtrees

Procedure Traverse (node)
{ initially node is the process’ own leaf

if node is a leaf then
if node is non-empty then

remove the element
endif
set the corresponding flag in node’s parent to empty;
Traverse(parent of node);

else
if both flags of node are empty then

if node root then
terminate

else
set the corresponding flag in node’s parent to empty;
Traverse(parent of node);

endif
else

Traverse (matching descendant of initial node)
endif

endif

FIG. 2. Example 1.

DYNAMIC INFORMATION IN A CONCURRENT ENVIRONMENT 1137

in the opposite order. In order to visit both subtrees P and Q must have checked first
if both flags in v are empty. Let’s assume that Q checked v after P (we assumed that
only one process can access a node at a time). In this case, at the time Q checked v
both flags in v are empty and Q continues up the tree. l-I

THEOREM 2. The total number of steps taken by k processes to remove k elements
using procedure Traverse is O(kL59) in the worst case.

Proof. We use a recursive argument. For simplicity, assume that k is a power of
2. Let T be a complete binary tree rooted at r, and assume, without loss of generality,
that the first process that arrives at r started at the left subtree. By Lemma 1 no process
that started at the right subtree will visit the left subtree. Hence, the worst case of
traversing T occurs when all the processes in the left subtree traverse it in the worst
possible way, then they are dispersed to the bottom of the right subtree and then all
processes traverse the right subtree together in the worst possible way. We get the
following recurrence relation for S(k):

S(2k) _-< 3S(k) + O(k).

The factor 3 arises from 1) processes in the left subtree, 2) processes in the right
subtree, and 3) processes from the left subtree that traverse the right subtree. Solving
the recurrence relation, we get

S(k) O(klg3) O(k159).
It is possible to improve the asymptotic behavior ofthe algorithm by using multiway

trees and distributing the processes down from an internal node in a better way. One
can achieve a complexity of O(k+) for any e > 0. However, while this leads to an
asymptotic improvement, there is no significant improvement for practical values of
k. We describe the modifications below only for the purpose of comparing them to
the lower bounds in section 5. Consider a 4-way tree. Using a similar traversal procedure
and similar arguments as above one can show that the worst case occurs when the
processes in one subtree traverse it in the worst possible way, then they move down
to a second subtree and, with the processes in this subtree, traverse it in the worst
possible way, then they all move to the third and then to the fourth subtree. This leads
to the recurrence relation S(4k) < (1 + 2 + 3 + 4) S(k) + O(k), which gives a slightly
worse solution. However, if, instead of "sending" the processes from the first and
second subtrees together to the third subtree, we "spread" them and send each to the
remaining subtrees (the third and the fourth) we get the recurrence relation S(4k) <
(1 + 2 + 2 + 4) S(k) + O(k), which turns out to yield the same bound as the binary
case. Using the same technique for 6-way trees results in the recurrence relation S(k)
< (1 + 2 + 2 + 2 + 3 + 6) S(k) + O(k) (processes in the first tree go to the second,
the second to the third and fourth, the third to the fifth and sixth, the fourth to the
fifth and sixth, and the fifth to the sixth), which yields S(k)= O(k1*16) -O(kL55).
Using m-ary trees we get the following theorem.

THEOREM 3. For any e > 0 there exists an algorithm to remove k elements by k
processes using O(k1+) steps in the worst case.

Proof. We use a complete m-way tree such that m is a constant that depends on
e. Assume, for simplicity, that k mh where h is the height of the tree (a leaf is at
height 0), and that each leaf in the tree holds one element. Denote the processes by
Po,... ,Pk-, and let P start at leaf i, such that the leaves are ordered from the left.
Given an internal node v of height h(v), define

index(Pi, v)= [(mod mh(v))

1138 UDI MANBER

index(Pi,v) indicates the child of v from which Pi starts to traverse the subtree rooted
at v (P may have started in a different subtree). The data structure maintained in
each internal node v is the following. There are rn flags F,... ,F, and m variables
al,... ,a,, corresponding to the m children. There is also a list L of all the children
that are not yet known to be empty. The list is maintained as a circular linked list with
a pointer to it such that every time a non-empty child is selected the pointer advances.
Operations on one node are assumed to be atomic; we make sure that such operations
always consist of constant number of primitive steps. As in procedure Traverse above,
a process always reaches an internal node v from below and then either goes up (in
case v is known to be empty) or goes down directly to a matching descendant leaf in
one of the subtrees. We proceed to describe how to select this subtree.

Let P reach v from child j (0=<j=<m-1) such that index(P,v)=d. If F is not
empty then P sets F to empty and removes j from L. If L is empty (i.e., v is empty)
then P (along with all other processes reaching v from now on) goes up to v’s parent;
if v is the root then the algorithm terminates. If L is not empty then P picks the next
non-empty child s from L, sets a d to S, and goes directly to a matching descendant
leaf in s; ad indicates to all other processes Pq such that index(Pq,v)= d that when
they reach v they should continue from the matching descendant in child a d. If F is
empty, which implies that P is not the first process to reach v from j, then P checks
ad; if ad =j, which implies that P is the first with index d to reach v from j, then P
picks the next non-empty child s from L and sets a d to S; it then follows the matching
descendant in s. If a d #j then P follows the matching descendant from a d.

TO analyze the worst case behavior of the algorithm we use a recursive argument,
very similar to the proof of Theorem 2. Let S(k) denote the maximum number of steps
taken by k processes traversing a tree with k leaves. Consider a tree rooted at r with
k’= mk leaves. Let P be the first process to reach r and assume that it reaches r from
j. After P sets F to empty and removes it from L no other process will go down from
r to a leaf in j. The only steps involved in traversing j result from processes that are
already in j. Hence, we can assume that these processes traverse j in the worst possible
way using S(k) steps. The same argument holds for the second subtree that becomes
empty, and the worst case occurs when it is the subtree to which the processes of j
were directed; in this case the additional number of steps is at most 2S(k) since the
processes from j were distributed in the same way as if they had started at the other
subtree. We continue by selecting the subtree with the greatest number of processes,
having all of them traverse it in the worst possible way, and distributing them among
the other non-empty subtrees. By the selection of the next non-empty tree from L we
are guaranteed that the processes with different indices are distributed equally among
the subtrees. (Actually, it is not important for the proof to implement the data structure
for the list L efficiently since rn is a constant anyway.) To count the total number of
steps we start at the last phase in which all processes traverse the last child using at
most mS(k) steps. The next to last phase results in at most [m/2]S(k) steps and so
on. In addition, there are at most O(mk) steps for "visiting" r. Hence, the total number
of steps is at most

(m+[m/2]+[m/3]+ +[ml(m-1)]+l)S(k) + O(mk)

<= cmlogmS(k) + O(mk)

(where c is a constant), resulting in the recurrence relation

S(mk) <- cmlogEmS(k) + O(mk),

DYNAMIC INFORMATION IN A CONCURRENT ENVIRONMENT 1139

which implies

S(k) O(klg’g:m).
Since

log,,, (cm log 2m) 1 + log2(clog2 m)
log2m

choosing m such that

lOgE(clog2m)
e

logEm

completes the proof, r
So far we discussed a restrictive case. In the general case we divide the algorithm

into rounds. We make sure that in each round all segments are visited by at least one
"foreign" process seeking a "donor". Since each visit splits the segment by at least a
third we can have at most O(log n) rounds before all n elements are removed. Notice
that it is possible that the segment of one process contains all the elements in the
multiset. Hence all segments must be searched and a complete round is indeed
necessary.

We modify the algorithm by replacing the flag in each node with a round counter.
An internal node marked with a counter c implies that all of its leaves "donated" in
round c. Processes run the traversal algorithm, starting with their own leaf, only when
their local segments are empty and they are looking for a donor. Once they find a
donor they continue their local operations until they empty their segments again, in
which case they continue the traversal from the last node they visited. Instead of
marking an internal node as visited, each process makes sure that the node’s counter
is no less than its local counter. If a process finds a node with a larger round number
than its own counter then it updates its own counter and starts the traversal from the
beginning. Round c is terminated when the root is marked c. When a process reaches
the root it starts the traversal again from its leaf incrementing its local round number.

THEOREM 4. Let the multiset initially contain n elements that are divided among the
processes in an arbitrary way. The total number of collisions resulting from k processes
executing n removals and arbitrarily many additions is O(S(k)logn) in the worst case.

Proof. Assume first that no additions are performed. By Theorem 1, since a round
corresponds to a traversal and the number of steps in a round corresponds to the
number of visits in a traversal, at most O(S(k)logn) collisions can occur in the worst
case. Additions are always performed locally; hence, the only time they can be involved
in a collision is when another process (or processes) attempts to split the local segment.
However, these collisions can be attributed to the foreign processes. We counted steps
(visits) in the evaluation of S(k) and each visit was counted as a collision whether the
local segment was active or not. Hence, the upper bound is not changed and the result
follows.

If more than n removals are performed then obviously the worst case occurs when
all the elements are removed and then repeatedly one element is added and all processes
attempt to remove it. The algorithm is not very efficient for the case of multisets with
very few elements. (The best solution in this case is probably to decrease the concurrency
and let only few processes be active, assuming again that the processes are servers and
that fairness is not an issue.)

5. Lower Iounds. In this section we present a lower bound on the number of
collisions in the worst case. Since the add operation in the algorithm described in the

1140 UDI MANBER

previous section does not contribute to the number of collisions in the worst case we
ignore additions for the lower bounds. The following scenario is considered: There
are n elements in the multiset, and k processes, Po,P1,... ,Pk-1, are trying to remove
all the elements. The time processes spend locally per operation is not counted; only
collisions are counted. We use an adversary argument in the following way. Given a
data structure and algorithms, we will produce a schedule for the processes that leads
to many collisions. Let xi,,xi2,... ,xi.be the sequence of elements Pi removes provided
that all other processes are not active.

LEMMA 2. There exist and j, 0 < i, j < k- 1, and r and s, 1 < r,s In k + 1,
such that xir xj.

Proofi There are altogether more than n elements in the k subsequences of size

In k / 1, hence one element must appear in two subsequences.
THEOREM 5. Every algorithm for concurrent removal of n elements by k processes,

where k > 2, and n (ka), a> 1, produces (k log n) collisions in the worst case.

Proofi Find i, j, r, and s that satisfy the conditions of Lemma 2, and assume that
all processes except P and Pj are not active. Let P remove all the elements up to xr
and then let P; start removing its elements. If P; does not change its order of removals
as a result of the removals of P then we can cause a collision by letting them both
attempt to remove x (= x;) at the same time. Otherwise, in order to know that P
has been active, P; must read a variable that P has written. Let w be the first such
common variable. The execution sequences of P and Pj until they access w are
independent. Hence we can let them arrive at w at the same time thus producing a
collision. In any case, a collision can be forced to happen after at most [2n/k elements
are removed. After the collision we "allow" all the processes to learn about it and
change their removal orders accordingly (this probably causes more collisions but we
do not count them). The number of remaining elements is now Rl(n) >= n [2n/k] >-
n(1- 2/ k) -1. We now use the same argument repeatedly to get R,,(n)>-
R,n_l(n)(1-2/k)-l. Solving the above, we get

R,,(n) >- n(1-2/k)"
k

,,)-(1-(1-2/k) ->_ n(1-2/k) k2 ne-2m/k k2.

Hence, if n and k are sufficiently large and n fl(ka), a > 1, m gl(k log n) iterations
are required to remove all the elements, and the theorem follows.

In particular, Theorem 5 implies that if k is a small constant then the algorithm
in section 4 is optimal; for large k there is a gap of a factor of k between the lower
and upper bounds.

6. Applications to distributed computation. If processes communicate by messages
through a communication network then, conceptually, one can still regard the whole
network as a shared memory [7]. However, the costs associated with communication
are different. Considering all the issues involved in a distributed implementation of
pools is beyond the scope ofthis paper. In this section we discuss only a few observations
and related work.

Assume that, instead of counting collisions, we measure the complexity by counting
the number of messages, where a message contains one element. Furthermore, assume
that every two processors are connected and can communicate directly. The lower
bound results of section 5 still hold since every time two processes need access to the
same element they must communicate. However, in this case, one can get a trivial
lower bound of f(n) on the number of messages in the worst case by the following
observation. Let P be the process that initially has the smallest number of elements

DYNAMIC INFORMATION IN A CONCURRENT ENVIRONMENT 1141

in its local segment. P has at most nk elements. If P is the only active process then
it has to get the rest of the elements from the other processes, which implies fl(n)
messages.

In many cases, in particular in local area networks, the communication overhead
depends more on the number of messages than their size (provided, of course, that
the messages are not too large). In thi,:, case, the number of collisions is a more realistic
measure than the number of bits that have to be sent since it measures in some sense
the amount of "dialogue". Also, if one considers the example of dividing a large
problem into subproblems that was given in the introduction, it may be possible to
have a short description for a collection of subproblems. Hence, a message containing
many elements can still in some cases be short. The lower bounds of section 5 still
hold for this model. Moreover, they are not far from optimal since the upper bounds
described in section 4 are applicable provided that sending half of a segment can be
considered as one message. The internal nodes in procedure Traverse of section 4.2
can be stored in preassigned machines. A process P can access an internal node by
sending an appropriate message to process Q where the node is stored. Q then performs
the operation on the internal node locally, and sends out a message to P describing
the outcome.

A similar problem of allocating resources in a network consisting of a tree of
processors where a message can only go between neighboring processors is discussed
in [3]. A probabilistic algorithm is given and its expected average time performance
is analyzed.

Some of the ideas of the algorithms of section 4 have been used in the design of
DIB-a package for Distributed Implementation of Backtracking [2]. DIB is a general-
purpose package that allows applications that use backtrack or branch and bound to
be implemented on a multicomputer. The package is currently running on the Crystal
multicomputer at the University of Wisconsin-Madison. It is based on a distributed
algorithm, transparent to the user, that divides the problem into subproblems and
dynamically allocates them to the available machines. Initially, the problem is divided
arbitrarily among the machines. When a machine finishes all its subproblems it sends
a requestfor work to another machine selected by an algorithm similar to the algorithms
described in section 4.2. A machine that receives such a request grants it by dividing
its work into several subproblems and sending half of them to the requesting machine.
Initial results of using DIB are very promising. In particular, the speedup we achieve
for many simple implementations of backtracking is almost linear. The communication
overhead is small and the computation load is equally divided among the machines.

The most simple case where all subproblems are independent and known in
advance is similar to the definition of pools. In general, the subproblems may not be
completely independent and the generation of subproblems (i.e., the partitioning) may
depend on the execution of the algorithm. For example, in a typical branch and bound
algorithm the branching depends on the current subproblem and the current bound
may be used in solving other subproblems.

7. Extensions and further research. It is possible to support processes that are
allocated and destroyed dynamically. We need to be able to insert and delete leaves
from the global tree concurrently with the other operations. Efficient concurrent
algorithms for insertions and deletions in external binary search trees are described
in [9]; general concurrent binary search trees are discussed in [5,8]. These algorithms
can be easily adapted to this application. If a dynamic tree is used then it may not be
possible to find the matching descendant of a node (see algorithm Traverse in section

1142 UDI MANBER

4.2) in constant time. However, the search for matching descendants need not interfere
with the removals or additions operations; it only interferes with inserting or deleting
a process.

Several open questions remain.
Can one improve the tree traversal algorithm? Although the asymptotic diiterence

between lower and upper bounds is very small, it is not clear whether efficient solutions
for small number of processes can come close to the lower bound.

We defined collisions as being either read-write or write-write conflicts. If we
count only write-write conflicts, is it possible to improve the upper bounds or (more
likely in our opinion) prove the same lower bounds?

In a distributed environment fault tolerance is a major issue. It is important to
implement pools such that recovery from failures (e.g., a loss of a local segment) is
possible. Several alternatives are now being studied and implemented in the context
of the DIB project.

8. Conclusions. We presented in this paper a design of an abstract concurrent data
structure. We proved upper and lower bounds on the amount of interference among
competing processes under a shared memory model. Abstract data structures have
proven to be very helpful in the design of sequential algorithms. Having an arsenal of
data structures and efficient implementations makes it easier to formalize problems
and to solve them. We hope that the same will be true for concurrent computation.

Acknowledgments. The author wishes to thank Raphael Finkel and Richard Ladner
for many stimulating discussions that made this paper possible, and the anonymous
referees for comments that improved the presentation of the paper.

REFERENCES

C. ELLIS, Concurrent search and insertion in AVL trees, IEEE Trans. Comput., C-29 (1980), pp. 811-817.
[2] R. A. FINKEL AND U. MANBER, DIB-A distributed implementation ofbacktracking, Fifth International

Conference on Distributed Computing Systems, Denver, May 1985, pp. 446-452.
[3] M.J. FISCHER, N. D. GRIFFETH, L. J. GUIBAS AND N. A. LYNCH, Probabilistic analysis ofa network

resource allocation algorithm, Information and Control, to appear.
[4] J. N. GRAY, Notes on database operating systems, in Lecture Notes in Computer Science 60, Springer-

Verlag, Berlin, 1978, pp. 393-481.
[5] H.T. KUNG AND P. L. LEHMAN, Concurrent manipulation ofbinary search trees, ACM Trans. Database

Systems, 5 (1980), pp. 354-382.
[6] H.T. KUNG AND S. W. SONG, An efficient parallel garbage collection system and its proofofcorrectness,

18th Annual Symposium on Foundations of Computer Science, October 1977, pp. 120-131.
[7] N.A. LYNCH AND M. J. FISCHER, On describing the behavior and implementation ofdistributed systems,

Theoret. Comput. Sci., 13 (1981), pp. 17-43.
[8] U. MANBER AND R. E. LADNER, Concurrency control in a dynamic search structure, ACM Trans.

Database Systems, 9 (1984), pp. 439-455.
[9] U. MANBER, Concurrent maintenance ofbinary search trees, IEEE Trans. Software Engineering, SE-10

(1984), pp. 777-784.
[10] I. A. NEWMAN AND M. C. WOODWARD, Alternative approaches to multiprocessor garbage collection,

1982 International Conference on Parallel Processing, Bellaire, MI, August 1982, pp. 205-210.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C) 1986 Society for Industrial and Applied Mathematics
021

SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING*
ERIC BACHtt, GARY MILLER AND JEFFREY SHALLIT

Abstract. Let N be a positive integer, and let r(N) denote the sum of the divisors of N (e.g.
r(6) 1+2+3+6= 12). We show computing r(N) is equivalent to factoring N in the following sense:
there is a random polynomial time algorithm that, given r(N), produces the prime factorization of N, and
r(N) can be computed in polynomial time given the factorization of N.

We show that the same result holds for rk(N), the sum of the kth powers of divisors of N.
We give three new examples of problems that are in Gill’s complexity class BPP: perfect numbers,

multiply perfect numbers, and amicable pairs. These are the first "natural" sets in BPP that are not obviously
in RP.

Key words, factoring, sum of divisors, perfect numbers, random reduction, multiply perfect numbers,
amicable pairs

AMS(MOS) subject classifications. 68C25, 10A25, 10A20

1. Introduction. Integer factoring is a well-known difficult problem whose precise
computational complexity is still unknown. Several investigators have found algorithms
that are much better than the classical method of trial division (see [Guy 1], [Pol],
[Din], [Len]).

We are interested in the relationship of factoring to other functions in number
theory. It is trivial to show that classical functions like (N) (the number of positive
integers less than N and relatively prime to N) can be computed in polynomial time
if one can factor N; hence computing (N) is "easier" than factoring. One would
also like to find functions "harder" than factoring. The first result in this area was
given in Gary Miller’s thesis [Mill]. Miller showed that if the Extended Riemann
Hypothesis (ERH) is true, then given (N) one can produce the factorization of N
in polynomial time. Thus computing q(N) is "equivalent" to factoring. He also
demonstrated a similar equivalence between factoring and two other number-theoretic
functions, A(N) and A’(N) (defined below). Long pointed out that if one is willing
to use randomization, the ERH assumption in the above results can be eliminated,
and further showed that the calculation of orders in the multiplicative group of integers
(mod N) is randomly equivalent to factoring [Long]. (Section 2 below gives a slightly
more general version of these results.) Using the results of Miller and Long, a method
for composite-modulus discrete logarithm problems implies a method for factoring
[Bach].

in this paper, we demonstrate an equivalence between factoring and computing
the function or(N), the sum of the divisors of N. More formally, we prove the following

THEOREM 1. Given the factorization of N, or(N) can be computed in polynomial
time.

THEOREM 2. Given or(N), we can produce the factorization of N in random poly-
nomial time.

* Received by the editors February 28, 1984, and in revised form August 28, 1985. A preliminary version
of this paper was presented at the 16th ACM Symposium on the Theory of Computing in Washington, DC
[BMS].

" Computer Sciences Department, University of Wisconsin, Madison, Wisconsin 53706.
: The research of this author was sponsored in part by the National Science Foundation under grant

MCS 82-04506.
Department of Computer Science, University of Southern California, Los Angeles, California 90089.
Department of Computer Science, University of Chicago, Chicago, Illinois 60637.

1143

1144 E. BACH, G. MILLER AND J. SHALLIT

then

(0)

Theorem 1 is easy to prove; for if
N=p. .p

cr(N)=P+1-1... prer+l--1
p1-1 p-I

(p+...+1)... (per+.. "+1).

(e.g. [HW, Thm. 275]). Thus or(N) can be computed in polynomial time.
In 3 and 4 below, we will prove Theorem 2.
Section 5 discusses extensions to trk(N), the sum of the kth powers of the divisors

of N. Section 6 discusses some interesting corollaries, including three examples of
natural problems in Gill’s complexity class BPP that are not obviously in RP.

(We assume the reader is familiar with probabilistic complexity classes, as dis-
cussed in [Gill]. Recall that BPP is the class of languages recognized in polynomial
time by a probabilistic Turing machine, with two-sided error probability bounded by
a constant away from 1/2. RP is the class of languages recognized in polynomial time
by a probabilistic Turing machine with one-sided error.)

A few words about notation: we use N to denote a number to be factored, and
p and q represent prime divisors of N. The factorization of N is given by

N=p, pekk.

We use pe]]N to mean pelN but pe+XN, i.e. pe is the highest power of p dividing
N. By vp(N) we mean the exponent of the highest power of p dividing N; e.g. in the
example of the previous sentence, vp(N)= e.

If R is a ring, we use R* to denote the group of invertible elements. For example,
Zt is the ring of integers (mod N), and 7/* is the group of elements relatively prime
to N. By GF(qk) we mean the Galois field with qk elements. NE/F(a) is the relative
norm of the element a.

By factoring an integer N, we mean producing the complete factorization. By
splitting we mean finding a nontrivial divisor.

A (N) denotes Carmichael’s lambda function. A (N) is the exponent of the group
Z, i.e. the least positive e for which a --= 1 (mod N) for all a 7/*. It is easy to show
that

A(N) lcm, {p,-l(p,_ 1)}.
A’(N) is defined similarly:

A ’(N) lcm, { Pi- 1 }.
2. Splitting N given a multiple ofp 1. Most ofthe equivalences between functions

discussed in 1 are proved as follows" let N be composite with prime divisors p and
q. By doing computations in 7/, and using the Chinese remainder theorem, we get
the effect of doing computations in 7/p and 7/o. Given a randomly chosen a 7/rv, we
construct a number xa7/N such that xa--0 (modp), but x0 (mod q) with high
probability. Thus gcd (x, N) gives a nontrivial divisor of N. (This is one of the few
general ideas for factoring integers.)

The first half (x--0 (modp)) is usually proved by exploiting some algebraic
structure; the second half (x 0 (mod q)) by showing that the set of a 7/* for which
xa--0 (mod q) is a proper subgroup of the group 7/*N-

As an example, we now show how to split N given a multiple of p-1. This
theorem and its proof can essentially be found in [Mill] and [Long]. However, we
include it here for two reasons" for completeness and to motivate the main ideas.

SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING 1145

THEOREM 3. There is an algorithm S(N, M, a) with the following properties: Let
N be odd and divisible by at least two distinct primes. Let Pl N. Then given M such that
p- lIM the algorithm S(N, M, a) splits Nfor at least 50% of the choices for a 7/N,
and terminates in time bounded by a polynomial in log M and log N.

Proof. The body of Algorithm S is given below.

ALGORITHM S(N, M, a):
S1. [Checkfornontrivial GCD]. If gcd (a, N)= r and r 1, then return r and stop
$2. [Set exponent]. Set Q <-MN.
$3. Computepower using modular exponentiation algorithm]. Let b ao (mod N).
$4. Test]. If b +1 then return gcd (b-1, N) and stop. Else if Q is even and
b-= 1, set Q <--Q/2 and return to step $3.

$5. Q odd or b---1]. Failure. Return nothing. Stop.

LEMMA A. For at least 50% of all choices of a, 1 <-a < N, Algorithm S(N, M, a)
terminates after having produced a nontrivial divisor of N.

Proof of Lemma A. If a 7] s -7/* then step $1 of the algorithm will always
discover a nontrivial factor of N. Hence we may assume a 7/*N"

Let piN. By assumption p- I lM, so p- I lMN. We examine two cases:
Case I. There exists at least one other prime q[N such that q-1/MN. Then

aMN a(P-1)kN 1 (mod p) but

{a 7/*v aMV 1 (mod q)}

is a proper subgroup of 7/* and so aM 1 (mod q) at for at least 50% of all choices
of a. For these choices of a, step $4 produces a nontrivial divisor of N.

Case II. q- I IMN for all primes q N. Then h (N) IMN, so

Go {a 7/*N[aMS 1 (mod S)} 7/*N

Now consider the following chain of subgroups"

Gl={a7/*slaMs/E=- 1 (mod S)},

G2 {a 7/*n[a M/4=- 1 (mod N)},

Gk {a 7/*1 a Ms/Ek --= 1 (mod S)}

where k VE(MN), the largest exponent of 2 dividing MN. Clearly Gk 7 7/*N since
h (N) is even, but MN/2k is odd. Hence there exists a subscript j for which Gs_l 7/*N
but Gs 7/*. We claim that 7/* also, where is a subgroup of 7/* given by

I-I={a7/*laMN/EJ=--+l (moO S)}.

We will produce an x 7/ not in/-/. Let q N such that

bM/2j=- -1 (mod qe)

for some b; such a q must exist, for otherwise Gs would equal 7/*s. Let x be given by

x-- b (mod qe),

x 1 (mod N/qe).,

then

xMv/2= -1 (mod qe),

xMs/2 -= 1 (mod N/qe)

and so x /-/. Thus is a proper subgroup of 7/*N"

1146 E. BACH, G. MILLER AND J. SHALLIT

Now we claim that for each x /-/, step $4 of the algorithm will produce a
nontrivial divisor of N. This is because xMN/Ej-=- 1 (mod N) but x4/2 + 1 (mod N)
implies that xV/2=-I (modpr) for some piN and x1/2=--1 (modqe) for some
q N. The conclusion is that at least 50% of all a 7/ will lead to a splitting of N in
step $4.

This completes the proof of Lemma A. [3

(We remark parenthetically that algorithm S works even if step $2 is replaced by

$2’. Set Q - M.

However, with $2’, the second corollary below might not be true, and this corollary
is needed later in the paper.)

To complete the proof of Theorem 3, it suffices to verify that all the steps of
Algorithm S can be done in polynomial time. This is left to the reader. [3

We immediately get the following corollary:
COROLLARY. The functions (N), A(N), and A’(N) are randomly equivalent to

factoring.
The following corollary will be needed in 4.
COROLLARY. Suppose we replace step $1 of Algorithm S with

S 1’. If gcd (a, N)= r and r 1, then return nothing and stop.

Then if d is a factor ofNproduced by the new algorithm, there is some prime q IN such
that q X d.

Proof Just check the proof of Theorem 3. [3

3. Splitting N using (N): the square-free case. In this section we assume that

N PiP2 Pk

is the product of one or more distinct primes. This case is somewhat easier than the
case where N is divisible by a square, so we give our proofs in detail.

The following procedure will state that N is prime, or with high probability
produce a nontrivial divisor of N.

(By iteration, if necessary, we eventually produce the complete factorization of N.)

ALGORITHM A. [Given tr(N) with N squarefree, try to split N.]
A0. If tr(N)- N/ 1, say "prime" and stop.
A1. If N is even, output the factor 2 and stop.
Repeat until N splits:

A2. Run a single iteration of Algorithm S described in 2 above, using an a
chosen at random, and M-tr(N). If a nontrivial divisor of N is produced,
output that divisor and stop.
A3. Choose a random monic quadratic polynomial from 7/[X], say, f(X)-
XE/bX/c.
A4. Choose a random linear polynomial from Zs[X], say, r(X) tX + u such
that and u are not both 0.
AS. [Ensure that r(X)O (mod q) for all primes qIN]. If gcd (t, N) splits N,
output that divisor and stop.
A6. Compute dX + e r(X)(N) (mod (f(X), N)).
A7. If gcd (d, N) splits N, output that divisor and stop.
AS. [Failure.] No divisor of N has been produced on this iteration.

In our analysis of Algorithm A, we will find the following group-theoretic lemma
useful:

SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING 1147

LEMMA B. Let G be afinite cyclic group, GI n. Let tr be the homomorphism defined
by tr(g) g. Then o’(G) is also a finite cyclic group. We have Itr(G)l n/gcd (n, r) and

ifg’ o’(G) then Ir-(g’)l- gcd (n, r). Hence tr(G) is the trivial group iff n lr.
Proof. See, for example, [Alb, Thm. 23, p. 19].
Here are the ideas behind Algorithm A:
Steps A0 and A1 are self-explanatory.
In step A2, if for any p dividing N we have p- l ltr(N) then Algorithm S will

split N in polynomial time.
Hence let us assume that for all p we have p- 1 tr(N). Pick a p and call it p.
Suppose f(X) is a monic quadratic polynomial chosen at random from Z[X].

Then a simple argument shows that with probability

1 p-1
(1)

2 p

f(X) is irreducible (mod p); so assume it is. (In practice, of course, we choose many
different f and perform the algorithm on all of them. With high probability, the
algorithm succeeds somewhere.)

Similarly, for a prime q, with probability

1 q-1
(2) . q

f(X) splits as the product of distinct linear factors (mod q), sayf(X) (X fl)(X- 3’)
(mod q), so assume it does for some p p (call it q).

LEMMA C. With probability at least 1/2, gcd d, N) splits N.
Proof. We show that we always have d-=0 (modp) but d0 (mod q) with

probability >-1/2. From this we conclude that gcd(d, N) splits N with probability _>-1/2.
To see that d--0 (mod p) it is enough to see that

r(X)p+l(mod f(X)) 7/p.

Nowf(X) is irreducible (mod p); hence 7p[X]/(f(X))-GF(p2). Now the pth power
automorphism gives the conjugate of the element r(X) in GF(p2), so r(X)p+=

Npb/Fp(r(X)) lies in the base field GF(p) (see [Mar]). Thus d--0 (modp).
Now let us show that d 0 with probability >-1/2. By the Chinese Remainder

Theorem, we have the isomorphism
7/ q[X]/(f(X) 7/ q[X]/(X O) 7q[X]/(X

Indeed, we can make this isomorphism explicit. There exist fixed wX+ w2 and
vX + v2 Zq[X] such that every linear r(X) Zq(X] can be written uniquely as

(3) r(X)=-c(wX+w2)+c2(VlX+V2) (mod q).

Here the cl and c2 are in 7/q and depend on r(X). If Cl and c2 are both congruent to
0 (mod q), then step A5 of the algorithm above splits N, so we may assume that c
and c2 are not both 0 (mod q).
Now

so that

r(X)(N)= C’((N)(w,X + W2)+ c()(v,X + v2)

d c(N)Wl + c(V)v (mod q).

It is easy to see that Wl, v 0 (mod q), so if d -= 0 we must have

(4) -c’(()w,v-(’= c[() (mod q).

(mod q)

1148 E. BACH, G. MILLER AND J. SHALLIT

We count the number of pairs (cl, 2) for which this can happen and show that for
each Cl (mod q) at most 1/2 the values c2 satisfy (4). If Cl--0, then for (4) to hold we
must have c2--0. If c2 0 (mod q) then we may apply Lemma B to see that for any
fixed value of Cl, the number of c2 satisfying (4) is gcd(q-1, tr(N)). But since
q- 1/or(N), this is _-< (q- 1)/2. Hence the total number of nonzero pairs for which
(4) can hold is -< (q-1)2/2. Dividing this by q2_ 1 (total pairs (cl, c2) with Cl, c2 not
both 0), we get d 0 (mod q) with probability -< 1/2(q 1)/(q + 1). Hence with probability
->_ 1/2, we have d 0 (mod q).

This completes the proof of Lemma C.
THEOREM 4. Suppose N is odd, squarefree, and not prime. If tr(N) is given, then

with probability at least 1/15, a single iteration of steps A2 through A7 splits N.
Proof. We multiply the probabilities given in (1) and (2) (using the worst case

p- 5, q 3) by the likelihood that step A7 splits N to get the worst case probability
1/15. E!

A brief remark is in order. Algorithm A will work even if we have a nonzero
multiple of r(N) instead of o-(N) itself. The only difference is that in step A0 we must
use a random polynomial-time test on N; for example, the probabilistic test given in
[ss].

4. Factoring N using tr(N): the general case. This section serves two purposes:
we generalize the algorithm in 3 to the case when N is not necessarily squarefree,
and we show how to obtain the complete factorization of N, using only the single
quantity r(N). Roughly speaking, this has the following complexity-theoretic import"
the function "prime factorization" is many-one polynomial-time reducible to the
function r, not just Turing-reducible as one would first suppose.

For now, assume that we merely want to split N p, pk. The algorithm below
does this, using a guess a for one of the ei’s. Since ei <- log2 N, we can try all possible
c’s without spoiling the polynomial time bound.

ALGORITHM B. Try to split N given tr(N) and a]:
B0. If N is a prime power, output N pk and stop.
B1. If N is even, output a relatively prime factorization N 2k. M and stop.
Repeat until N splits"

B2. Try to split N using the Algorithm S from 2, using M tr(N). If a
nontrivial factor is obtained, output that factor and stop.
B3. Choose a random monic polynomial f(X) ZN[X] of degree a + 1.
B4. Choose a random polynomial r(X)eZN[X] of degree-< c.
B5. Compute h(X) dX +...+ dX + e r(X)<t)(modf(X)).
B6. For each i, 1 _-< <_- c, let gi gcd(d, N).
B7. if for some i, 1 < g < N, output gi and stop.

We hope that f(X) is irreducible (mod p), but has at least two distinct irreducible
factors (mod q). If this is the case, we call f(X) suitable, and write

f(x) f-I f(x)’i=1

with each f/(X) irreducible, deg (f)= k, and s->2. There is then a surjective ring
homomorphism

(5) ;lq[X]l (f(X)) --> GF(qk,)... GF(qk.)

SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING 1149

(by the Chinese Remainder Theorem). We let K denote the kernel of q, and let

, :Zq[X]/(f(X)) GF(qk,)

denote the ith projection map. The interesting fact about these projections is
LEMMA E. Let h(X)Zq[X]/(f) have degree <=a. Iffor some < ,(h) j(h),

then one of h’s nonconstant coefficients is relatively prime to q.
Proof. Assume that all of h’s positive-degree coefficients vanish mod q. Then h is

an element of GF(q), which is unchanged by every qi. The result follows by contrapo-
sition.

We now need two probability estimates"
LEMMA F. A monic polynomial f(X) 7/c[X] of degree ce+ 1 is suitable with

probability at least

a+l q a+l

Proof First, f(X) is irreducible (mod p) with probability at least (1-1/x/)/(a +
1). Second, f is irreducible (mod q) with probability at most 1/(a / 1), and has a
repeated factor (mod q) with probability exactly 1/q (see [Bed, p. 80] and [Carl]).

LEMMA G. Iff(X) is suitable, then r(X
_
K with probability at least 1- 1/q-.

Proof By the rank-nullity theorem, dimGF(q) K +Y ki a + 1. Since there are at
least two positive k’s, the result follows.

The main result on our algorithm is
THEOREM 5. IfN is not prime, then for some a <- log2 N, a single iteration of steps

B0 through B7 splits N with probability at least 1/32(a + 1).
Proof If N is a prime power or even, we get a nontrivial factorization. Therefore

we can assume that N is odd, with two distinct prime factors p and q. If q- 11o’(N),
then by Theorem 2, step B2 will split N, so we can assume further that q- I Y tr(N).

Now let p N; a _-< 1og2 N as claimed. Assume for now that f(X) is suitable and
that r(X) K; we will estimate the probability that for some i, g0 (modp) and
g 0 (mod q).

First, since f is suitable, g0 (modp) for all i, since tr(N) is a multiple of
p +...+p+ 1, the annihilator of GF(p+)*/GF(p)*.

Now consider the situation (mod q), and let ci q(rU)). By the hypothesis that
r K, some c # 0; if some other cj 0, then by Lemma E we must split N at step B7.
Therefore we may as well assume that all the c’s are nonzero, or, what is the same
thing, r(X) is a unit modf(X). Since we have assumed that q-1,(tr(N), the map
r(X)(r(X))) does not annihilate _q[X]/(f(X))*. The image of this
homomorphism is then a direct product of nontrivial cyclic groups, say C x C2 x. x
Cs. The probability that a random element (c, , cs) will have all components equal
is at most 1/lcm #(C)<= 1/2; by Lemma E, then, the probability that some g
0 (mod q) is at least 1/2.

Theorem 5 now follows by combining the last two paragraphs, Lemmas F and G,
and the estimates p, q-> 3, c => 1.

We now turn to the problem of complete factorization. Our first observation is
that r(N) can be replaced by any multiple of o-(N) with no change in the statement
of Theorem 5. Since cr(N1N2)= tr(N1)cr(N2) for relatively prime N and N2, we can
use tr(N) to recursively factor the pieces produced by Algorithm B, provided they are
relatively prime. Therefore we need to transform the output of Algorithm B into a list
of pairwise coprime factors.

1150 E. BACH, G. MILLER AND J. SHALLIT

Our solution to this problem hinges on the following concept. We say that a
factorization N N1N2" Nr segregatesp if vp Ni) vp N) for some i. A factorization
segregates every prime if and only if the elements are pairwise relatively prime, and
in this case tr(Ni) tr(N). The procedure below produces such a factorization, provided
that some prime is segregated to begin with.

ALGORITHM R. [Factor refinement procedure].
[At all times we have N N Nr, possibly needing further processing.]
R0. Let the initial factorization be N- N1N2.
While factors remain with gcd(Ni, N)> 1:

R1. Set D =gcd (N,/V).
R2. Replace N[,, NJ in the list by De’+e, (N/D)e’, (/X/j/D)ej.
R3. If necessary, remove units from the list and combine powers of equal
numbers.

The properties of this procedure are given by
LEMMA D. Algorithm R terminates in at most log2 N iterations, with all the N’s

relatively prime. If the initial factorization is nontrivial and segregates some pIN, then
on termination there are at least two factors.

Proof. Left to the reader, lq

It remains to show that using a multiple of tr(N), we can split N and segregate
some prime. This follows from the proof of Theorem 5 (recall that q/d, so q is
segregated) and the corollary to Theorem 3.

Thus we have completed the proof of Theorem 2, which we restate here:
THEOREM 2. Given tr(N), we can produce the completefactorization ofN in random

polynomial time.
COROLLARY. Computing the function ra(N), the number of ways to write N as the

sum offour integer squares, is (randomly) equivalent to factoring.
Proof. Suppose

N= 2ep pk.

Then a classical theorem of Lagrange (see [HW, Thm. 386]) says

8tr(N) if el 0, 1,
r4(S) =] tr(N)

[24 ’e- 1’ el >- 2.

Since computing tr(N) is randomly equivalent to factoring, the result follows.
Similar results can be proved for functions like rs(N).

5. Generalization to irk(N). A natural generalization of tr(N) is the sum of the
kth powers of divisors of N, i.e.

keirk(N)= E dk (Pl +’" "+Plk+ 1)’’’ (pkrer+’" .+pk+r 1)
diN

where N p’ p
We also have a corresponding generalization regarding its computational com-

plexity.
THEOREM 6. For anyfixed integer k O, computing irk(N) is (randomly) equivalent

to factoring.

SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING 1151

Proof. If k is negative, then

O’k(N)
tr_k(N)
N

so it suffices to consider positive k.
The essential idea is that the map x - x() takes GF(pk(+)) into GF(pk), when

ALGORITHM C. Try to split N given tTk(N)]."
CO. If N is even or a prime power, output a factor and stop.

Set a 1, and repeat until N splits:
C1. Try to split N using Algorithm S with M trk(N).
C2. [Construct GF(pk).] Pick a random monic polynomial h(Y) 7/v[Y] of
degree k; let R denote 7/[Y]/(h(Y)).
C3. Pick a random monic f(X) R[X] of degree a + 1.
C4. Pick a random r(X) R[X] of degree _-< a.
C5. Compute h(X) d(Y)X" +... + dl(Y)X + e(Y) r(X))(modf(X)).
C6. For each i, 1 _-< _-< a, and each coefficient of d(Y), see if gcd(t, N) splits
N.
C7. [Failure]. If a / 1 < B, where B is a bound on the exponents in the prime
factorization of N, set a - a + 1; else set a - 1. (We may take B log3 (N).)

There is only one new observation to make here: we want h(Y) to be irreducible
modulo two distinct divisors of N, and this happens with probability about 1/k2. Since
k <_-log2 trk(N), we only expect to wait a polynomial-bounded time until this happens.
In all other respects, Algorithm C behaves just like Algorithm B. The details are left
to the reader.

6. Some classes of numbers that can be factored quickly. The reduction of factoring
to computing tr(N) discussed in the previous sections allows us to quickly factor those
numbers N for which o’(N) is easily computable.

Consider the equation tr(N)= 2N. Numbers satisfying this equation are known
as perfect numbers. The Pythagoreans attributed special properties to such numbers
and this led to their intense study in antiquity, culminating in Euclid’s proof that
numbers of the form 2n-1(2n- 1) are perfect when the second factor is prime. In the
18th century, Euler proved that all even perfect numbers must be of this form. No one
knows if there are any odd perfect numbers, but if there are, they must satisfy many
stringent conditions (see, e.g., [teR]). We now add one more: they are all easy to factor!

More precisely, we show that the set {perfect numbers}, defined to be

{x (0, 1)*: x (interpreted in binary) is perfect},

is recognizable in (two-sided) random polynomial time, i.e. is a member of the
complexity class BPP.

THEOREM 7. {perfect numbers} BPP.
Proof Given N, assume that tr(N)= 2N. Run the algorithm of 3-4 with the

appropriate polynomial time bound; the result is a (purportedly complete) factorization
of N. Now check to see if N is indeed perfect by using equation (0).

We end up accepting N if N is perfect, or if we accidentally produced an incorrect
factorization (i.e. one where our probabilistic prime test said all the factors were prime,
but some really weren’t). But such an accident happens only e of the time, and we
can fix e ahead of time.

1152 E. BACH, G. MILLER AND J. SHALLIT

We end up rejecting N if N is not perfect, or if we accidentally produced an
incorrect factorization as above, or if the algorithm of 3-4 failed to produce any
factorization at all in our (pre-fixed) time bound. Again, this happens only e of the
time. [3

Theorem 7 gives the first "natural" set in BPP which is not known to be in RP.
Of course, it is possible to construct examples like

L {x # y’x is prime and y is composite}.

L BPP, but it is somewhat "artificial", since it may be written as the product of two
languages, one of which is known to be in RP, and one which is known to be in co-RP.

Nevertheless, Theorem 7 is very likely less interesting than it appears at first
glance; if there are no odd perfect numbers (as is widely believed), then the clever
Lucas-Lehmer test (see [Knu]) combined with the Euclid-Euler result for even perfect
numbers gives a deterministic polynomial time algorithm to recognize {perfect numbers}.

However, there are well studied generalizations of perfect numbers for which no
deterministic tests are known. For example, numbers such that tr(N)= 3N are some-
times called sous-doubles; examples are 120 and 672. It is easy to see that an argument
like that in Theorem 7 shows that {sous-doubles} BPP.

A larger class is the set of multiply perfect numbers; i.e., those numbers N for
which NI r(N). To show that {multiply perfect numbers} BPP, we need the following
lemma:

LEMMA J.

cr(N)<5NlnlnN forN>-3.

Proof. A well-known theorem (e.g. [HW, Thm. 329]) states that

cr(N) cb N)
<-1.

N2

A result of Rosser and Schoenfeld [RS] is

N
<ec In InN+
&(N) In In N

for N->_ 3. Here C is Euler’s constant, approximately .5772.
Combining these two inequalities, we get

or(N) c<(e +3) lnlnN
N

for N > ee. From this, the result easily follows. [3

Lemma J shows that we can determine if N is multiply perfect with fewer than
5 In In N invocations of Algorithm B. This can be done in random polynomial time,
so we have proved

THEOREM 8. { multiply perfect numbers} BPP.
Carmichael [Carm] found the multiply perfect numbers less than 109:

1, 6, 28, 120, 496, 672, 8128, 30240, 32760, 523776,

2178540, 23569920, 33550336, 45532800, 142990848, 459818240.

(We have corrected several mistakes in Carmichael’s original list.) It is not known
whether or not there are infinitely many multiply perfect numbers. However, there are

SUMS OF DIVISORS, PERFECT NUMBERS AND FACTORING 1153

some density results that give upper bounds; for example, Hornfeck and Wirsing have
shown [HOW] that if m(x) denotes the number of multiply perfect numbers <=x, then

m(x) O exp
In In x

To give still another example, consider the pairs (M, N) such that

cr(M) cr(N) M+ N.

Such numbers are known as amicable pairs; the smallest pair is (220, 284). Jacob gave
Esau 220 goats and 220 sheep [God], and some scholars have interpreted this as
showing that the ancient Hebrews knew about tr(N). There is an enormous literature
concerning amicable pairs (see [LM]). An argument similar to those above gives

THEOREM 9. {amicable pairs} BPP.
It is not known whether or not there are infinitely many amicable pairs (M, N),

but Erd6s conjectures that the number of such pairs with M < N< x is at least cx1-

[Guy2].
Using our methods, it is possible to show that many other types of numbers (for

example, the "betrothed numbers" of Isaacs [Guy2, p. 33]) can be recognized in
two-sided random polynomial time.

In Theorems 7-9 above, we have given three sets in BPP. The two-sidedness of
these sets is due to the dependence on primality testing; if we had a deterministic
polynomial-time prime test, we would be able to show that {perfect numbers}, { multiply
perfect numbers}, and {amicable numbers} are in RP. No such prime test is currently
known, although there is one due to Adleman, Pomerance, and Rumely [APR] which
runs in time O((log N) ogogog v).

7. Epilogue. In 2, we showed how to split N given a multiple of p-1. The
results on tr(N) can be phrased similarly; if we know a multiple of p + 1 (or p2+p + 1,
etc.) we can split N. This leads to the question: for which polynomials f(p) do there
exist fast algorithms for splitting N? We will address this question in a future paper [BS].

The complexity of several number-theoretic functions is still open. One example
is computing discrete logarithms (mod p).

Not every difficult number-theory function is equivalent to factoring; some are
apparently harden For example, remarks of Shanks indicate that factorization is
reducible to finding the class number of an imaginary quadratic field [Shan] but no
reduction in the other direction is known, nor is it even clear that this problem is in NP.

Acknowledgments. Much of the research for this paper was done while the first
and third authors were graduate students at the University of California at Berkeley;
they would like to express their deep appreciation to Manuel Blum, who created an
environment eminently suitable to conducting research.

We are pleased to acknowledge the use ofthe computer algebra program VAXIMA,
which allowed us to confront our early ideas with the harsh reality of specific examples.

Thanks also go to the referees, especially to one who produced a particularly
thorough list of improvements.

Betrothed pairs (M, N) satisfy tr(M) tr(N) M + N+ 1" we note reluctantly that a pair cannot be
both betrothed and amicable.

1154 E. BACH, G. MILLER AND J. SHALLIT

[Alb]
[APR]

[Bach]

[BMS]

[BS]

[Berl]
[Carl]
[Carm]

[Dix]
[Gill]

[God]
[Guyl]

[Guy2]
[HW]

[HOW]

[Knu]

[LM]

[Len]
[Long]

[Mar]
[Mill]

[Pol]

[RS]

[Shan]

[SS]

[teR]

REFERENCES

A. A. ALBERT, Fundamental Concepts ofHigher Algebra, Univ. Chicago Press, Chicago, IL, 1956.
L. M. ADLEMAN, C. POMERANCE AND R. S. RUMELY, On distinguishing prime numbers from
composite numbers, Ann. Math., 117 (1983), pp. 173-206.
E. BACH, Discrete logarithms andfactoring, Computer Science Division Report UCB/CSD/84/186,
Univ. California, Berkeley 1984.
E. BACH, G. MILLER AND J. SHALLIT, Sums of divisors, perfect numbers, and factoring, Proc.
16th Annual ACM Symposium on The Theory of Computing (1984), pp. 183-190.
E. BACH AND J. SHALLIT, Factoring with cyclotomic polynomials, 26th IEEE Symposium on
Foundations of Computer Science, 1985, pp. 443-450.
E. R. BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
L. CARLITZ, The arithmetic ofpolynomials in a Galois field, Amer. J. Math., 54 (1932), pp. 39-50.
R. D. CARMICHAEL, A table of multiply perfect numbers, Bull. Amer. Math. Soc., 13 (1907), pp.
383-386.
J. D. DIXON, Asymptotically fast factorization of integers, Math. Comp., 36 (1981), pp. 255-260.
J. GILL, Computational complexity ofprobabilistic Turing machines, this Journal, 6 (1977), pp. 675-
695.
Genesis, xxxii, 14.
R. K. GuY, How tofactor a number, Proc. Fifth Manitoba Conference on Numerical Mathematics,
Winnipeg, 1976, pp. 49-89.
R. K. GuY, Unsolved Problems in Number Theory, Springer-Verlag, New York, 1981.
G. H. HARDY AND E. M. WRIGHT, An Introduction to the Theory ofNumbers, Oxford University
Press, Oxford, 1971.
B. HORNFECK AND E. WIRSING, Uber die Haufigkeit vollkommener Zahlen, Math. Ann. 133
(1957), pp. 431-438.
D. E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed.
Addision-Wesley, Reading, MA, 1981, pp. 391-394.
E. J. LEE AND J. S. MADACHY, The history and discovery of amicable numbers, J. Rec. Math., 5
(1972), pp. 77-93, 153-173, 231-249.
H. W. LENSTRA, JR., Elliptic curve factorization, typewritten ms., February 14, 1985.
D. L. LONG, Random equivalence offactorization and computation of orders, Theoret. Comput.
Sci., to appear.
D. A. MARCUS, Number Fields, Springer-Verlag, New York, 1977.
G. MILLER, Riemann’s hypothesis and tests for primality, J. Comp. System Sci., 13 (1976),
pp. 300-317.
J. M. POLLARD, Theorems on factorization and primality testing, Proc. Cambridge Phil. Soc., 76
(1974), pp. 521-528.
J. B. ROSSER AND L. SCHOENFELD, Approximate formulas for some functions ofprime numbers,
Illinois J. Math., 6 (1962), pp. 64-94.
D. SHANKS, Class number, a theory of factorization, and genera, Proc. of Symposia in Pure
Mathematics, V. 20 (1969 Number Theory Institute), American Mathematical Society, Providence,
RI, 1971, pp. 415-440.
R. SOLOVAY AND V. STRASSEN, A fast Monte-Carlo test for primality, this Journal, 6 (1977),
pp. 84-85.
H. J. TE RIELE, Perfect numbers and aliquot sequences, in Computational Methods in Number
Theory, Amsterdam Math. Centre Tracts, 154, 1982, pp. 141-157.

SIAM J. COMPUT.
Vol. 15, No. 4, November 1986

(C)1986 Society for Industrial and Applied Mathematics
022

COMPLETION OF A SET OF RULES MODULO A SET OF EQUATIONS*

JEAN-PIERRE JOUANNAUDf AND HILINE KIRCHNERf

Abstract. Abstract Church-Rosser properties are first presented, depending on an arbitrary relation R,
an equivalence relation E and a reduction relation Re used to compute normal forms of R modulo E.
Terminating rewriting systems operating on equational congruence classes of terms of a free algebra are
then considered. In this framework, the Church-Rosser property is proved decidable for a very general
reduction relation which may take into account the left-linearity of rules for efficiency reasons, under the
only assumption of existence of a complete and finite unification algorithm for the underlying equational
theory, whose congruence classes are assumed to be finite. This extends previous results by Lankford and
Ballantyne, Peterson and Stickel, Huet, Jouannaud. A general completion procedure for mixed sets of rules
and equations is then presented that generalizes and improves Peterson and Stickel’s one. In addition to
computing a Church-Rosser set of rules when it terminates, it yields a semi-decision procedure for testing
equality when it runs forever. Finally a post-processor is described that yields a Church-Rosser set of
inter-reduced rules. All proofs, including the correctness proof of our completion algorithm, are based on
the powerful proof technique of multiset induction.

Key words. Church-Rosser property, confluence, coherence, equational theories, equational deduction,
term rewriting systems, reduction systems, critical pairs, complete sets of unifiers, completion procedure,
multiset induction

AMS(MOS) subject classifications. 03B25, 08B05

1. Introduction. Term rewriting systems (TRS for short) are known to be a major
tool for expressing nondeterministic computations, because they are based on directed
equalities, with no explicit control. In addition, they have very simple semantics,
whenever the result of a computation does not depend on the choice of the rules to
be applied (the so-called confluence property). When a TRS is not confluent, it may
be transformed into an equivalent confluent one, using the Knuth-Bendix completion
procedure 54]. This procedure can be seen as a way to compile equational specifications
into confluent sets of rules, providing rewrite programs, which can be used in a similar
way as PROLOG ones [11].

During the past several years, confluent TRS and the Knuth-Bendix completion
procedure were shown to be a major tool for a wide class of problems, mainly the
word problem in universal algebra [17], [18], [54], [3], [5], [81], [49], the word problem
for finitely presented algebras [2], [4], [60], equivalence proofs of sets of axioms in
algebra [61], [62], unification in equational theories [22], [36], [80], [45], software
validation [28], inductive proofs in data types [68], [25], [34], [50], theorem proving
in various logics [72], [29], [30], [24], program synthesis from specification [31], [11],
computing with rewrite programs 11 or with Horn clauses with equality [26], describ-
ing PROLOG’s semantics [8], constructing initial algebras and executing equational
specifications as in OBJ [27], inferring types in the presence of polymorphism [67],
code optimization in compilers 1 or even code generation thought of as tree rewriting
[79].

* Received by the editors March 20, 1984, and in revised form January 24, 1986. A preliminary version
of this paper was presented at the lth ACM Conference on Principles of Programming Languages, Salt
Lake City, January 1984. This research was supported in part by Agence pour le D6veloppement de
l’Informatique under contract 82/767 and in part by the Office of Naval Research under contract N00014-82-
0333. Part of this work was done while the first author was visiting the Computer Science Laboratory of
SRI-International, Menlo Park, California 94025.

" Greco-Programmation and Centre de Recherche en Informatique de Nancy, Campus Scientifique,
BP 239, 54506 Vandoeuvre les Nancy, Cedex, France.

1155

1156 J.-P. JOUANNAUD AND H. KIRCHNER

The Knuth-Bendix completion procedure is based on using equations as rewrite
rules and computing critical pairs when left-hand sides of rules overlap. If a critical
pair has distinct irreducible forms, a new rule must be added and the procedure
recursively applies until it maybe stops. This procedure requires the termination
property of the set of rules, which can be proved by various tools, such as the recursive
path ordering [9], the generalized recursive path ordering [47], the recursive decomposi-
tion ordering [46], the recursive decomposition ordering with status [63] or polynomial
orderings [55]. A full implementation of most of these techniques is described in [61].

The method was extended to handle the case of an equational term rewriting system
(ETRS for short), i.e. a set of axioms split into a first subset R whose axioms are used
as rules and a second subset E whose axioms are used as equations. This allows the
inclusion of axioms, such as commutativity, that cannot be used as rules without losing
the termination property. A first approach by Lankford and Ballantyne [56], [57], [58]
handles the case of commutative, or more generally permutative, axioms that generate
finite E-congruence classes. The case of infinite E-congruence classes is studied in
[73], [32], [40]. Huet’s approach [32] is restricted to sets R of left-linear rules, while
Peterson and Stickel’s one [73] is restricted to linear theories E for which a finite and
complete unification algorithm is known. Both [58] and [73] results yield an efficient
associative-commutative completion procedure, with a few more restrictions needed
for applying the first approach. A complete unification algorithm is required to compute
complete sets of E-overlappings, providing complete sets of E-critical pairs. These
results are unified in [40] by describing at a more abstract level the underlying model
of computation used in both approaches: it makes clear that two properties, namely
confluence and coherence, are necessary and sufficient conditions for Church-Rosser
properties of this model, assuming the so-called E-termination property of the rewriting
relation modulo the set of equations. In addition to confluence, coherence is required
to enable computations in E-congruence classes. Applying then this abstract model to
ETRS, Huet’s results are easily obtained as well as a more general version of Peterson
and Stickel’s ones" nonlinear equational theories can be handled, which was known
as a hard problem in the theory of ETRS.

In this paper, we refine our abstract approach and provide simpler definitions. In
addition to classical Church-Rosser and confluence notions using E-congruence
classes, we also introduce new Church-Rosser, confluence and coherence notions
which are parameterized by the reduction relation R used to reduce terms. This
allows us to deal with efficient reduction relations, whereas R! E, the reduction relation
induced by the rules in E-congruence classes, requires one to search the congruence
class for a reducible term. As in [40], the coherence property is the necessary and
sufficient condition for R!E and R to have the same normal forms. We then study
a very general reduction relation, which is a mixture of the usual reduction relation
for left-linear rules and Peterson and Stickel’s reduction relation using matching modulo
E for the others. This was already done in [40] and allows us to avoid useless
computations of complete sets of E-critical pairs when left-linear rules are involved.
This is a major improvement in practice, because using E-unification or E-matching
algorithms (such as the associative-commutative ones of [82] and [37]) is known to
be time consuming. On the other hand, the more powerful the rewriting relation, the
weaker (and therefore the easier to ensure) the associated Church-Rosser property
will be. As a consequence, given a set E of equations, the same set R rules can be
Church-Rosser for some reduction relation but not for a weaker one.

For handling our definitions, a new, powerful proof technique is required, based
on multiset induction, which permits us to prove our Church-Rosser results. In addition,

COMPLETION MODULO EQUATIONS 1157

this proof technique allows us to resolve a problem left open in [73] and [40]: assume
that the reduction relation induced in E-congruence classes is terminating. Then the
Church-Rosser property is shown equivalent to the E-equality of normal forms of all
critical pairs and is thus decidable when these pairs are finitely many, which is the
case for finite ETRS. Such a result was already known when RE is the usual rewriting
relation, assuming the rules are left-linear [32]. We prove it here for the case when
RE is the mixed rewriting relation, assuming a complete and finite unification algorithm
is known for E, whose congruence classes must also be finite. Our proof holds for the
particular case of the Peterson and Stickel’s rewriting relation, without any linearity
hypothesis on rules or on equations. However, the case of infinite congruence classes
remains as the last open problem of the theory of ETRS.

A new completion procedure is then derived from these Church-Rosser results.
It is written in a recursive form, which makes both understanding and proof easier.
This procedure improves and generalizes Peterson and Stickel’s one for associative-
commutative theories. Two kinds of critical pairs are to be distinguished: confluence
pairs are processed in the usual way, whereas coherence pairs are processed in a more
complex way. In addition, extended rules are sometimes used instead of coherence
pairs to ensure the coherence property. These rules generalize to an arbitrary theory
E the so-called associative-commutative extensions of [73]. Following [33], a complete
proof of our algorithm is then given using multiset induction. The case where the
algorithm stops without adding any rule provides in addition another proof of our
Church-Rosser results. We finally define complete sets of normalized reductions (i.e.
Church-Rosser sets of rules which are inter-reduced) and show how to transform a
given Church-Rosser set of rules into a unique complete set of normalized reductions.
These sets of rules can be used to check whether two specifications are actually different
presentations of the same theory.

2. Abstract Church-Rosser results. The presentation of this section is strongly
influenced by that in [32]: we deal with binary relations on an arbitrary set 6e. As in
[32], most of our proofs will use noetherian induction (see [6] for a precise introduction):
given a noetherian relation on 6e (i.e. a relation without any infinite decreasing chain),
we prove a property on .90 by showing that for any in , (t) follows from the
assumption that is true for all elements in 6e which are proper descendents of for
the given noetherian relation. We use here what we call multiset induction, a particular
case of noetherian induction, that we introduce in the following.

2.1. Preliminary definitions and notations. Let -q be a symmetric relation on 6e
and -- its reflexive transitive closure, called E-equality, which is obviously an
equivalence relation. For simplicity, the E subscript will be omitted if no ambiguity
arises.

Let _._,R (R for short) be any relation on S, called reduction, -- and 2_> its
transitive and reflexive transitive closure respectively, and --,/ (R/E for short) the
relation o---,o which simulates the relation induced by R in E-equivalence classes.

Let be the union of F-q with the symmetric closure of -->R, that is the smallest
symmetric relation containing F-q and --,R. Let be the reflexive transitive closure of
t::, called RO E-equality, which is an equivalence relation.

In the following, (possibly with a subscript or a superscript) denotes an arbitrary
element in 6 and -- an arbitrary reduction on .Y. We say that is --,-reducible iff t---> t’
for some t’. Otherwise is said to be -->-irreducible. A normalform of t, denoted t, is
an irreducible term t’ such that t-> t’. We write t$ if we want to make the reduction
relation R precise.

1158 J.-P. JOUANNAUD AND H. KIRCHNER

The relation R is terminating modulo E or E-terminating itt the relation R/E is
noetherian, i.e. there is no sequence of the form to t---R tl t,--- t,--- tn+l
is simply said to be terminating or noetherian or well-founded if E is empty. Our
particular interest in terminating relations is twofold: first, they provide normal forms
for every element, and second, they allow proofs by noetherian induction.

Multiset induction. A multiset on 6e is a finite unordered collection of elements
of 6e, possibly with repetitions. For instance, {1, 2, 1, 3, 15, 15} is a multiset on W’, the
set of natural numbers. Operations on sets extend in a natural way to multisets, also
called bags. Specifically, removing an element from a multiset amounts to removing
one of its occurrences in the multiset. In the same way, adding an element to a multiset
increases by one its number of occurrences. We can extend any relation on Se to a
relation "-’mult on (e), the set of all multisets on 6e, in the following way: given two
multisets M and N in (b), M----mult N iff N is obtained from M by removing one
of its elements, say t, and adding a finite number of elements t’ (possibly with
repetitions) such that t’. As an easy consequence of Koenig’s lemma, the transitive
closure of ""mult is noetherian iff is noetherian (see [12] for a precise proof, and
[41] for a discussion about multiset orderings). What we call multiset induction on
is simply noetherian induction on the transitive closure of ""mult. All our proofs are
based on this technique that appears to be well-suited for proving Church-Rosser
properties.

2.2. Church-Rosser definitions. We now begin studying the Church-Rosser
property for such reductions on Se. Our goal is to decide R U E-equality of two terms
and t’ by computing their normal forms using some reduction relation related to R

and E, then checking these normal forms for E-equality (that we implicitly assume
decidable for practical use). A very natural idea is to compute in the quotient set of
S modulo E, thus to use R/E as the reduction relation. Let us recall what the
Church-Rosser and confluence properties are in the context of E-equivalence classes
on Se:

DEFINITION 1. R is Church-Rosser modulo E itt lt, t2 tl : t2 ==> :1 t’ tl _R/E t’
and t2- R/Et’. R is confluent modulo E itt /t, tl, t_ t-*-R/Etl and t-R/Et2
::! t’ tl -R/E t’ and t2 -R/E t’.

These two properties are nothing but the classical Church-Rosser and confluence
properties in the quotient set of 5e by and are known to be equivalent. However,
R/E-reducibility may be undecidable if E-equivalence classes are infinite and is at
least very inefficient if large classes must be traversed to find a reducible term. This
problem can be overcome by choosing an element for representing each equivalence
class, as in OBJ [27]. This can be done in a canonical way for many practical cases
of reductions on terms modulo associativity and commutativity. A more general idea,
the key one actually, is to compute using another relation R E. This yields RE-dependent
definitions that have to be linked with definitions using R/E by introducing a new
property called coherence. As a matter of fact, the first point of view is an instance of
the second: starting from an element of S, we first compute its canonical form and
then reduce it. This is clearly a reduction on Se. As the second point of view allows
better understanding and more general results, we adopt it here.

FUNDAMENTAL ASSUMPTION. In the following, --- RE (--- or RE can also be used
for short if no ambiguity arises) is any reduction that satisfies

R
_
RE RE.

DEFINITION 2. A pair (tl, t2) is RE-confluent modulo E, denoted t$t2, iff
=itS, t’ t _R t, t_-Rt’2 and t--- t. For RE R/E, we can assume t t.

COMPLETION MODULO EQUATIONS 1159

DEFINITION 3.
1) R is Re-Church-Rosser modulo E iff tl, t2 tl I: t2=> t , t2.
2) Re is confluent modulo E iff Vt, t’, t" _RE t’ and _RE t" t’$t".
3) Re is locally confluent modulo E with R iff Vt, t’, t" t---RE t’-and __.R t"=>

t’ t".
4) Re is coherent modulo E iff t, t,’ t" _R t’ and t" ==> =]t’ t" --> RE t" and

t’t’[.
5) RE is locally coherent modulo E iff :It, t’, t" t-->Rt and t-t":lt’
RE ’t’.t" ---> t" and
These definitions are pictured in Fig. 2.1.
Let us first point out that the definitions of coherence and locale coherence could

be given in a slightly different way, as follows:
4’) RE is coherent modulo E iff Vt, t’, t" t-RE t’ and t t" t’t".
5’) RE is locally coherent modulo E iff ’t, t’, t" --> RE t’ and - t"=:> t’t".
These definitions are simpler than the previous ones and make clear that confluence

and coherence are two instances of the same general concept, which expresses that
two (maybe different) relations have a "diamond" property. Nevertheless it is easy to
check that 4 and 4’ on one hand, 5 and 5’ on the other hand are actually equivalent,
provided the termination of the relation R/E is satisfied. Then the first reduction step
introduced in Definition 3 arises in a very natural way" if we do not require it, we can
have the following cycle for the relation R/E" ’’- t--Z>Rt’-->REt t", therefore
t" _Z>R/e t" which contradicts the E-termination property of R that is required anyway
in the following. The reason why we gave the definitions 3 in this way is that we want
to emphasize that the first Re step from t" required in the coherence definition plays
a crucial role: if a term is in RE-normal form, then any term t’E-equal to must
also be in Re-normal form, otherwise a Re-step would apply to by coherence. For
the same reason, is also in R/E-normal form, otherwise t--- t’-->R t" for some t’ and
t" and the same applies. Therefore the two sets of normal forms with respect to Re

and R/E must be the same. This remark will be used freely in the rest of the paper.

R - Confluence Local confluence Coherence Local coherence
Church-Rosser modulo modulo E modulo modulo

Modulo E E of R of R with R E of R E o.f R

FIG. 2.1. Main definitions. (Full arrows denote universal hypotheses while dashed arrows denote existential
conclusions.)

Before developing our results, let us give some other important consequences of
our definitions:

Since R
_

RE
_

R/e, the relations --RE --., R/e and --R/eare the same.
For Re= R/E, coherence and local coherence are trivially satisfied.
Different Re-normal forms of a term are E-equal, by the E-confluence property.

We therefore will refer to the Re-normal form of a term.

1160 J.-P. JOUANNAUD AND H. KIRCHNER

Church-Rosser modulo E and RE-Church-Rosser modulo E are two different
properties if RE and R/E are different. RE-Church-Rosser is actually the stronger

RE t’ REone as shown by the following case" let -- t t. As a matter of fact, and
t can be in RE-normal form, though not E-equal. The RE-Church-Rosser property
is actually monotonic with respect to inclusion of relations: this is a straightforward
consequence of its definition. Therefore, R-Church-Rosser implies RE-Church-Rosser
implies R/E-Church-Rosser, this last property being precisely the intrinsic Church-
Rosser property first defined. Choosing an adequate RE will thus be a relevant practical
problem.

Some additional comments about the choice of these definitions can be made:
Local confluence involves both R and RE. Using only R would give a relation

that is too weak, whereas using only RE gives one that is too strong for application
to ETRS.

Coherence and local coherence differ from the corresponding definitions in [32]
by replacing R by RE, which is a key point for applications, and by requiring a first
RE step from t" in the coherence definition, which has been justified above. It differs
from the compatibility property in [73] by allowing t’ to be reduced into some term

t. This will permit a more powerful result stating an equivalence between Church-
Rosser and both confluence and coherence. Local coherence differs also from the
commutation property in [42] by allowing t’ and t’ to be reduced to some terms t
and t respectively. Handling coherence, however, requires a more powerful termina-
tion property than handling commutation. Note finally, that property P1 in [78] is a
common ancestor to all of these definitions.

It is even possible to give a slightly different form to our definitions (without
changing at all either the results or the proofs) by using the relation R/E itself to
compute from t’ and t" in each of our definitions, except for coherence and local
coherence where a first RE step from t" to t’ is required for having a nonvacuous
definition. This was actually done in [40], despite some tedious proofs stemming from
a proof technique that was not as powerful as the one used here. The confluence step
from the pairs (t’, t") or (t’, t’) of the definitions can even be performed with an
arbitrary reduction provided it contains RE and is contained in R/E. This last remark
is very important in practice, as we will see in 3 and 4.

2.3. Role of coherence. We now show that coherence of RE modulo E is the
property that enables one to compute in E-congruence classes with the relation RE

This was already the case with the definitions of [40], which are actually equivalent
to ours, provided R is E-terminating.

PROPOSITION 4. Assume R is E-terminating and RE is confluent modulo E. Then
t, R/E t R iff RE is coherent modulo E.

Proof. Let us first prove the only if part. Assume "- "RE t’ and let t’$R be
any RE-normal form of t’, which is also an R/E-normal form of t’, as already pointed
out, thus also of t". Using the hypothesis, it follows that t"R t’R. AS R is
E-terminating, t" $R is different from t", otherwise t"--- _zR t’ ,R t" and there
would be a cycle for R/E. Therefore, t"-Rt"R and we are done.

Let us now prove the if part by noetherian induction on R/E. Let be any element
of 9. First, the result is true if is in R/E normal form, thus in RE-normal form.
Otherwise t --R t2 RE tRE and -RE t,R.

By the coherence property applied to (t, tR tl) there exist t and t’ such that
t--. , ,1---- , ’R Note that t must be in RE-normal form since it is
E-equal to a normal form.

COMPLETION MODULO EQUATIONS 1161

By the confluence property applied to (tl, t’, t2) there exists t such that
t2 ->nt" t’ and t must be in Re-normal form, thus it is a Re-normal form of t:.
We can now finish the proof by noetherian induction applied to t: which is a proper
son of for R/E. [3

Note that we could assume R locally Re-confluent with R modulo E instead of
Re-confluent modulo E" a simple extra induction step needs to be added to the proof
for that.

This result states that we can use Re-computations instead of R! E-computations,
if we are interested in normal forms of terms and not in the intermediate steps of
computation. This is usually the case in practice. Therefore coherence is exactly the
property needed. As a consequence, confluence and coherence modulo E are both
needed to compute with Re, that is to decide R U E-equality by computing Re-normal
forms and checking for their E-equality.

2.4. The abstract Church-Rosser theorem. We show now that confluence and
coherence modulo E can be restricted together to their local versions. This generalizes
the theorem of [69] which corresponds to the case where E is the empty set, since
both coherence and local coherence become vacuous in that case. For that, we also
use normal form computations, since normal formsare the link between Re-computa
tions and R/E-computations.

THEOREM 5. IfR is E-terminating, the following properties are equivalent:
(1) R is Re-Church-Rosser modulo E.
(2) Re is confluent modulo E and Re is coherent modulo E.
(3) Re is locally confluent with R modulo E and locally coherent modulo E.
(4) t t, t’ : t’ ff R t’ R.
Proof. Note that property (4) asserts that the Re-Church-Rosser property modulo

E is true when computing Re-normal forms of and t’, provided R is E-terminating.
This is perfectly similar to the usual case of an empty set E of equations: in that case
the Church-Rosser property can be checked on normal forms, provided R is ter-
minating.

(2) ==> (3) and does not use the E-termination hypothesis.
(4) :=> (1) is straightforward, but (4) assumes E-termination.
1 =:> (2) the confluence proof is straightforward, but the coherence proof requires

the use of E-termination to exhibit the first R-step from t" in the definition of
coherence.

Let t-Rt and t-t". Then t’t" and by Re-Church-Rosser property,
::ITS, t t’-Rt, t"Rt[and t---t. Assume now that t"=t[. Then

which contradicts E-termination.t t t" 2.>R t’ 2_R t and thus t +" R/e t
(3) =:> (4): the right part of the equivalence clearly implies the left. Let us prove

the converse by multiset induction on R/E: let M- {to, t,. ., t,+} be a multiset of
at least two elements (the one element case is straightforward) such that

to t=: t... t,+ t’. The basic (one step) case being obvious, we consider the
general one. Three cases are to be distinguished according to the last equality step
t, I= t,+.

" tn+l __>n tn: since t, is a Re-normal form of t,+, the result follows from the
induction hypothesis applied to the multiset M-{t,+}.
t, I--q t,+" the result follows from either the induction hypothesis applied to the
multiset M-{ t,+} if t,, and thus t,+l, is Re-irreducible, or else it follows from
the local coherence of Re and from the induction hypothesis applied to the
multiset{to,.., t,,t" , t,, , tn+l} which is strictly smaller than M, since

1162 J.-P. JOUANNAUD AND H. KIRCHNER

to In

Ind.

t. H

loc.
t;; coh.

FIG. 2.2. Church-Rosser proof using multiset induction (case 2).

the added terms are all proper descendents of t,+ for R/E. This second case
is shown in Fig. 2.2, where circled numbers stand for successive steps in the
proof.
t, R 6+: we first apply the induction hypothesis to the multiset M-{t,+}. As
t, is reducible by R (therefore by RE), we can apply local confluence modulo
E of RE with R. We end the proof by applying the induction hypothesis to the
multiset {t,$,. t,..., tn, t+l," ", tn+l} as shown in Fig. 2.3. [3

tO In

FIG. 2.3. Church-Rosser proof using multiset induction (case 3).

Theorem 5 is false if termination of RE is assumed in place of E-termination of
R, as proved by the counterexamples of Fig. 2.4 and Fig. 2.5, where local properties

t. th

Cycle case

H t.

H t; H 14

b,

In,finite chain case (obtained by folding the cycle)

FIG. 2.4. Crucial role of E-termination: no coherence.

COMPLETION MODULO EQUATIONS 1163

Cycle case

Infinite chain case (obtained by folding the cycle)

FIG. 2.5. Crucial role of E-termination: no confluence.

are true but global ones are not. Note that these examples are similar to [32], with
added complexity to ensure that they are not coherent.

The counterexamples of Fig. 2.4 are based on contradicting the coherence property,
whereas confluence is trivially satisfied. In the two first examples, is RE and is
clearly terminating, whereas R!E has a cycle. Similarly, we get counterexamples where
local confluence is true but confluence is not satisfied. In the examples of Fig. 2.5,
stands for RE R.

As indicated in [78], abstract Church-Rosser results like these apply in a wide
range of areas in computer science as well as in mathematics. An interesting example
dealing with cyclic covering matrices is given in [78]. A more complex example in
formal language theory is given in [66]. In the following we are interested in those
applications which deal with terms and term rewriting systems for which we give
decision procedures for the Church-Rosser property.

3. Application to equational term rewriting systems. This section is devoted to the
study of Church-Rosser results for ETRS, i.e. mixed sets of axioms E and R on a
term algebra, such that axioms in E are used as equations and define an equational
theory, whereas axioms in R are used as rules and define a rewriting relation. However,
rewriting with rules in presence of equations is somewhat more complicated than
rewriting with rules only: we will introduce other rewriting relations that will play the
role of the reduction relation RE of 2. In practice, E contains those axioms that
cannot be directed without losing the termination property for the rewriting relation.
It can also contain other axioms causing the divergence of the completion process
when used as rules. The notation used in this section is consistent with that of 2 and
will not be reintroduced. This section is divided into two different parts: the first one
recalls the more or less classical background on TRS (see [35] for a more complete
presentation); the second states and proves our Church-Rosser result.

3.1. Terms.
DEFINITION 6. Given a set of variables and a graded set of function symbols,

-(,) denotes the free algebra over also called the term algebra. Variables have
arity 0 by convention. Elements of -(,), called terms, are viewed as labelled trees
in the following way: a term is a partial application of the free monoid on natural
numbers f*+ into (.J such that its domain (t) satisfies" the empty word e @(t),
and vi(t) iff v(t) and i[1, arity(t(v))]. (t) is the set of occurrences of t,
(t) the subset of ground occurrences (i.e. t(v) is not a variable for v 3(t)), (t) the

1164 J.-P. JOUANNAUD AND H. KIRCHNER

set of variables of t. The subterm of at occurrence t, denoted t/t, is said to be strict
if t e. The relation > sst is defined by > sst t’ iff t’ is a strict-subterm of t; t[v <-- t’]
is the term obtained by replacing t t by t’ in t. A term is linear iff for any x in (t),
x has only one occurrence in t.

In the following, i, j, k denote natural numbers, x, y, z denote variable symbols,
a, b, c and e denote constant symbols, f and h denote function symbols, s and denote
terms, v, v, w, o and r denote occurrences, e denotes the outermost occurrence, and
v, denotes the concatenation of occurrences t and ,.

Example. Let t=(x/e)/x. Then (t)-(e, 1, 11, 12,2, t(e)=/ and t(12)-e,
cg(t)-(e, 1, 12) and is not linear.

A term with top function symbol f will often be written f(..- t... indicating
that we are interested in its first level subterm t. By convention, and t’ occur at the
same place in f(... and f(... t’...).

DEFINITION 7. A relation --> on Y(,) is said to be compatible with the term
structure iff V t, t’ -(,) and f , t’ ==f(. t. --* f(. t’.). An
equivalence relation on -(,) is called a congruence iff it is compatible with the
term structure.

Compatibility can easily be extended by induction to the case where and t’ are
plugged into the same arbitrary context (a term having a free place to be filled). This
remark will be used implicitly in the rest of the paper.

3.2. Substitutions, axioms, unifiers.
DEFINITION 8. Substitutions tr are defined to be endomorphisms of (:,) with

a finite domain (tr)=(xltr(x)x}. We denote by E the set of substitutions on
(,) and by trt or tr(t) the result of applying the substitution tr to the term t.

Composition of substitutions tr and - is simply written try’. If t’-trt (resp. "-try’),
we say that (resp. -) is more general than t’ (resp. C), that t’ (resp. ") is an instance

of (resp. -), and that tr is the match from to t’ (resp. " to "). The subsumption
preordering __>sub on 8-(,) (resp. E) is defined by: __>sub t’ (resp. - __>sub .,) iff is
an instance of t’ (resp. " of C). We write " __>sub .,[] if it holds for the restrictions
of " and -’ to a subset Y" or . The equivalence associated with this preordering is
variable renaming, i.e. bijection between two sets of variables.

Remember that substitutions are homomorphisms: we will make intensive (and
implicit) use of homomorphic properties of substitutions that are often given as lemmas
in the literature. We will also use the fact that the strict ordering associated with the
subsumption preordering is well-founded [76].

In the following, greek letters tr, 0 and " denote substitutions and (x\t, y\ t’,.
is the substitution cr such that @(or)= (x, y,". } and trx t, cry t’," .

DEFINITION 9. We call an axiom or equation any pair (t, t’) of terms and write
it t’. It is said to be linear if both and t’ are linear. Given a set E of equations,

Ethe one step E-equality is defined by: ---I,,l= with v D(t), cr E and r E
if[t/t=trl and t’=t[t.--trr] or t/t=crr and t’=t[v*--trl]. We write 1-- r
(resp. r-- 1) if we want to make precise the fact that the equation r is used from
left to right (resp. right to left).

The reflexive-transitive closure of --te, denoted ---e, or , is called E-equality or
the equational theory E.

Any of the E-subscripts may be omitted for the sake of simplicity without any
ambiguity, since different notations range over disjoint sets of characters. Note that
-t is actually the smallest relation on (,) which is symmetric, compatible, closed
under instantiation and contains all pairs (1, r) for every l= r E. As a consequence,

COMPLETION MODULO EQUATIONS 1165

is the smallest congruence relation on -(,) closed under instantiation and
containing all pairs (l, r).

All our definitions concerning matching extend straightforwardly to the case of
an equational theory . For instance, an E-match from to t’ is a substitution r such
that t’---o’(t). Note that the E-subsumption preorderings defined on (,) and E as
previously are not always well founded if E is not empty [21]. Their associated
equivalence is the composition of- with variable renaming. This will be used in 4.

Example. t’=e+(y+z) is an instance of t=x+x’ with the match
(x\e, x’\y+z). If E contains a commutativity axiom for +, then r’=(x\z+y, x’\e)
is an E-match from to t’. These two matches do not compare using _>sub. Now
r"= (x\y+ z, x’\e) is another E-match and o-’--- o-". Note that (cr) (cr’) (r")
{x,x’}.

Our next definitions handle the general case of a nonempty set E of equations
and are specialized for the standard empty case.

DHrawoq 10. An E-unifier (or simply unifier) o two terms and t’ is a
substitution cr such that or(t) cr(t’). If E is empty there exists a most general unifier,
called an mgu, for any pair of terms that has unifiers: all other unifiers of these two
terms are actually instances of the mgu. If E is not empty, a basis for generating the
set of unifiers by instantiation, whenever one exists, is called a complete set of unifiers.
A complete unification algorithm computes such a basis for any two given terms. The
algorithm is said to be finite if the basis is finite and minimal if any two unifiers in
the basis do not compare under the E-subsumption preordering.

Standard unification is known to be solvable in linear time [71], but nonlinear
algorithms are usually more etticient for many practical applications [7], [20].
Unification in equational theories is a much more difficult problem [51] and the
complexity is not precisely known for most of them. However, complete and finite
unification algorithms are known for many practical theories including commutativity
[76], associativity and commutativity [82], [64], [19], permutativity [39] and minus
theory [48]. Some of these are not minimal. However, given such a complete set of
unifiers that is finite, a minimal one with respect to the subsumption preordering can
always be computed by eliminating those that are instances of others. Minimal sets
are usually preferred for reasons of effaciency. Most of our results however carry over
to complete sets of unifiers that are infinite, except for decidability results. This enables
us to apply some of our results to the associative case, for which a complete but
nontinite algorithm is available [76].

Finally, remark that the E-subsumption ordering is well-founded for all theories
of practical interest that have a complete, finite unification algorithm. For the theory
given in [21], the E-subsumption preordering is not well-founded, but the unification
problem in this theory is nonfinite.

We write

SU t, t’), mgu (t, t’), SU t, t’, E), CSU (t, t’, E)

for (respectively) the set of unifiers of and t’, their most general unifier, the set of
E-unifiers of and t’ and a complete set of E-unifiers of and t’.

Example. Let t=(x+y)+z and t’=(e+x’). Then mgu(t,t’)=, but
CSU (t, t’, {x + y y + x}) {(x’\x + y, z\e)}.

3.3. Rewrite rules. Many theoretical problems arise in equational theories which
can be approached by the use of rewrite rules (i.e. directed equations) or more generally
by the use of mixed sets of rules R and equations E.

1166 J.-P. JOUANNAUD AND H. KIRCHNER

DEFINITION 11. A rewrite rule is a pair of terms, denoted 1--> r, such that (r)
is a subset of Y’(l). The rewriting relation __>R.E (or R,E) is defined as follows: __>R,E t’
iff there exist an occurrence v of (t), a rule l--> r of the set R of rewrite rules and
a substitution tr such that t v trl and t’= t[v ,- trr]. t v is called the redex. We write

R,Et-’>tv,,t--,rJ if we want to make precise the occurrence, the substitution and the rule
involved in the rewriting. Any of these subscripts may be omitted for simplicity. The
reflexive-transitive (resp. transitive) closure of --> R,e is denoted -R, (resp...Z>R,e and
is called the derivation relation.

Example. Let (e/x’)--> x’ be a rule and x/y=y+x be an equation. Then
R,Ex + (y + e) is in R-normal form, but x + (y + e) -->[2] x / y.

As a special case of R,E, the relation __>R (or R) is the smallest relation which is
compatible with the term structure, closed under instantiation and that contains all
pairs (l, r) for every 1--> r R...Z_>R and ->R are in addition transitive, and ._>R is also
reflexive. But they are generally not symmetric. In the following, we will be interested
in those that are well founded.

Note that R,E-reducibility is decidable whenever the matching problem is deci-
dable in the theory E. This is always the case if the theory E is empty. When the theory
E is not empty, we will either use the relation R or the relation R,E. We will speak
about rewritings for R and E-rewritings for R,E.

It must be und.erstood that the two relations _._>g,e and ..._>R are different: if
-->E t’ at occurrence v, the E-equality steps may apply in only at occurrences below

v. If -->R t’, then the E-equality steps may apply at any place in t. The two relations
are therefore the same only if R,E applies at the outermost occurrence.

Example. Let / be a binary infix operator with the following properties: associativ-
ity used as an equation: (x + y)+ z x + (y/ z), left-identity used as a rule: e/ x--> x.
Let us now consider the term (y / e) / z. By associativity, y / (e / z) and this
last term rewrites to y + z. However, is in normal form for R,E because its subterm
(y+ e) is obviously in normal form and the whole term itself cannot be matched
with the left member of the rule using associativity, since neither (y+e)/z nor
y / (e + z) are instances of e + x.

3.4. Critical pairs. Two reductions applied to a same term can sometimes overlap,
yielding critical pairs:

DEFINITION 12. A nonvariable term t’ and a term E-overlap at occurrence v in
(t) with a complete set 0 of E-overlappings iff 0 is a CSU (t/v, t’, E). The usual
overlapping associated with mgu (t/v, t’) is obtained for E empty. Given two rules
g --> d and --> r such that F(g) fq F(l) and and g E-overlap at occurrence v of
(g) with the complete set of E-overlappings O, then the set {((p, q))lp O(g[v -- r])
and q Od for any 0 in 19} is called a complete set of E-critical pairs of the rule r
on the rule g d at occurrence v (a trivial one if v e, =g and r d). The set of
E-critical pairs is simply a critical pair if E is empty. With each (E-)overlapping 0 is
associated the (E)-overlapped term Og which produces the (E-)critical pair ((p, q))=
((O(g[v r]), Od)) by rewriting with the rules r and g d.

Let us point out that a term may be considered as a variable overlapping of any variable x with no
occurrence in and itself at any occurrence re q3(t), r# e, with the mgu tr= (x\ t/r). Such overlappings
produce variable critical pairs of an equation g x on the rule r by overlapping the variable x and any
nonvariable stdct-subterm of I. These critical pairs are needed to handle linear rules together with equations
of the form g x. We want to point out that they allow a generalization of results in [32] and [40] to the
case where such equations are allowed. However, they will not be considered in this framework where the
main interest is in decidability results that do not hold if axioms like g x can be used as equations.

COMPLETION MODULO EQUATIONS 1167

Note that r and g d do not play symmetric roles in this definition. Let
CP (R, R), CP (E, R) and CP (R, E) be the sets of nontrivial critical pairs for, respec-
tively: all l r on g d belonging both to R, all l r and r for l= r in E on
allgd in R, all lrin R on allgd and dgforg=d in E. Note that top
critical pairs (i.e. critical pairs coming from an overlapping at the outermost occurrence
e) are not to be considered for CP(R, E) since they already belong to CP(E, R). Let
also ECP (R, R) and ECP (R, E) be the sets ofnontrivial E-critical pairs for respectively
alllrinRonallgdinR, andalll--->rinR on allgdanddgforg=d
in E. As previously, but for a slightly different reason that will become clear later, top
critical pairs are not to be considered for ECP (R, E). The notation CP (l ---> r, g d)
and ECP (l---> r, g d) will also be used to make the rules or equations precise.

Example. Let (x + y) + z x + (y + z) and (e + x’) x’ be rules and (y’ + e) y’
be an equation. Then"

1) ((p, q))=((y+z, e+(y+z))) is a critical pair of the second rule on the first at
occurrence 1, associated with the overlapped term (e+y)+ z. Note that q .__>Rp.

2) ((p, q))=((Z, e+(e+z))) is an E-critical pair of the second rule on the first at
occurrence e, associated with the E-overlapped term (e+e)+z e+z. Note that
q _R p.

3) ((p, q) ((x + y, x + (y + e)) is a critical pair of the equation on the first rule at
occurrence e, associated with the overlapped term (x +y)+ e. Note that q-p.

In the following, we use R-reductions as well as R,E-reductions or more generally
combinations of both of them. As a consequence, we will have critical pairs as well
as sets of E-critical pairs, according to the kind of reduction associated with each rule.
R-reductions yield critical pairs as indicated by the critical pairs lemma:

g t" -t t") andCRITICAL PAIRS LEMMA [32]. Assume "-’[e,r,g--d] (Or [e,r,g---d]
E--,, t’ (or t-qt,,/__, t’) with v in (g). Then there exists a critical pair ((p, q))

((0(g[v - r]), Od)) of the rule (or equation) -- r on the rule (or equation) g -- d at
occurrence v and a substitution " such that 0 mgu (g/v, l) and tr z0 (g) LI (/)];
therefore t’=p and t"= ’q.

Note that we use the same substitution tr for both redexes and t/v. This is legal,
since we can always assume that (l) fq o//.(g) without lost of generality: just rename
the variables when needed.2

R,E-reductions yield sets of E-critical pairs"
t" (or l-- t") andE-CRITICAL PAIRS LEMMA [40]. Assume t--->[e,cr,g--d] [e,tr,g---d]

E t’t-->, with v in q2(g) and v if g-->d belongs to E. Then there exist a critical
pair p, q))=O(g[v -- r]), Od> in a set of E-critical pairs of the rule 1--> r on the rule
(or equation) g --> d at occurrence v and a substitution - such that 0 CSU (g/ v, 1, E) and
cr- 0[(g) LI (I)]; therefore ’- ep and t"--. ’q.

Note that we overlap R,E-reductions with R-reductions or with a one step
E-equality. No other case has to be considered, as shown by a careful examination of
our two local definitions of coherence and confluence given in 2. In addition, we do
not consider the case where R applies at an occurrence v and R, E at the outermost
occurrence " the E-critical pairs lemma would be false for such cases! We will see
in our main theorem how to handle this case without using the lemma.

The E-critical pairs lemma is proved in a way similar to Huet’s [32], but we need
to make precise where E-equality steps can take place from t" to eq" since t"= crd,
zp zOd and cr 0, they actually take place in the substitution part of t" and not in

Although it was originally stated for standard critical pairs, the lemma remains true for the case of
variable ones with the same proof. The verification is left to the reader.

1168 J.-P. JOUANNAUD AND H. KIRCHNER

(d). This remark is essential for carrying out the proofs in [73] and [40]. Here we
will only need to assume that it does not take place at the outermost occurrence of t",
thanks to multiset induction.

3.5. Decidability of the Church-Rosser property for ETRS. Our next goal is to
introduce a more general reduction relation Re and to restrict local confluence modulo
E of Re with R and local coherence modulo E of Re to a convergence check on a
finite number of critical pairs or E-critical pairs. For this purpose, the relation R/E
is not convenient, because there is no notion of critical pairs which corresponds to an
overlapping between R and R/E-reductions. We therefore implicitly assume in what
follows that Re is not R/E. The two cases where Re R and Re R,E have already
been studied in [40]. The first one requires R to be left-linear and yields Huet’s results
on confluence modulo, while the second requires the computation of E-critical pairs
using a complete E-unification algorithm and yields a generalized version of Peterson
and Stickel’s results.

A first subgoal is to generalize both these cases by splitting the set R of rules into
disjoint sets L and N with only left-linear rules in L and use for Re the relation
L t_J N,E defined to be---L t.J __.e. The relation L N,E was first introduced and
studied in [40], but with a less powerful proof technique, yielding more restrictive
results. Note that left-linear rules may be in N, which allows us to consider R and
R,E as two particular cases of L k3 N,E. Thus letting L= yields Peterson’s and
Stickel’s relation R,E and letting N , provided all rules are left-linear, yields the
standard rewriting relation R.

In the following, Re is used instead of the full notation L k3 N,E for simplicity.
A second subgoal is to prove the decidability of the Re-Church-Rosser property

modulo E, provided R is E-terminating. This is done by proving that the Re-Church
Rosser modulo E property is equivalent to checking that the normal forms of finitely
many critical pairs are E-equal. Such a result was already known for the case where
N is empty and rules in R are all left-linear. We will prove it for R e, provided the
theory E has a complete and finite unification algorithm, and only finite congruence
classes if N is not empty.

Since Re is included in R,E, the R-Church-Rosser modulo E property implies
the R,E-Church-Rosser modulo E property. As already noted before, we must be
aware of the fact that R can be R,E-Church-Rosser modulo E and not Re-Church
Rosser modulo E for a nonempty set L of left-linear rules. Examples will be given at
the end of the section.

The basic tool of the proof is multiset induction on the reduction relation
R/E U > sst/e, denoted - in the following. The termination of is simply based first
on the fact that R/E and >sst are each noetherian and second on the following
commutation lemmas, whose use permits one to transform a --derivation into a
R/E-derivation followed by several steps oftaking subterms. The two following lemmas
are based on the fact that the relation > st commutes with any relation compatible
with the term structure, for instance R and -.

LEMMA 13. > st/e t’::lt" such that t--, t" >t t’.
Proof. Straightforward induction on the number of steps of E-equality following

the strict-subterm step in > t/e. [

LEMMA 14. S 5, st/e -R/ U implies that there is a term t’ such that s -R/ t’ "t U.

Proof. By induction on the number n of >St-steps. The basic n =0 case is
straightforward with t’= u. Otherwise, let s st/e s > t/e _R/e U. By Lemma 13,
there exists s" sst +. R/e-(,) such that s -s > t--- u. Since a >st step can be

COMr’LETION MODULO EQUATIONS 1169

_L>R/E t’ sstperformed after the reductions instead of before, we get S S > u for some
t’, therefore Sl _n/e t’>st u. The result is then achieved by applying the induction
hypothesis to s . t/E

sl -’R/e t’. [q

AS a consequence of these lemmas, we get the following termination result:
PROPOSITION 15. Assume R is E terminating and E-congruence classes are finite.

Then -> is well founded.
Proof Assume given an infinite chain of ->. Either it contains no step of R/E-

reduction and >st/E would not be well founded, or Lemma 14 applies to the first
consecutive steps of R/E. If the infinite chain contains an infinite number of R/E
steps, RE could not be noetherian. Thus we get that actually the chain can be written
as the composition ->R/e > Sto , t/e. Infinite chains can thus occur iff > t/E is not
well founded. From Lemma 13, this is not the case if E-congruence classes are finite,
since the size of the terms in a given congruence class becomes bounded.

Note that the problem of deciding whether a set of equations generates finite
congruence classes only is undecidable in general [77]. Many theories of interest have
this property. Some interesting ones do not, however, like equipotency --x--x or
even identity. These kind of axioms do not fall within the scope of our decidability
results.

Let us now make some comments about the termination of R/E" assume that E
contains an equation g- d which is erasing, i.e. there exists a variable x of V(g) that
is not in V’(d). Let --> r be a rule of R, r and (r’ substitutions such that r(x) and

R
0
Jcr’(x) r. Then d crd crg cr’g d d and the E-termination property is not

satisfied. Therefore we will assume in the following that equations in E are nonerasing,
i.e. F(g)= F(d) for any equation g d in E.

Suppose now that E contains an equation x where x has at least two occurrences
in t. The relation RE is not well-founded" let l-- r be any rule. Then is E-equal
to a term with several occurrences of/. One of them can be rewritten and the process
started again with another occurrence of/. For instance, in the case of the idempotency
equation x x + x, for any rule r: + --n r + r + (l + l) --n r + (r + l) .
The same problem actually arises with any such axiom where x is replaced by any
term with variables. As a consequence, the only allowable axioms of the form g x,
with respect to E-termination of R, have exactly one occurrence of x in g. Notice
however that even such axioms are forbidden if > s,/e has to be well founded (at least
if g is not x itself).

Let us now give our main result:
THEOREM 16. Assume E to be a set of equations such that a complete and finite

unification algorithm exists and E-congruence classes are finite. Let R L t.J N be an
E-terminating set of rules such that all rules in L are left-linear Let R e be defined as
L [.J N,E. Then R is RE-Church-Rosser modulo E iff:

1) all confluencepairs ((p, q)) in CP(L, L)U CP(L, N) ECP(N, N)U ECP(N, L)
are R/ E-confluent modulo E,

R2) forany coherencepair((p, q)) in CP(L,E)UECP(N,E),=lq such thatq-- q
and the pair (p, q’) is RE-confluent modulo E,

3) for any coherence pair ((p, q)) in CP(E, L), =:lp’ such that p --p’ and the pair
p’, q) is R/ E-confluent modulo E.

Proof. For the only if part, we use Theorem 5 to show that the local properties
are satisfied, in particular for critical pairs. Since these pairs are Re-confluent modulo
E, they are R/E-confluent modulo E by inclusion of Re into R/E. The if part starts
the same as the proof of Theorem 5 (part (3)=(4)) and we assume it. (Notice that it
requires the use of Theorem 5 because we prove statement (4) instead of statement

1170 J.-P. JOUANNAUD AND H. KIRCHNER

(1) of this theorem.) The difference is that we have to prove the two properties of local
coherence and local confluence using the sets of critical pairs. This is done by multiset
induction on --. Notation are the same as in Theorem 5. In particular, tn is the one
introduced in its proof, t$ is a R-normal form of and pSq itt (p, q) is R-confluent
modulo E.

Let us first prove local coherence, specifically;
R t’’t" and ::1 such that/t, t, t" such that tn--- t, -I[v,,r,gd] r] t, t

and t’$ t’. As in the critical pairs lemmas, we use the same substitution for both redexes.
Note also that we prove a slightly more general local coherence property than the one
needed in the proof of Theorem 5, because it will be needed in the rest of the proof.

Let us now discuss different cases according to the respective positions of v
and ,:

Case 1. v and , are disjoint occurrences. Then theR and -t steps commute.
Case 2. For the remaining cases, one occurrence is above another. The result
is now straightforward if this occurrence (assume it is v) is not the empty
occurrence e, since we can apply multiset induction to the multiset
{ t’/ v, t v, t"/ v}, yielding t’/ v$ t"/ v,, with t"/ v t"/ v$, since R is E-
terminating. By the way, this is exactly the coherence property and it can be
lifted to (t’, t, t") by adding the missing context. We therefore assume in the
following that the prefix occurrence is the outermost occurrence e.

Case 3. is a prefix of v (so assume , e) with l-- r in N. It is given that
N,E t’.t"- t, thus (by the definition of N,E) t"--[e,l--r] This is the reason why

critical pairs of equations on rules of N need not be considered.
Case 4. v is a prefix of v (so assume v e) with -- r in L, and v (1). Then
the result follows in the same way as in case 6 below.
Case 5. v is a prefix of (so assume v e) with -- r in L, and v d(l). Then
the result follows classically from the Critical Pairs Lemma, using a critical pair
of CP (E, L). Note that g- d can be the reflexivity axiom and that no critical
pair is needed for this particular case.
Case 6. v is a prefix of v (so assume v= e) and v (g), thus v e. Because
no overlapping occurs in this case, there exists an occurrence to which is a
prefix of u=to,’ and such that g(to) is a variable x. Let us now define a
substitution 0 such that O(y)=tr(y) for any y distinct from x and 0(x)=
tr(x)[v’ --trr]. As equations are nonerasing, x occurs at least once in d. It is
then easy to check that t"-R Od and t’-R Og which ends this case, since
g d E. Note that our definition for coherence allows rewriting from t’, which
was not allowed by Peterson and Stickel (this is why equations were required
to be linear in their work).
Case 7. v is a strict prefix of v (so assume v e), v e, and v (g) with 1-- r
in L. Then, the result follows classically from the Critical Pairs Lemma, using
a critical pair of CP (L, E). Top critical pairs are useless here since v e.

Case 8. v is a strict prefix of v (so assume v e), v e and v (g) with -* r
in N. As a consequence, d(g) .
Once more, there will be no need of top critical pairs since v e. By the
E-Critical Pairs Lemma, there is a pair ((p,q))=((O(g[v--r]),O(d))) in
ECP (N, E) and a substitution r such that or--- tO[V(g) U V(/)], therefore t"--- -q
with E-equality steps taking place out of d(d) and t’.--zp. By assumption,

R qV Rq --o, and the pair (p, q’) is R/E-confluent modulo E, therefore ’q
and the pair (’p, -q’) is R/E-confluent modulo E, which implies -p ’q’ with
a proof containing terms that are all smaller than zq’ or ’p for . This is step

COMPLETION MODULO EQUATIONS 1171

1 on Fig. 3.1. Since the multiset {t’, , rp,..., rq’, rq,..., t"} contains terms
like rq and t" which are not smaller than for , the induction hypothesis
cannot be applied to this multiset. To overcome this difficulty, we now show
that t" is Re-reducible to some t’ related to rq’ by a multiset of R U E-equal
terms all smaller than t. As already noted, we know from the E-Critical Pairs
Lemma that the equality steps between ’q and t" take place out of (d), thus
at some nonoutermost occurrences o...o, all different from e. As a con-
sequence, we may apply the (already proved) local coherence property (cases
1 to 6) for the first step of E-equality (on the three terms rq’, rq, t) to get a
term t such that t--REt’$rq’. This is step 2 on Fig. 3.1. The same process
applies until we reach t" and get a term t’ such that t"--> t"l. This is step 3
on Fig. 3.1. The conclusion then follows by applying the induction hypothesis
to the multiset { t’,. ., rp,. ., rq’,. t,. t’}.

Let us now prove local confluence, specifically:
RE t’ R t".For any t’ and t" such that t. "-->t..-r] and tn-->[v,r,g_.>d] t, t’$ As before, the

proof is by cases according to the respective positions of v and v.

FIG. 3.1. Local coherence proof Case 8.

Case 1. v and u are disjoint. Then the diagram commutes and we are done.
Case 2. Neither v nor u is the outermost occurrence e. This case works as case
2 in the proof of local coherence.
Case 3. v e. The subcase where there is no overlapping works as usual. The
other subcase is proved by the Critical Pairs Lemma if Re is L, and by the
E-Critical Pairs Lemma if Re is N,E, followed (in both cases) by multiset
induction. This will use, in the first case a critical pair in CP (L, L) or CP (L, N),
and in the second case an E-critical pair in ECP (N, N) or ECP (N, L). Note
that top critical pairs are needed here.
Case 4. u e and v e. The subcase without overlapping works as usual. The
other subcase is proved using the Critical Pairs Lemma if R e is L. If Re is
N,E, the E-Critical Pairs Lemma does not apply and we need the use of the

Ralready proved local coherence property. Since t, t, there exists such
R t" Rthat t. -->t.] On the other hand, t. -->[v.g-->d] We therefore can apply

local coherence n times starting from t., getting terms t"., t"l, until we reach
with the following situation:

R Rt"$ t" ",ITS, --> t" and

These are steps 1 and 2 on Fig. 3.2. Since the R-reduction applies now at the
outermost occurrence of t, we can apply the already proved case 3 to close

1172 J.-P. JOUANNAUD AND H. KIRCHNER

the diagram, thus t’$t’. This is step 3 on Fig. 3.2. The proof is then completed
by using the Church-Rosser property applied to the multiset {t", , t’,’, ,
t’,..., t’}. This is step 4 on Fig. 3.2.

The reader is encouraged to check that the critical pairs used all along the proof
are exactly those defined previously.

t,, H t’n

coh. R
R ,]

t" $ t

R *

H H

local R e
coherence confl.

t;’ t’

(R)
Ind. /

FIG. 3.2. Local confluence proof, Case 4.

The proof makes clear why left-linear rules are easier to handle: what happens
at a variable place in an instance of rule happens once, which makes the coherence
diagrams commute by simple rewriting. This is not the case for nonleft-linear rules: if
an equality is applied at a variable place, the first rewriting needed in the coherence
property must incorporate the same equality at the other variable places (of the same
variable of course), since an equality step is not allowed here.

This Church-Rosser result has been generalized to more complex combinations
of rewriting relations in [52]. A weaker result was given in [40], where it was shown
that the Re-Church-Rosser property was true under the.., stronger assumption that
coherence pairs ((p, q)) of rules in N on equations have the property that q is always
reducible to q’ at an occurrence in (d). As a matter of fact, this result does not
require the equational theory E to have finite congruence classes. The reason is that
we do not need any induction with > ss,/e in this case, since Case 8 in the proof of
local coherence becomes vacuous and cases 2 in both local proofs are used only for
convenience. On the other hand, the added requirement on these critical pairs precluded
proving necessity, since this strong assumption on the way the coherence pairs become
convergent cannot be a consequence of the Re-Church-Rosser property. The question
arises now whether our equivalence result is true for those theories that have infinite
congruence classes. We conjecture it is. A way to prove it would be to show that we
do not need the full power of the relation in the proof, i.e. the infinite > sst/e_chains
cannot occur. For doing that, a useful assumption could be that the critical pairs are
of minimal size, which can be achieved by choosing an adequate E-unification
algorithm. Note that such an algorithm can always be obtained from a standard
complete one by checking each unifier for minimality with respect to its size.

As a corollary ofthe previous result we can decide the Re-Church-Rosser property
of a set R of rules modulo a set E of equations by checking for E-equality the
R"-normal forms of the pairs (p, q) or (p’, q) or (p, q’) of the previous theorem, for
any reduction relation R" ranging between Re and R/E.

THEOREM 17. Let R L U Nbe an E-terminating set ofrules such that L is left-linear,
a complete andfinite unification algorithm existsfor the theory E and E-congruence classes
are finite. Then the Re-Church-Rosser property is decidable.

COMPLETION MODULO EQUATIONS 1173

Proof. As a matter of fact, the E-equality ofthe previous confluence and coherence
pairs implies the RE-Church-Rosser property. Conversely, the RE-Church-Rosser
property implies the desired property with RE-normal forms instead of R"-normal
forms. But we know from Theorem 4 that R/E-normal forms and RE-normal forms
are the same, thus R"-normal forms too, since R" is included in R/E and contains
Re

We want to emphasize that we allow normal forms of critical pairs to be computed
with any reduction relation R" ranging between RE and R/E instead of RE. This is
very important in practice, because it allows E-equality steps to be performed during
the reduction process by RE. This arises in a natural way in many practical cases: for
computing associative-commutative (AC) critical pairs, for instance, flattened terms

can be used to make the unification process easier. Flattening results in applying the
rule f(x,f(y), z)--f(x, y, z), where x, y and z stand for (maybe empty) vectors of
variables, for any AC-symbol f, whose arity is now variable. This can result in
modifications of the starting terms in a same AC-equivalence class. Our result proves
that it does not alter the soundness ofthe whole process. Of course this is not completely
true for coherence pairs, since a first RE step is needed here: only then can terms be
flattened!

Let us now come back to a main practical problem" which relation RE is the best
one for efficiency of computations? Clearly, the more rules there are in N, the more
often the E-matching is used, so the more inefficient the rewritings are, whereas the
more powerful is the rewriting relation. We therefore want to find the most efficient
rewriting relation RE that provides a RE-Church-Rosser ETRS.

The previous proof makes clear that the relation RE is linked to the rules that
are used to reduce p to p’ or q to q’ for the coherence pairs ((p, q). As a consequence,
if a left-linear rule of N is never used with the full power of the relation N,E (recall
that ___v c _..v,E) to reduce such a p or a q, it could perhaps be dropped to L. But
this is only a hint: new critical pairs of the equations on this rule have to be computed
now and they must be confluent modulo E. This discussion suggests that all rules
should be first in N, trying then to construct an L as indicated. Clearly, some work
will be needed to find good strategies for that. Let us now consider an example.

Example3. Let 0, 1, -1 be constants and + a binary infix operator. Let

be the rules of R and

0 + X’ X’,

(x’+ 1)+-1 -- x’

(x+y)+z=x+(y+z), x+y=y+x

the equations of E.
It can be verified (using a Knuth-Bendix implementation, for example the FOR-

MEL system [38] or the REVE system [61], [53]) that this set of rules is R,E-Church-
Rosser. As these rules are all left-linear, they can all be dropped to L. In that case,
the set of rules is not Church-Rosser anymore. Moreover, its completion generates an
infinite set of rules, as we will see in the next section. Which rules do we really need
to have in N? First of all, we need the first rule in N to make the following coherence
E-critical pair convergent: ((p, q)) ((x + z, (x +0)+ z)) obtained from the superposition

This example is due to Etienne Paul who pointed out the previous problem.

1174 J.-P. JOUANNAUD AND H. KIRCHNER

of 0/x’ on x/(y+z) at occurrence 1 with the unifier (y\O,x’\z). Then q reduces to
p using the rule 0/ x’- x’ modulo commutativity. Checking the other rules is left to
the reader or any Knuth-Bendix implementation.

Note that only commutativity was used in this example: the question arises whether
our results can be extended to the case where each rule -- r has an associated subset
E’ of E that can be used for E’-rewriting. Clearly, the framework used here is powerful
enough to solve this problem and see what are exactly the critical pairs to be computed
for such a rewrite relation. In that case, a left-linear rule can be considered to have
both nonlinear and linear status according to the respective sets E’ and E-E’. Nonlinear
status will require the computation of sets of E-critical pairs whereas linear status will
require the computation of usual critical pairs. In this case, we need complete sets of
unifiers for a subtheory E’ of the whole theory E. For the last example, the subtheory
is the commutative one. However a theory can have a complete and finite unification
algorithm whereas, at the same time, one of its subtheories does not have one. For
instance, the AC-theory has one although the associative one does not have a finite
one. This remark limits the practical interest of such a method. It can, however, be
interesting for speeding up reductions in some cases.

Example. Let us consider an interesting algebraic theory having constants, a unary
prefix operator and a binary infix operator / with the following properties:

-(x+y)=-y+-x,

-x+(x+y)=y,

(y+x)+-x=y.

These axioms can be used as rules. Applying then the standard Knuth-Bendix comple-
tion procedure results in divergence for any possible orientation of the generated rules.
However, the infinite set of rules can be described with a finite set of recta-rules [44],
[49]. As an alternative, we can try to use as equations those rules causing divergence.
Let us assume that the two first axioms are used as equations and the two others as
rules. The equational theory associated with the first two axioms has a finite and
complete unification algorithm [48]. Checking the set of rules shows that it has the
R,E-Church-Rosser property [49]. This is a good example of an ETRS that does not
fall within the scope of our decidability results since the congruence class of x is
infinite, whereas it can be worked out using the results of [40], where sufficient
conditions are given for testing the Church-Rosser property.

Before ending this section, let us point out that little is known about E-termination.
A theoretical study of the problem may be found in [42] and some effective, yet
complex, methods in [14] and [74]. On the other hand, some progress has also been
made recently for checking the Church-Rosser property using a weaker termination
property than E-termination, namely the termination of the reduction relation. Two
different approaches can be used; one is reported in [70] and [43], the other in [42].
The properties used in place of coherence in these works are much stronger and involve
many restrictions in practice. The second approach, however, is well suited to some
equational theories like the associative-commutative one.

4. The E-completion procedure. Given a set of axioms R U E defining a congruence:, the E-completion procedure attempts to obtain a confluent and coherent set of
rules that are as inter-reduced as possible and generate the same congruence. The
E-completion procedure can be used for testing for the Church-Rosser property of a
given set of rules, or as a semi-decision procedure for R U E-equality as in [32].

COMPLETION MODULO EQUATIONS 1175

Completely inter-reduced sets of rules (such that left- and right-hand sides of all rules
are irreducible) can be expected to have a uniqueness property, i.e. they depend upon
the equational theory R U E rather than upon a particular presentation of it. Although
this goal is easily achieved for the standard completion algorithm [65], it turns out to
be one of the main difficulties in the design of the general E-completion procedure.
As a consequence, we will discuss several variants of our algorithm, and show that
only one of them guarantees an inter-reduced result. On the other hand, we will see
how to get a completely inter-reduced set of rules from a given Church-Rosser set of
rules that does not have the property.

4.1. A general completion procedure for ETRS. As a main feature of our algorithm,
coherence is dynamically ensured, unlike in Peterson and Stickel’s AC-completion
algorithm, where coherence is ensured by systematically adding the so-called AC-
extended rules f(f(x,/2), 12) -- f(x, r) with x T’(ll) (12), to those rules f(ll, l) -- r
having an AC-function symbolf at the outermost occurrence oftheir left-hand side [73].

The E-completion procedure works on a set P of pairs, a set R of rewrite rules,
a constant set E of equations and a well founded E-reduction ordering, i.e. a compatible
quasi-ordering such that its associated equivalence contains and its associated
strict order > is well-founded. See [10] or [15] for an introduction to termination
proof methods and [42] for an introduction to E-termination proof methods.

There are two ways of using the E-completion procedure, that differ in their
initialization step"

To build an RE-Church-Rosser set of rules from a given set of axioms. In that
case, it starts with an empty set R of rules and a set P of pairs initialized with those
axioms that are not in E.

To check the RE-Church-Rosser property of an ETRS made up from a set E
of equations and an E-terminating set R of rules. In that case, it starts with an empty
set P of pairs and the set R itself, whose rules must be protected, otherwise some of
them could be removed if they are reducible by some other rules as explained next.
If the Church-Rosser property is not satisfied, the set of rules may then be completed
as before.

During the completion process, P is updated by picking one pair at a time in
order to make a new rule and by dropping in those rules whose left-hand side becomes
reducible by a newly introduced rule, together with the newly computed critical pairs.
Pairs in P are further compared using the E-reduction ordering >, producing rules
for R. The rewriting system R is divided into a set L of left-linear rules and a set N
of nonleft-linear rules. Each rule l-- r is:

Labelled by an integer n and denoted n: -- r, In -- rn, or simply n. The label
tells us when the rule was created.

Marked as soon as all its critical pairs with the axioms of E and with the
previously created rules have been computed.
In addition, two particular features are added in order to ensure the coherence property:
protected rule and extensions. Let S-{((p, q)-((O(g[v -- r]), Od) 0 CSU (g/v, l, E)
be the set of E-critical pairs of a left-linear or nonleft-linear rule n -- r on an equation
g -- d of E at occurrence v. Remember that the left member q of any of these E-critical
pairs in S has to be RE-reducible to ensure coherence.

Assume first that q is RE-reducible, but only at the outermost occurrence, by
a nonleft-linear rule k:lk-- rk such that q is an E-instance of lk and not simply an
instance. In that case, q is said to be top-reducible by the nonleft-linear rule k and k
protected for coherence of n. Without protection, such a coherence critical pair ((p, q))

1176 J.-P. JOUANNAUD AND H. KIRCHNER

could satisfy the required property at some step of the completion and not at a later
step if the left-hand side of the previous nonleft-linear rule k has become reducible
and if the rule has been dropped into P. As long as a rule is protected, its left-hand
side is not checked for reduction and the rule cannot be removed from the current
rewriting system. Note that a rule can be protected for coherence of several rules.

Assume now that the rule n is not in L and there exists in $ an E-critical pair
((p, q)) whose right member q is R-irreducible. Then an extended rule for n is added
to N, obtained from the extended pair ((g[v --l], g[v --r])) which must be directed
from left to right, since > r and > is compatible with the term structure. As Peterson
and Stickel’s associative-commutative ones, extended rules reduce at the outermost
occurrence all right members of E-critical pairs in S, since q is an instance of g[v l]
modulo ---:

q Od- Og O(g[v gv])= Og[v O(g/v)]--- Og[v 01] O(g[v 1]),

using the homomorphic properties of substitutions.
As a consequence, no protection is needed for the other coherence pairs of l-- r

on g d at occurrence v. Note in addition that an extended rule is a particular case
of a rule in N reducing q at the outermost occurrence. They are therefore implicitly
protected.

A similar problem arises with coherence pairs coming from the superposition of
a rule in L with an equation. Under the same circumstances as above, nonleft-linear
rules will be protected or extensions added. However, the extensions are much simpler
here: it is the rule p-- q or q p, according to which set, CP (E, L) or CP (L, E),
the coherence pair ((p, q)) belongs to (the right-hand side of the coherence pair must
be reducible). These extensions may belong to L and/or to N but do not need any
protection, since they reduce p (or q) without using any E-equality steps as before.

Let Ext (n) be the set of those rules added by the procedure for coherence of n
or of a rule in Ext (n). When the left-hand side of rule n becomes reducible, rule n
and all the nonprotected rules in Ext (n) are removed from the current rewriting system,
which may require a complex data structure. More generally, when a new rule r
is introduced by the process, the other rules are checked for simplification. A rule
l’--> r’ is called simplifiable by l--> r iff:

1’ is a true instance of (and not an E-instance) or a strict subterm of l’ is an
instance of (or an E-instance if l--> r N). In other words, l’ is reducible at the
outermost occurrence or one of its strict subterms is E-reducible.

It can be protected (an extended rule is a particular case of a protected rule),
but only for coherence of rules simplifiable by l--> r.

Note the links between the definition of simplifiability of a rule and of top-
reducibility of a coherence pair. Actually, the problem is the same: we want some
reducibility property to remain after some rules have been deleted.

The procedure E-COMPLETION is given in Fig. 4.1 in a tail recursive form that
makes it easy to understand, to prove and to transform into an efficient iterative
procedure.

To be sure that a rule cannot be ignored indefinitely in the selection process of
the ELSE branch of the procedure E-COMPLETION, a fairness selection hypothesis
is required for the choice of an unmarked rule in R: for any rule labelled k, there
exists a recursive call such that:

Either rule k is reduced by the newly introduced rule and removed from the
current set of rules,

or rule k is selected and CRITICAL-PAIRS (k, R, E, n) is computed.

COMPLETION MODULO EQUATIONS 1177

PROCEDURE E-COMPLETION (P, R, E, >, n)
IF P is not empty
THEN choose a pair (p, q) in P; p’:=p$; q’:= q$;

CASE p’--- q’ THEN R := E-COMPLETION (P-{(p, q)}, R, E, >, n) 111

p’> q’ THEN/:=p’; r:= q’; (P, R) := SIMPLIFICATION (P-{(p, q)}, R, l---> r);
R := E-COMPLETION (P, R [.J {n: r}, E, >, n + 1) 112

q’>p’ THEN/:= q’; r:=p’; (P, R) := SIMPLIFICATION (P-{(p, q)}, R, l---> r);
R := E-COMPLETION (P, R LI {n: r}, E, >, n+ 1) 112’

ELSE STOP with FAILURE
END CASE;

ELSE IF all rules in R are marked
THEN RETURN R; STOP with SUCCESS
ELSE Choose an unmarked rule m:l--> fairly;

(n, P, R):= CRITICAL-PAIRS (m: r, R, E, n); Mark the rule m in R;
R := E-COMPLETION (P, R, E, >, n) 113

END IF
END IF
END E-COMPLETION

FIG. 4.1. The E-completionprocedure.

PROCEDURE SIMPLIFICATION (P, R, 1--> r)
:= {k in R lk is simplifiable by r};

’:= {k in YOlk is not an extension rule};
P:= PU {(l, r)l k e Yg l
R := Ik r’k lk rk e R, k C: Y, rk
RETURN (P, R)
END SIMPLIFICATION

FIG. 4.2. The simplification procedure.

PROCEDURE CRITICAL-PAIRS (m: I-- r, R, E, n)
IF m:l-- rL
THEN P :’- (.J k<__m, keR CP m, k) tJ t-J k<_m,kL CP(k, m) U (.J k<__m,keS ECP (k, m);

FOR any ((p, q))CP(l-- r, E) (resp. CP(E, l- r))
DO IF q (resp. p) is irreducible THEN l’ := q; r’ := p; (resp. 1’ := p; r’ := q;)

(P, R) := SIMPLIFICATION (P, R, l’--- r’);
R:= RU{n:I’- r’}; n: n+

R R q)};)ELSE q --[j] q, P:= PU {(p, q’)}; (resp. p -’[n P, P:= PLI {(p’,
IF q (resp. p) is top-reducible by j THEN Protect j for coherence of m END IF

END IF
END DO

ELSE P:= (_J k<_m,keR ECP (m, k) (3 t.J k_m,keL CP (k, m) (.J (.J km,keN ECP (k, m);
FOR any g--dE, v (g), ve such that ll=CSU(l,g/v,E)=O
DO IF :itr q/ such that trd is irreducible

THEN /’:= g[v --/]; r’:= g[v r]; (P, R):= SIMPLICATION (P, R, l’- r’);
R:=RU{n:I’-- r’}; n:=n+l

ELSE FOR every tr in
DO q:=o’d--a’[.i]q P:= P[.J{tr(g[v--r]),q’};

IF q is top-reducible by j THEN Protect j for coherence of m END IF
END DO

END IF
END DO

END IF;
RETURN (n, P, R)
END CRITICAL-PAIRS

FG. 4.3. The critical-pairs procedure.

1178 J.-P. JOUANNAUD AND H. KIRCHNER

The SIMPLIFICATION procedure given in Fig. 4.2 transforms a set of rules into
a quasi-inter-reduced one. Rules where the left-hand side is simplifiable must become
new pairs, since their orientation may change. On the other hand, rules whose right-hand
side only is reducible remain as rules, since their orientation does not change4. Note
that simplifiability is a particular case of Re-reducibility, but that some R-reducible
rules are not simplifiable" the reason is that some R-reducible rules cannot be removed
without losing the coherence property. This will be clear from the proof. As a con-
sequence, the resulting set of rules will not be fully inter-reduced.

An efficient implementation of this procedure is not straightforward: it requires
a careful computation of both sets 3’" and 7{’. Note that extended rules disappear when
they become simplifiable.

The procedure CRITICAL-PAIRS described in Fig. 4.3 computes critical pairs,
sets protections or adds extension rules if necessary and returns a new set P of pairs
of terms.

The E-COMPLETION procedure can stop with failure6, stop with success or loop
forever. In the first case, all that may be said is that every pair or rewrite rule generated
so far is an equational consequence of the axioms. It is possible that trying again with
another ordering would bring success. We are interested in the two remaining cases,
when all pairs considered in P at every recursive call can be compared by >, no matter
whether the algorithm stops or loops forever, yielding then a semi-decision procedure
for R (_J E-equality. These two cases are considered in the forthcoming subsection in
a way similar to [33].

4.2. A complete proof of correctness. Let us introduce the following notations,
consistent with those of [33]"

P and R denote the values of arguments P and R at the ith recursive call.
Since the recursive calls of the completion procedure are tail recursive, proving
properties of the procedure will be easy by induction: assuming a property is true at
the ith recursive call, we will prove it for the next recursive call by checking what
happens along each path from the beginning to a tail recursive call. We will use the
notation case n to indicate that we are interested in the path to the tail recursive call
n. Since the two recursive calls 2 and 2’ are symmetrical, we will always show the case
2 only.

" --I,.JiR is the set of all rules generated during the process. is split into
left-linear rules and nonleft-linear ones

R {1 r in t]:l i/j > i, r is in R}. In other words, R is the set of those
rules which are never reduced, neither on their left-hand side nor on their right-hand
side by other rules. If the completion procedure stops, R is its result and is finite. If
it does not stop, R is infinite and is the limit of R. R is also split into a set of
left-linear rules and a set of nonleft-linear ones. Since these subsets are the limits of
L and N, they are respectively denoted by L and N.

According to these different sets, we consider two reduction relations" is
(_J V,E and R is Lo (_J N,E. Note that R is included into , R/E is included
into t/E, R is included into . Since t is E-terminating, so is R.

As in [33], the first part of the proof consists in stating that and E generate
the original equational theory

Marked and/or protected rules remain marked and/or protected after reduction.
An extension rule l’--- r’ of a rule l-- must be unmarked and added to L or N, according to its

left-linearity. It must be protected only when the rule belongs to N.
As indicated in [54], some cases can be solved by adding new function symbols, or by choosing

another pair as in [23].

COMPLETION MODULO EQUATIONS 1179

LEMMA 18. Vi_->0, (a) ""R’+’C__ ’PiUR’UE and (b) "’Pi*’___. ’’’P/URiUE.
Proof. By case analysis, according to the possible tail recursive calls in E-

COMPLETION.
Case 1. Pi+l Pi-{(P, q)} and Ri+l Ri and both (a) and (b) are obvious, since
normalization is a particular case of equational deduction.
Case 2 and 2’. (Pi+l, R,+I) SIMPLIFICATION (Pi-{(P, q)}, R, --> r). There-
fore, P+I P-{(p, q)} U {(/, rk)lkin fit"} and Ri+l={lk --> r’klk}U{l-- r}. If

gi+l t’, then P. UR.UE t; since "-’PURUE’ r and lk "RiU{l-->r}UE r’k and thus
lk ’’PiURiUE l"k. If "-P’+’ t’, then "PuRuE t’, since ltk ’RU{I--r} rk and thus
l, P, UR,UX rk"
Case 3. (Pi+l, R+I) =CRITICAL-PAIRS (m, Ri, Era). Then -..P,+,c ...P/UR, UE

since critical pairs are computed with respect to rules of equational deduction.
As new rules in Ri/ are extended pairs that are also computed with respect to
rules of equational deduction, ’Ri+l PiURiUE. [’]

COROLLARY. ,.,.,UE .
Proof. Easy consequence of Lemma 18.
Note that the converse requires a precise proof, since some rules may have been

deleted during the completion process.
The next two lemmas are an important part of the proof. They assert that the

/E-confluence modulo E of any pair put in P is ensured.
LEMMA 19. Vi_-->0, V((p, q)) Pi, ((p, q)) will be selected at some recursive callj> i.

Proof. This is equivalent to proving that there exists k > such that Pk is empty.
To each recursive call i, let us associate the multiset of terms denoted {P,, Ri} built
from the left- and right-hand sides of all pairs of terms in P and R. The number of
axioms in P and rules in Ri are denoted by IPi] and]RI respectively. Let us now
consider the following ordering on these multisets: {Pi, R} >> {P, Rj} iff

a) IP, + IR, > IP + IRI, or else
b) IP, / IR, -IP / Ig l and IP, IP l, or else
c) IP, / Ig, -IP + IRI and IPl IP l and {Pi, g,} >mut {P, Rj},

where >mut is the multiset extension of the E-reduction ordering > used in the
procedure E-COMPLETION. This ordering is well founded, since it is a lexicographic
combination of well-founded orderings.

Let us now prove that {P, R} >> {Pi+I, Ri+I} by case analysis:
Case 1. P+I P-{((p, q))} and R+I= Ri. Then [P[+[R[>[P+[+[R+[.
Case 2 or 2’. P+= P--{((p, q))}U{(l’k, rk)lkY’} and R+={lk-* r’klkY}U

{l--> r}. If Tt" is a strict subset of
[P+[+[R+[. if Tt" is empty, [P[> [P+[, else Tt" has at least one element which is a
E-reducible term of {Pi, Ri} and in this case {P, R} >suit {Vi+l, Ri+l}, since each
rule in has been checked for termination with >. El

LEMMA 20. Vi_-->0, V((p, q)) P, ::lp’, q’ such thatp -->/ p’, q ->/ q’ andp’.-- q’.
Proof. From the previous lemma, we know that any pair ((p, q)) in P is selected

at some recursive call j. It satisfies the claimed property, since either p$---q$, or
p$--> q$, or q$--->p,[,Rj+l. F!

We are now able to state the first part of the proof of the completion procedure:
PROPOSITION 21. :=
Proof. From the previous lemma applied with i-0, it follows that ...R, and

therefore t=, is included into ...u. The result then follows from the last corollary. E1
The second part of the proof consists of proving the Church-Rosser property for

Roo. It will follow from the fact that the critical pairs of satisfy the properties of
Theorem 16.

1180 J.-P. JOUANNAUD AND H. KIRCHNER

Before stating and proving the Church-Rosser property of R, we need to prove
the well-foundedness of the reduction relation used in the proof. Let - be the relation
_./ > sst/ > sub/, where >b/ is the strict ordering associated with the so-called
E-subsumption preordering defined as follows: s >b/ tiff S, such that s s’
and s’= t’ for some substitution . We assume that > sub/ is well founded. As already
noted, this is usually the case when the theory E has a finite unification algorithm.
The rest of the termination proof is based on additional commutation lemmas.

LEMMA 22. s sub/E t’ /Ets’ ff(,) such that s/s’ sub t.

Proo The proof is similar to that of lemma 14 and is left to the reader. U
LEMMA 23. s t/ sub/E t’S’, S" (,) such that s sub/ s’ s" t t’.
Proo The proof is by induction on the number of steps from s to t. If s t, the

result is obvious. If t= t’, the result comes from Lemma 13. Otherwise
s t/

Sl > t/e > ub/ t sub/ t’. By definition, tl ff and E which is not a
renaming modulo E, such that fill >sub tl t2 therefore t2 >sub I2. Since the
same process works with the > relation as already noted in Lemma 13, we get"
$1 S2 >sst t2 >sub t2"

We can now make > and >sub commute. By definition, v such that s/v t2.

Assume without lost of generality that (t) (s) , therefore () (s2)
(otherwise, we must perform a variable renaming on t, which eventually renames the
variables of t’ at the end). Now, s2 (SE[V t2]) and thus s >sub S[V t] > t.
The result is finally obtained by pushing the >t step to the end using a first application
of the induction hypothesis from s2[v t2] to t’ and then by a second application of
the induction hypothesis to the whole chain except the last >t steps.

As a consequence of these lemmas, we get the following termination result:
PROPOSITION 24. Assume R is E-terminating, E-congruence classes are finite and

the strict E-subsumption preordering is well founded. en is well founded.
Proo Assume given an infinite chain of. From Lemmas 14, 22 and 23, it follows

that actually this chain can be written as /e sub sub/E sst sst/E. The proof
is then similar to the proof of Proposition 15, using that the >sub/ relation is well
founded by hypothesis.

We may now make use of this well-founded relation to prove the main theorem
of this section.

THEOREM 25. Assume that a complete andfinite unification .algorithm exists for the
theory E, E-congruence classes are finite and the strict E-subsumption preordering is well
founded. en R is R-Church-Rosser modulo E, provided that the fairness selection
hypothesis is satisfied.

Proo Let us denote by t$ the R-normal form of t, and write s$t iff s’, t’ such
that sg s’, Rg t’ and s’ t’, and s/t iff s’ such that s/s’ and /s’.
Since R is included into , we may actually prove that" to t,+ implies
tot,+l. Let M={to, , t,, t+l} such that Vi[0. HI, t t+l. The proof
is very similar to that ofthe Church-Rosser theorem 16, and works by multiset induction
on . Three cases have to be distinguished as usual. Each one uses a paicular local
propey defined next, thanks to the following notation: SoS iff
SoSl...s such that j[0... m+l], Vi[0 m], bs. As
a consequence, the whole multiset {So," ", s} is strictly smaller than { b}, thus smaller
than M. This will enable us to apply multiset induction on {So,’", s}. Note in
addition that is transitive for a given b and that ss’, ss’ and s/e s’ all imply
s s’, provided s and s’ are proper sons of b for .

t, t,+" if t, is R-irreducible, then so is t,+ by the local coherence propey
of R that we define next using the previous notations. The result follows from

COMPLETION MODULO EQUATIONS 1181

FIG. 4.4. Church-Rosser Proof using local coherence.

induction hypothesis applied to the multiset { to, , t,}. Otherwise, local coher-
ence of R is applied first as shown on Fig. 4.4. and then induction to the
multiset {to, ., t,, t’,,’", t,/l} which is strictly smaller than M, since the
terms between t’ and tn+l are all proper sons of tn+ for -> by definition of
This is step 2 in the same figure.
t,+ --> t," the result follows from reducibility of by R, which then allows
us to apply the induction hypothesis to the multiset { to, , t,, , t’+} whose
terms between t, and t,+ are all smaller than t,+ for ->. This is shown on Fig. 4.5.

FIG. 4.5. Church-Rosser Proof using reducibility.

t. -- t,+" we apply first the induction hypothesis on the multiset {to," ", t,}.
Since t, is not in t-normal form, it is not in R-normal form by the reducibility
property, making clear step 1 in Fig. 4.6. The proof then follows from local
confluence ofR with (step 2) and induction on the multiset {t’,..., t,+l}
(step 3).

Ind.

FIG. 4.6. Church-Rosser Proof using local confluence.

We are now left to prove the three properties of reducibility, local coherence and
local confluence, assuming the Church-Rosser induction hypothesis on multisets strictly
smaller than M.

1182 J.-P. JOUANNAUD AND H. KIRCHNER

Let us first prove reducibility of by R, specifically:
R Eoot or -- k:l--r] l, z:l t, -- t and t t.t, t tn+ and [e,,k:lr] Iv#

Note that standard matching is required here for reduction of at the outermost
occurrence, but not for reduction of a strict subterm of t.

Case 1. Assume v e. Then t/v is a proper son of for and the induction
hypothesis may be applied to the multiset {t v, t/v} yielding tv t/v. The
propey is then easily lifted to { t, t} yielding the result since is E-terminating
and thus must be different from t.
Case 2. Assume v e and g is not a variable renaming. Then is a proper son
of for and the same reasoning as in Case applies. For the remainder of
the proof, v can be supposed to be e and g to be a variable renaming, hence

gl and t gr.

Case 3. Some rule labelled k belongs to R, say r’ with r r’, therefore
Rr,,:l--r’ t gr’ and t t, hence t t.

Case 4. The left-hand side of the rule k has been reduced by another rule
l" r", therefore lv rl" for some occurrence v e and substitution or
l e rl", since left members of rules are not reduced at the outermost occurrence
modulo E. Let l’= l[v rr"]. Since (l’, r) has been dropped to P, by Lemma
20, the pair (l’, r) has become convergent at some fuher recursive call, therefore

t[v zr"] (1[v zr"]), we1’ r. Let tr..... ,,_,,3 t. Since t =gr and t
have t ti’. We are therefore left with proving the reducibility for the pair of

t’terms ,,1,,,, Let us suppose that 7 is a variable renaming and v is e.
Then/" is an instance of and the rule/" r" would never have been generated.
Therefore e or is not a variable renaming, we can apply the already proved
cases 1 and 2 and we are done.

Note the crucial fact of being an instance (and not an E-instance) of/" when
/" reduces at the outermost occurrence. Otherwise, it would have been necessary to
use the (not yet proved) local coherence propey to lift the reducibility of /" to in
Case 2, where the induction uses the strict E-subsumption ordering (and by transivity
in Case 4).

Let us now prove local coherence of R, specifically"
Rt" and ,lr] t’, t" such that t"Rt, t’, t" such that t t, [v,,gd] tl

and t’ t".
The cases to be now discussed according to the respective positions of v and v

are the same as in Theorem 16. Only Cases 5, 7 and 8 differ. Numbering and notation
remain exactly the same:

Case 5: v e, with r in L, and v (l). By the fairness hypothesis, the
critical pairs of r and g d have been computed at some iteration j. By

critical’g d

lemma rq t"

Lemma 20

FIG. 4.7. Local coherence proof ofR, Case 5a.

COMPLETION MODULO EQUATIONS 1183

ca [u,gd]
lemma

rq "’/ t"

rp W’ t’;

Lemma 20

FIG 4.8. Local coherence proof ofR, Case 5b.

the Critical Pairs Lemma, there exists a critical pair of ((p, q)) in CP(E, Lj) and
a substitution r such that t’= rp, t" rq. This is step 1 in Figs. 4.7 and 4.8. From
the procedure CRITICAL-PAIRS, we know that q [o,,O,k’:l’-r’] q. The rule
l’ -- r’ can be the added rule q p$ and in that case p$ q’$, or the pair (p, q’)
has been dropped into P. In this last case, we know from Lemma 20 that
P $/E q’, therefore p q’. As a consequence, in both cases, we have ’p W’.
This is step 2 in Fig. 4.7 and Fig. 4.8. The rest of the proof is now split into
three cases:

Case 5a. to e. In that case, the induction hypothesis is applied to the
multiset {W/to, W’/to} yielding W/ to$ W’/ to$. As a consequence, the
pair (t", rq’) satisfies the same property. Since is E-terminating, there
must exist a term t’ such that t"= rq--R t’ and rq’$ t"l. This is step 3 on
Fig. 4.7.
Case 5b. to e and q is not an instance of l’ but an E-instance. Then
l’ -- r’ and has been protected (it may be an extended rule). Since r
is in Lo, a rule k" l’-- r" must be in No with r’ 2_E r, therefore rq’=
fOr’--E’Or". Now t"= ’q ’Ol’-[O,k’] ’Or". This is step 3 on Fig. 4.8,
with t’ -Or".
Case 5c. to e and l’ r’ w or l’ r’ and q is a true instance of l’.
Then we conclude from the already proved reducibility property that
t" -->R t’, rq’ t’ and we are done.

Case 6. v- e, , e, and u (g) with ---> r in Lo. Similar reasoning as in
Case 5.
Case 7. v- e, , e and u (g) with --> r in No. By the fairness hypothesis
and the E-Critical Pairs Lemma, there exist an iteration j, a pair ((p, q))=
((O(g[,-r]),Od)) in ECP(N,E) and a substitution " such that
tr--- -0[(g) LJ (/)], therefore t".-- ’q with E-equality steps taking place outside
of (d) and t’---p. From the CRITICAL PAIRS procedure, we know that
q "-[to, O,k’:l’--r’] q and, as in Case 5, ’p -q’. This is step 1 in Fig. 4.9.The next
step in the proof allows us to transform the E-rewriting from ’q to W’ into

’q t’, t ’t"

FIG. 4.9. Local coherence proof ofR, Case 7.

1184 J.-P. JOUANNAUD AND H. KIRCHNER

a R-rewriting from rq to some t related to rq’. Two cases are to be distin-
guished:

If to e, k" 1’ r’ W and q is not a true instance of 1’, then k’ has been
protected. Since 1-- r is in No, a rule k’:l’ r" must be in N with

N ,E to,r’ - r". Let now t ’Or". Then ’q "--t%O.k’] to, and ’q’= ’Or’ -therefore ’q’ tg.
If k’ applies at occurrence to e or if q is a true instance of l’, then the
already proved reducibility property applies and yields rq --R t for some
t and ’q’ t. This is step 2 in Fig. 4.9.

t, H t;, H H

loc. local e
v

R coherence R. confl Rl coh

"
FIG. 4.10. Local confluence proof ofR with , Case 4.

The remainder of the proof is then very similar to the corresponding one in
Theorem 16, applying the already proved local coherence property until t" is
reached, since no equality step from rq to t" takes place at occurrence e.

Let us now prove local confluence ofR with , specifically"
R t"For any t’ and t" such that t, -- t%,td and t, --to,,g__.a] t",

We only point out what differs from the proof of Theorem 16. Cases 1 and 2 are
the same. Case 3 is the same when there is no overlapping, otherwise the fairness
selection hypothesis and Lemma 20 are used as in the local coherence proof. Case 4
uses a first reducibility step to make appear a R-reduction from t, instead of a
G-reduction; the rest of the proof is entirely similar.

It must be noted that the proofs of reducibility, local coherence and local con-
fluence use the induction hypothesis and cannot be proved as independent lemmas.
This explains the complexity of the whole proof. As a corollary of Theorem 25 and
Proposition 21, we obtain under the same assumptions:

THEOREM 26.
Roo is R-convergent modulo E.

is e-convergent modulo E.
The congruences , ...u and ...RoUe are equal

As in Theorem 16, we conjecture that some hypotheses could be removed, precisely
the two hypotheses about the finiteness of the E-congruence classes and the well-
foundedness of the strict E-subsumption preordering.

Let us finally prove that the E-completion algorithm can always be considered as
a semi-decision procedure for ff:, assuming that a decision procedure for is known.
As in the standard completion algorithm, if the two terms to be checked for equality
are not in the same congruence class, then the semi-decision procedure will loop forever
if the E-completion procedure loops forever.

PROPOSITION 27. Szt iff there exists a recursive call such that s $R St, $ REi t’
and s’- t’ for some s’ and t’.

Proof. It follows the lines of the proof of the corresponding result in [33] obtained
for the case of an empty E.

This result can be extended in a straightforward way to semi-decide that two sets
of axioms (R, E) and (, E) generate the same equational theory, provided the

COMPLETION MODULO EQUATIONS 1185

hypotheses of Theorem 25 are satisfied: we can start the procedure E-COMPLETION
to check that all axioms in kJ E are equational consequences of R J E. If this is the
case, the process will stop after a finite number of calls, even if the E-COMPLETION
procedure loops forever. Then we can start the symmetric check. However, this process
of checking two sets of axioms for equivalence is time consuming and we will see in
4.4 an efficient and elegant way of achieving the same goal when the E-COMPLE-

TION procedure provides a R-Church-Rosser set of rules after a finite number of
steps.

4.3. Protection versus inter-irreducibility. Let us now discuss some issues regarding
our E-COMPLETION procedure, especially the tradeoff between protecting rules for
coherence and reducing rules for the generated set of rules to have a uniqueness
property as in the standard case [65].

Compared to the other known completion algorithms [54], [57], [58], [73], [32],
[39], the main new difficulty here arises from the coherence property of the rewriting
relation R,E. In Knuth and Bendix’s completion algorithm, proved in [33], E is empty
and of course, no coherence property is needed. The completion algorithm modulo
E, designed in [32], uses standard rewritings with left-linear rules only. Our proof
makes clear that we do not need to protect any rule if N is empty. On the other hand,
for each rule that has an associative-commutative function symbol at the outermost
occurrence of its left-hand side, Peterson and Stickel systematically introduce its
associative-commutative extensions that are implicitly protected and thus enforce the
coherence property.

Various strategies to deal with the problem of coherence can be imagined. Let us
discuss some of them with their respective drawbacks and advantages"

Our aim was to avoid introducing extensions of rules if the coherence property
was ensured by an already existing rule. The lack of power of the relation R,E
compelled us to protect some nonleft-linear rules. Once protected, a rule cannot be
removed from the rewriting system, even if its left-hand side becomes reducible, unless
the rule it was protecting has disappeared. Of course, the resulting rewriting system
may not be entirely inter-reduced.

However, systematically adding extensions can be very interesting for some
cases: assume that whenever a nonleft-linear rule and an equation E-overlap at
occurrence v, the adequate extension of this rule is added. We do not need computing
a complete set of E-overlappings, since this extension automatically reduces all the
corresponding E-critical pairs of this rule on the equation at occurrence v" we only
need to know that E-unification is possible at this occurrence. In many cases this
strategy will speed up the completion process. Note also that in this case, we do not
need to protect any rule, except of course the extensions, since we are no longer
interested in finding an existing rule which reduces the adequate member of the
coherence pairs. As a main drawback of this method, extensions can be many and
redundant, and cannot be reduced.

Another approach consists in modifying the E-COMPLETION procedure by
protecting both left-linear and nonleft-linear rules that reduce a coherence pair at the
outermost occurrence under the same conditions as previously. This allows local
coherence proofs without the use of reducibility in Theorem 25, Case 5c of the local
coherence proof becoming similar to Case 5b which makes no use of reducibility. As
a consequence, the reducibility proof can now be performed after the local coherence
proof and can make use of it. As noted at the end of Case 4 of that proof, reducibility
becomes satisfied now, even if left members of rules are reduced modulo E in the

1186 J.-P. JOUANNAUD AND H. KIRCHNER

SIMPLIFICATION procedure, provided the rule r is added to N. This will yield
a set R of rules that can be expected to be more inter-reduced than previously.

A fourth method can even be designed which yields a set R of completely
inter-reduced rules. This can be done by another modification of the SIMPLIFICA-
TION procedure: if the left-hand side of a rule k, protected for coherence of a rule
k’ with an equation g d, becomes reducible, then k is removed from the rewriting
system and the E-critical pairs of k with g d are computed again. If the process
terminates, we are sure that all the critical pairs have been computed, and thus the
coherence of k’ is ensured. But this strategy does not satisfy the fairness assumption
hypothesis when the procedure loops and the infinite set R is no longer guaranteed
to be R-Church-Rosser modulo E. However, we could modify the fairness selection
hypothesis to take into account the fact that some rule would have to be chosen
infinitely many times and some others only finitely many times with respect to a
generalized fairness selection hypothesis. Such algorithms already exist which were
designed for the purpose of implementing concurrent procedures.

Finally, let us emphasize that all our results remain valid, except the decidability
results, if the theory E has a complete unification algorithm that may sometimes return
an infinite set of unifiers, provided it returns a finite one at each call. For this case,
we might want the E-unification procedure to be called only when it is really needed,
in order to minimize the possibility of starting an infinite computation because of the
E-unification process. This suggests use of the variant that adds extensions in a
systematic way. Note in addition that we might require that the E-unifiers be computed
a finite number at a time if there are infinitely many, in order to respect the fairness
assumption hypothesis and still have a semi-decision procedure.

4.4. Complete sets of rules in normal form. As seen in the last section, the comple-
tion procedure may give as a result a Church-Rosser set of rules that are not fully
inter-reduced. As a consequence, we cannot expect such a set to have a uniqueness
property as in the standard case 13], [65], [59]: the result of the completion procedure
will depend upon a particular presentation ofthe theory as well as upon the implementa-
tion of the choice functions used in the procedure. Our goal here is twofold:

First, to define precisely what kind of uniqueness can be expected for a Church-
Rosser set of rules.

Second, to give an algorithm to inter-reduce any Church-Rosser set of rules.
Let us say that two sets R and of rules are E-equivalent, or simply equivalent

whenever E is known from the context, iff they generate the same congruence =.
Assume now a given E-reduction ordering >= whose associated strict ordering >

is well founded. This ordering can be thought of as the ordering used in the E-
COMPLETION procedure to guarantee the E-termination property of the set R of
rules. We will say that -_> is the E-reduction ordering associated to R if this is the case.

As a consequence, whenever the previous goal is achieved, it follows that the
E-equivalence problem for two Church-Rosser sets of rules with the same associated
E-reduction ordering >- is decidable. As a practical consequence, the fact that the
resulting Church-Rosser set of rules produced by the E-COMPLETION procedure is
not completely inter-reduced is not a severe drawback anymore" just apply the adequate
normalization post-processing.

We now define which kind of Church-Rosser set of rules we want to get:
DEFINITION 28. Let Re be any rewriting relation such that R

_
Re R/E. An

E-complete set of RW-normalized reductions R is a set of rules that has the following
properties:

(1). R is E-terminating and R-Church-Rosser modulo E.

COMPLETION MODULO EQUATIONS 1187

(2) Any left member of rules is Re-irreducible except by itself at the outermost
occurrence.

(3) The right members of rules are Re-irreducible.
Any set of rules satisfying (2) and (3) is said to be inter-reduced.

We now show that such sets of reductions have a uniqueness property, when Re

is not R E. To do so, we first introduce a useful technical lemma:
LEMMA 29. Assume R is Re-Church-Rosser modulo E and let >" be the associated

E-reduction ordering. Then a term is Re-irreducible iff it is minimal for = in its
z-congruence class.

Proof If is Re-irreducible, then for any t’: t, t’-R t’$" t$ t. Hence, t’ t.
Conversely, if is Re-reducible to s, then > s.

We are now ready for the main theorem of E-complete sets of normalized
reductions:

THEOREM 30. Let R and be two E-complete sets of Re-normalized reductions
where Re is not R/E. Assume that R and have the same associated E-reduction
ordering and generate (with the help of the equations in E) the same congruence
Then R and are identical up to E-equality.

Proof We prove that for any rule l-, r in , there exists a (unique) rule l’-- r’
in R such that l--- l’ and r--- r’. Since R and (with the help of E) present the same
equational theory and R is Re-Church-Rosser and r is e-irreducible, thus R e_

irreducible by Lemma 29, l-RE
o"r. Since is e-reducible thus Re-reducible by

Lemma 29 and since all the strict subterms of are Yt e-irreducible, thus Re-irreducible
RE o--RE r. Assume now that tr is not E-equivalent toby the same lemma, -’[e,o-,l’--r’R]

a variable renaming. The same reasoning shows that l’ is e-reducible a,t the outermost
occurrence by a rule l"-- r" of which cannot be the rule l-- r, since r is not
E-equivalent to a variable renaming. Now, since the second reduction applies at the
outermost occurrence of l’, becomes reducible by/"-- r", which is impossible by the
hypothesis that the rules of are inter-reduced. Therefore tr is a variable renaming
and l---l’. Since r’ and r are supposed to be irreducible, we finally get r’-- r by the
Church-Rosser property and we are done. The uniqueness of the rule l’-, r’ then
follows from the inter-irreducibility of the rules in R.

Similar results have already been obtained by [59], [16], for the case where
Re= R/E. In this last case however, the hypothesis that E-equivalence classes are
finite is needed (see [16] for counter-examples when there are infinite classes). Their
results will be used in the following.

The next three lemmas show how to transform an Re-Church-Rosser set of
E-terminating rules into an E-complete set of normalized reductions. This will be done
by three different kinds of transformations applied to the starting set, each one
preserving a Church-Rosser property. The first two transformations preserve the
Re-Church-Rosser property, while the last one only preserves the R/E-Church-Rosser
property. As a consequence, the two first transformations can be usefully applied to
the Re-Church-Rosser set of rules given by the procedure E-COMPLETION. Actually,
only the second one is needed, since right members of rules are fully simplified in the
procedure SIMPLIFICATION.

LEMMA 31. Assume R is an E-terminating and Re-Church-Rosser set of rules. Let
{1 r$[l r R}. Then is equivalent to R and te-Church-Rosser modulo E.
Proof Yt is clearly E-terminating since R is. In order to prove the result, we just

prove that any term has the same normal forms for both rewriting relations. First, they
define the same sets of normal forms, since left members of rules are the same and

The reader can check that the reasoning does not apply if RE is R/E.

1188 J.-P. JOUANNAUD AND H. KIRCHNER

are used with the same matching algorithm (which is implicit in our definition of R).
Let now tl be the Re-normal form of t. Then tl is the Re-normal form of since
tZtl, R is Re-Church-Rosser and t is in Re-normal form.

LEMMA 32. Assume R is an E-terminating and Re-Church-Rosser set of rules,
where the theory E is such that E-equivalence classes arefinite and the strict E-subsurnption
preordering is well founded. Let R be obtained from R L N by removing any rule

from L whose left member is Re-reducible, or any rule from N whose left member is

Re-reducible at the outermost occurrence by another rule of N. Then R is equivalent to

R and is R e-Church-Rosser modulo E.
Proof R is clearly E-terminating since R is. As previously, we now prove that

any term has the same normal forms for both rewriting relations. This is done here by
RE t’ "-RE t$ Ifnoetherian induction on the relation defined in 4.2. Let t--,,_r

V e, the result is easily obtained by induction on t/v. If l-* r is in R, the result is
easily obtained by induction on t’.

For the remaining cases, v e, therefore t- trl, and --* r has been removed, thus
R

--,,,,I,_, l", with l’ -- r’ in R. If -- r L, then rl -- t" trl[v’ -- cr’r’] and the
result is obtained by the induction hypothesis applied to t", together with the R-Church-Rosser property of R that forces t’ and t" to have E-equal Re-normal forms.
If -- r N, then t--- rl -- t" trl[v’ - tr’r’], since v’= e in this case by definition
of R and l’ -- r’ N. The result is obtained by induction hypothesis applied to t" and
the Re-Church-Rosser property as before.

Reducing the starting set of rules as long as possible using Lemmas 31 and 32
clearly yields a set of rules R satisfying requirements (1) and (3) of Definition 28.
Moreover, it will also satisfy the part of requirement (2) concerning left members of
rules in L. Now, either the whole set of rules satisfies requirement (2), i.e. left members
of rules in N are also R e-irreducible and the resulting set of rules R is an E-complete
set of Re-normalized reductions equivalent to the starting one, or it does not and we
need to apply as many times as necessary the third transformation studied in the next
lemma. If the latter is the case, we will get an E-complete set of R/E-normalized
reductions.

LEMMA 33. Assume R is an E-terminating and Re-Church-Rosser set of rules,
where the theory E is such that E-equivalence classes arefinite and the strict E-subsumption
preordering is well founded. Let R be obtained from R L U N by removing any rule in
N whose left member has a Re-reducible strict subterm or is L-reducible at the outermost
occurrence. Then R is equivalent to R and R/ E-Church-Rosser.

Proof Note first that the new set of rules is still E-terminating. We prove now
the two other properties by induction on - as in the proof of Lemma 32. The two
first cases are the same and the case where v e and l-- r has been removed from R
requires minor changes: since the E-equality step between and trl cannot be absorbed
anymore by the E-matching step used in the Re-reduction relation it is absorbed here
by the E-equality step used in the R/E-reduction relation. This explains why we only
get a R/E-Church-Rosser property.

Applying this last lemma results in an E-complete set of R/E-normalized reduc-
tions that is unique up to E-quality by [16], allowing us to check for equivalence two
different sets of axioms expected to be presentations of a same theory. But the complete
set of normalized reductions can be used for this purpose only, since it is not
Church-Rosser anymore: for computing in the theory R E, we will use the
Church-Rosser set of rules obtained by applying the first two transformations to the
set of rules given by the E-COMPLETION procedure, since the rewriting relation
associated with it is more efficient.

COMPLETION MODULO EQUATIONS 1189

5. Examples. Let us give a first example that emphasizes that splitting the set of
rules into left-linear rules and nonleft-linear rules allows one to compute less complete
sets of E-unifiers, since E-unification is only needed for nonleft-linear rules. It is the
well-known example of abelian groups defined by the following set of axioms:

(x+y)+z=x+(y+z), x+y=y+x,

x+0=x, x+i(x)=O.

Using the rewriting relation Re= R,E where E is the subset of the two first axioms,
the E-COMPLETION procedure generates the following R:

i(0)--0, x+0--- x,

whose extension is: z + (x + 0) z + x,

i(i(x))+ x, x+ i(x) O,

whose extension is: z + (x + i(x)) -- z,

i(x + y) i(y) + i(x).

Using the rewriting relation R" L t_J N,E, The E-COMPLETION procedure generates
Ro as the union of L"

i(0)0, x+0x,

O+x x, i(i(x)) x,

and N:
i(x + y) -- i(y) + i(x)

x + i(x) --- O,

whose extension is: z + (x + i(x)) z.
Notice that the additional rule (0+ x x) is needed when computing with the

rewriting relation L t.J No,E, otherwise the pair (0+ x, x) would not be Re-convergent
although it is obviously R!E-convergent. Of course, both systems are equivalent to
the same R/E-Church-Rosser set of normalized reductions:

i(O) -- O, x + 0 x,

i(i(x)) x, x + i(x) -- O,

i(x + y) i(y) + i(x).

On the other hand, by using a set L of left-linear rules, one gets sometimes into a

divergent process that would otherwise converge with all the rules considered to be
in N. Let us recall the example of 3 of a set of rules which is R,E-Church-Rosser
modulo E but not L t_J N,E-Church-Rosser modulo E: Let 0, 1, 1 be constant function
symbols and + a binary infix symbol which is associative and commutative. Let R be
the set of left-linear rules:

(1) 0+ x --, x,
(2) 1+-1 --- 0,
(3) (x+l)+-I x.

1190 J.-P. JOUANNAUD AND H. KIRCHNER

Then R is R,E-Church-Rosser modulo associativity and commutativity. However,
using our algorithm with L--R, the procedure generates an infinite set of left-linear
rules (all supposed to be in L) among which are the following:

(4) x + 0 - x, by overlapping rule 1 and axiom of commutativity at the outermost
occurrence.

(5) -l+(x+l)--- x, by overlapping rule 3 and axiom of commutativity at the
outermost occurrence.

(6) (1 +x)+-I x, by overlapping rule 5 and axiom of commutativity at the
outermost occurrence.

(7) 1 + (1 + x) x, by overlapping axiom of commutativity and rule 5 at occur-
rence 2 of rule 5.

(8) (x + (y + 1))+- 1 x + y, by overlapping the associativity axiom and rule 3
at occurrence 1 of rule 3.

This example shows that performing E-unification is costly but also powerful.
The theory of equational term rewriting systems presented here lacks many

examples. We apologize for this drawback and explain the reason: interesting examples
are simply intractable by hand. Only computer experiments can provide such examples.
Some computer experiments, performed with the REVEUR 3 system can be found in
[53]. REVEUR 3 is a version of the REVE Term Rewriting Laboratory developed by
the EURECA group at CRIN and John Guttag’s Group at MIT. REVE 1 has been
implemented by Pierre Lescanne [61]. REVE2 has been implemented by Randy
Forgaard [23]. The main core of REVEUR3 has been implemented by Claude and
H61ne Kirchner [53].

6. Conclusion Let us now point out some interesting research directions for future
work.

First, the last open problem of infinite congruence classes should be addressed,
since many interesting cases such as equipotency and identity fall in this category.
Also the requirement that the strict E-subsumption preordering is well founded should
be studied in detail: it may be possible that the property is true as soon as a minimal
and complete unification algorithm exists for the theory E.

Second, particular instances of our algorithm should be studied carefully as
was done for associativity and commutativity [73]. We believe that various kinds of
permutative axioms have similar properties. This would allow an improvement over
previous algorithms [57], [39]. Performing various experiments should help a lot for
studying such improvements.

Third, we believe that our completion procedure can be improved: we conjecture
that the transformation expressed in Lemma 32 could be incorporated into the algorithm
(the one expressed in Lemma 31 is already achieved in the algorithm). This is not
straightforward, since the set R of rules becomes RE-Church-Rosser at the end, but
does not have the property during the run of the algorithm. However, a rule can be
considered to be Church-Rosser as soon as its critical pairs have been computed. As
a consequence, dropping such rules into P when they become reducible in the sense
of Lemma 32 could be sound, but this has to be proved.

Last, we can imagine interesting rewriting relations other than those studied
here: in OBJ [27], David Plaisted has implemented a very efficient reduction relation
for the case of associative-commutative operators (and even for associative-commuta-
tive-idempotent operators having an identity): before applying an associative-commuta-
tive matching algorithm to find a redex, the term to be reduced is sorted in a lexico-
graphic way. This technique allows a much more efficient associative-commutative

COMPLETION MODULO EQUATIONS 1191

matching algorithm which makes the reductions much faster [75]. This technique
should be studied carefully and possibly extended to other cases.

Acknowledgments. Many people at CRIN and at MIT have contributed to the
implementation of REVE which is still going on. We are happy to thank them all here,
especially Claude Kirchner. We are also grateful to Jose Meseguer for carefully reading
the manuscript and to the referees for their pertinent comments and for exhaustively
pointing out the typos.

REFERENCES

[1] A. AHO, R. SETHI AND J. D. ULLMAN, Code Optimization and Finite Church-Rosser Theorems, in

Design and Optimization of Compilers, R. Rustin, ed., Prentice-Hall, Englewood Cliffs, NJ, 1972,
pp. 89-105.

[2] A. M. BALLANTYNE AND D. S. LANKFORD, New decision algorithmsforfinitely presented commutative
semigroups, Comput. Math. Appl., 7 (1981), pp. 159-165.

[3] G. M. BEROMAN, The diamond lemma for ring theory, Adv. in Math., 29 (1978), pp. 178-218.

[4] R. BOOK, .Confluent and other types of Thue systems, J. Assoc. Comput. Mach., 29 (1982), pp. 171-182.

[5] B. BUCHBEROER AND R. LOOS, Algebraic Simplifications, in Computer Algebra, Symbolics and
Algebraic Computations, Computing Supplementum 4, B. Buchberger, G. E. Collins and R. Loos,
eds., Springer-Verlag, Berlin, West Germany, 1982, pp. 11-43.

[6] P. M. COHN, Universal Algebra, Harper and Row, New York, 1965.

[7] J. CORBIN AND M. BIDOIT, A rehabilitation ofRobinson’s unification algorithm, Proc. IFIP 83 Congress,
North-Holland, R. E. A. Mason, ed. (1983), pp. 909-914.

[8] P. DERANSART, Ddrivation de Programmes PROLOG fi partir de Sp.cifications Algdbriques, Rapport
interne, INRIA, Le Chesnay, France, 1983.

[9] N. DERSHOWITZ, A note on simplification orderings, Inform. Process. Lett., 9 (1979), pp. 212-215.

[10] , Orderingfor term-rewriting systems, Theoret. Comput. Sci., 17 (1982), pp. 279-301. Preliminary
version in Proc. 20th Symp. Foundations Comput. Sci., San Juan, PR, 1979, pp. 123-131.

[11] , Computing with term rewriting systems, Tech. Rep., Univ. of Illinois, Urbana-Champaign,
Illinois, 1983. Also in Information and Control, 63.

12] N. DERSHOWITZ AND Z. MANNA, Proving termination with multiset orderings, Comm. ACM, 22 (1979),
pp. 456-476. Also in Proc. 6th Internat. Colloquium on Automata, Languages and Programming,
Graz, 1979, pp. 188-202.

13] N. DERSHOWITZ AND L. MARCUS, Existence and construction ofrewrite systems, Memo, The Aerospace
Corporation, E1 Segundo, CA, 1982.

[14] N. DERSHOWITZ, J. HSANG, N. A. JOSEPHSON AND D. A. PLAISTED, Associate-commutative

rewriting, Proc. 8th Internat. Joint Conf. Artificial Intelligence, Karlsruhe, West Germany, 1983,
pp. 940-944.

[15] N. DERSHOWITZ, Termination of rewriting, Tech. Rep. UIUCDCS-R-85-1220, Dept. of Computer
Science, Univ. of Illinois at Urbana-Champaign, Illinois, 1985.

[16] N. DERSHOWITZ AND A. TARLECKI, A note on the uniqueness of term rewriting systems, unpublished
note.

[17] T. EVANS, The word problem for abstract algebras, J. London Math. Soc., 26 (1951), pp. 64-71.

[18], A decision problem for transformation of trees, Canad. J. Math., 15 (1963), pp. 584-590.
[19] F. FAGES, Associative-commutative unification, in Proc. 7th Conf. Automated Deduction, Napa Valley,

CA, Lecture Notes in Comput. Sci., Vol. 170, R. E. Shostak, ed., Springer-Verlag, Berlin, West
Germany, 1984, pp. 194-208.

[20] Formes canoniques dans les algbres Booldennes et application dt la dmonstration automatique
en logique du premier ordre, Thse de 3eme cycle, Universit4 de Paris 7, France, 1983.

[21] F. FAGES AND G. HUET, Unification and matching in equational theories, Proc. 5th Conf. Automata,
Algebra and Programming, L’Aquila, 1983, Lecture Notes in Comput. Sci., Vol. 159, G. Ausiello
and M. Protasi, eds., Springer-Verlag.

[22] M. FAY, First order unification in equational theories, Proc. 4th Conf. Automated Deduction, Austin,
TX, Lecture Notes in Comput. Sci. Vol. 87, W. Bibel and R. Kowalski, eds., Springer-Verlag,
Berlin, West Germany, 1979, pp. 161-167.

[23] R. FORGAARD AND J. V. GUTTAG, A term rewriting system generator with failure-resistant Knuth-
Bendix, Tech. Rep., MIT Laboratory for Computer Science, Massachussets Institute of Technology,
Cambridge, MA, 1984.

1192 J.-P. JOUANNAUD AND H. KIRCHNER

[24] L. FRIBOURG, A superposition oriented theorem prover, Proc. 8th Internat. Joint Conf. Artificial
Intelligence, Karlsruhe, West Germany, 1983.

[25] J. A. GOGUEN, How to prove algebraic inductive hypotheses without induction: with applications to the
correctness of data type representations, Proc. 5th Conf. Automated Deduction, Lecture Notes in
Comput. Sci., Vol. 87, W. Bibel and R. Kowalski, eds., Springer-Verlag, Berlin, West Germany,
1980, pp. 356-373.

[26] J. A. GOGUEN AND J. MESEGUER, Equality, Types, Modules and Generics for Logic Programming,
Logic Programming Symposium, Upsala, Sweden, 1984.

[27] J. A. GOGUEN, J. MESEGUER AND D. PLAISTED, Programming with parameterized abstract objects in
OBJ, in Theory and Practice of Software Technology, D. Ferrari, M. Bolognani and J. Goguen,
eds., North-Holland, New York, 1982, pp. 163-193.

[28] J. V. GUTTAG, E. HOROWITZ AND D. R. MUSSER, Abstract data types and software validation, Comm.
ACM, 21 (1978), pp. 1048-1064.

[29] J. HSIANG, Refutational theorem proving using rewriting systems, Submitted to Artificial Intelligence.
[30] J. HSIANG AND N. DERSHOWlTZ, Rewrite methods for clausal and non clausal theorem proving, Proc.

10th Internat. Colloquium on Automata, Languages and Programming, Barcelona, Spain, Lecture
Notes in Comput. Sci., Vol. 154, Diaz, ed., Springer-Verlag, Berlin, West Germany, 1983, pp.
331-346.

[31] J. HSIANG AND D. PLAISTED, Deductive program generation, Tech. Rep., Computer Science Depart-
ment, University of Illinois, Urbana-Champaign, Illinois, 1982.

[32] G. HUET, Confluent reductions: Abstract properties and applications to term rewriting systems, J. Assoc.
Comput. Mach., 27 (1980), pp. 797-821. Preliminary version in Proc. 18th Symp. Foundations
Comput. Sci., Providence, RI, 1977, pp. 30-45.

[33 ,A complete proofofcorrectness ofthe Knuth and Bendix completion algorithm, J. Comput. System
Sci., 23 (1981), pp. 11-21.

[34] G. HUET AND J. M. HULLOT, Proofs by induction in equational theories with constructors, J. Assoc.
Comput. Mach., 25 (1982), pp. 239-266. Preliminary version in Proc. 21st Symp. Foundations
Comp. Sci., IEEE, 1980.

[35] G. HUET AND D. OPPEN, Equations and rewrite rules: A survey, in Formal Language Theory:
Perspectives and Open Problems, R. Book, ed., Academic Press, New York 1980, pp. 349-405.

[36] J. M. HULLOT, Canonicalforms and unification, Proc. 5th Conf. Automated Deduction, Lecture Notes
in Comput. Sci., Vol. 87, W. Bibel and R. Kowalski, eds., Springer-Verlag, Berlin, West Germany,
1980, pp. 318-334.

[37] , Associative-commutative pattern matching, Proc. 6th Internatl. Joint Conference on Artificial
Intelligence, 1979.

[38] , Compilation deformes canoniques dans les thdories dquationelles, Thse de 3eme cycle, Universit6
de Paris Sud, Orsay, France, 1980.

[39] J. JEANROND, Deciding unique termination ofpermutative rewrite systems: Choose your term algebra
carefully, Proc. 5th Conf. Automated Deduction, Lecture Notes in Comput. Sci., Vol. 87, W. Bibel
and R. Kowalski, eds., Springer-Verlag, Berlin, West Germany, 1980, pp. 335-355.

[40] J. P. JOUANNAUD, Church-Rosser computations with equational term rewriting systems, Proc. Conf.
Automata, Algebra and Programming, L’Aquila, 1983, Lecture Notes in Comput. Sci., Vol. 159,
G. Ausiello and M. Protasi, eds., Springer-Verlag. Submitted to J. ACM.

[41] J. P. JOUANNAUD AND P. LESCANNE, On multiset ordering, Inform. Process. Lett., 15 (1982), pp. 57-62.
[42] J. P. JOUANNAUD AND M. MUNOZ Termination of a set of rules modulo a set of equations, Proc. 7th

Conf. Automated Deduction, Napa Valley, CA, Lecture Notes in Comput. Sci., Vol. 170, R. E.
Shostak, ed., Springer-Verlag, Berlin, West Germany, 1984, pp. 175-193.

[43] J. P. JOUANNAUD, H. KIRCHNER AND J. L. REMY, Church-Rosser properties of weakly terminating
equational term rewriting systems, Proc. 8th Internat. Joint Conference on Artificial Intelligence,
Karlsruhe, West Germany, 1983.

[44] J. P. JOUANNAUD, C. KIRCHNERAND H. KIRCHNER, Incremental construction ofunification algorithms
in equational theories, Proc. 10th Internat. Colloquium on Automata, Languages and Programming,
Barcelona, Spain, Lecture Notes in Comput. Sci., Vol. 154, J. Diaz, ed., Springer-Verlag, Berlin,
West Germany, 1983, pp. 361-373.

[45] Algebraic manipulations as a unification and matching strategy for equations in signed binary
trees, Proc. 7th Internatl. Joint Conference on Artificial Intelligence, Vancouver, 1981, pp. 1016-
1023.

[46] J. P. JOUANNAUD, P. LESCANNE AND F. REINIG, Recursive decomposition ordering, Proc. 2nd IFIP
Workshop Conference on Formal Description of Programming Concepts, Garmish-Partenkirchen,
D. Bjorner, ed., North-Holland, New York, 1983, pp. 33-348.

COMPLETION MODULO EQUATIONS 1193

[47] S. KAMIN AND J. J. LEVY, Two generalizations ofthe recursivepath ordering, Depart. Computer Science,
University of Illinois, Urbana, IL, 1980, unpublished note.

[48] C. KIRCHNER, A new equational unification method: A generalization ofMartelli-Montanari algorithm,
Proc. 7th Conf. Automated Deduction, Napa Valley, Lecture Notes in Comput. Sci., Vol. 170, R.
E. Shostak, ed., Springer-Verlag, Berlin, West-Germany, 1984, pp. 224-247.

[49] C. KIRCHNER AND H. KIRCHNER, Rdsolution d’dquations dans les algbres libres et les varidtds
dquationelles d’alg.bres, Thse de troisime cycle, Universit6 de Nancy I, France, 1982.

[50] H. KIRCHNER, A general inductive completion algorithm and application to abstract data types, Proc.
7th Conf. Automated Deduction, Napa Valley, Lecture Notes in Comput. Sci., Vol. 170, R. E.
Shostak, ed., Springer-Verlag, Berlin, West Germany, 1984, pp. 282-302.

[51] C. KIRCHNER, Mdthodes et outils de conception systdmatique d’algorithmes d’ unification dans les theories
dquationnelles, Thse d’6tat de l’Universit6 de Nancy I, France, 1985.

[52] H. KIRCHNER, Preuves par completion clans les varidtds d’algbres, Thse d’6tat de l’Universit6 de
Nancy I, France, 1985.

[53] C. KIRCHNER AND H. KIRCHNER, Implementation of a general completion procedure parameterized
by built-in theories and strategies, Pro. EUROCAL ’85 Conf., Linz, Austria, 1985.

[54] D. KNUTH AND P. BENDIX, Simple word problems in universal algebra, in Computational Problems
in Abstract Algebra, J. Leech, ed., Pergamon Press, Oxford, 1970, pp. 263-297.

[55] D.S. LANKFORD, A unification algorithmfor Abelian group theory, Memo MTP-1, Mathematics Depart.,
Louisiana Tech. Univ., Ruston, LA, 1979.

[56] O. LANKFORD AND A. BALLANTYNE, Decision proceduresfor simple equational theories with commuta-
tive axioms: Complete sets of commutative reductions, Memo ATP-35, Dept. of Mathematics and
Computer Science, Univ. of Texas, Austin, TX, 1977.

[57], Decision procedures for simple equational theories with permutative axioms: Complete sets of
permutative reductions, Memo ATP-37, Dept. of Mathematics and Computer Science, Univ. of
Texas, Austin, TX, 1977.

58], Decision proceduresfor simple equational theories with associative-commutative axioms: Complete
sets of associative-commutative reductions, Memo ATP-39, Dept. of Mathematics and Computer
Science, Univ. of Texas, Austin, TX, 1977.

[59] D. S. LANKFORD AND G. BUTLER, Memo MTP-7, Mathematics Depart., Louisiana Tech. University,
1980.

[60] P. LECHENADEC, Canonicalforms infinitely presented algebras, Proc. 7th Conf. Automated Deduction,
Napa Valley, CA, Lecture Notes in Comput. Sci., Vol. 170, R. E. Shostak, Ed., Springer-Verlag,
Berlin, West Germany, 1984, pp. 142-165.

[61] P. LESCANNE, Computer experiments with the REVE term rewriting systems generator, Proc. 10th Symp.
Principles of Programming Languages, ACM, Austin, TX, 1983, pp. 99-108.

[62], Term rewriting systems and algebra, Proc. 7th Conf. Automated Deduction, Napa Valley, CA,
Lecture Notes in Comput. Sci., Vol. 170, R. E. Shostak, ed., Springer-Verlag, Berlin, West Germany,
1984, pp. 166-174.

[63], How to prove termination An approach to the implementation of a new recursive decomposition
ordering, Proc. 6th Conf. Automata, Algebra and Programming, Bordeaux, France, 1984.

[64] M. LIVESEY AND J. SIEKMAN, Unification ofbags and sets, Tech. Rep., Inst. fur Informatik I, Universitat
Karlsruhe, West Germany, 1976.

[65] B. MITIVIER, About the rewriting systems produced by the Knuth-Bendix completion algorithm, Inform.
Process. Lett., 16 (1983), pp. 31-34.

[66] P. MARCHAND, Languages d’arbres, langages dans les algbres libres, Thse d’Etat, Universit6 de
Nancy I, France, 1981.

[67] R. MILNER, A theory of type polymorphism in programming, J. Comput. System Sci., 17 (1978), pp.
348-375.

[68] D. MUSSER, On proving inductive properties of abstract data types, Proc. 7th Annual ACM Symp.
Principles of Programming Languages, Las Vegas, CA, 1980, pp. 154-162.

[69] M. H. A. NEWMAN, On theories with a combinatorial definition of ’equivalence’, Ann. Math., 43 (1942),
pp. 223-243.

[70] P. PADAWITZ, Equational data type specification and recursive program scheme, IFIP Working
Conference on Formal Description of Programming Concepts II, D. Bjorner, ed., North-Holland,
1983.

[71] M. S. PATERSON AND M. N. WEGMAN, Linear unification, J. Comput. System Sci., 16 (1978), pp.
158-167.

[72] G. PETERSON, A technique for establishing completeness results in theorem proving with equality, this
Journal, 12 (1983), pp. 82-100.

1194 J.-P. JOUANNAUD AND H. KIRCHNER

[73] G. PETERSON AND M. STICKEL, Complete sets of reductions for some equational theories, J. Assoc.
Comput. Mach., 28 (1981), pp. 233-264.

[74] D. PLAISTED, An associative path ordering, NSF Workshop on the Rewrite Rule Laboratory, General
Electric Research and Development, Schenectady, NY, 1983, pp. 123-136.

[75] ., Personal communication, 1984.
[76] G. PLOTKIN, Building-in equational theories, Machine Intelligence, 7 (1972), pp. 73-90.
[77] J. C. RAOULT, Finiteness results in term rewriting systems, RAIRO Inform. Th6or., 4 (1981), pp. 373-391.
[78] R. SETHI, Testing for the Church-Rosser property, J. Assoc. Comput. Mach., 21 (1974), pp. 671-679.
[79] R. SETHI, Control flow aspects of semantics-directed compiling, ACM Trans. Programming Languages

And Systems, 5 (1985), pp. 554-595.
[80] J. SIEKMAN, Universal unification, Proc. 7th Conf. Automated Deduction, Napa Valley, CA, Lecture

Notes in Comput. Sci., Vol. 170, R. E. Shostak, ed., Springer-Verlag, Berlin, West Germany, 1984,
pp. 1-42.

[81] J. SIEKMAN AND P. SZABO, A noetherian and confluent rewrite system for idempotent semigroups,
Semigroup Forum, 25 (1982), pp. 83-110.

[82] M. E. STICKEL, A complete unification algorithmfor associative-commutativefunctions, J. Assoc. Comput.
Mach., 28 (1981), pp. 423-434. Preliminary version in Proc. 4th Internat. Joint Conf. Artificial
Intelligence, Tblissi, 1975.

	SMJCAT_V15_i1_p0001
	SMJCAT_V15_i1_p0022
	SMJCAT_V15_i1_p0034
	SMJCAT_V15_i1_p0052
	SMJCAT_V15_i1_p0070
	SMJCAT_V15_i1_p0087
	SMJCAT_V15_i1_p0098
	SMJCAT_V15_i1_p0106
	SMJCAT_V15_i1_p0120
	SMJCAT_V15_i1_p0131
	SMJCAT_V15_i1_p0145
	SMJCAT_V15_i1_p0162
	SMJCAT_V15_i1_p0189
	SMJCAT_V15_i1_p0193
	SMJCAT_V15_i1_p0216
	SMJCAT_V15_i1_p0222
	SMJCAT_V15_i1_p0231
	SMJCAT_V15_i1_p0243
	SMJCAT_V15_i1_p0271
	SMJCAT_V15_i1_p0285
	SMJCAT_V15_i1_p0287
	SMJCAT_V15_i1_p0300
	SMJCAT_V15_i2_p0317
	SMJCAT_V15_i2_p0341
	SMJCAT_V15_i2_p0364
	SMJCAT_V15_i2_p0384
	SMJCAT_V15_i2_p0399
	SMJCAT_V15_i2_p0409
	SMJCAT_V15_i2_p0418
	SMJCAT_V15_i2_p0432
	SMJCAT_V15_i2_p0453
	SMJCAT_V15_i2_p0468
	SMJCAT_V15_i2_p0478
	SMJCAT_V15_i2_p0495
	SMJCAT_V15_i2_p0511
	SMJCAT_V15_i2_p0520
	SMJCAT_V15_i2_p0531
	SMJCAT_V15_i2_p0536
	SMJCAT_V15_i2_p0540
	SMJCAT_V15_i2_p0549
	SMJCAT_V15_i2_p0561
	SMJCAT_V15_i2_p0581
	SMJCAT_V15_i2_p0595
	SMJCAT_V15_i2_p0604
	SMJCAT_V15_i2_p0619
	SMJCAT_V15_i3_p0629
	SMJCAT_V15_i3_p0641
	SMJCAT_V15_i3_p0655
	SMJCAT_V15_i3_p0668
	SMJCAT_V15_i3_p0694
	SMJCAT_V15_i3_p0703
	SMJCAT_V15_i3_p0725
	SMJCAT_V15_i3_p0739
	SMJCAT_V15_i3_p0748
	SMJCAT_V15_i3_p0768
	SMJCAT_V15_i3_p0786
	SMJCAT_V15_i3_p0793
	SMJCAT_V15_i3_p0814
	SMJCAT_V15_i3_p0831
	SMJCAT_V15_i3_p0851
	SMJCAT_V15_i3_p0856
	SMJCAT_V15_i3_p0887
	SMJCAT_V15_i4_p0903
	SMJCAT_V15_i4_p0919
	SMJCAT_V15_i4_p0932
	SMJCAT_V15_i4_p0948
	SMJCAT_V15_i4_p0958
	SMJCAT_V15_i4_p0964
	SMJCAT_V15_i4_p0972
	SMJCAT_V15_i4_p0994
	SMJCAT_V15_i4_p1004
	SMJCAT_V15_i4_p1021
	SMJCAT_V15_i4_p1025
	SMJCAT_V15_i4_p1036
	SMJCAT_V15_i4_p1054
	SMJCAT_V15_i4_p1069
	SMJCAT_V15_i4_p1075
	SMJCAT_V15_i4_p1085
	SMJCAT_V15_i4_p1101
	SMJCAT_V15_i4_p1106
	SMJCAT_V15_i4_p1119
	SMJCAT_V15_i4_p1130
	SMJCAT_V15_i4_p1143
	SMJCAT_V15_i4_p1155

